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Abstract

To predict and understand the causes of disease, geneticists build mod-

els that predict how a genetic variant impacts phenotype from genomic

features. There is a vast amount of data available from the large projects

that have sequence hundreds of thousands of genomes; yet, state-of-the-art

models, like LD score regression, cannot leverage this data as they lack flex-

ibility due to their simplifying assumptions. These models use simplifying

assumptions to avoid solving the large linear algebra problems introduced

by the genomic correlation matrices. In this paper, we leverage modern

fast linear algebra techniques to develop WASP (genome Wide Association

Studies with Preconditioned iteration), a method to train large and flexible

neural network models. On semi-synthetic and real data we show that

WASP better predicts phenotype and better recovers its functional causes

compared to LD score regression. Finally, we show that training larger

WASP models on larger data leads to better explanations of phenotypes.

1 Introduction

To predict the risk of genetic disease and understand its molecular causes, Genome Wide

Association Studies (GWAS) use data from up to hundreds of thousands of individuals to

build models that correlate the presence of genetic variants with phenotypes such as disease

or height (Yang et al., 2010; Visscher et al., 2017; Halldorsson et al., 2021). However there

are orders of magnitude more variants than measurements, making GWAS underpowered

to predict phenotype or determine the effects of all but the most impactful variants.

To increase prediction accuracy and uncover the molecular causes of disease, geneticists

have leveraged the fact that complex phenotypes are extremely polygenic – that is, they are

affected by a huge number of variants spread throughout the genome (Manolio et al., 2009;

Boyle et al., 2017). Geneticists look for features that distinguish variants that do and do not

effect a phenotype on a set of chromosomes and use these features to build “functionally

informed” priors to analyze variants on other chromosomes (Gusev et al., 2014; Finucane

et al., 2015; Kichaev et al., 2019). To build these priors they use functional genomic fea-

tures (ENCODE Project Consortium, 2012; Lizio et al., 2015), such as measurements of DNA

“open-ness” or binding of transcription factor proteins near the variant; and comparative

genomics features (Cooper et al., 2005; Pollard et al., 2010), such as whether the variant is

in a region of the genome that is conserved across primates. As more accurate measure-

ments of genomic features are made and more individuals have their genomes sequenced,

in principle, geneticists should be able to build more accurate functionally informed priors

with more flexible models that learn from more features. In practice, however, significant

computational challenges have prevented the development of large models.

Functionally informed priors are typically phrased as priors on the effect of each variant

in a hierarchical Bayesian model of the genetic and phenotypic data (Loh et al., 2015;

Zheng et al., 2024). Ideally, we could fit the prior using an empirical Bayes approach

to maximize the marginal likelihood (Ni et al., 2018). Unfortunately this is numerically

challenging due to linkage disequilibrium (LD) – the presence of variants in the genome

can be strongly correlated, and accounting for this correlation in the marginal likelihood
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Figure 1: WASP enables training large models to predict the effect of variants from
genomic features by leveraging fast linear algebra. Top: We want to train a model, fθ, to

predict the effect of a variant in our genome from a large set of curated genomic features in

a window around the variant. Bottom: We train fθ to maximize the likelihood of observed

associations between variants and traits. We efficiently compute the likelihood by applying

accelerated linear algebra on the correlation matrix of variants in a sliding window. See

section 3 for full details.

involves inverting and calculating the log determinant of a large matrix known as the LD

matrix. To avoid inverting this matrix, state-of-the-art methods sacrifice statistical efficiency

by fitting summary statistics or an approximation of the marginal likelihood, or fit simple

parametric models of the relation between functional annotations and phenotype (Li et al.,

2024; Huang et al., 2024).

The challenge of having to invert a large matrix to perform empirical Bayesian inference

was addressed in works on Gaussian process regression with two strategies (Gardner et al.,

2018). First, using an iterative algorithm, inversion of an M ×M matrix could be reduced

from O(M3) to O(M2K) where K << M is the number of iterations; these algorithms have

also been used for inverting large matrices in GWAS (Loh et al., 2015). Second, by building

an approximate inverse to the large matrix which is easy to invert – a “preconditioner” –

the number of steps K could be reduced by orders of magnitude.

Here we introduce a method to train large models that predict variant effects from functional

annotations – genome Wide Association Studies with Preconditioned iteration (WASP)

(Fig. 1). We outline our contributions:

• We amortize the cost of training large neural networks on phenotype association

data with millions of variants by leveraging a banded approximation to the LD

matrix and using the approximating slices as mini-batches during training.

• We introduce a specialized structured preconditioner that in conjunction with

iterative algorithms allows us to efficiently perform challenging linear algebra op-

erations at each training step.

• We show that training models with WASP leads to better fits to the data than the

previous state-of-the-art LD score regression.

• We curate a large set of genomic features to train functional priors.

• We, for the first time, train large functionally informed priors on large public

phenotype association data with WASP and explore the effect of model size and

genomic features on the accuracy of the model.

Detailed relted work is in App. A. Our code for training WASP models is available at

https://anonymous.4open.science/r/fast_gen-05C2/.
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2 Background

In this section we describe models that describe traits using variants in the genome.

Functionally informed priors to predict variant effect To learn the heritibility of a trait,

suppose that we have measured the genotypes ofN (≈ 105) subjects – we have measured the

presence or absence of variants atM (≈ 106−108) positions or alleles on both chromosomes

– to get a genotype matrix X̃ ∈ {0, 1, 2}M×N
, and the presence of the trait to get a phenotype

vector y ∈ RN
. We can assume y is centered to have mean 0 and variance 1 and X is a

centered X̃ with all rows mean 0 and variance 1.

Measured traits that we are interested in, such as height, smoking status or schizophrenia,

are polygenic – they are influenced by many variants scattered throughout the genome

rather than a small number of alleles (Manolio et al., 2009; Boyle et al., 2017). This is

captured by the infinitesimal model in which each variant has a small effect drawn from a

prior (Barton et al., 2016; Trippe et al., 2021).

A popular infinitesimal model is the linear model y = X⊺β+ ϵ with iid noise ϵ ∼ N (0, σ2I)
where the effect size at position m, βm, is independently drawn from a prior normal

distribution βm ∼ N (0, fm). Therefore we can describe the marginal distribution of y as

y ∼ N
(
0, X⊺FX + σ2I

)
, where F = diag(f). (1)

Our first goal is estimating the effect size β. The challenge is that there are many more

variables than observations , N << M , so it is challenging to get enough statistical power

to predict the values of many β. Our second goal is to identify the features that characterize

variants m with large effect sizes βm.

We can achieve these goals with a good prior f , which will increase our power to determine

βm and predict which variants are expected to have large magnitude since Eβ2
m = fm.

To build such a prior, we can take advantage of large datasets of genomic features Cm

(elaborated in Sec. 4), to predict fm with a model with parameters θ, fθ(Cm). Naively, we

may train fθ and σ2
by maximizing the marginal likelihood of Eqn. 1.

Summary Statistics However, to protect the privacy of study participants, we are given

“summary statistics” rather than the precise value of y and X . In particular, we are

given the empirical correlation matrix known as the “Linkage Disequilibrium (LD) matrix”

R = 1
NXX⊺

; and the empirical associations β̂ = 1
NXy. We can then write Eqn 1 in terms of

summary statistics with σ2
N ≡ 1

N σ2
:

β̂ ∼ N
(
0, RFR+ σ2

NR
)
. (2)

The second term in the variance, σ2
NR, comes from spurious correlations with the noise ϵ; if

the presence of two variants m and m′
are correlated (Rm,m′ is large) then the associations

β̂m and β̂m′ will have similar correlations with the noise ϵ. The first term in the variance

comes from the effect variants have on the trait. Specifically, the m,m′
entry of RFR is∑

k Rm,kRm′,kfk, which is large if there are variants k correlated to both m and m′
– large

Rm,k and Rm′,k – which are expected to have large effect fk.

Now, in principle, we could build a prior by maximizing the likelihood of Eqn. 2:

−1

2
β̂T
(
RFθR+ σ2

NR
)−1

β̂ − 1

2
log
∣∣RFθR+ σ2

NR
∣∣+ c (3)

where c is a constant value. The challenge is the need to calculate Fθ and then invert and

calculate the log determinant of the huge M ×M matrix R.

LD score regression (LDSR) Other methods have been devised for fitting θwhile avoiding

the explicit inversion. In this section we describe the most popular of these methods before

moving to our method.

3



Published at LMRL Workshop at ICLR 2025

From Eqn 2 we can note that a variantm expected to have a large association if it is correlated

to other variants expected to have large effects: 1

E[Nβ̂2
m] = N

∑
m′

fm′R2
mm′ + σ2. (4)

The simplest model of heritability gives each variant the same expected heritability, fm = f ,

in which case we can write Eqn. 4 as E[Nβ̂2
m] = Nf

[∑
m′ R2

mm′

]
+ σ2

. The term in

the brackets, known as the LD score, measures how many other variants m is correlated

with and can be precomputed before fitting f . By fitting a line to the magnitudes of the

association statisticsNβ̂2
m and precomputed LD scores, one can recoverNf as the slope and

σ2
as the intercept. This method, known as LD score regression, gives accurate predictions

of how much of a trait is explained by genetics, f , and how much is caused by noise

or the environment, σ2
(Bulik-Sullivan et al., 2015). Finucane et al. (2015) extended this

approach to fit a linear fm that depends on d genomic features – in this case one performs

a multi-dimensional linear regression with d precomputed variables.

More generally, one can in principle fit the linear relation Nβ̂2
against NR◦2Fθ + σ2

1 for

more flexible models fθ. This method does not require inverting R; however, this method

loses statistical efficiency by not making use of correlations between β̂ (Ni et al., 2018).

3 Efficient training of the likelihood

Our goal is to directly optimize the likelihood in Eqn 3 which requires expensive linear

algebra operations like inverting and calculating the log determinant of Aϕ = RFθR+σ2
NR,

for every ϕ = (θ, σ2) update. Since Aϕ is symmetric, we could compute its log determinant

and inverse using Cholesky. However, the computational cost of Cholesky is O(M3), which

given the size of M , would amount to a prohibitively expensive ≈ 1021 FLOPs per iteration!

Furthermore, in contrast to previous methods, we train neural network models for fθ with

millions of parameters, that is θ ∈ RD
where D ≈ O(106) and so computing fθ,m for every

variant m also becomes prohibitively expensive.

In order to circumvent the aforementioned costs of computing likelihood and to efficiently

compute gradients for ϕ = (θ, σ2), we follow a two-pronged approach. First, we utilize

a banded / sliding window approximation of R which allows us to amortize the training

of θ across each slice and, second, we construct a specialized preconditioner which, in

conjunction with fast iterative methods, allows us to efficiently optimize the likelihood.

Using submatrices for mini-batching Our first challenge is that calculating Eqn 3 requires

us to compute fθ,m for every m in the genome while performing expensive linear algebra

operations on an enormous dense M ×M matrix R.

First we make a standard approximation: we break the genome up into 2700 windows of

size 1 million and assume the associations β̂ in each window are generated independently.

This can be justified by the fact that R is approximately block diagonal for instance (Berisa

& Pickrell, 2016; Salehi Nowbandegani et al., 2023). Thus Eqn. 3 becomes∑
i

β̂⊺
(i)(A

(i)
ϕ )−1β̂(i) + log|A(i)

ϕ |
(5)

where A
(i)
ϕ is the submatrix of Aϕ of variants in the i-th window and β̂(i) is the subvector of

β̂ of variants in the i-th window.

Next noteA
(i)
ϕ = R(i),:FθR:,(i)+σ2

NR(i),(i) whereR(i),: represents the rectangular submatrix

ofRwhose rows are variants in window i andR(i),(i) is similar. CalculatingA
(i)
ϕ still requires

1LD score regression can also be derived in infinitesimal models more general than Bayesian linear

models with a normal prior (Bulik-Sullivan et al., 2015).
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calculating fθ,m for every variant m. To avoid this calculation, we the use well established

fact that variants that are distant in the genome should have little correlation, and so we can

use a banded approximation of R (Bulik-Sullivan et al., 2015); in particular we assume that

Rk,r = 0 when the positions of the k-th and r-th variants are more than 106 apart. Thus

A
(i)
ϕ ≈ R(i),(i)+F

(i)
θ R(i)+,(i) + σ2

NR(i),(i)

where (i)+ is the set of all variants within 106 positions of a variant in window (i) andF
(i)
θ is

the (i)+× (i)+ submatrix of Fθ. Now Eqn 5 then allows us to optimize ϕ, through stochastic

gradient descent, by sampling windows (i) and only calculating fθ,m for the roughly 104

variants in (i)+. For simplicity, below we act as though (i) = (i)+ and write R(i) = R(i),(i).

Connection to LD score regression Due to the large size of our windows, we expect both

approximations above to be accurate. In contrast, if we focus on the extreme case of a

window size of 1 the objective Eqn. 5 becomes∑
i

Nβ̂2
i

N
∑

m′ fm′R2
mm′ + σ2

+ log(N
∑
m′

fm′R2
mm′ + σ2)

which tries to fitN
∑

m′ fm′R2
mm′+σ2

toNβ̂2
i . This is exactly the idea of LD score regression

(Eqn. 4). Therefore LDSR can be thought of as our objective when assuming every β̂ was

generated independently.

Fast linear algebra with preconditioned iterative methods To train our models we not

only have to invert and compute the log determinant of Aϕ at every iteration but also

backpropagate through these computations, increasing the complexity of the problem. Our

approach is to use iterative methods like stochastic Lanczos quadrature (SLQ) (Golub &

Loan, 2018; Saad, 2011) for log |A(i)
ϕ | and conjugate gradients (CG) (Nocedal & Wright, 2006;

Golub & Loan, 2018; Saad, 2003) for solves (A
(i)
ϕ )−1

. Both methods perform multiplications

against A
(i)
ϕ at each iteration, improving the quality of the approximation. Thus, the

computational cost of both methods is a manageable O(JM2
i ) where J is the number of

iterations. We review these methods in App. B.2.

The number of iterations required to converge below an error threshold of the iterative

methods that we use is directly linked to the eigenspectrum of A
(i)
ϕ (Nocedal & Wright,

2006; Saad, 2011; Hogben, 2013). Therefore we can improve the convergence rate by finding

a matrix P , known as a “preconditioner”, such that PA
(i)
ϕ ≈ I and replacing the liner

algebra operations on A
(i)
ϕ with that of PA

(i)
ϕ .

Before the construction of the WASP preconditioner we first have to pre-process the LD

slices R(i)
. As opposed to A

(i)
ϕ , which changes whenever we update ϕ, each R(i)

is

fixed throughout training. Therefore, before training, we compute the eigendecompo-

sition of R(i) = V (i)Λ(i)(V (i))⊺ and zero out any negative eigenvalues in Λ(i)
, that is

Λ(i) = max(0,Λ(i)). As mentioned before, R(i)
should in principle not have negative

eigenvalues as it is psd. Yet, in practice, we most likely observe small numerical negative

eigenvalues as a consequence of data inaccuracies.

Once we pre-processing step is done then we construct a preconditioner for A
(i)
ϕ =

R(i)F
(i)
θ R(i) + σ2R(i)

by approximating fθ as a constant function: that is, F
(i)
θ is approx-

imated by µ
(i)
θ I where µ

(i)
θ = mean(diag(F

(i)
θ )). We expect this approximation to be

accurate especially when the first term in A
(i)
ϕ is small – fθ,m << σ2

N = Θ(1/N). Since fθ,m
is the expected effect from an individual variant, we expect it to usually be on the order

1/M << 1/N . However, when our approximation is poor then the iterative algorithm will

take longer to converge, but will still converge to the correct value. In practice, we must

also regularize the matrix with ϵ; details are discussed in App. B.1.
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Figure 2: WASP enables efficient loss and gradient computations. We measure the time

it takes to compute our loss which involves the computation of (A
(i)
ϕ )−1

and log |A(i)
ϕ | as

well as its gradients with respect to ϕ. We do this for 20 mini-batches of real UKBB data and

display the mean runtime as barplots. It stands for the application of iterative algorithms

such as SLQ and CG. We set a tolerance of 10−6
for CG and use 100 samples of SLQ. In terms

of preconditioners, NoP implies that we did not use a preconditioner, Nys means that we

used Nyström and WASP means that we applied our specialized structured preconditioner.

For GPU we used an NVIDIA A100-SXM4-80GB and for CPU Intel(R) Xeon(R) Platinum

8268 CPU @ 2.90GHz.

Given the eigendecomposition of R(i)
that we obtain through our pre-processing step,

namely (Λ(i), V (i)), we see that if we define the preconditioner P as

P−1 = R(i)(µθI)R
(i) + σ2

NR(i) + ϵI

= V (i)[µθ(Λ
(i))2 + σ2

NΛ(i)](V (i))⊺ + ϵI

then, using the Woodbury identity we get that P = 1
ϵ I − 1

ϵV
(i)Γ

(i)
ϕ (V (i))⊺ where Γ

(i)
ϕ is a

diagonal matrix such that Γ
(i)
k,k = 1

µθ(λ
(i)
k )2+σ2

Nλ
(i)
k

+ ϵ. Note that the construction of P comes

at almost no cost, as we only have to compute, at each iteration, µθ and Γ
(i)
ϕ to update P .

We demonstrate the efficacy of our method in 2 where we see how WASP significantly

reduces the runtime when compared to other methods like Cholesky and other precondi-

tioning strategies commonly used for other large scale Bayesian models as in Gardner et al.

(2018) or Frangella et al. (2021).

4 Predicting variant effects from functional annotations

Now we have a method for accurately and efficiently training a model fθ. Here we specify

how we build fθ that include many more functional and comparative genomics features

than previous works.

Features Previous methods have built fθ using functional genomics features such as

DNA accessibility, proximity to functional elements, and presence of a coding region and

comparative genomics features such as conservation scores (Finucane et al., 2015; Li et al.,

2024). Many of these features are defined as annotations at each position in the genome; to

get a single value, annotations were averaged in a window before being passed to fθ.

We expand this set in two ways. First we consider a significantly expanded set of functional

genomics annotations – binding and accessibility annotations from ENCODE (ENCODE

Project Consortium, 2012), enhancer annotations from FANTOM (Lizio et al., 2015) – and

comparative genomics annotations – conservation scores such as PhyloP (Pollard et al.,

2010), and predictions of effects of mutations in coding regions such as those from ESM2 (Liu

et al., 2020). Details of these data are in App. C.2 and C.3. Second, instead of considering

an average of the values of annotations in a window around the variant, we pass the model

the exact values of the annotations at all positions in the window.

Gazal et al. (2017) used LDSR demonstrated that the recent history of a variant in humans

can also be predictive of its effect size. To account for this, we also included the frequency

of each variant m, freqm; its “minor allele” frequency, min{freqm, 1 − freqm}; and its LD

score

∑
m′ R2

mm′ as features.
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Figure 3: WASP using an enformer model best recovers fθ. The bars represent the RMSE

difference between the learnt f̂θ and the ground truth fθ in the log space evaluated over a

set of validation tracks (lower is better).

Architecture For all genomics annotations but coding mutation effect predictions, we

consider a window around each variant of size w. We pass these tracks Ctrack,m ∈ Rdtrack×w

along with predictions of the effects of mutations if the mutation is in a coding region and ge-

nomic architecture information, Cpred,m ∈ Rdpred
, to a neural network fθ(Ctrack,m, Cpred,m).

In our case, dtrack = 165, and dpred = 9; we also choose a window size of w = 256.

The architecture we use is adapted from a network used to predict tracks from sequence,

Enformer (Avsec et al., 2021); this architecture uses a mix of convolutional and attention

layers.

Speed et al. (2017) suggested that setting f = constant in our model makes the implicit

assumption that rare variants have larger effects; They generalized our model to remove

this assumption with a more general model fm = (freqm(1 − freqm))α where α is a fit

parameter. In our case, we consider

fθ,m = (freqm(1− freqm))αNNθ(Ctrack,m, Cpred,m) (6)

where NNθ is a neural network or any other model. In our experiments below, α typically

converges to a value between 0.6 and 0.7 regardless of its initialization.

5 Empirical Results

We now apply WASP to train flexible neural network models in order to better explain

which variants are associated with phenotypic traits. See B for experimental details.

In all of our experiments we use public data from the UK Biobank (UKBB) of over 300,000

European individuals. We download LD matrices R calculated from (Weissbrod et al.,

2020). We use the β̂s from 3 traits calculated in Loh et al. (2015) – body mass index, height,

and asthma. See App. C.1 for details.

Semi-synthetic simulation Semi-synthetic simulations are a staple of statistical genetics

literature (ex. Candès et al. (2016) or O’Connor et al. (2019)) and are used to validate methods

when true effects β are unavailable. We use them to demonstrate that our loss function

and our numerical techniques allow us to recover different fθ functions while using real

LD patterns. That is, we use the real R provided by UKBB but generate β̂ as follows:

βm ∼ N (0, fm (Ctrack,m, Cpred,m)) ; β̂ ∼ N (Rβ, σNR)

where f represents that function that we are trying to learn. We consider fθ as a randomly

initialized Enformer neural network model (16 million parameters). See App. B.7 for details.

We tried fitting this data with models based on Eqn. 6. We used simple models – NNθ =
constant and NNθ = generalized linear model (see App. B.4) – and a more flexible NNθ

with the enformer architecture with LD score regression (LDSR) and WASP. In Figure 3

we show WASP with a large model can closely recover the true variant effect distribution

fθ – it achieves a low error in predictions fθ. Furthermore, this model better predictions

than restricted constant and linear fθ. We also see that our method makes more accurate

predictions than models trained with LD score regression.
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Method Model BMI Height Asthma
LDSR Constant 524 1619 27.2

LDSR Linear 568 1880 50.0

LDSR Enformer 539 1692 8.9

WASP Constant 520 1560 30.4

WASP Linear 584 1916 58.1

WASP Enformer 635 2070 66.4

Table 1: More flexible models trained with WASP better explain genetic associations.
We report the increase in likelihood on the test chromosomes over a null model (f = 0).

Model (params) BMI Height Asthma
Reduced features 608 2032 64.5

Reduced model size 629 2015 61.8

Full model 635 2070 66.4

Table 2: Larger models with more features better explain genetic associations. We ablate

the feature set and model size of our enformer model. We report the increase in likelihood

on the test chromosomes over a null model (f = 0).

Fitting association data on UKBB Now we use WASP to explain the associations of vari-

ants to real phenotypes in UKBB. We quantify how well each model explains associations

with a trait using the difference in likelihood Eqn. 3 using our learned fθ versus a null model

with no heritable effect fθ = 0. We train on associations from variants in chromosomes 1-20

and evaluate our model on holdout variants in chromosomes 21 and 22.

We first evaluated the likelihoods of various architectures trained with LDSR and WASP on

held-out chromosomes against a null model. LDSR and WASP used similar computational

resources in training. Table 1 shows that a model with constant f better explains the data

than a null model, f = 0, and a generalized linear model in turn better explains the data

than a constant model. Training these small models with LDSR or WASP resulted in similar

or slightly improved quality models.

In contrast, when we train Enformer with LDSR, it surprisingly performs worse than the

linear model. The more flexible architecture potentially over-fits the data due to the loss

of statistical efficiency when performing LDSR. When accounting for correlations in the β̂
with WASP however, the enformer substantially outperform all other models.

We were next interested to determine how important the feature set and model size are

for the performance of our models. We trained models with a reduced feature set – we

looked at a window of w = 128 rather than w = 256 around each variant, and removed

the 111 features from ENCODE – and with a reduced size – we reduce the number of

parameters from 16 million to 4.4 million. Table 2 shows that ablating the model size or

feature set often harms model performance. This degradation strongly suggests that our

model benefits from its flexibility and features to better predict the effects of variants.

6 Conclusion

By efficiently inverting LD matrices, WASP allows us to train large models that better

predict the effects of variants on phenotype and to learn their functional causes. Our

results demonstrate that larger models make better predictions than the simple models

used in practice, and that increasing the model size and and using more features improves

predictive power.

Meaningfulness Statement WASP learns representations of functional genomics data

that are useful for predicting disease. This is distinct from the representations learned in

other predictive models.
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A Detailed previous work

Training functionally informed priors Training a functionally informed prior by directly

optimizing the likelihood of the data has, up until now, been computationally prohibitive

due to the cost of linear algebra operations on the LD matrix. Previous methods have used
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a number of strategies to restrict the flexibility of their prior or looked at other approximate

or derived objectives in order to do inference. First, most GWAS methods pick their prior

with only a handful of parameters (usually 1 or 2) and fit it by grid search or other bespoke

methods that struggle to scale Yang et al. (2010); Loh et al. (2015); Speed et al. (2017);

Spence et al. (2022). Second, Finucane et al. (2015) fit a linear prior by performing LD score

regression in Eqn. 4. Third, Lu et al. (2016) and Fabiha et al. (2024) fit a small model by

teaching it to classify the small number (≈ 2000) of available high confidence positive and

negative causal variants. Fourth, Li et al. (2024) considered fitting a simple generalized

linear model fθ by approximating Eqn. 3 using an approximation of R−1
. All of these

methods run on CPU and use parallelism to compute the gradient of the likelihood across

the entire genome for each update.

Unfortunately these methods are unsuitable for training a large flexible prior as they 1)

lose statistical power by approximating the likelihood and 2) they require prior values for

all variants in the genome for a single gradient update. In contrast, our method WASP 1)

directly optimizes the likelihood of data from millions of variants, 2) updates the model

using its predictions in minibatches, and accelerates linear algebra operations in each mini-

batch with GPUs.

In related work Huang et al. (2024) fit a graph neural network of variants to predict β̂
directly; they use their model to increase power to find more associated variants. However

such a model does not distinguish between variants with large effects β and variants they

are associated with.

Downstream uses of functionally informed priors A number of works have built meth-

ods to use functionally informed priors to increase the power of downstream analyses.

Huang et al. (2024) and Kichaev et al. (2019) demonstrated that models that can predict the

effect of variants can improve the power of GWAS. Weissbrod et al. (2020) demonstrated

such models can also identify causal variants and Li et al. (2020) used such variants to

identify causal genes. The WASP prior can in principle fit into these same pipelines.

Flexible models of heritability In addition to more flexible models predicting variant

effects from functional annotations, we can improve fits to association data with models

that are more flexible than mixed linear models. Zhang et al. (2021) consider different,

non-normal, priors, and Loh et al. (2015) consider mixture of normal priors on the effect

sizes. There have also been a number of nonlinear models for predicting y from X (Conard

et al., 2023). For simplicity, WASP considers the popular normal prior with a linear model

and leaves more flexible models to future work.

Fast linear algebra with large genotype matrices A number of other works have looked at

approximately inverting matrices of genetic variants to accelerate variant effect prediction.

Loh et al. (2015) used a conjugate gradient algorithm to invert the matrix of correlations of

variants between study individuals – the empirical kinship matrix XX⊺
; Loh et al. (2018)

noted that their algorithm converges much faster after removing the top eigenvalues of the

kinship matrix , improving it condition number. Berisa & Pickrell (2016) approximated R
with a block diagonal matrix, Shi et al. (2016) approximated R with a low rank matrix, and

Salehi Nowbandegani et al. (2023) approximated the inverse of the R with an extremely

sparse matrix; these works use these approximations in place of the true R. WASP uses

an iterative algorithm to perform linear algebra operations on the exact R; we also build

an approximation of the matrix we wish to invert but use this approximation to speed up

linear algebra operations by using it as a preconditioner.

Fast linear algebra for fitting large Bayesian models Fitting Gaussian processes similarly

involves inverting a large matrix known as the Gram matrix. While one can avoid inverting

the matrix with variational inference, state of the art methods invert the Gram matrix with

an iterative algorithm with a Nyström preconditioner (Gardner et al., 2018). We build

a bespoke preconditioner leveraging the structure of LD matrices to quickly invert LD

matrices with iterative algorithms; in our setting, our preconditioner performs much better

than a general purpose Nyström preconditioner (Frangella et al., 2021).
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B Experimental details

B.1 Regularizing the submatrices

The main properties that characterize R(i)
is that it is positive semi-definite (psd) and that

it is singular since several traits are highly correlated with each other. By construction,

these two properties are also inherited by A
(i)
ϕ and so the main numerical challenge when

optimizing Eqn 5 is that we need to deal with the fact that R(i)
or A

(i)
ϕ are singular.

B.2 Iterative algorithms

In terms of implementation, we use CoLA (Potapczynski et al., 2023), a numerical linear

algebra library that is compatible with diverse deep learning frameworks and that provides

backpropagation capabilities for SLQ and CG. CoLA computes the gradients of A−1
ϕ and

log |A−1
ϕ | by using the following identities

∇ϕA
−1
ϕ = −A−1

ϕ ∇ϕAϕA
−1
ϕ

∇ϕ log
∣∣∣A−1

ϕ

∣∣∣ = trace(A−1
ϕ ∇ϕAϕ) = Eu∼N (0,I)(A

−1
ϕ u)⊺∇ϕAϕu

where both quantities require backpropagating through Aϕ only and where we use the

Hutchinson trace estimator. Additionally, CoLA allows us to leverage GPU acceleration for

our numerical techniques which significantly reduces the runtime.

Previous works like Salehi Nowbandegani et al. (2023) or Hormozdiari et al. (2014), deal

with the singularity issues by adding regularization to R(i)
as R(i) + ϵI for some small

ϵ. The problem with this approach is that, in our case, the regularization ϵ gets affected

by the scale of σ2
N and influenced by θ since (R(i) + ϵI)F

(i)
θ (R(i) + ϵI) + σ2

N (R(i) + ϵI) =

A
(i)
ϕ + ϵRF

(i)
θ + ϵF

(i)
θ R + ϵ2F

(i)
θ + ϵσ2

NI . It thus becomes unclear how close we are to the

original problem if the regularization keeps changing at each iteration.

In contrast, we choose to add the regularization directly to A
(i)
ϕ as, A

(i)
ϕ + ϵI and leave R(i)

untouched. In our experiments we set ϵ ≈ 10−4
.

B.3 Models

We obtained code for enformer from https://github.com/lucidrains/
enformer-pytorch under the MIT license. We reduce the internal dimension to

768 and the number of transformer layers to 2. Our “smaller model” further reduced the

internal dimension to 384.

We normalize features to have mean 0 and variance 1 across the genome before passing

them to any model.

B.4 Generalized linear model

As a baseline we consider a generalized linear model as suggested in Li et al. (2024) using

averages of each track in the window as in Finucane et al. (2015):

fθ,m = (freqm(1− freqm))α

(∑
d

wd

∑
w

Ctrack,m,d,w +
∑
d′

w′
d′Cpred,m,d′) + c

)
where (wd)d, (w′

d′)d′ , and c are learnable parameters.

B.5 Training

We trained our models with an AdamW optimizer with default hyperparameters, 100

warmup steps with a linear schedule. For σ and α we used a learning rate of 0.0002; for
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θ we use a learning rate of 0.0001 for enformer models and 0.002 for linear and constant

models. We train enformer models for up to 10 epochs; we trained smaller models for 2

epochs. We train models on single A100 or H100 GPUS on an academic cluster; enformer

models were trained for 10 to 12 hours.

B.6 LD score regression (LDSR)

Finucane et al. (2015) suggested performing the linear LD score regression with a square

loss 1) dividing by the (rough) standard deviation of a chi-squared variable and 2) down-

weighting variants in LD with many other variants: calling l = 1
TR◦2

and h2
g = Eifθ,i

(ballpark estimate made before training), we minimize (we also multiply numerator and

denominator by N ) ∑ 1

li

1

(Nh2
gli/M + 1)2

(
N

M
R◦2

i fθ + σ2 −Nβ̂2
i

)2

.

B.7 Simulation

Here we describe how we chose a realistic f for semi-synthetic simulation. Recall,

y ∼ N(0,
1

N
XTFX + σ2I).

Therefore

1 = Var(yi,i) = σ2 +
1

N

∑
m

X2
m,iFm.

Assuming presence of a variant Xm,i is independent of Fm, we have

1 = Var(yi,i) ≈ σ2 +
M

N
Em[X2

m,i]Em[Fm] = σ2 +
M

N
Em[Fm].

Thus, in our simulated data, ideally we would ensure that

EmFm =
N

M
(1− σ2).

In our case, we choose a highly heritable disease with σ2 = 1/2 so half of the variance

of y is from the noise ϵ and the other half is genetic. Using real values N = 407527 and

M = 11904924 for our data, we set Emfm = N
2M by initializing a f̃ , calculating Emf̃m, and

defining fm = N
2MEmf̃m

f̃m.

We defined f̃m = exp(10 × NNθ(Ctrack,m, Cpred,m)) where NNθ is a randomly initialized

Enformer model.

C Data Collection

C.1 UKBB summary statistics

We downloaded UK biobank LD matrices computed in Weissbrod et al. (2020) from the

Amazon web services S3 container s3://broad-alkesgroup-ukbb-ld/UKBB_LD/.

These matrices can have small negative eigenvalues, which we removed prior to training.

We downloaded UK biobank association statistics computed using BOLT-LMM (Loh

et al., 2015) from the UKBB_409K folder in https://console.cloud.google.com/
storage/browser/broad-alkesgroup-public-requester-pays. These associa-

tion statistics also contained frequencies of each variant. Any variants that have LD in-

formation but that are missing associations are discarded; all variants with association

information also had LD information.

UKBB coordinates are in GrCh37 but many of our features below are in the GrCh38 build.

We used rsid’s and pyliftOver (https://github.com/konstantint/pyliftover) to

map to GrCh38. For the handful of variants we could not map we gave them the location

of a nearby variant.
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C.2 Coding variant annotations

We downloaded the predictions of the effects of variants in coding re-

gions from various models from https://www.dbnsfp.org/. We used six

predictions labeled ESM1b_score, GERP++_RS, SIFT_score, PROVEAN_score,
FATHMM_score, EVE_score. For non-coding variants or variants missing a prediction,

we set C = 0.

C.3 Functional and conservation track data

Conservation We downloaded bigWig files of our phylogenetic correlation tracks

from http://hgdownload.soe.ucsc.edu/goldenPath/hg38/ (Pollard et al., 2010;

Hubisz et al., 2011). We used 15 PhyloP and phastCons scores made from various

alignments: phyloP470way, phyloP447way, phyloP100way, phyloP30way,
phyloP20way, phyloP17way, phyloP7way, phyloP4way, phastCons470way,
phastCons100way, phastCons30way, phastCons20way, phastCons17way,
phastCons7way, phastCons4way.

FANTOM We downloaded hCAGE FANTOM tracks of human tissues from https:
//fantom.gsc.riken.jp/5/datahub/hg38/tpm/human.tissue.hCAGE/ (Lizio

et al., 2015). This gave us roughly 400 tracks; we picked a random 20 tissues from this

set and collected forward and backward CAGE tracks for each tissue, giving us a total

of 40 features. The tissues were lymph node, adult, donor1; heart, adult,
diseased post-infarction, donor1; skeletal muscle, adult, pool1;
occipital lobe, adult, donor1; parietal cortex, adult, donor10258;
thymus, adult, pool1; thyroid, adult, pool1; pons, adult, pool1;
parotid gland, adult; Fingernail (including nail plate, eponychium
and hyponychium), donor2; thalamus, adult, donor10258; caudate
nucleus, adult, donor10252; parietal lobe, adult, donor10252;
cerebrospinal fluid, donor2; kidney, fetal, pool1; eye - muscle
inferior rectus, donor1; nucleus accumbens, adult, pool1; parietal
lobe - adult, donor10196; cerebral meninges, adult; throat, adult.

ENCODE We downloaded bigWig files of functional genomics tracks from

https://www.encodeproject.org/search/ (ENCODE Project Consortium, 2012).

We did not use tracks with warnings, errors, or that were non-compliant. We used assays

with titles TF ChIP-seq, Histone ChIP-seq, eCLIP, total RNA-seq, polyA
plus RNA-seq, polyA minus RNA-seq, small RNA-seq, microRNA-seq,
ChIA-PET, WGBS, DNase-seq, ATAC-seq, PRO-cap, PRO-seq, Bru-seq,
BruChase-seq, RAMPAGE, PAS-seq and those that had available bigWig files for

GrCh38. We got over 100 eCLIP annotations of RNA binding; since each of these annota-

tions are sparse, we summed them together to create a single all_eCLIP annotation. For

TF ChIP-seq experiments that targeted a transcription factor, we only used assays from

the 24 targets that had measurements from two or more labs.

Each of these experiments had multiple data tracks. We used the

fold_change_over_control for a random replicate if it was avail-

able, otherwise we used a randomly chosen track. In total we had

111 tracks from ENCODE; the full list with bioproject ids is as follows:

all_eCLIP, TF_ChIP-seq of MTA3 (ENCSR391KQC), TF_ChIP-seq of
MCM3 (ENCSR990AZC), TF_ChIP-seq of POLR2AphosphoS5 (ENCSR000BTW),
Histone_ChIP-seq of H3K27ac (ENCSR601VHO), TF_ChIP-seq of NFIB
(ENCSR702BYX), ChIA-PET of CTCF (ENCSR514HBO), TF_ChIP-seq of
SUZ12 (ENCSR757EMK), Histone_ChIP-seq of H3K9me3 (ENCSR999HNE),
TF_ChIP-seq of CAMTA2 (ENCSR336GFK), ChIA-PET of POLR2A
(ENCSR447IUA), TF_ChIP-seq of NFRKB (ENCSR145BHD), TF_ChIP-seq of
SIN3A (ENCSR468LUO), Histone_ChIP-seq of H3K27me3 (ENCSR197KBA),
PAS-seq (ENCSR055TUB), Bru-seq (ENCSR258ARX), polyA_minus_RNA-seq
(ENCSR000CQI), TF_ChIP-seq of HLTF (ENCSR090JNM), TF_ChIP-seq
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of FOXK2 (ENCSR465VLK), TF_ChIP-seq of CBX8 (ENCSR616MOB),
TF_ChIP-seq of ZFX (ENCSR503GVO), ATAC-seq (ENCSR890DWH),
TF_ChIP-seq of TARDBP (ENCSR412QBS), DNase-seq (ENCSR367FKP),
Histone_ChIP-seq of H3K4me1 (ENCSR238WIK), TF_ChIP-seq of GATAD2A
(ENCSR160QYK), TF_ChIP-seq of ARNT (ENCSR613NUC), TF_ChIP-seq
of PKNOX1 (ENCSR115SMW), TF_ChIP-seq of MCM7 (ENCSR542WJU),
TF_ChIP-seq of MLLT1 (ENCSR427BBI), RAMPAGE (ENCSR413FKS),
TF_ChIP-seq of HDAC1 (ENCSR711VWL), Histone_ChIP-seq of H3K27ac
(ENCSR400XSW), TF_ChIP-seq of Cebpa (ENCSR334SSD), TF_ChIP-seq
of DPF2 (ENCSR715CCR), Histone_ChIP-seq of H3K4me2 (ENCSR693KAX),
PAS-seq (ENCSR014VJO), Histone_ChIP-seq of H2AFZ (ENCSR859FGW),
TF_ChIP-seq of CTBP1 (ENCSR636EYA), TF_ChIP-seq of SMARCA5
(ENCSR895HSJ), polyA_minus_RNA-seq (ENCSR000CQH), Histone_ChIP-seq
of H4K20me1 (ENCSR839YFS), TF_ChIP-seq of BCOR (ENCSR808AKZ),
TF_ChIP-seq of GTF2F1 (ENCSR557JTZ), Histone_ChIP-seq of H3K56ac
(ENCSR036NSK), BruChase-seq (ENCSR245MXB), TF_ChIP-seq of CTCF
(ENCSR035OXA), TF_ChIP-seq of JUNB (ENCSR431LRW), TF_ChIP-seq
of TRIM24 (ENCSR957LDM), TF_ChIP-seq of NBN (ENCSR278SQL),
Histone_ChIP-seq of H3K27me3 (ENCSR374JBS), Histone_ChIP-seq
of H3K36me3 (ENCSR845BEG), TF_ChIP-seq of MAX (ENCSR000BTY),
TF_ChIP-seq of LARP7 (ENCSR725ELR), microRNA-seq (ENCSR496QLS),
Histone_ChIP-seq of H3K9me3 (ENCSR623YMO), TF_ChIP-seq of
JUN (ENCSR192PBJ), TF_ChIP-seq of PLRG1 (ENCSR019KPC),
TF_ChIP-seq of MLX (ENCSR125DAD), Histone_ChIP-seq of H3K9ac
(ENCSR705USK), BruChase-seq (ENCSR809IJG), TF_ChIP-seq of
GATAD2B (ENCSR389BLX), TF_ChIP-seq of KHSRP (ENCSR686EYO),
ChIA-PET of POLR2A (ENCSR982KEM), Histone_ChIP-seq of H2AFZ
(ENCSR256KRN), Histone_ChIP-seq of H3K4me1 (ENCSR716KBL),
TF_ChIP-seq of SMARCA4 (ENCSR587OQL), TF_ChIP-seq of PHB
(ENCSR650AWW), Histone_ChIP-seq of H3K36me3 (ENCSR472CMR), RAMPAGE
(ENCSR773EZK), ATAC-seq (ENCSR677MJF), Histone_ChIP-seq of H4K5ac
(ENCSR035BZI), DNase-seq (ENCSR255STJ), WGBS (ENCSR166VVF),
PRO-cap (ENCSR935RNW), TF_ChIP-seq of CSDE1 (ENCSR626QJQ),
TF_ChIP-seq of DMAP1 (ENCSR670YPQ), Histone_ChIP-seq of
H3K4me2 (ENCSR714QUE), TF_ChIP-seq of PBX3 (ENCSR000BVE),
TF_ChIP-seq of HDGF (ENCSR563YDA), Histone_ChIP-seq of H3K23ac
(ENCSR473AQI), TF_ChIP-seq of CEBPB (ENCSR000BUB), TF_ChIP-seq
of RFXANK (ENCSR823ADL), small_RNA-seq (ENCSR000CSZ), PRO-seq
(ENCSR989CPK), Bru-seq (ENCSR892NYB), TF_ChIP-seq of MNT
(ENCSR730TBC), TF_ChIP-seq of RBBP5 (ENCSR330EXS), TF_ChIP-seq
of NONO (ENCSR912NMR), summed_RNA_binding of e (clip),
TF_ChIP-seq of POLR2A (ENCSR388QZF), TF_ChIP-seq of CBFA2T3
(ENCSR697YLJ), TF_ChIP-seq of YBX3 (ENCSR567JEU), TF_ChIP-seq
of RAD21 (ENCSR000BUC), TF_ChIP-seq of JUND (ENCSR000BSK),
Histone_ChIP-seq of H3K79me1 (ENCSR213JMO), TF_ChIP-seq of MTA2
(ENCSR411UYA), small_RNA-seq (ENCSR000CSF), TF_ChIP-seq of FOXP1
(ENCSR369YUK), TF_ChIP-seq of IKZF1 (ENCSR278JQG), TF_ChIP-seq
of ZBTB1 (ENCSR309ELI), TF_ChIP-seq of NCOA3 (ENCSR573OJP),
TF_ChIP-seq of CREB1 (ENCSR620DUQ), Histone_ChIP-seq of H2BK20ac
(ENCSR462XRE), PRO-cap (ENCSR098LLB), TF_ChIP-seq of SUPT5H
(ENCSR894CGX), TF_ChIP-seq of EP300 (ENCSR686BQM), TF_ChIP-seq
of SP1 (ENCSR334KIQ), Histone_ChIP-seq of H3K4me3 (ENCSR105FGG),
TF_ChIP-seq of HDAC2 (ENCSR659LJJ), TF_ChIP-seq of NR3C1
(ENCSR355HLV).
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