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ABSTRACT

Image forgery localization in the generative AI era poses new challenges, as mod-
ern editing pipelines produce photorealistic, semantically coherent manipulations
that evade conventional detectors while model capabilities evolve rapidly. In re-
sponse, we develop Detective SAM, a framework built on SAM2, a foundation
model for image segmentation that integrates perturbation-driven forensic clues
with lightweight feature adapters and a mask adapter to convert forensic clues into
forgery masks via automatic prompting. Moreover, to keep up with the rapidly
evolving capabilities of diffusion models, we introduce AutoEditForge: an auto-
mated diffusion edit generation pipeline spanning four edit types. This supplies
high-quality data to maintain localization accuracy under newly released editors
and enables up-to-date periodic fine-tuning for Detective SAM. Across four
benchmark datasets and seven baselines, Detective SAM delivers stable out-of-
distribution performance, averaging 34.68 IoU / 42.03 F1, a 38.94% relative IoU
gain over the best baseline. Further, we show that state-of-the-art edits cause lo-
calization systems to collapse. With 500 AutoEditForge samples, Detective
SAM quickly adapts and restores performance, enabling practical, low-friction
updates as editing models improve. AutoEditForge, Detective SAM’s pre-
trained weights and training script are available at the anonymized repository:
https://anonymous.4open.science/r/Detective-SAM-9057/.

1 INTRODUCTION

Deep learning has democratized photorealistic image generation. Synthetic images from modern
models are often indistinguishable (Ramesh et al., 2021) to the human eye. Targeted edits can
change identities, alter evidence, and mislead viewers even when the rest of an image is authentic
(Kadha et al., 2025). As our virtual environment floods with such content, there is an urgent need
to identify where an image has been altered. Image forgery localization (IFL) can be challenging in
the context of modern local editing, where small, realistic insertions and removals frequently evade
human perception. Figure 1 displays such an edit from NanoBanana (Gemini 2.5 Flash Comanici
et al. (2025)) and the predictions.

Legacy IFL targeted splicing and copy-move operations (Kwon et al., 2021). Using forensic clues,
which are signals leveraged for edit detection and localization, they detect cross-image merges and
within-image duplicates. Powerful modern generators, including diffusion models like DALL-E,
render legacy clues and methods outdated (Ramesh et al., 2022; Zhang et al., 2024). By design,
legacy IFL relies on camera or compression artifacts, which modern generator edits lack because
their artifacts are from the generative process (Kwon et al., 2021; Guillaro et al., 2023). New dif-
fusion datasets reveal significant localization drops (Nguyen et al., 2024; Zhang et al., 2024); rapid
progress in generative models creates a moving target that requires up-to-date data and training.

This paradigm shift, brought on by diffusion models, initiated a surge in research on stronger foren-
sic clues. Part of this surge shows empirical success with training-free (Ricker et al., 2024; Tsai
et al., 2024a; He et al., 2024) and zero-shot (Cozzolino et al., 2024) methods that rely on explicit
perturbation artifacts in the embedding space of foundation models. Image foundation models learn
embeddings through large-scale self-supervision (Dosovitskiy et al., 2021; Oquab et al., 2024). Such
embeddings reveal distribution shifts in diffusion outputs under perturbations such as Gaussian noise
or blur, providing a strong forensic clue for diffusion edits.
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Figure 1: For a NanoBanana sample: original image, tampered image, Ground-Truth (GT) mask,
Detective SAM (ours) and baseline mask predictions, limited to models that produced output, for all
models see Appendix B.1.

The recently released Segment Anything Model (SAM Kirillov et al. (2023), SAM2 Ravi et al.
(2024)) serves as a domain-specific foundation model for image segmentation, using a strong, large-
scale pretrained encoder. Downstream task performance of SAM has been outstanding (Chen et al.,
2024), with applications to shadow & camouflage detection (Jie & Zhang, 2023; Meeran et al.,
2024) and IFL. In IFL, SAM is redirected from object to forged-region segmentation. Applications
of SAM to IFL are still emerging: current methods (Kwon et al., 2024; Zhang et al., 2025) tend to
emphasize legacy forgery methods and neglect more diffusion-specific clues.

Three persistent problems hinder current IFL systems: 1) Current approaches typically avoid using
forensic clues that characterize modern edits, failing to leverage the prior information embedded
in foundation models. 2) Model architectures should support efficient integration of fresh edited
data as it appears, adapting efficiently and avoiding catastrophic forgetting; and, 3) systems must
stay effective on recent strong editors, but our experiments show consistent drops on newly released
models, indicating a need for continually refreshed training and evaluation data.

In response, we propose Detective SAM, a practical framework for modern IFL that addresses
these challenges. Building on the insight that the large-scale pretrained SAM2 encoder can de-
tect shifts in the embedding distribution, Detective SAM converts this perturbation-driven forensic
clue into an automatic heatmap prompt for SAM2, addressing 1). Through lightweight feature
adapters (Chen et al., 2024), SAM2’s decoder is retargeted from object segmentation to forgery lo-
calization. The backbone of SAM2 remains frozen, and only our modules are trained, mitigating
forgetting and enabling efficient, lightweight fine-tuning with replay as new editors appear, attending
to 2). Figure 2 summarizes the architecture and SAM2 interactions.

Finally, we directly operationalize challenge 3) via AutoEditForge, ensuring that training and eval-
uation data remain current. AutoEditForge is an automated pipeline that produces human-like lo-
cal generative edits of real images with pixel-accurate masks across Replace, Remove, Add, and
Change Partially edit methods. It is symbiotic with Detective SAM: AutoEditForge supplies
fresh edited–real image pairs that enable both evaluation and rapid adaptation.
Our contributions to IFL on generative edits are as follows:

1. Detective SAM architecture We extend SAM2 for the image forgery localization task with
(i) perturbation-driven feature embeddings as a forensic signal, (ii) lightweight adapters that spe-
cialize the SAM2 decoder for forged-region segmentation, and (iii) a learnable prompt module
that maps the embeddings to a heatmap prompt guiding SAM2 to localize forgeries automatically.

2. Detective SAM for fine-tuning & evaluation AutoEditForge, an automated pipeline for
instruction-based local edits (Replace/Remove/Add/Change Partially), keeps data current as
editors evolve and enables up-to-date periodic fine-tuning and evaluation. Coupled with
Detective SAM ’s adapters, designed for efficient fine-tuning, this yields quick recovery of
metrics like IoU/F1 on new editors while preserving prior performance.

3. Comprehensive evaluation Detective SAM is benchmarked on eight datasets across seven base-
lines, delivering strong and stable Out-Of-Distribution (OOD) results, yielding a 38.94% gain in
average OOD IoU relative to the best baseline. We demonstrate that localizers collapse on recent
diffusion edits, necessitating constant fine-tuning.

2 RELATED WORK

Image forgery localization. IFL concerns itself with the task of not only detecting if parts of
an image are manipulated, but also pinpointing them pixel-wise. An effective signal or “forensic
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clue” is required to locate image forgery. These clues/artifacts can include reconstruction error
(Vesnin et al., 2024), JPEG compression artifacts (Kwon et al., 2021), explicit noise artifacts (Zhu
et al., 2024a), or implicit noise artifacts (Zhang et al., 2025). Implicit noise artifacts are trained
networks that extract specific artifacts from images, such as Noiseprint (Cozzolino & Verdoliva,
2018; Guillaro et al., 2023). In contrast, explicit noise artifacts process features from perturbations
without retraining.

Recent work has shown explicit noise artifacts in the embedding space of foundation models. RIGID
(He et al., 2024) and BLUR (Tsai et al., 2024a) show that it is possible to detect synthetic diffusion
model images using the DINOv2 (Oquab et al., 2024) image foundation model in a training-free
manner by detecting subtle embedding distribution shifts. The empirical results show that explicit
artifacts appear promising for diffusion model forgery localization/detection. Traditional localiza-
tion models typically use implicit noise artifacts for copy-move and splicing forgeries, (Kwon et al.,
2021; Liu et al., 2022; Guillaro et al., 2023). These methods work well under traditional forgeries, as
implicit noise artifacts can effectively capture the compression/camera artifacts of the forged source
image. A new branch of IFL using Multi-Modal-Large-Language-Models (MLLMs) arose with
models such as SIDA (Huang et al., 2025) and FakeShield (Xu et al., 2025). These methods lever-
age the text-to-image nature of diffusion model edits to localize forgery and provide explanations.

SAM in IFL. Adaptations of SAM for IFL have attracted considerable interest (Kwon et al., 2024;
Lai et al., 2023; Zhang et al., 2025). These methods seek to distinguish manipulated regions from
genuine content by training SAM to segment forged areas in contrast to the conventional object
segmentation task. For example, SAM is adapted for deepfake localization (Lai et al., 2023) with
a reconstruction-error signal or used in multi-source forgery partitioning (Kwon et al., 2024) with
large-scale contrastive pretraining and a fixed 16×16 point grid. However, diffusion-based tam-
pering often manifests itself in subtle artifacts and highly irregular regions. Therefore, we require
learnable prompts that dynamically adjust to the unpredictable patterns of diffusion-based forgeries.
IMDPrompter (Zhang et al., 2025) achieves this with a learnable heatmap and box prompts employ-
ing various filters/views as the signal. This technique neither uses an explicit perturbation-driven
signal nor builds upon the strong SAM adaptation results from Chen et al. (2024). Therefore, they
retrain SAM2’s mask decoder. Chen et al. (2024) demonstrate robust downstream performance in
camouflage, shadow and medical image segmentation via lightweight feature adapter fine-tuning.
Other approaches use SAM’s segmentation capabilities without learnable prompts (Su et al., 2024).

Diffusion dataset generation. IFL dataset generation has evolved from manual mask and edit
prompting (Jia et al., 2023), to using crowd-workers (Zhang et al., 2024), and, at present, fully-
automatic dataset creation (Huang et al., 2025; Xu et al., 2025). These fully-automatic pipelines are
limited in diverse editing operations like Replace, Remove, Add, and Change Partially, and typically
do not employ the most recent diffusion models. Appendix C compares representative pipelines.

3 DETECTIVE SAM

We consider the task of image forgery localization, where given an RGB image I ∈ R
3×H×W with

three channels, height H and width W , we aim to predict a binary mask B ∈ {0, 1}H×W , with
Bij = 1 if pixel (i, j) has been edited/tampered, and 0 otherwise. This work strictly focuses on edits
generated by diffusion-based image-editing pipelines. A diffusion model processes an instruction to
generate local edits of a source image, as in Figure 1. Keeping the area around the edit unchanged
involves overwriting the latents within the mask or injecting noise only inside the masked area (Wu
et al., 2025; Lugmayr et al., 2022).

3.1 OVERVIEW

Detective SAM augments SAM2 (Ravi et al., 2024) with a perturbation-driven feature stream
and lightweight adapters while keeping the backbone frozen. Feature adapters fine-tune SAM2’s
decoder, and the mask adapter prompts the decoder. This aligns both the decoder and its input with

the forgery localization task. The architecture involves: 1 creating perturbed embedded features;

2 correcting the original feature with the perturbed ones using Feature Adapters; and 3 all features
are then used to create a forensic heatmap prompt with the Mask Adapter, with the respective steps
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visualized in Figure 2. We next describe the process in more detail, for an overview of notations,
see Appendix A.

Figure 2: Flow chart of the steps in Detective SAM with our learnable modules and pipelines in

white and SAM2’s frozen modules in gray. With input image I, perturbed images I ′
i, heatmap

prompt M, adapted features {F̃s} and binary forgery mask B. See Appendix B.2 for a flowchart of
the original SAM2 components.

3.2 MODEL ARCHITECTURE

We build on SAM2 (Ravi et al., 2024), a promptable image/video segmenter featuring a HIERA
image encoder (Ryali et al., 2023) producing embeddings at three spatial scales, a prompt encoder
for points, boxes, or heatmaps, and a mask decoder that inputs prompts and multi-scale features.
The SAM2 backbone (HIERA encoder, prompt encoder, mask decoder) remains frozen. SAM2 was
chosen as the backbone because it has a powerful encoder and a promptable decoder that can be
adapted due to the joint encoder-decoder training.

Our lightweight adapters are trained jointly, yielding: (i) Three feature adapters (for all three HI-
ERA scales), which input the perturbed image embeddings as a forensic clue and perform a ∆Fs

correction to output the adapted features {F̃s}; and, (ii) A mask adapter, which consists of an auto-
matic prompting network, producing a heatmap M for the decoder. The feature adapters are single
convolutional layers, and the mask adapter contains a transformer that operates in a downscaled
embedding space, keeping the model’s parameter count modest: with layer width 64, the feature
adapters use 81k parameters and the mask adapter 887k parameters. This implies that the model can
be trained in two hours on an NVIDIA H100 GPU. Training and inference efficiency are critical for
deployment. IFL systems deployed on a platform or on the consumer side need to localize accu-
rately in environments with limited resources. The rapid advancement of diffusion models requires
frequent fine-tuning, necessitating training efficiency.

Inputs and encoding. As a first step, we construct the forensic feature embeddings for our adapter
modules. Given an input image I, we create N perturbed images I ′

i = Perturbi(I; θ) using simple
image-space operators Perturbi(), i = 1, ..., N (e.g., Gaussian blur, Gaussian noise, and JPEG
compression) with perturbation parameters θ. Diffusion models show embedding shifts under such
perturbations (He et al., 2024; Tsai et al., 2024b). Detective SAM leverages these as forensic clues
in the form of a localization prior to generative artifacts.

Both I and I ′
i are encoded by the frozen SAM2 HIERA encoder (Ryali et al., 2023) to produce

embeddings {F I
s , F

I′

i

s } at hierarchical scales (S = {32, 64, 128}) at (H,W ) = (512, 512) res-
olution. To match the image format expected by SAM2’s decoder, we pad using SAM2’s frozen
no-memory (image) embedding, at s = 32; and use SAM2’s frozen convolutional processing layer
Fs = ConvSAM(Xs) for s ∈ {64, 128}. For brevity, without loss of generality, we restrict ourselves
to a single perturbation I ′

1, yielding six feature embeddings {F I
s , F

I′

1

s } across scales.

Feature adapters (delta correction). Next we correct the basic feature embeddings {F I
s } using

the forensic perturbed embeddings {F
I′

1

s } so that the decoder focuses on forgery localization rather
than generic object segmentation. We achieve this with lightweight feature adapters {As} that input
the concatenated basic and perturbed {F I

s , F
I′

1

s } to produce a residual delta correction. The ∆Fs

4
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corrections are used to adapt the unperturbed features via a residual connection to produce features;

F̃s = F I
s +∆Fs, ∆Fs = As

(
{F I

s , F
I′

1

s }
)
,

which are injected into SAM2’s decoder, following the architecture of Chen et al. (2024). The
feature adapters are single-layer 1 × 1 convolutional networks and specialize the frozen SAM2
decoder to the downstream IFL task with minimal overhead. We provide examples of the learned
feature ∆ corrections through a saliency map in the Appendix B.4.

Mask adapter (automatic prompting). With the decoder specialized to the IFL task, we replace
SAM2’s manual user prompt by introducing a mask adapter that uses the forensic clue to generate
an automatic heatmap prompt M for the decoder. Possibilities for such a prompt are either a point,
a bounding box, or a heatmap. We use a heatmap because it reflects the spatial structure of the
forensic signal. In contrast, point- or box-based prompts largely disregard this information. The
mask adapter maps all features into a heatmap prompt M suitable for SAM’s decoder. It ingests

all features {F I
s , F

I′

1

s , F̃s} and first bilinearly upsamples them to a common fine grid ŝ = maxS .
We then perform cross-scale, cross-stream convolutional fusion to obtain a unified feature tensor
Ffuse ∈ R

d×ŝ×ŝ. Such fusion is spatially consistent as in HRNet (Wang et al., 2020), and lightweight
due to shallow cross-scale mixing.

To enforce global consistency, we use a lightweight transformer at a coarse resolution; its self-
attention aggregates context across patch tokens and suppresses spatially inconsistent forgery esti-
mates, see the Appendix B.3 for visual examples. Taking input Ffuse, the transformer operates on a
downsampled, patchified representation to produce low-resolution coarse logits Lcoarse and an un-
certainty logit map U ∈ R

ŝ×ŝ. Where the downsampling factor is treated as a hyperparameter. Both
are upsampled back to the common grid ŝ, yielding Lcoarse ∈ R

ŝ×ŝ and U ∈ R
ŝ×ŝ.

Restoration of fine boundaries requires merging high-level context with local detail; we do this by
mixing context through linear spatial gating, as in (Chen et al., 2016). We produce refined logits
Lrefine ∈ R

ŝ×ŝ from Ffuse via a 2-layer convolutional network. Finally, we apply a spatial gate
g ∈ [0, 1]ŝ×ŝ to linearly blend refined and coarse predictions into the decoder mask:

M = g Lrefine + (1−g)Lcoarse.

The gate g is a 1 × 1 convolution layer followed by a sigmoid with input [Lcoarse, U ] that down-
weights refinement where the coarse mask is confident (or uncertain), stopping over-sharpening in
unedited regions while allowing detailed corrections where needed.

Mask decoder Before decoding, we bilinearly upsample the heatmap prompt M and adapted

features { F̃s } to 256×256 for finer mask generation and input them to the frozen SAM2 mask

decoder to obtain forgery logits M̂ at 256×256. We choose 256×256 because it is close to the
minimum image resolution in our data, which helps avoid extreme extrapolation artifacts in the final
binary mask. Finally, following SAM2 precisely, we bilinearly upsample M̂ to the image resolution

and convert it to a probability map via a sigmoid operation: σ(M̂). The final forgery binary mask
is B = 1{σ(M̂) ≥ 1

2
}.

Loss function Training the mask and feature adapters follows SAM2’s objectives (Chen et al.,
2024), combining focal loss (Lin et al., 2018), Dice loss and IoU loss. Dice loss maximizes the
overlap between the predicted and ground-truth masks by penalizing their normalized differences.
Focal loss further addresses the class imbalance in IFL. The IoU loss trains SAM2’s IoU prediction
head via an L1 loss on the forgery mask IoU. All losses take the ground truth and the model’s pre-
dicted masks as inputs. The predicted mask is computed using only the tampered image. Formally,
our final objective is

L = LDice + λfocal L
α,γ
focal

+ λIoU LIoU.

The focusing parameter γ ≥ 0 down-weights well-classified examples. The balance factor α ∈
[0, 1] re-weights positive vs negative examples to counteract class imbalance. We borrow λfocal =
20, λIoU = 1 from the SAM2 paper (Ravi et al., 2024) and sweep over (α, γ).
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3.3 AUTOEDITFORGE : FUELING DETECTIVE SAM BY AUTOMATING AI-DRIVEN EDITS

To address the critical shortage of up-to-date, high-quality testing and fine-tuning data for forgery
localization models, we introduce AutoEditForge, a novel automated infrastructure for up-to-
date periodic IFL robustness. This fully automated pipeline generates realistic image edits with
pixel-accurate segmentation masks. Unlike existing synthetic datasets constrained by either labor-
intensive manual annotation that limit scale or automated approaches that compromise realism
through simplistic inpainting with limited edit variety (Kwon et al., 2024), AutoEditForge lever-
ages state-of-the-art (SOTA) diffusion models to mimic the diversity of human-like edits, enabling
continual evaluation and fine-tuning. AutoEditForge implements a two-pass architecture that
separates lightweight analysis from computationally intensive editing operations, enabling efficient
processing of large-scale image batches.

First pass: analysis and decision making. The first pass performs comprehensive scene analysis
to identify editing opportunities. Florence-2 (Xiao et al., 2023) conducts dense image captioning and
object detection with bounding box extraction. An LLM (Gemma 3 12B-it (Team et al., 2025)) then
analyzes the detected objects and scene context to determine the most appropriate editing strategies
for each image. The system selects from four editing methods:

• Replace: Substitutes existing objects with semantically similar alternatives while maintaining
scene coherence. For example, replacing a golden retriever with a Labrador, or a red apple with
a green pear, preserving logical consistency while introducing variation.

• Remove: Eliminates objects from the scene. For instance, removing a newspaper from a person
reading on a park bench, filling the area utilizing contextual understanding.

• Add: Introduces new objects in suitable locations based on spatial and semantic analysis. Ex-
amples include adding birds to sky regions or picnic baskets to grass areas, respecting scene
perspective and environmental coherence.

• Change Partially: Alters object attributes while preserving the object’s identity and overall
structure. This enables transformations such as material changes (wooden to metal chair), texture
modifications (plain to brick wall), or style updates (modern to vintage car design).

Second pass: segmentation and inpainting. The second pass executes the specific editing oper-
ations determined in the first pass. SAM2 (Ravi et al., 2024) generates precise pixel-level segmen-
tation masks using bounding box coordinates from Florence-2’s object detection. Instruction-based
diffusion image editing models then perform the actual image editing operations based on the se-
lected strategy and target regions. The pipeline includes several post-processing techniques to ensure
robustness: hole filling for mask continuity, disconnected component analysis for fragmented ob-
jects, size-based filtering to remove spurious detections, and morphological operations for mask
refinement. For implementation details and prompting examples, see Appendix D.

Detective SAM and AutoEditForge. AutoEditForge supplies a steady stream of real-
istic, instruction-guided edits from the latest generative editing models. Detective SAM ingests
this stream via adapter fine-tuning, which aligns the frozen SAM2 decoder and its prompts to the
current distribution of editing techniques. The result is a practical lifelong learning loop: evaluate
on fresh edits, surface errors, fine-tune adapters, and redeploy, all while keeping the backbone fixed
and maintaining robustness across evolving editors and instructions.

4 EXPERIMENTS

Training specification. Detective SAM is trained on 10k samples of SIDA (Huang et al., 2025)
and all 8807 train samples of MagicBrush (Zhang et al., 2024). We OOD test on CoCoGLIDE,
UltraEdit (Zhao et al., 2024), AutoSplice (Jia et al., 2023), NanoBanana (Comanici et al., 2025);
NanoBanana is generated with AutoEditForge. All datasets are diffusion-edited; full details in Ap-
pendix G. Detective SAMSOTA is fine-tuned on 500 samples of FLUX-Bench (Labs et al., 2025) and
QWEN-Bench (Wu et al., 2025) (1000 total, created with AutoEditForge). Therefore, CoCoGLIDE,
AutoSplice and NanoBanana are always entirely OOD. The noise intensity is tuned over a range of
six values, where the values depend on the noise type. Other hyperparameters are tuned over a grid
as in the Appendix H.
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Testing setup. Our results are divided into three regimes: (1) In-Distribution (ID): Test on the out-
of-sample test set of our training set. (2) Out-Of-Distribution (OOD): Test on completely unseen
test sets for a fair comparison to baselines. (3) Fine-tuned: The pretrained Detective SAM is fine-
tuned on 500 samples of the respective datasets to evaluate adaptation efficiency. Fine-tuning.
Fine-tuning of Detective SAM is performed with the concept of direct replay (Zhou et al., 2024).
We mix 20% of the original MagicBrush & SIDA training data with our new AutoEditForge samples
to mitigate catastrophic forgetting. The loss function remains unchanged, and validation is done on
the relative validation mix of replay and fine-tune data.

Evaluation Metrics. Performance is evaluated with pixel-level mean Intersection over Union (IoU)
and mean F1 score. IoU measures the overlap between the ground truth forged mask and B, and F1
score serves as harmonic mean between pixel-level precision and recall. See also Appendix E.1.

Baselines. Detective SAM’s forgery localization performance is evaluated against a comprehensive
list of recent baseline models: SAFIRE (Kwon et al., 2024), Mesorch (Zhu et al., 2024b), TruFor
(Guillaro et al., 2023), AdaIFL (Li et al., 2025), PSCC-Net (Liu et al., 2022) and the MLLM lo-
calizers SIDA-7B (Huang et al., 2025) and FakeShield (Xu et al., 2025). The total parameter count
and computation per inference differ significantly. SIDA has 7B parameters, FakeShield has 23B,
and SAFIRE uses 256 parallel SAM inferences for each sample. All inference is done on a single
NVIDIA H100 GPU; see Appendix F.6 for the throughput of each model. Performance is judged
purely on OOD scores for a fair comparison.

4.1 RESULTS

We present our results in two parts. First, we showcase Detective SAM’s and the baselines’ perfor-
mance on OOD data. Second, we showcase the results on our harder AutoEditForge state-of-the-art
datasets to highlight performance collapse and Detective SAM’s efficient fine-tuning.

Comparison with state-of-the-art (SOTA) methods. Table 1 compares the baseline against De-
tective SAM’s performance. On the four OOD datasets (CoCoGLIDE, UltraEdit, AutoSplice,
NanoBanana), Detective SAM significantly outperforms the baselines. We notice strong results of
several baselines on particular datasets; e.g., SAFIRE scores an F1 score of 46.38 on CoCoGLIDE,
but the performance significantly degrades on all other datasets. Hence, we also present the average
IoU and F1 across the four OOD datasets. Table 1 shows that TruFor is the strongest average base-
line. All models suffer a significant performance drop on NanoBanana, our most recent diffusion
model dataset. Only two rows in Table 1 are ID, while the rest are OOD, which reflects the intended
operating regime, being more diagnostic of real-world reliability.

We underscore Detective SAM’s generalization performance. Whereas most models have unstable
scores over datasets, Detective SAM has similar in- and out-of-distribution scores and has the highest
OOD scores (IoU = 34.68 and F1 = 42.03). Note that TruFor and SAFIRE report an alternative F1
score calculation; for more information on comparability, see Appendix E.2.

Table 1: Six-benchmark evaluation. Legend: ID , OOD . All baselines are run inference-
only with appropriate preprocessing. The last column contains the average scores for CoCoGLIDE,
AutoSplice, and NanoBanana (OOD for all models).

Model
MagicBrush SIDA CoCoGLIDE UltraEdit AutoSplice 1 NanoBanana Avg OOD

IoU ↑ F1 ↑ IoU ↑ F1 ↑ IoU ↑ F1 ↑ IoU ↑ F1 ↑ IoU ↑ F1 ↑ IoU ↑ F1 ↑ IoU ↑ F1 ↑

SAFIRE [2024] 21.02 27.04 21.35 27.43 42.22 46.38 18.41 24.00 18.71 24.53 11.39 15.25 22.68 27.54
Mesorch [2024b] 16.18 27.36 13.19 20.29 36.45 44.50 5.45 7.51 27.53 38.72 10.22 13.85 19.91 26.15
TruFor [2023] 26.41 34.55 20.08 28.35 37.76 45.82 16.15 22.35 43.34 58.87 2.59 3.19 24.96 32.55
AdaIFL [2025] 12.18 20.99 12.77 18.98 20.90 26.58 7.73 11.23 11.23 33.73 8.70 11.95 12.14 20.87
SIDA [2025] 22.94 26.57 39.12 52.87 13.24 15.53 3.29 4.45 39.31 48.28 0.09 0.02 13.98 17.07
FakeShield [2025] 8.81 12.08 11.66 13.77 13.72 14.99 12.98 18.32 23.75 29.53 9.57 10.75 15.01 18.40
PSCC-Net [2022] 10.15 9.80 2.50 3.49 31.55 37.60 10.06 15.43 36.68 42.43 12.73 13.26 22.76 27.18
Detective SAM 46.48 57.55 54.55 65.29 44.74 51.50 27.74 35.54 46.90 60.30 19.34 20.77 34.68 42.03

Visual results. Figure 3 showcases the mask predictions for each baseline and Detective SAM.
We observe inconsistent results over the datasets, with multiple models detecting SOTA images as
authentic (black mask) while correctly localizing legacy (AutoSplice, CoCoGLIDE) samples. We
provide several low IoU Detective SAM failure cases for each dataset in the Appendix F.5.

1AutoSplice shares the same editing model as MagicBrush, see Appendix G.
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Figure 3: Overview of qualitative results across all models and datasets. Each row corresponds
to a dataset sample and each column to the original and tampered images, the ground-truth mask,
and each model’s predicted mask. For SIDA, the original and tampered are equal, since (original,
tampered) pairs are not provided in the test set.

Model collapse and fine-tuning. We investigate the performance on SOTA AutoEditForge
datasets and analyze Detective SAM’s lightweight fine-tuning. Table 2 shows the scores for our
created SOTA datasets: FLUX-Bench, QWEN-Bench and NanoBanana. Focusing on all models,
we notice an all-round performance drop. SAFIRE outperforms on QWEN-Bench, with Detective
SAM showing stable results across all SOTA datasets 2.

Although outperformance on prevailing benchmarks is often taken as evidence of generalization in
IFL, the results demonstrate that such gains do not carry over to SOTA diffusion-based edits, as
none of the evaluated detectors generalize effectively and all exhibit substantial degradation. This
emphasizes the need for periodic adaptation to future-proof systems, e.g., periodic fine-tuning, as
increasingly more capable models are released.

As SAM2’s backbone weights are frozen, and our adapters are lightweight, Detective SAM lends
itself to efficient fine-tuning. We fine-tune Detective SAM on 500 samples of both FLUX-Bench
and QWEN-Bench (not NanoBanana), to create Detective SAMSOTA, shown in the final row of
Table 2. Fine-tuning restores Detective SAM’s capabilities on both FLUX-Bench and QWEN-Bench
datasets, with an IoU of 43.08 and 41.44, respectively. Consider that these datasets are now ID for
Detective SAMSOTA, and therefore cannot be compared to baselines’ results directly in Table 2.
Detective SAMSOTA’s average OOD performance improves to an IoU of 35.57 and F1 of 45.62.
This can be attributed to significantly increased performance on NanoBanana due to the exposure to
the more recent FLUX and QWEN data. Full scores are in the Appendix F.3.1.

2FakeShield (Xu et al., 2025) underperforms on diffusion edits, consistent with its reported AIGC results.
However, they report strong results on traditional copy-move and splicing forgery. SIDA’s (Huang et al., 2025)
low score is due to the detect-then-localize pipeline misidentifying tampered images as authentic.
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Table 2: FLUX-Bench, QWEN-Bench, and NanoBanana results for all baselines, Detective SAM
and the fine-tuned Detective SAMSOTA. Legend: ID , OOD . Gray rows were used to fine-tune
Detective SAM (ID); others are OOD.

Model
FLUX-Bench QWEN-Bench NanoBanana
IoU ↑ F1 ↑ IoU ↑ F1 ↑ IoU ↑ F1 ↑

SAFIRE [2024] 19.03 22.53 21.72 26.87 11.39 15.25
Mesorch [2024b] 10.59 14.35 10.04 15.26 10.22 13.85
TruFor [2023] 19.34 22.67 19.42 22.76 2.59 3.19
AdaIFL [2025] 6.62 9.21 6.62 8.40 8.70 11.95
SIDA [2025] 0.89 0.99 0.82 0.95 0.09 0.02
FakeShield [2025] 8.57 9.51 9.77 11.04 9.57 10.75
PSCC-Net [2022] 12.65 14.83 13.46 15.28 12.73 13.26
Detective SAM 18.70 21.28 20.41 22.29 19.34 20.77

Detective SAMSOTA 43.08 52.52 41.44 51.49 27.00 36.21

Finally, we fine-tune Detective SAMSOTA on different amounts of samples, with and without re-
play. In the Appendix F.3.4, Figure 13a, we observe an initial drop in OOD performance due to
overfitting on the limited number of samples. As the number of samples increases, the ID and OOD
performance is retained while increasing the fine-tuned scores. The importance of replay is evident
from the ID performance drop and lower OOD scores in Figure 13b.

Impact of edit method. Appendix F.4 reports average IoU by edit method. The largest gap is
between Replace and Remove: on QWEN-Bench, 22.95 vs 10.58, a 116.92% difference; on FLUX-
Bench, 17.61 vs 9.31, an 89.15% difference. This suggests that SOTA datasets require editing
methods that are more diverse than just inpainting; otherwise, methods such as removal will not be
detected in-the-wild.

Impact of external perturbations. Appendix F.2 shows the effect of pre-processing the images
with increasing perturbations for Gaussian Blur, Gaussian Noise, and JPEG compression. Upon
analysing the figures, we observe that Detective SAM is relatively robust to Gaussian Blur and
Noise. These are the types of perturbations that are used as forensic clues. This suggests that
external noise added to the input affects both streams similarly, and the difference between them
remains informative. In terms of robustness to JPEG compression, Detective SAM is in line with
the baselines.

4.2 ABLATION STUDIES

All ablations are run on our training set of SIDA and MagicBrush and their validation splits with
SAM2 frozen and identical training/tuning protocol.

Impact of perturbation type. Table 3a shows that the perturbation type has a significant impact on
the localization performance. We notice that Gaussian blur performs well, and that a combination
of Gaussian noise and blur performs marginally better. This is in line with MINDER (Tsai et al.,
2024b), which combines both types for improved image forgery localization performance. How-
ever, adding JPEG further improves performance, demonstrating the practical strength of explicit
perturbation signals. This paper uses Gaussian Blur and Noise to align with prior findings.

Mask adapter design. Analyzing Table 3b, our more intricate architecture (downscaled trans-
former, uncertainty, and spatial gating, see Section 3.2) improves validation performance com-
pared to a straightforward convolutional network. Feature adapters drive the largest gains by
enabling forensic embeddings to exploit SAM2’s decoder image-prior for forgery localization.

Impact of mask decoder. We train Detective SAM using the heatmap from the mask adapter di-
rectly for localization without SAM2’s decoder. Displayed in the final row of Table 3b. The
significant performance drop without the mask decoder indicates a substantial benefit from uti-
lizing the information contained in SAM2’s decoder training.
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Impact of noise intensity. The noise intensity for a perturbation is chosen as the value with the
highest validation performance over a range of six values. The best performing intensities for
Gaussian noise & blur combination is plotted in the Appendix F.1.

Table 3: Detective SAM ablation study using the validation performance on SIDA and MagicBrush.

(a) Perturbation ablation

Perturbation IoU ↑ F1 ↑

JPEG + Noise + Blur 52.58 63.08
Noise + Blur 50.52 61.42
JPEG + Blur 48.66 59.08
Gaussian Blur 48.17 57.78
JPEG + Noise 46.56 56.95
Noise 43.44 52.60
JPEG 42.56 51.02
None 36.22 44.75

(b) Architectural ablation

Configuration* IoU ↑ F1 ↑

Detective SAM 50.52 61.42
Simple convolution 44.48 54.99
w/o Feature adapters 14.29 20.21

Without decoder 36.41 47.81

* indentation implies cumulative ablation.

5 CONCLUSION

Detective SAM advances diffusion-based forgery localization, reaching a mean out-of-
distribution IoU of 34.68, representing a 38.94 % increase across out-of-distribution baselines and
over four test-sets. It has been demonstrated that IFL systems exhibit superior performance in the
presence of strong, explicit perturbation-based forensic signals that incorporate a robust segmenta-
tion backbone. Furthermore, the efficacy of up-to-date periodic fine-tuning has been established as
a prerequisite for the advent of novel diffusion editors, a process that AutoEditForge facilitates.

Limitations. Our reliance on perturbation-driven cues makes performance sensitive to both the
specific cues and the strength of the perturbation. Further research should investigate adaptive per-
turbations and increasing the number of perturbations, as validation performance seems to increase
with the number of perturbations. Classical copy-move and splicing forgeries do not contain the
same diffusion-sensitive artifacts; thus, different signals and broader training are required and should
be investigated. A ready-to-deploy model should use training on fully synthetic and authentic im-
ages to mitigate false positives/negatives.
By articulating these steps, we aim to advance the IFL field further to keep pace with the evolving
generative editing tools.

Reproducibility Statement. To ensure the reproducibility of our research, we open-source the
code for AutoEditForge, Detective SAM training, and the pretrained weights at the anonymized
repository https://anonymous.4open.science/r/Detective-SAM-9057/. The
NanoBanana, QWEN-Bench, and FLUX-Bench datasets will be released upon acceptance. The
model is trainable on a single NVIDIA H100 GPU. Other datasets in this paper (MagicBrush Zhang
et al. (2024), SIDA Huang et al. (2025), AutoSplice Jia et al. (2023), CoCoGLIDE) and baselines
(SAFIRE Kwon et al. (2024), Mesorch Zhu et al. (2024b), TruFor Guillaro et al. (2023), AdaIFL Li
et al. (2025), FakeShield Xu et al. (2025), PSCC-Net Liu et al. (2022)) are publicly available.

Ethics Statement. Detective SAM is designed for the forensic localization of diffusion-based edits
to support provenance research and platform integrity, and its outputs should be treated as proba-
bilistic evidence, subject to human oversight. The system is dual-use; adversaries may exploit failure
modes, or misinterpretations may harm stakeholders. Therefore, we recommend per-model valida-
tion with AutoEditforge and human-in-the-loop review. We train and evaluate on public datasets and
edits from AutoEditForge; no new personal data is collected, and we will honor take-down requests.
On AI usage, Large Language Models were used for writing assistance and code completion; all
ideas and analyses are our own.
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A NOTATION

Table 4: Notation used in Detective SAM and AutoEditForge.

Symbol Meaning Type or shape

I RGB source image R
3×H×W

H,W Image height and width N

B Binary forgery mask {0, 1}H×W

N Number of perturbations N

Perturbi(·; θ) Image perturbation operator i with params θ Function
θ Perturbation parameters Hyperparameters

I ′
i Perturbed image i R

3×H×W

S Set of HIERA scales {32, 64, 128}
Xs HIERA embedding at scale s R

Cs×s×s

ConvSAM(·) Frozen SAM2 conv processing Xs 7→ Fs

Cs Channels of HIERA embedding at scale s N

Fs Processed SAM2 feature at scale s R
Cs×s×s

F I
s Feature of I at scale s R

Cs×s×s

F
I′

i

s Feature of i’th perturbed image at scale s R
Cs×s×s

As Feature adapter at scale s (1×1 conv) [F I
s , F

I′

1

s ] 7→ ∆Fs

∆Fs Residual correction from feature adapter R
Cs×s×s

F̃s Adapted feature F I
s +∆Fs R

Cs×s×s

ŝ Finest grid resolution used by mask adapter maxS
Ffuse Cross-scale fused feature tensor R

d×ŝ×ŝ

d Channel dimension of Ffuse N

M Heatmap prompt logits for decoder R
ŝ×ŝ

Lcoarse Coarse logits from transformer block R
ŝ×ŝ

U Uncertainty logit map R
ŝ×ŝ

Lrefine Refined logits from conv block R
ŝ×ŝ

g Spatial gate [0, 1]ŝ×ŝ

M̂ Decoder logits at output resolution R
H×W

σ(·) Elementwise sigmoid (0, 1) mapping
λfocal, λIoU Loss weights R≥0

α, γ Focal loss parameters α ∈ [0, 1], γ ≥ 0
LDice Dice loss Scalar
Lα,γ
focal

Focal loss Scalar
LIoU IoU L1 regression loss for SAM2 head Scalar

B VISUALIZATIONS

B.1 NANOBANANA INTRODUCTION VISUALIZATION.

Figure 4: Source, tampered & ground-truth, mask prediction results for all baselines and Detective
SAMSOTA for a NanoBanana example.
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B.2 SAM2 ARCHITECTURE.

Figure 5: Original SAM2 architectural interactions for the components in Figure 2. This is an
image-only version of the architecture presented in the SAM2 paper (Ravi et al., 2024).

B.3 COARSE AND FINE MASK ADAPTER LOGITS.

Figure 6: Examples showing mask adapter outputs on four MagicBrush training samples. For each
sample we show the coarse logits Lcoarse, the refined logits Lrefine, and the final binary mask B.

Heatmaps are logits before sigmoid; B is obtained by thresholding σ(M̂) at 1

2
.
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B.4 ∆ CORRECTION FEATURES

(a) Delta correction saliency results for MagicBrush.

(b) Delta correction saliency results for CoCoGLIDE.

Figure 7: Delta correction saliency visualizations across MagicBrush and CoCoGLIDE for four
samples, averaged over the embedding dimension and bilinearly upsampled to 512 X 512.
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C DATA GENERATION COMPARISON

Table 5: Comparison of diffusion-based image editing data generation approaches. public availabil-
ity reflects the state as of Sep 24, 2025.

Dataset Methods Used Model Type Public

RADAR Costanzino et al. (2025) replace text-conditioned inpainting ✗*
GRE Sun et al. (2023) add; remove; replace text-conditioned inpainting ✗

SAFIRE Kwon et al. (2024) replace; remove text-conditioned inpainting ✓

SID-Set Huang et al. (2025) change partially; replace text-conditioned inpainting ✓

AutoEditForge Ours add; change partially; remove; replace instruction-based editing ✓

*Dataset announced but not yet publicly released.

Model type distinction The datasets in Table 5 employ two fundamentally different editing ap-
proaches. Text-conditioned inpainting (used by RADAR, GRE, SAFIRE, and SID-Set) requires
complete textual descriptions of desired content in masked regions, treating them as areas to be
entirely regenerated. This often results in visible boundaries and loss of contextual details like con-
sistent lighting and perspective. In contrast, our AutoEditForge uses instruction-based editing
models, which can interpret natural language commands (e.g. ”replace the dog with a cat”) to per-
form targeted modifications while preserving scene coherence. Although instruction-based models
can operate without masks, AutoEditForge employs segmentation masks to ensure precise spa-
tial control, combining semantic understanding with spatial precision for context-aware edits that
maintain the original scene’s lighting, perspective, and style.

RADAR Costanzino et al. (2025) employs a systematic pipeline that uses Kosmos-2 for scene anal-
ysis and object detection, followed by Grounded SAM for segmentation of selected objects. The
system focuses on replacement operations, using the original scene caption as an inpainting prompt
across 10 different text-to-image diffusion models to generate semantically coherent substitutions
(e.g., replacing a duck with another bird). Unlike RADAR which focuses solely on object re-
placement using scene-level captions, AutoEditForge employs LLM-guided decision making
to support diverse editing operations (add, remove, replace, change partially) with context-aware
prompting.

GRE Sun et al. (2023) employs a comprehensive multi-stage pipeline that leverages large mod-
els across different modalities, including SAM for region selection, BLIP2 for scene understand-
ing, and ChatGPT for generating logical editing ideas to ensure semantically coherent edits. The
system performs three types of operations (add, remove, replace) using diverse editing methods
spanning GAN-based (MAT, LaMa), diffusion-based (Stable Diffusion, ControlNet, PaintByEx-
ample), and black-box approaches (Photoshop with generative AI). Built on 228,650 images from
real-world sources focusing on daily snapshots and news visuals, the dataset’s simulated pipeline
ensures logical consistency while maintaining scalability, though the dataset remains private despite
its significant scale. In contrast to GRE’s BLIP2-ChatGPT pipeline for text-to-image inpainting,
AutoEditForge employs a two-pass architecture with Florence-2 and Gemma 3 12B-it for more
efficient processing, extends editing capabilities with a novel ’Change Partially’ operation, and sup-
ports SOTA image editing models such as Qwen-Image-Edit Wu et al. (2025).

SAFIRE-AUTO Kwon et al. (2024) generates a large-scale pretraining dataset of approximately
123,000 images by leveraging SAM’s automatic mask generation to partition authentic images from
DPReview into semantic regions, then randomly selecting and unioning adjacent regions to cre-
ate manipulation masks. The pipeline applies four forgery types: copy-move, splicing, generative
reconstruction using text-to-image models, and AI-based inpainting removal, with various post-
processing techniques including resizing, blurring, noise addition, and color adjustments. Unlike
AutoEditForge’s intelligent two-pass approach that uses Florence-2 and LLM analysis to make
contextually-aware editing decisions based on scene understanding, SAFIRE-AUTO employs a sim-
pler automated method that randomly selects and unions adjacent semantic regions without consid-
ering the semantic appropriateness of the edits.

SID-Set Huang et al. (2025) constructs a social media-focused dataset of 300,000 images through
a four-stage pipeline: extracting objects from captions using GPT-4o, generating masks with
Language-SAM, establishing replacement dictionaries for objects/attributes, and producing tam-
pered images via Latent Diffusion. The system supports both object replacement (swapping entire
objects like cat→dog) and attribute modification (changing properties like ”happy dog”). In contrast
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to AutoEditForge, which employs Florence-2 for object detection and an LLM for dynamic
editing strategy selection across four manipulation types, SID-Set utilizes a pipeline with GPT-4o
for caption-based object extraction and predefined replacement dictionaries, focusing specifically on
object replacement and attribute modification for social media contexts.

D AUTOEDITFORGE

Image selection and filtering. The images are selected from Open-Images V7 Kuznetsova et al.
(2020) based on four complexity criteria to ensure meaningful forgery detection challenges: (1)
containing ≥ 3 objects with bounding boxes covering ≥ 2% of the image area, (2) representing ≥ 2
distinct object classes, (3) no single object dominating more than 60% of the frame, and (4) at least
one non-person object present. This filtering strategy ensures that the generated forgeries involve
realistic multi-object scenes rather than trivial single-object manipulations.

Quality control mechanisms AutoEditForge implements several quality control mechanisms that
are tracked during the generation process.

1. Multi-metric duplicate detection: Four complementary metrics (blob analysis, MAE,
pHash, and SSIM) are used to validate meaningful inpainting changes and automatically
reject failed images without retrying.

2. Mask validation pipeline: All masks undergo format validation, size matching, and area
constraint checks, ensuring only high-quality masks proceed to inpainting.

3. Error tracker: Categorizes failures across 11 distinct error types.

We compose a table analyzing the error logs of FLUX-Bench and QWEN-Bench, totaling 6.000
samples. In total, 9.446 images were generated, with 3.443 failures, giving a failure rate of 36.45%.
Each editing method has 25% of the images due to our class balancing. The failures are distributed
as follows:

Table 6: AutoEditForge Failure Categories.

Failure mode Count % of errors

Inpainting produced no result 1730 50%
Florence mask coverage validity 1506 44%
Florence captioning failed 187 5%
LLM object selection failure 17 0.5%
SAM segmentation mask failure 1 0.03%
Fallback mask file creation errors 1 0.03%
LLM edit method decision failures 1 0.03%

Class balancing mechanism. To ensure balanced representation across editing methods, we im-
plemented a dynamic class-balancing mechanism during generation. For each image, the LLM first
analyzes the scene and selects the two most suitable editing methods from Replace, Remove, Add,
Change Partially based on semantic and spatial constraints. The system then applies further class
balancing by selecting the method that has been used less frequently between these two candidates,
preventing any single manipulation type from dominating the dataset. This strategy resulted in an
approximately uniform distribution with each method applied to ∼25% of the images, ensuring
comprehensive coverage of forgery types for robust detector training. The final dataset comprises
manipulated images with corresponding pixel-level ground truth masks, representing diverse editing
operations across complex real-world scenes.
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D.1 AUTOEDITFORGE EXAMPLE.

Figure 8: High-level overview of the AutoEditForge pipeline, illustrating the workflow from
input image to edited output. Implementation details, including system prompts and source code,
are available in our GitHub repository.

Further, we provide three qualitative examples of the three created datasets (FLUX-BENCH,
QWEN-BENCH, NanoBanana):

Figure 9: Qualitative comparison of three source and tampered AutoEditForge edits across FLUX-
Bench, QWEN-Bench, and NanoBanana.
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D.2 DATASET CREATION TIME.

Table 7: End-to-end AutoEditForge generation effort. “LLM secs/img” includes edit method
selection and prompt formation. “Editor secs/img” includes diffusion steps. NanoBanana edits are
done via Gemini 2.5 Flash API. Comanici et al. (2025)

Dataset Images LLM secs/img Editor secs/img

FLUX-Bench 3.000 35 41
QWEN-Bench 3.000 36 59
NanoBanana 445 35 2

D.3 PERCEPTUAL QUALITY COMPARISON.

We compare the output quality of AutoEditForge using BRISQUE Mittal et al. (2012), NIQE Mittal
et al. (2013), and PI Blau et al. (2019), commonly used no-reference image quality metrics for
assessing perceptual differences between source and tampered images. All three aim to quantify
visible degradation without relying on a pristine reference image. The metrics are non-reference,
since reference metrics measure similarity, which is directly biased by the mask size. As can

Figure 10: Source vs tampered image quality metrics for datasets with matching (source, tampered)
pairs: BRISQUE, NIQE, and PI across models.

be seen in Figure 10, the differences between the source and tampered images are small for the
AutoEditForge datasets (FLUX, QWEN, and NanoBanana) and CoCoGLIDE, but noticeable for
Magicbrush and AutoSplice. This confirms that AutoEditForge shows no significant degradation in
quality with respect to the source images.

D.4

E EVALUATION

E.1 EVALUATION METRICS.

F1 is a monotone transform of IoU J (F1 = 2J
1+J

), thus F1 ≥ IoU. Because the nonlinearity is

applied prior to averaging, mean F1 is not recoverable from mean IoU and is more tolerant of partial
overlaps and small objects. Benchmarks exhibit substantial F1–IoU discrepancies, indicative of
over- or under-prediction under uncertainty (Fig. 3).
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E.2 F1 SCORE COMPARABILITY.

We compute the F1 score as F1 = 2TP
2TP+FN+FP

, whereas TruFor and SAFIRE use F1 =

max{ 2TP
2TP+FN+FP

, 2FN
2FN+TP+TN

}, which is equal or larger. Their definition is suited for image

splicing (two authentic images combined), while our definition reflects diffusion edits with a clear
separation of authentic and forged regions. For comparability, we report alternative F1 scores in
Table 8.

Table 8: Alternative F1 scores using the definition max{ 2TP
2TP+FN+FP

, 2FN
2FN+TP+TN

}

Model
MagicBrush SIDA CoCoGLIDE AutoSplice NanoBanana FLUX-BENCH QWEN-BENCH

F1 ↑ F1 ↑ F1 ↑ F1 ↑ F1 ↑ F1 ↑ F1 ↑

SAFIRE [2024] 39.25 40.14 59.63 54.88 30.87 36.00 44.28
Mesorch [2024b] 35.54 35.28 56.51 63.62 33.90 28.62 30.78
TruFor [2023] 43.69 40.52 49.81 65.60 24.45 37.38 38.47
AdaIFL [2025] 30.64 33.95 44.54 56.80 30.64 25.22 27.95
SIDA [2025] 29.26 48.43 38.72 64.64 22.20 20.26 22.74
FakeShield [2025] 26.81 33.00 41.78 59.24 31.03 27.13 30.94
PSCC-Net [2022] 21.03 24.13 51.72 54.65 22.67 27.91 30.27
Detective SAM 59.83 66.53 60.22 67.60 37.12 34.40 39.37

F ADDITIONAL RESULTS

F.1 NOISE INTENSITY.

Figure 11: IoU and F1 for Gaussian noise and blur at varying intensity levels. Exact perturbation
parameters for each intensity are in Table 17. Scores are averaged over the validation splits of the
ID datasets (MagicBrush and SIDA).
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F.2 ROBUSTNESS STUDY.

(a) Relative IoU change over Gaussian Blur, Gaussian Noise, and JPEG compression.

(b) IoU degradation for Gaussian Blur, Gaussian Noise, and JPEG compression.

Figure 12: Detective SAM and baselines IoU performance under increasing perturbation intensities.
Only the top 5 models by IoU are shown.

F.3 FINE-TUNING

F.3.1 FINE-TUNING SCORES.

Table 9: Six-benchmark evaluation of the fine-tuned Detective SAMSOTA. MagicBrush and SIDA
are in-distribution (ID). CoCoGLIDE, AutoSplice, NanoBanana, and their mean form the out-of-
distribution (OOD) evaluation. Bold indicates the best per column. All values are percentages;
higher is better.

Model
MagicBrush SIDA CoCoGLIDE UltraEdit AutoSplice NanoBanana Avg OOD

IoU ↑ F1 ↑ IoU ↑ F1 ↑ IoU ↑ F1 ↑ IoU ↑ F1 ↑ IoU ↑ F1 ↑ IoU ↑ F1 ↑ IoU ↑ F1 ↑

Detective SAMSOTA 45.03 57.24 51.35 60.74 45.37 55.62 25.49 33.84 44.42 57.02 27.00 36.21 35.57 45.67

F.3.2 INCREMENTAL FINE-TUNING

To further support the claim of periodic fine-tuning with Detective SAM, we fine-tune Detective
SAM incrementally: first on 500 FLUX-Bench samples, then on 500 QWEN-Bench samples, and
vice versa.

Table 10: Evaluate the impact of incrementally fine-tuning the IoU on the FLUX-Bench and QWEN-
Bench, and vice versa. ’→’ denotes sequential tuning. The columns refer to the fine-tuning data
used; both FLUX and QWEN refer to the use of 500 samples from the dataset. The rows refer to the
dataset used to calculate the IoU.

Dataset Detective SAM FLUX QWEN FLUX → QWEN QWEN → FLUX

FLUX 18.70 41.09 29.60 41.43 43.34
QWEN 20.41 32.26 42.43 43.20 42.58

Average OOD 3 34.68 35.90 34.47 37.68 36.95

Examining Table 10, the first sequential update slightly reduces OOD performance, which is then
restored when the following dataset is introduced. The similarity between the sequential results and

3Includes CoCoGLIDE, UltraEdit, AutoSplice and NanoBanana.
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those of Detective SAM in Table 2 indicates that adaptation remains effective beyond a single update
step. We will clarify the meaning of “continual” in the introduction.

F.3.3 UNBALANCED SAMPLES FINE-TUNING

We fine-tune Detective SAM with unbalanced samples and measure IoU performance. This en-
ables evaluation in an unbalanced setting, where one diffusion model is overrepresented during
fine-tuning.

Table 11: Evaluation of unbalanced fine-tuning. The columns denote the fine-tuning data used. Only
IoU results are shown. The last column is taken directly from Table 2 for reference.

Dataset QWEN 1500, FLUX 500 FLUX 1500, QWEN 500 FLUX 500, QWEN 500

FLUX 42.16 44.30 43.08
QWEN 44.94 39.68 41.44
NanoBanana 26.65 25.80 27.00
Magicbrush 44.14 45.51 45.03
SIDA 50.46 49.72 51.35
CoCoGLIDE 44.95 42.57 45.37
AutoSplice 43.30 44.31 44.42

Unbalanced fine-tuning improves performance on the overrepresented dataset but leads to greater
forgetting of the underrepresented dataset. This is likely due to a mismatch between the diversity
of the fine-tuning samples and the replay samples. Therefore, if future editors produce a dispro-
portionate number of new edits, replay must either increase or subsample to maintain stability. The
default setting for periodic adaptation remains 500 samples per editor with a 20% replay rate. This
is supported by the results shown in Appendix F.3.4.

F.3.4 REPLAY VS. INCREASING NUMBER OF SAMPLES.

(a) IoU vs. samples with 20% replay. (b) IoU vs. samples without replay.

Figure 13: Detective SAM fine-tuning with and without replay and increasing number of samples.
The IoU average scores are shown for the ID, OOD, and fine-tuned (FT) models. Note: OOD
includes CoCoGLIDE, AutoSplice and NanoBanana.

F.4 EDIT METHODS.

Table 12: Average IoU across all evaluated models, grouped by edit operation for FLUX-Bench and
QWEN-Bench. We report the mean over models.

Dataset Change Partially Replace Remove Add

QWEN-Bench 17.84 22.95 10.58 11.95
FLUX-Bench 17.42 17.61 9.31 13.27

F.5 DETECTIVE SAM FAILURE MODES.

Several low IoU Detective SAM localization failures are depicted in Figure 14
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Figure 14: Detective SAM low IoU samples per dataset

F.6 MODEL THROUGHPUT COMPARISON.

To quantify the inference efficiency difference across IFL systems, we measure throughput on 512
CoCoGLIDE samples with a batch size of 1 and no parallelization on an NVIDIA H100. The results
are shown in the table below.

Table 13: Throughput and inference time comparison on CoCoGLIDE (512 samples, batch size 1,
no parallel processing).

Metric SAFIRE Mesorch AdaIFL TruFor SIDA FakeShield PSCC-Net Detective SAM

Images per second 0.35 37.10 9.54 22.61 2.50 2.67 77.70 29.04
Total inference time (s) 1475.04 13.80 53.66 22.64 204.50 191.54 6.59 17.63
Average OOD IoU 24.11 24.73 27.90 17.43 17.55 15.68 26.99 34.68

From the above table, MLLM-based systems require several minutes for processing a few hundred
samples, while SAFIRE requires roughly half an hour. This hinders deployment at scale. Detective
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SAM achieves higher OOD performance while remaining efficient enough for large-batch screening
and adaptive updates, making it suitable for practical deployment in real-time applications.

G DATASETS

Datasets We train Detective SAM on MagicBrush (Zhang et al., 2024) and a subset of SIDA (Huang
et al., 2025), containing edits using DALL-E (Ramesh et al., 2022) and a Latent Diffusion Model
(Rombach et al., 2022). We perform out-of-distribution testing on CoCoGLIDE, UltraEdit (Zhao
et al., 2024), AutoSplice (Jia et al., 2023), and NanoBanana Comanici et al. (2025). NanoBanana
is a dataset created with AutoEditForge; we also create datasets with FLUX Kontext (Labs et al.,
2025) and QWEN-Image-Edit (Wu et al., 2025) to evaluate SOTA performance.
Note that MagicBrush and AutoSplice share the same editing model but differ significantly in how
they create datasets. For example, the instruction, data source, editing types, and mask sizes differ.
See below for all datasets and mask size details. This is in line with the OOD definition in Section 4.
The editing modes for each dataset are stated in Table 14.

Dataset Editing Model

MagicBrush DALL-E 2
SIDA Latent Diffusion Model
AutoSplice DALL-E 2
UltraEdit SDXL-Turbo
CoCoGLIDE GLIDE
NanoBanana Gemini 2.5 Flash
FLUX-Bench FLUX Kontext
QWEN-Bench QWEN-Image-Edit

Table 14: Overview of the editing models used for each dataset.

Next, we describe the datasets in more detail.

MagicBrush This dataset contains diffusion-based edits produced with DALL-E Ramesh et al.
(2022); Zhang et al. (2024) using human annotation. It includes multiple edit rounds per image,
and we compute binary masks as the union of forged pixels over rounds, giving 8.807 samples. We
use the official validation and test split for testing, giving 528 validation samples and 1.053 test
samples

SIDA This corpus comprises 100.000 edits created with a Latent Diffusion Model Huang et al.
(2025); Rombach et al. (2022). In our experiments, we use 10.000 tampered samples of SIDA for
training, 528 for validation and the full tampered test set for testing.

AutoSplice This dataset includes 3.621 DALL-E based edits Jia et al. (2023). We treat it as an
out-of-distribution set and allocate all 3.621 images to testing. AutoSplice shares the same editing
model as MagicBrush. The two datasets differ in the following aspects:

1. Instruction: Magicbrush contains action-oriented instructions from human crowd workers,
whereas AutoSplice has descriptive captions, generated by modifying the image caption.

2. Data source: Magicbrush uses images from MS COCO Lin et al. (2015) and AutoSplice uses
Visual News Liu et al. (2021).

3. Edit types: Magicbrush contains semantic changes and AutoSplice contains mainly insertions
and replacements.

4. Edit sizes: 84% of Magicbrush edit masks cover less than 25% of the image, whereas 68% of
AutoSplice masks occupy more than 25% (Table 15).

CoCoGLIDE This small evaluation set contains 512 GLIDE based edits Nichol et al. (2022). We
use 512 samples for out-of-distribution testing.

UltraEdit This dataset serves as an additional OOD benchmark utilizing the SDXL-Turbo model.
We use the region-based (local edited) subset, it contains 100.000 samples with pixel-level ground
truth masks, from which we take a 10.000 random subset.
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NanoBanana We construct this dataset with AutoEditForge using Gemini 2.5 Flash Comanici et al.
(2025), which is not open weight and does not accept a mask input. NanoBanana generates its own
internal mask during the editing process. We curate 200 images from 445 candidates and compute
masks by thresholding the pixel difference between the source and edited images, selecting only the
images that apply a local-only edit. All 200 samples are for out-of-distribution testing.

FLUX-Bench We construct this benchmark with AutoEditForge using the open weight FLUX Kon-
text editor Labs et al. (2025). We generate 3.000 edited samples, fine-tune on 500, validate on
250, and test on 1.750. The editor is a recent state-of-the-art model that ranks highly on public
leaderboards Chiang et al. (2024).

QWEN-Bench We construct this benchmark with AutoEditForge using the open weight QWEN-
Image-Edit model Wu et al. (2025). We generate 3.000 edited samples and fine-tune on 500, validate
on 250, and test on 1.750. The editor is a recent state-of-the-art model that ranks highly on public
leaderboards Chiang et al. (2024).

G.1 DATASET MASK SIZES

Table 15: Distribution of mask sizes (small / medium / large) in each dataset. Small refers to [0,5%],
medium to [5%, 25%], and large > 25% mask coverage. Percentages are rounded to integers; the
last row shows the range across datasets.

Dataset Small (%) Medium (%) Large (%)

MagicBrush 35 49 16
SIDA 32 47 21
CoCoGLIDE 20 45 36
UltraEdit 16 37 48
AutoSplice 5 27 68
NanoBanana 26 58 16
FLUX-Bench 35 53 12
QWEN-Bench 33 48 19
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H HYPERPARAMETERS

Table 16: Detective SAM hyperparameters, the highest validation performance set used for the
results, and the swept over range.

Hyperparameter Optimal Sweep Range

Learning rate 0.001 {0.01, 0.001, 0.0001, 0.00001}
Focal α 0.6 {0.5, 0.55, . . . , 0.75, 0.80}
Focal γ 1.0 {1.0, 1.25, . . . , 1.75, 2.0}
Adam weight decay 0.0001 {0.0001, 0.00001, 0.0}
Noise intensity 0.75 {0.25, 0.50, . . . , 1.25, 1.50 }
Perturbation type Blur & Noise { Blur, Noise, JPEG, None, Blur & Noise }
Layer width 64 { 64, 128, 256 }
Transformer downscaling 16 × { 4, 8, 16 }
Transformer layers 1 { 1, 2, 3 }
Dropout rate 0.15 { 0.0, 0.1, 0.15, 0.2, 0.25, 0.5 }
Batch size 4 { 2, 4, 8 }

Table 17: Perturbation parameters as a function of noise intensity. Each intensity level controls
the strength of three perturbations: Gaussian blur with standard deviation σblur, JPEG compression
with the specified quality factor (lower is stronger compression), and additive Gaussian noise with
standard deviation σnoise.

Intensity σblur JPEG Quality σnoise

0.25 0.25 80 0.05
0.50 0.50 66 0.10
0.75 0.75 52 0.15
1.00 1.00 38 0.20
1.25 1.25 24 0.25
1.50 1.50 10 0.30
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