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Abstract
Inspired by the concept of active learning, we pro-
pose active inference—a methodology for statisti-
cal inference with machine-learning-assisted data
collection. Assuming a budget on the number of
labels that can be collected, the methodology uses
a machine learning model to identify which data
points would be most beneficial to label, thus ef-
fectively utilizing the budget. It operates on a sim-
ple yet powerful intuition: prioritize the collection
of labels for data points where the model exhibits
uncertainty, and rely on the model’s predictions
where it is confident. Active inference constructs
valid confidence intervals and hypothesis tests
while leveraging any black-box machine learning
model and handling any data distribution. The key
point is that it achieves the same level of accuracy
with far fewer samples than existing baselines
relying on non-adaptively-collected data. This
means that for the same number of collected sam-
ples, active inference enables smaller confidence
intervals and more powerful tests. We evaluate
active inference on datasets from public opinion
research, census analysis, and proteomics.

1. Introduction
In the realm of data-driven research, collecting high-quality
labeled data is a continuing impediment. The impediment
is particularly acute when operating under stringent label-
ing budgets, where the cost and effort of obtaining each
label can be substantial. Recognizing these limitations,
many have turned to machine learning as a pragmatic so-
lution, leveraging it to predict unobserved labels across
various fields. In remote sensing, machine learning assists
in annotating and interpreting satellite imagery (Jean et al.,
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2016; Xie et al., 2016; Rolf et al., 2021); in proteomics,
tools like AlphaFold (Jumper et al., 2021) are revolution-
izing our understanding of protein structures; even in the
realm of elections—including most major US elections—
technologies combining scanners and predictive models are
used as efficient tools for vote counting (Zdun, 2022). These
applications reflect a growing reliance on machine learning
for extracting knowledge from unlabeled datasets.

However, this reliance on machine learning is not without
its pitfalls. The core issue lies in the inherent biases of
these models. No matter how sophisticated, predictions
lead to dubious conclusions; as such, predictions cannot
fully substitute for traditional data sources such as gold-
standard experimental measurements, high-quality surveys,
and expert annotations. This begs the question: is there a
way to effectively leverage the predictive power of machine
learning while still ensuring the integrity of our inferences?

Drawing inspiration from the concept of active learning,
we propose active inference—a novel methodology for sta-
tistical inference that harnesses machine learning not as a
replacement for data collection but as a strategic guide to it.
The methodology uses a machine learning model to identify
which data points would be most beneficial to label, thus
effectively utilizing the labeling budget. It operates on a
simple yet powerful intuition: prioritize the collection of
labels for data points where the model exhibits uncertainty,
and rely on the model’s predictions where it is confident.
Active inference constructs provably valid confidence inter-
vals and hypothesis tests for any black-box machine learning
model and any data distribution. The key takeaway is that it
achieves the same level of accuracy with far fewer samples
than existing baselines relying on non-adaptively-collected
data. Put differently, this means that for the same number
of collected samples, active inference enables smaller confi-
dence intervals and more powerful p-values. We will show
in our experiments that active inference can save over 80%
of the sample budget required by classical methods.

Although quite different in scope, our work is inspired
by the recent framework of prediction-powered inference
(PPI) (Angelopoulos et al., 2023a). PPI assumes access
to a small labeled dataset and a large unlabeled dataset,
drawn i.i.d. from the population of interest. It then asks how
one can use machine learning and the unlabeled dataset to
sharpen inference about population parameters depending
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on the distribution of labels. Our objective in this paper is
different since the core of our contribution is (1) designing
strategic data collection approaches that enable more pow-
erful inferences than collecting labels in an i.i.d. manner,
and (2) showing how to perform inference with such strate-
gically collected data. We will see that PPI can be seen as
a special case of our methodology: while PPI ignores the
issue of strategic data collection and instead uses a trivial,
uniform data collection strategy, it leverages machine learn-
ing to enhance inference in a similar way to our method. We
provide a further discussion of prior work in Section 3.

2. Problem Description
We introduce the formal problem setting. We observe un-
labeled instances X1, . . . , Xn, drawn i.i.d. from a distribu-
tion PX . The labels Yi are unobserved, and we shall use
(X,Y ) ∼ P = PX×PY |X to denote a generic feature–label
pair drawn from the underlying data distribution. We are in-
terested in performing inference—conducting a hypothesis
test or forming a confidence interval—for a parameter θ∗

that depends on the distribution of the unobserved labels;
that is, the parameter is a functional of PX × PY |X . For
example, we might be interested in forming a confidence
interval for the mean label, θ∗ = E[Yi], where Yi is the label
corresponding to Xi. Although we will primarily focus on
forming confidence intervals, the standard duality between
confidence intervals and hypothesis tests makes our results
directly applicable to testing as well.

We have no collected labels a priori. Rather, the goal is to
efficiently and strategically acquire labels for certain points
Xi, so that inference is as powerful as possible for a given
collection budget—more so than if labels were collected
uniformly at random—while also remaining valid. We de-
note by nlab the number of collected labels. We assume
that we are constrained to collect, on average, E[nlab] ≤ nb
labels, for some budget nb.1 Typically, nb ≪ n.

To guide the choice of which instances to label, we will
make use of a predictive model f . Typically this will be
a black-box machine learning model, but it could also be
a hand-designed decision rule based on expert knowledge.
This is the key component that will enable us to get a signif-
icant boost in power. We do not assume any knowledge of
the predictive performance of f , or any parametric form for
it. Our key takeaway is that, if we have a reasonably good
model for predicting the labels Yi based on Xi, then we can
achieve a significant boost in power compared to labeling a
uniformly-at-random chosen set of instances.

We will consider two settings, depending on whether or not
we update the predictive model f as we gather more labels.

1For simplicity we bound E[nlab], however the budget can be
met with high probability, as nlab has fast concentration around nb.

• The first is a batch setting, where we simultaneously
make decisions of whether or not to collect the corre-
sponding label for all unlabeled points at once. In this
setting, the model f is pre-trained and remains fixed
during the label collection. The batch setting is simpler
and arguably more practical if we already have a good
off-the-shelf predictor.

• The second setting is sequential: we go through the
unlabeled points one by one and update the predictive
model as we collect more data. The benefit of the
second approach is that it is applicable even when we
do not have access to a pre-trained model, but we have
to train a model from scratch.

Our proposed active inference strategy will be applicable
to all convex M-estimation problems. This means that it
handles all targets of inference θ∗ that can be written as:

θ∗ = argmin
θ

E[ℓθ(X,Y )], where (X,Y ) ∼ P,

for a loss function ℓθ that is convex in θ. We denote
L(θ) = E[ℓθ(X,Y )] for brevity. M-estimation captures
many relevant targets, such as the following.
Example 2.1 (Mean label). If ℓθ(x, y) = 1

2 (y − θ)
2, then

the target is the mean label, θ∗ = E[Y ]. Note that this loss
has no dependence on the features.
Example 2.2 (Linear regression). If ℓθ(x, y) = 1

2 (y −
x⊤θ)2, then θ∗ is the vector of linear regression coefficients
obtained by regressing y on x, that is, the “effect” of x on y.
Example 2.3 (Label quantile). For a given q ∈ (0, 1), let
ℓθ(x, y) = q(y − θ)1{y > θ} + (1 − q)(θ − y)1{y ≤ θ}
be the “pinball” loss. Then, θ∗ is equal to the q-quantile of
the label distribution: θ∗ = inf{θ : P(Y ≤ θ) ≥ q}.

3. Related Work
Our work is most closely related to prediction-powered
inference (PPI) and other recent works on inference with
machine learning predictions (Angelopoulos et al., 2023a;c;
Zrnic & Candès, 2024; Motwani & Witten, 2023; Gan &
Liang, 2023; Miao et al., 2023). This recent literature in turn
relates to classical work on inference with missing data and
semiparametric statistics (Rubin, 1976; 1987; 1996; Robins
et al., 1994; Robins & Rotnitzky, 1995; Chernozhukov et al.,
2018), as well as semi-supervised inference (Zhang et al.,
2019; Azriel et al., 2022; Zhang & Bradic, 2022). We con-
sider the same set of inferential targets as in (Angelopoulos
et al., 2023a;c; Zrnic & Candès, 2024), building on classical
M-estimation theory (Van der Vaart, 2000) to enable infer-
ence. While PPI assumes access to a small labeled dataset
and a large unlabeled dataset, which are drawn i.i.d., our
work is different in that it leverages machine learning in
order to design adaptive label collection strategies, which
breaks the i.i.d. structure between the labeled and the unla-
beled data. We will see that our active inference estimator
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reduces to the prediction-powered estimator when we ap-
ply a trivial, uniform label collection strategy. We will
demonstrate empirically that the adaptivity in label collec-
tion enables significant improvements in statistical power.

There is a growing literature on inference from adaptively
collected data (Kato et al., 2020; Zhang et al., 2021; Cook
et al., 2023), often focusing on data collected via a bandit al-
gorithm. These papers typically focus on average treatment
effect estimation. In contrast to our work, these works gen-
erally do not focus on how to set the data-collection policy
as to achieve good statistical power, but their main focus is
on providing valid inferences given a fixed data-collection
policy. Notably, Zhang et al. (2021) study inference for M-
estimators from bandit data. However, their estimators do
not leverage machine learning, which is central to our work.

A substantial line of work studies adaptive experiment de-
sign (Robbins, 1952; Lai & Robbins, 1985; Hu & Rosen-
berger, 2006; List et al., 2011; Hahn et al., 2011; Bhat-
tacharya & Dupas, 2012; Kasy & Sautmann, 2021; Hadad
et al., 2021; Chandak et al., 2023), often with the goal of
maximizing welfare during the experiment or identifying
the best treatment. Most related to our motivation, a subset
of these works (List et al., 2011; Hahn et al., 2011; Chan-
dak et al., 2023) study adaptive design with the goal of
efficiently estimating average treatment effects. While our
motivation is not necessarily treatment effect estimation,
we continue in a similar vein—collecting data adaptively
with the goal of improved efficiency—with a focus on using
modern, black-box machine learning to produce uncertainty
estimates that can be turned into efficient label collection
methods. Related variance-reduction ideas appear in strati-
fied survey sampling (Nassiuma, 2001; Särndal et al., 2003).
Our proposal can be seen as stratifying the population of
interest based on the certainty of a machine learning model.

Finally, our work draws inspiration from active learning,
a subarea of machine learning centered around the obser-
vation that a predictive model can enhance its predictive
capabilities if it is allowed to choose the data from which it
learns. Our setup is analogous to pool-based active learning
(Settles, 2009). Sampling according to a measure of predic-
tive uncertainty is a central idea in active learning (Schohn
& Cohn, 2000; Tong & Koller, 2001; Balcan et al., 2006;
Joshi et al., 2009; Hanneke et al., 2014; Gal et al., 2017; Ash
et al., 2019; Ren et al., 2021). Since our goal is statistical in-
ference, rather than training a good predictor, our sampling
rules are different and adapt to the inferential question.

4. Warm-up: Active Inference for the Mean
We first focus on the special case of estimating the mean
label, θ∗ = E[Y ], in the batch setting. The intuition de-
rived from this example carries over to all other problems.

Recall the setup: we observe n i.i.d. unlabeled instances
X1, . . . , Xn, and we can collect labels for at most nb of
them (on average). Consider first a “classical” solution,
which does not leverage machine learning. Given a budget
nb, we can simply label any arbitrarily chosen nb points.
Since the instances are i.i.d., without loss of generality
we can choose to label instances {1, . . . , nb} and compute
θ̂noML = 1

nb

∑nb

i=1 Yi. The estimator θ̂noML is clearly unbi-

ased, and its variance is Var(θ̂noML) = 1
nb
Var(Y ).

Now, suppose that we are given a machine learning model
f(X), which predicts the label Y ∈ R from observed co-
variates X ∈ X .2 The idea behind our active inference
strategy is to increase the effective sample size by using
the model’s predictions on points X where the model is
confident and focusing the labeling budget on the points X
where the model is uncertain. To implement this idea, we
design a sampling rule π : X → [0, 1] and collect label
Yi with probability π(Xi). The sampling rule is derived
from f , by appropriately measuring its uncertainty. The
hope is that π(x) ≈ 1 signals that the model f is very un-
certain about instance x, whereas π(x) ≈ 0 indicates that
the model f should be very certain about instance x. Let
ξi ∼ Bern(π(Xi)) denote the indicator of whether we col-
lect the label for point i. By definition, nlab =

∑n
i=1 ξi.

The rule π will be carefully rescaled to meet the budget
constraint: E[nlab] = E[π(X)] · n ≤ nb.

Our active estimator of the mean θ∗ is given by:

θ̂π =
1

n

n∑
i=1

(
f(Xi) + (Yi − f(Xi))

ξi
π(Xi)

)
. (1)

This is essentially the augmented inverse propensity weight-
ing (AIPW) estimator (Robins et al., 1994), with a particular
choice of propensities π(Xi) based on the certainty of the
machine learning model that predicts the missing labels.
When the sampling rule is uniform, i.e. π(x) = nb/n for
all x, θ̂π is equal to the prediction-powered mean estimator
(Angelopoulos et al., 2023a).

It is not hard to see that θ̂π is unbiased: E[θ̂π] = θ∗. A short
calculation shows that its variance equals

Var(θ̂π) =
1

n

(
Var(Y ) + E

[
(Y − f(X))2

(
π(X)−1 − 1

)])
.

(2)

If the model is accurate for all x, i.e. f(X) ≈ Y , then
Var(θ̂π) ≈ 1

nVar(Y ), which is far smaller than Var(θ̂noML)
since nb ≪ n. Of course, f will never be accurate for all
instances x. For this reason, we will aim to choose π such
that π is small when f(X) ≈ Y and large otherwise, so that
the relevant term (Y − f(X))2

(
π−1(X)− 1

)
is always

2X is the set of values the covariates can take on, e.g. Rd.
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small (of course, subject to the sampling budget constraint).
For example, for instances for which the predictor is correct,
i.e. f(X) = Y , we would ideally like to set π(X) = 0 as
this incurs no additional variance. We note that the variance
reduction of active inference compared to the “classical”
solution also implies that the resulting confidence intervals
get smaller. This follows because interval width scales with
the standard deviation for most standard intervals (e.g., those
derived from the central limit theorem).

Finally, we explain how to set the sampling rule π. The
rule will be derived from a measure of model uncertainty
u(x) and we shall provide different choices of u(x) in the
following paragraphs. At a high level, one can think of
u(Xi) as the model’s best guess of |Yi − f(Xi)|. We will
choose π(x) proportional to u(x), that is, π(x) ∝ u(x),
normalized to meet the budget constraint. Intuitively, this
means that we want to focus our data collection budget on
parts of the covariate space where the model is expected
to make the largest errors. Roughly speaking, we will set
π(x) = u(x)

E[u(X)] ·
nb

n ; this implies E[nlab] = E[π(X)] · n ≤
nb. (This is an idealized form of π(x) because E[u(X)] can-
not be known exactly, though it can be estimated accurately
from the unlabeled data; we will formalize this later on.)

We will take two different approaches for choosing the un-
certainty u(x), depending on whether we are in a regression
or a classification setting.

Regression uncertainty In regression, we explicitly train
a model u(x) to predict |f(Xi) − Yi| from Xi. We note
that we aim to predict only the magnitude of the error and
not the directionality. In the batch setting, we typically
have historical data of (X,Y ) pairs that are used to train
the model f . We thus train u(x) on this historical data,
by setting |f(X) − Y | as the target label for instance X .
The data used to train u should ideally be disjoint from the
data used to train f to avoid overoptimistic estimates of
uncertainty. We will typically use data splitting to avoid this
issue, though there are more data efficient solutions such as
cross-fitting. Notice that access to historical data will only
be important in the batch setting; in the sequential setting
we will be able to train u(x) gradually on the collected data.

Classification uncertainty Next we look at classification,
where Y is supported on a discrete set of values. Our main
focus will be on binary classification, where Y ∈ {0, 1}. In
such cases, our target is θ∗ = P(Y = 1).

In classification, f(x) is usually obtained as the “most
likely” class. If K is the number of classes, we have
f(x) = argmaxi∈[K] pi(x), for some probabilistic output
p(x) = (p1(x), . . . , pK(x)) which satisfies

∑K
i=1 pi(x) =

1. For example, p(x) could be the softmax output of a
neural network given input x. We will measure the uncer-
tainty as u(x) = K

K−1 ·
(
1−maxi∈[K] pi(x)

)
. In binary

classification, this reduces to

u(x) = 2min{p(x), 1− p(x)}, (3)

where we use p(x) to denote the raw classifier output in
[0, 1]. Therefore, u(x) is large when p(x) is close to uni-
form, i.e. maxi pi(x) ≈ 1/K. On the other hand, if the
model is confident, i.e. maxi pi(x) ≈ 1, the uncertainty is
close to zero.

5. Batch Active Inference
Building on the discussion from Section 4, we provide for-
mal results for active inference in the batch setting. Recall
that in the batch setting we observe i.i.d. unlabeled points
X1, . . . , Xn, all at once. We consider a family of sampling
rules πη(x) = η u(x), where u(x) is the chosen uncertainty
measure and η ∈ H ⊆ R+ is a tuning parameter. We will
discuss ways of choosing u(x) in Section 7. The role of
the tuning parameter is to scale the sampling rule to the
sampling budget. We choose

η̂ = max

{
η ∈ H : η

n∑
i=1

u(Xi) ≤ nb

}
, (4)

and deploy πη̂ as the sampling rule. With this choice, we
have E[nlab] = E [

∑n
i=1 η̂ u(Xi)] ≤ nb; therefore, πη̂

meets the label collection budget. We denote θ̂η ≡ θ̂πη .

Mean estimation We first explain how to perform inference
for mean estimation in Proposition 5.1. Recall the active
mean estimator:

θ̂η̂ =
1

n

n∑
i=1

(
f(Xi) + (Yi − f(Xi))

ξi
πη̂(Xi)

)
, (5)

where ξi ∼ Bern(πη̂(Xi)). Following standard notation,
zq below denotes the qth quantile of the standard normal
distribution.

Proposition 5.1. Suppose that there exists η∗ ∈ H such
that P(η̂ ̸= η∗)→ 0. Then

√
n(θ̂η̂ − θ∗) d→ N (0, σ2

∗),

where σ2
∗ = Var(f(X) + (Y − f(X)) ξη

∗

πη∗ (X) ) and ξη
∗ ∼

Bern(πη∗(X)). Consequently, for any σ̂2 p→ σ2
∗, Cα =

(θ̂η̂ ± z1−α/2
σ̂√
n
) is a valid (1 − α)-confidence interval:

limn→∞ P(θ∗ ∈ Cα) = 1− α.

A few remarks about Proposition 5.1 are in order: first, the
consistency condition P(η̂ ̸= η∗) → 0 is easily ensured if
nb/n has a limit p ∈ (0, 1), that is, if nb is asymptotically
proportional to n. Then, as long as the space of tuning
parameters H is discrete and there is no η ∈ H such that
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η E[u(X)] = p exactly, the consistency condition is met
(see Claim A.1). Second, obtaining a consistent variance
estimate σ̂2 is straightforward, as one can simply take the
empirical variance of the increments in the estimator (5).

We note that, while our main results will all focus on asymp-
totic confidence intervals, some of our results have direct
non-asymptotic and time-uniform analogues; see Section C.

General M-estimation Next, we turn to general con-
vex M-estimation. Recall this means that we can write
θ∗ = argminθ L(θ) = argminθ E[ℓθ(X,Y )], for a con-
vex loss ℓθ. To simplify notation, let ℓθ,i = ℓθ(Xi, Yi),
ℓfθ,i = ℓθ(Xi, f(Xi)). We similarly use ∇ℓθ,i and ∇ℓfθ,i.
For a general rule π, our active estimator is defined as

θ̂π = argmin
θ

Lπ(θ), where (6)

Lπ(θ) =
1

n

n∑
i=1

(
ℓfθ,i + (ℓθ,i − ℓfθ,i)

ξi
π(Xi)

)
.

As before, ξi ∼ Bern(π(Xi)). When π is the uniform
rule, π(x) = nb/n, the estimator (6) equals the general
prediction-powered estimator (Angelopoulos et al., 2023c).
Notice that the loss estimate Lπ(θ) is unbiased: E[Lπ(θ)] =
L(θ). We again scale the sampling rule πη(x) = η u(x)
according to the sampling budget, as in Eq. (4).

We next show asymptotic normality of θ̂η̂ for general tar-
gets θ∗ which, in turn, enables inference. The result es-
sentially follows from the usual asymptotic normality for
M-estimators (Van der Vaart, 2000, Ch. 5), with some nec-
essary modifications to account for the data-driven selection
of η̂. We require standard, mild smoothness assumptions on
the loss ℓθ, formally stated in Ass. A.2 in the Appendix.
Theorem 5.2 (CLT for batch active inference). Assume the
loss is smooth (Ass. A.2) and define the Hessian Hθ∗ =
∇2E[ℓθ∗(X,Y )]. Suppose that there exists η∗ ∈ H such
that P(η̂ ̸= η∗)→ 0. Then, if θ̂η

∗ p→ θ∗, we have
√
n(θ̂η̂ − θ∗) d→ N (0,Σ∗), where

Σ∗ = H−1
θ∗ Var

(
∇ℓfθ∗,i +

(
∇ℓθ∗,i −∇ℓfθ∗,i

)
ξη

∗

πη∗ (X)

)
H−1

θ∗ .

Consequently, for any Σ̂
p→ Σ∗, Cα = (θ̂η̂j ± z1−α/2

√
Σ̂jj

n )
is a valid (1 − α)-confidence interval for θ∗j :
limn→∞ P(θ∗j ∈ Cα) = 1− α.

The remarks following Proposition 5.1 again apply: the con-
sistency condition on η̂ is easily ensured if nb/n has a limit,
and Σ̂ admits a simple plug-in estimate. The consistency
condition on θ̂η

∗
is a standard requirement for analyzing

M-estimators (see Van der Vaart, 2000, Ch. 5). It can be
deduced if the empirical loss Lπ(θ) is almost surely convex
or if the parameter space is compact. The loss Lπ(θ) is
convex in a number of interesting cases, including means
and GLMs (for the proof, see Angelopoulos et al., 2023c).

6. Sequential Active Inference
In the batch setting we observe all data points X1, . . . , Xn

at once and fix a predictive model f and sampling rule π
that guide our choice of which labels to collect. An arguably
more natural data collection strategy would operate in an
online manner: as we collect more labels, we iteratively
update the model and our strategy for which labels to collect
next. This allows for further efficiency gains over using
a fixed model throughout, as the latter ignores knowledge
acquired during the data collection.

Formally, instead of having a fixed model f and rule π, we
go through our data sequentially. At step t ∈ {1, . . . , n},
we observe data point Xt and collect its label with probabil-
ity πt(Xt), where πt(·) is based on the uncertainty of model
ft. The model ft can be fine-tuned on all information ob-
served up to time t; formally, we require that ft, πt ∈ Ft−1,
where Ft is the σ-algebra generated by the first t points Xs,
1 ≤ s ≤ t, their labeling decisions ξs, and their labels Ys,
if observed: Ft = σ((X1, Y1ξ1, ξ1), . . . , (Xt, Ytξt, ξt)).
(Note that Ytξt = Yt if and only if ξt = 1; otherwise,
Ytξt = ξt = 0.) We will again calibrate our decisions
of whether to collect a label according to a budget on the
sample size nb. We denote by nlab,t the number of labels
collected up to time t.

Inference in the sequential setting is more challenging than
batch inference because the data points (Xt, Yt, ξt), t ∈ [n],
are dependent; indeed, the purpose of the sequential setting
is to leverage previous observations when deciding on future
labeling decisions. We will construct estimators that respect
a martingale structure, which will enable tractable inference
via the martingale central limit theorem (Dvoretzky, 1972).

Mean estimation We begin by focusing on the mean. If we
take ℓθ to be the squared loss as in Example 2.1, we obtain
the sequential active mean estimator:

θ̂
#»π =

1

n

n∑
t=1

∆t, ∆t = ft(Xt) + (Yt − ft(Xt))
ξt

πt(Xt)
.

Note that ∆t are martingale increments; they share a com-
mon conditional mean E[∆t|Ft−1] = θ∗, and they are Ft-
measurable. We let σ2

t = V (ft, πt) = Var(∆t|ft, πt) de-
note the conditional variance of the increments.

To show asymptotic normality of θ̂
#»π , we require the Linde-

berg condition, which is a standard assumption for proving
central limit theorems when the increments are not i.i.d.:
1
n

∑n
t=1 E[∆̄2

t1{|∆̄t| > ϵ
√
n}|Ft−1]

p→ 0, for all ϵ > 0,
where ∆̄t = ∆t−θ∗. Roughly speaking, the Lindeberg con-
dition requires that the increments do not have very heavy
tails; it prevents any increment from having a disproportion-
ate contribution to the overall variance.
Proposition 6.1. Suppose 1

n

∑n
t=1 σ

2
t

p→ σ2
∗ = V (f∗, π∗),

for some fixed model–rule pair (f∗, π∗), and that the incre-
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ments ∆t satisfy the Lindeberg condition (Ass. A.3). Then
√
n(θ̂

#»π − θ∗) d→ N (0, σ2
∗).

Consequently, for any σ̂2 p→ σ2
∗, Cα = (θ̂

#»π ± z1−α/2
σ̂√
n
)

is a valid (1 − α)-confidence interval: limn→∞ P(θ∗ ∈
Cα) = 1− α.

Intuitively, Proposition 6.1 requires that the model ft and
sampling rule πt converge. For example, a sufficient con-

dition for 1
n

∑n
t=1 σ

2
t

p→ σ2
∗ is V (fn, πn)

L1

→ V (f∗, π∗).
Since the sampling rule is typically based on the model, it
makes sense that it would converge if ft converges. At the
same time, it makes sense for ft to gradually stop updating
after sufficient accuracy is achieved.

General M-estimation We generalize Proposition 6.1 to all
convex M-estimation problems. The general version of our
sequential active estimator takes the form

θ̂
#»π = argmin

θ
L

#»π (θ), where L
#»π (θ) =

1

n

n∑
t=1

Lt(θ), (7)

Lt(θ) = ℓftθ,t + (ℓθ,t − ℓftθ,t)
ξt

πt(Xt)
.

Let Vθ,t = Vθ(ft, πt) = Var (∇Lt(θ)|ft, πt). We will
again require that (ft, πt) converge in an analogous sense.
Theorem 6.2 (CLT for sequential active inference). Assume
the loss is smooth (Ass. A.2) and define the Hessian Hθ∗ =

∇2E[ℓθ∗(X,Y )]. Suppose also that 1
n

∑n
t=1 Vθ∗,t

p→ V∗ =
Vθ∗(f∗, π∗) entry-wise for some fixed model–rule pair
(f∗, π∗), and that the increments Lt(θ) satisfy the Linde-
berg condition (Ass. A.4). Then, if θ̂

#»π p→ θ∗, we have
√
n(θ̂

#»π − θ∗) d→ N (0,Σ∗),

where Σ∗ = H−1
θ∗ V∗H

−1
θ∗ . Consequently, for any Σ̂

p→ Σ∗,

Cα = (θ̂
#»π
j ± z1−α/2

√
Σ̂jj

n ) is a valid (1 − α)-confidence
interval for θ∗j : limn→∞ P(θ∗j ∈ Cα) = 1− α.

The conditions of Theorem 6.2 are largely the same as in
Theorem 5.2; the main difference is the requirement of
convergence of the model–sampling rule pairs, which is
similar to the analogous condition of Proposition 6.1.

Proposition 6.1 and Theorem 6.2 apply to any sampling rule
πt, as long as the variance convergence requirement is met.
We discuss ways to set πt so that the sampling budget nb is
met. Our default will be to “spread out” the budget nb over
the n observations. We will do so by having an “imaginary”
budget for the expected number of collected labels by step t,
equal to nb,t = tnb/n. Let n∆,t = nb,t − nlab,t−1 denote
the remaining budget at step t. We derive a measure of
uncertainty ut from model ft, as before, and let

πt(x) = min {ηt ut(x), n∆,t}[0,1] , (8)

where ηt normalizes ut(x) and the subscript [0, 1] de-
notes clipping to [0, 1]. The normalizing constant ηt can
be arbitrary, but we find it helpful to set it roughly as
ηt = nb/(nE[ut(X)]). In words, the sampling probabil-
ity is high if the uncertainty is high and we have not used
up too much of the sampling budget thus far. Of course,
if the model estimates low uncertainty ut(x) throughout,
the budget will be underutilized. For this reason, to make
sure we use up the budget in practice, we occasionally set
πt(x) = (n∆,t)[0,1] regardless of the uncertainty.

7. Choosing the Sampling Rule
We have seen how to perform inference given an abstract
sampling rule, and argued that, intuitively, the sampling
rule should be calibrated to the uncertainty of the model’s
predictions. Here we argue that this is in fact the optimal
strategy. We derive an “oracle” rule, which optimally sets
the sampling probabilities so that the variance of θ̂π is mini-
mized. While the oracle rule cannot be implemented since it
depends on unobserved information, it provides an ideal that
our algorithms will try to approximate. We discuss in detail
ways of tuning the approximations to make them practical
and powerful in Section B.1 in the Appendix.

Mean estimation Recall the expression for Var(θ̂π) (2).
Given that E

[
π−1(X)(Y − f(X))2

]
is the only term that

depends on π, we define the oracle rule as the solution to:

min
π

E
[
π(X)−1(Y − f(X))2

]
s.t. E[π(X)] ≤ nb

n
. (9)

The optimization problem (9) appears in importance sam-
pling (Owen, 2013, Ch. 9), constrained utility optimization
(Balcan et al., 2014), and, relatedly to our work, survey
sampling (Särndal, 1980). The optimality conditions of (9)
show that its solution πopt satisfies:

πopt(X) ∝
√

E[(Y − f(X))2|X],

where ∝ ignores the normalizing constant required to make
E[πopt(X)] ≤ nb/n. Therefore, the optimal sampling rule
is one that samples data points according to the expected
magnitude of the model error. Of course, E[(Y−f(X))2|X]
cannot be known since the label distribution is unknown,
and that is why we call πopt an oracle.

To develop intuition, it is instructive to consider an even
more powerful oracle π̃opt(X,Y ) that is allowed to depend
on Y . To be clear, we would commit to the same functional
form as in (1) and would seek to minimize Var(θ̂π) while
allowing the sampling probabilities to depend on both X
and Y . In this case, by the same argument we conclude that

π̃opt(X,Y ) ∝ |Y − f(X)|. (10)

The perspective of allowing the oracle to depend on both X
and Y is directly prescriptive: a natural way to approximate

6



Active Statistical Inference

the rule π̃opt is to train an arbitrary black-box model u on
historical (X,Y ) pairs to predict |Y − f(X)| from X .

General M-estimation In general, we cannot hope to mini-
mize the variance of θ̂π at a fixed sample size n since the
finite-sample distribution of θ̂π is not tractable. However,
we can minimize the asymptotic variance of θ̂π . Since the es-
timator is potentially multi-dimensional, we assume that we
want to minimize the asymptotic variance of a single coor-
dinate θ̂πj (for example, one regression coefficient). A short
derivation similar to the one for mean estimation shows that

πopt(X) ∝
√

E[((∇ℓθ∗(X,Y )−∇ℓθ∗(X, f(X)))⊤ h(j))2|X],

where h(j) is the j-th column of H−1
θ∗ . This recovers πopt

for the mean, as the squared loss has∇ℓθ∗(x, y) = θ∗ − y.

Generalized linear models (GLMs) We simplify the gen-
eral solution πopt in the case of generalized linear mod-
els (GLMs). We define GLMs as M-estimators whose
loss function takes the form ℓθ(x, y) = − log pθ(y|x) =
−yx⊤θ + ψ(x⊤θ), for some convex log-partition func-
tion ψ. This definition recovers linear regression by tak-
ing ψ(s) = 1

2s
2 and logistic regression by taking ψ(s) =

log(1 + es). By the definition of the GLM loss, we have
∇ℓθ∗(x, y)−∇ℓθ∗(x, f(x)) = (f(x)− y)x and, therefore,

πopt(X) ∝
√
E[(f(X)− Y )2|X] · |X⊤h(j)|,

where the Hessian is equal to Hθ∗ = E[ψ′′(X⊤θ∗)XX
⊤]

and h(j) is the j-th column of H−1
θ∗ . In linear regression,

for instance, Hθ∗ = E[XX⊤]. Again, we see that the
model errors play a role in determining the optimal sampling.
In particular, again considering the more powerful oracle
π̃opt(X,Y ) that is allowed to set the sampling probabilities
according to both X and Y , we get

π̃opt(X,Y ) ∝ |f(X)− Y | · |X⊤h(j)|. (11)

Therefore, as in the case of the mean, our measure of un-
certainty will aim to predict |f(X)− Y | from X and plug
those predictions into the above rule.

8. Experiments
We evaluate active inference on several problems and com-
pare it to two baselines. The first baseline replaces ac-
tive sampling with the uniformly random sampling rule
πunif . This baseline still uses machine learning predic-
tions f(Xi) and corresponds to prediction-powered infer-
ence (PPI) (Angelopoulos et al., 2023a). The purpose of
this comparison is to quantify the benefits of machine-
learning-driven data collection. In the rest of this sec-
tion we refer to this baseline as the “uniform” baseline
because the only difference from our estimator is that it
replaces active sampling with uniform sampling. The sec-
ond baseline removes machine learning altogether and com-
putes the “classical” estimate based on uniformly random

sampling, θ̂noML = argminθ
1
nb

∑n
i=1 ℓθ(Xi, Yi)ξi, where

ξi ∼ Bern(nb

n ). This baseline serves to evaluate the cu-
mulative benefits of machine learning for data collection
and inference combined. We refer to this baseline as the
“classical” baseline, or classical inference.

The target error level is α = 0.1 throughout. We report
the average interval width and coverage for varying sample
sizes nb, averaged over 1000 and 100 trials for the batch
and sequential settings, respectively. We plot the interval
width on a log–log scale. In Appendix B we also report the
percentage of budget saved by active inference relative to
the baselines when the methods are matched to be equally
accurate. More precisely, for varying nb we compute the
average interval width achieved by the uniform and classi-
cal baselines; then, we look for the budget size nactiveb for
which active inference achieves the same average interval
width, and report (nb−nactiveb )/nb ·100% as the percentage
of budget saved. The batch and sequential active inference
methods used in our experiments are outlined in Algorithm 1
and Algorithm 2 in the Appendix. We defer some exper-
imental details to Appendix B. Code for reproducing the
experiments is available at this link.

Post-election survey research We apply active inference
to survey data collected by the Pew Research Center fol-
lowing the 2020 United States presidential election (Pew,
2020). We focus on one question in the survey, aimed at
gauging people’s approval of Joe Biden’s (Donald Trump’s,
respectively) political messaging following the election. Ap-
proval is encoded as a binary response, Yi ∈ {0, 1}. The
respondents—a nationally representative pool of US adults—
provide background information such as age, gender, educa-
tion, political affiliation. We show that, by training an XG-
Boost model (Chen & Guestrin, 2016) to predict approval
from background information and measuring the model’s
uncertainty via Eq. (3), we can allocate the per-question
budget in a way that outperforms uniform allocation.

In Figure 1 (rows 1 and 2) we compare active inference to
the uniform (PPI) and classical baselines. All methods meet
the coverage requirement. Across different values of the
budget nb, active sampling reduces the confidence interval
width of the uniform baseline (PPI) by a significant margin
(at least ∼ 10%). Classical inference is highly suboptimal
compared to both alternatives. In Figure 3 we report the
percentage of budget saved due to active sampling. For
estimating Biden’s approval, we observe an over 85% save
in budget over classical inference and around 25% save over
the uniform baseline. For estimating Trump’s approval, we
observe an over 70% save in budget over classical inference
and around 25% save over the uniform baseline.

Census data analysis Next, we study the American Commu-
nity Survey (ACS) Public Use Microdata Sample (PUMS)
collected by the US Census Bureau. ACS PUMS is an
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Figure 1. Batch experiments. Example intervals in five randomly chosen trials (left), average confidence interval width (middle), and
coverage (right) in post-election survey research (rows 1 and 2), census analysis (row 3), and proteomics research (row 4).

annual survey that collects information about citizenship,
education, income, employment, and more. We investigate
the relationship between age and income in survey data col-
lected in California in 2019, controlling for sex. Specifically,
we target the linear regression coefficient when regressing
income on age and sex (that is, its age coordinate). We train
an XGBoost model (Chen & Guestrin, 2016) to predict a
person’s income from the available demographic covariates.
To quantify the model’s uncertainty, we use the strategy de-
scribed in Section 4, training a separate XGBoost model e(·)
to predict |f(X)− Y | from X . We set the uncertainty u(x)
as prescribed in Eq. (11), replacing |f(X)− Y | by e(X).

The interval widths and coverage are shown in Figure 1
(row 3). As in the previous application, all methods approx-
imately achieve the target coverage, however this time we
observe more extreme gains over the uniform baseline (PPI):
the interval widths almost double when going from active
sampling to uniform sampling. Of course, the improvement
of active inference over classical inference is even more
substantial. The large gains of active sampling can also be
seen in Figure 3: we save around 80% of the budget over
classical inference and over 60% over the uniform baseline.

AlphaFold-assisted proteomics research Inspired by the
findings of Bludau et al. (2022) and the subsequent analysis
of Angelopoulos et al. (2023a), we study the odds ratio of
a protein being phosphorylated, a functional property of a
protein, and being part of an intrinsically disordered region
(IDR), a structural property. Angelopoulos et al. (2023a)
showed that forming a classical confidence interval around
the odds ratio based on AlphaFold predictions is not valid
given that the predictions are imperfect. They provide a
valid alternative assuming access to a small subset of pro-
teins with true structure measurements, uniformly sampled
from the larger population of proteins of interest. We show
that, by strategically choosing which protein structures to
experimentally measure, active inference allows for inter-
vals that retain validity and are tighter than intervals based
on uniform sampling. Naturally, for the purpose of eval-
uating validity, we restrict the analysis to proteins where
we have gold-standard structure measurements; we use the
post-processed AlphaFold outputs made available by An-
gelopoulos et al. (2023a), which predict the IDR property
based on the raw AlphaFold output. While the odds ratio
is not a solution to an M-estimation problem, it is a func-
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Figure 2. Experiments with fine-tuning. Example intervals in five randomly chosen trials (left), average confidence interval width
(middle), and coverage (right) in post-election survey research (rows 1 and 2) and census analysis (row 3).

tion of two means (see also (Angelopoulos et al., 2023a;c)).
Confidence intervals can thus be computed by applying the
delta method to the asymptotic normality result for the mean.
Since Y is binary, we measure uncertainty via Eq. (3).

Figure 1 (row 4) shows the interval widths and coverage for
the three methods, and Figure 3 shows the percentage of
budget saved due to adaptive data collection. The gains are
substantial: over 75% of the budget is saved in comparison
to classical inference, and around 20 − 25% is saved in
comparison to the uniform baseline (PPI).

Post-election survey research with fine-tuning We return
to the first application, this time evaluating the benefits of
sequential fine-tuning. We compare active inference, with
and without fine-tuning, and PPI, which relies on uniform
sampling. We show that active inference with no fine-tuning
can hurt compared to PPI if the former uses a poorly trained
model; fine-tuning, on the other hand, remedies this issue.
We train an XGBoost model on only 10 labeled examples
and use this model for active inference with no fine-tuning
and PPI. Active inference with fine-tuning continues to fine-
tune the model with every B = 100 new survey responses,
also updating the sampling rule via update (8). The uncer-
tainty measure ut(x) is given by Eq. (3), as before. As
discussed in Section 6, we also periodically use up the re-
maining budget regardless of the uncertainty in order to
avoid underutilizing the budget (every 100n/nb steps).

The interval widths and coverage are reported in Figure 2
(rows 1 and 2). We find that fine-tuning greatly improves
power and retains correct coverage. In Figure 4 we show

the save in sample size budget over active inference with
no fine-tuning and inference based on uniform sampling,
i.e. PPI. For estimating Biden’s approval, we observe a gain
of around 40% and 30% relative to active inference without
fine-tuning and PPI, respectively. For Trump’s approval, we
observe even larger gains, around 45% and 35%.

Census data analysis with fine-tuning We similarly eval-
uate the benefits of sequential fine-tuning in the census
example. We again compare active inference, with and with-
out fine-tuning, and PPI, i.e., active inference with a trivial,
uniform sampling rule. Recall that we trained a separate
model e to predict the prediction errors, which we in turn
used to form the uncertainty u(x) according to Eq. (11).
This time we fine-tune both the prediction model, ft, and
the error model, et. We train initial XGBoost models f1 and
e1 on 100 labeled examples. We use f1 for PPI and both
f1 and e1 for active inference with no fine-tuning. Active
inference with fine-tuning continues to fine-tune the two
models with every B = 1000 new survey responses, also
updating the model uncertainty via update (8). We com-
pute ut from et based on Eq. (11). We again periodically
use up the remaining budget regardless of the computed
uncertainty in order to avoid underutilizing the budget (in
particular, every 500n/nb steps).

We show the interval widths and coverage in Figure 2 (row
3). The gains of fine-tuning are significant and increase as
nb increases. In Figure 4 we show the save in sample size
budget: fine-tuning saves around 32−40% over the baseline
with no fine-tuning and around 20− 30% over PPI.
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A. Proofs
A.1. Proof of Proposition 5.1

Recall that ξi ∼ Bern(πη̂(Xi)). For any η ∈ H, we define

ξηi = 1{πη(Xi) ≤ πη̂(Xi)}ξi(1− ξ≤i ) + 1{πη(Xi) > πη̂(Xi)}(ξi + (1− ξi)ξ>i ), (12)

where ξ≤i ∼ Bern(
πη̂(Xi)−πη(Xi)

πη̂(Xi)
) and ξ>i ∼ Bern(

πη(Xi)−πη̂(Xi)
1−πη̂(Xi)

) are drawn independently of ξi. This definition couples

ξη
∗

i with ξi, while ensuring that ξη
∗

i ∼ Bern(πη∗(Xi)). Let

θ̂η
∗
=

1

n

n∑
i=1

(
f(Xi) + (Yi − f(Xi))

ξη
∗

i

πη∗(Xi)

)
.

By the central limit theorem, we know that
√
n(θ̂η

∗
− θ∗) d→ N (0, σ2

∗), (13)

where σ2
∗ = Var

(
f(X) + (Y − f(X)) ξη

∗

πη∗ (X)

)
. On the other hand, we have

√
n(θ̂η̂ − θ∗) =

√
n(θ̂η

∗
− θ∗) +

√
n(θ̂η̂ − θ̂η

∗
).

For any ϵ > 0, we have P(|
√
n(θ̂η̂− θ̂η∗

)| ≥ ϵ) ≤ P(η̂ ̸= η∗)→ 0; therefore,
√
n(θ̂η̂− θ̂η∗

)
p→ 0. Putting this fact together

with Eq. (13), we conclude that
√
n(θ̂η̂ − θ∗) d→ N (0, σ2

∗) by Slutsky’s theorem.

A.2. Sufficient Condition for Consistency of η̂

Claim A.1. Suppose that nb/n→ p ∈ (0, 1). IfH is discrete and there is no η ∈ H such that ηE[u(X)] = p exactly, then
there exists η∗ ∈ H such that P(η̂ ̸= η∗)→ 0.

Proof. We have that η̂ is the maximum η ∈ H such that η 1
n

∑n
i=1 u(Xi) ≤ nb

n , or equivalently, η ≤ (nb

n )/( 1n
∑n

i=1 u(Xi)).
The right-hand side converges in probability to p/E[u(X)]. Now, take ϵ = minη∈H |η − p/E[u(X)]|. Then, on the event
that (nb

n )/( 1n
∑n

i=1 u(Xi)) is within ϵ of p/E[u(X)], we know η̂ will be equal to η∗ = max{η ∈ H : ηE[u(X)] ≤ p}.
Therefore, P(η̂ ̸= η∗) ≤ P(|(nb

n )/( 1n
∑n

i=1 u(Xi))−p/E[u(X)]| ≥ ϵ)→ 0, by the claimed convergence in probability.

A.3. Proof of Theorem 5.2

The proof follows a similar argument as the classical proof of asymptotic normality for M-estimation; see (Van der Vaart,
2000, Thm. 5.23). A similar proof is also given for the prediction-powered estimator (Angelopoulos et al., 2023c), which is
closely related to our active inference estimator. The main difference between our proof and the classical proof is that η̂ is
tuned in a data-adaptive fashion, so the increments in the empirical loss Lπη̂ (θ) are not independent. We begin by formally
stating the required smoothness assumption.
Assumption A.2 (Smoothness). The loss ℓ is smooth if:

• ℓθ(x, y) is differentiable at θ∗ for all (x, y);

• ℓθ is locally Lipschitz around θ∗: there is a neighborhood of θ∗ such that ℓθ(x, y) is C(x, y)-Lipschitz and ℓθ(x, f(x))
is C(x)-Lipschitz in θ, where E[C(X,Y )2] <∞,E[C(X)2] <∞;

• L(θ) = E[ℓθ(X,Y )] and Lf (θ) = E[ℓθ(X, f(X))] have Hessians, and Hθ∗ = ∇2L(θ∗) ≻ 0.

Using the same definition of ξηi as in Eq. (12), let Lη
θ,i = ℓθ(Xi, f(Xi))+ (ℓθ(Xi, Yi)− ℓθ(Xi, f(Xi)))

ξηi
πη(Xi)

. We define
∇Lη

θ,i analogously, replacing the losses with their gradients. Given a function g, let

Gn[g(L
η
θ)] :=

1√
n

n∑
i=1

(
g(Lη

θ,i)− E[g(Lη
θ,i)]

)
; En[g(L

η
θ)] :=

1

n

n∑
i=1

g(Lη
θ,i).
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We similarly use Gn[g(∇Lη
θ)], En[g(∇Lη

θ)], etc. Notice that En[L
η̂
θ ] = Lπη̂ (θ).

By the differentiability and local Lipschitzness of the loss, for any hn = OP (1) we have

Gn[
√
n(Lη∗

θ∗+hn/
√
n
− Lη∗

θ∗ )− h⊤n∇L
η∗

θ∗ ]
p→ 0.

By definition, this is equivalent to

nEn[L
η∗

θ∗+hn/
√
n
− Lη∗

θ∗ ] = n(L(θ∗ + hn/
√
n)− L(θ∗)) + h⊤nGn[∇Lη∗

θ∗ ] + oP (1),

where L(θ) = E[ℓθ(X,Y )] is the population loss. A second-order Taylor expansion now implies

nEn[L
η∗

θ∗+hn/
√
n
− Lη∗

θ∗ ] =
1

2
h⊤nHθ∗hn + h⊤nGn[∇Lη∗

θ∗ ] + oP (1).

At the same time, since P(η̂ ̸= η∗)→ 0, we have

nEn[L
η̂
θ∗+hn/

√
n
− Lη̂

θ∗ ] = nEn[L
η∗

θ∗+hn/
√
n
− Lη∗

θ∗ ] + oP (1).

Putting everything together, we have shown

nEn[L
η̂
θ∗+hn/

√
n
− Lη̂

θ∗ ] =
1

2
h⊤nHθ∗hn + h⊤nGn[∇Lη∗

θ∗ ] + oP (1).

The rest of the proof is standard. We apply the previous display with hn = ĥn :=
√
n(θ̂η̂ − θ∗) (which is OP (1) by the

consistency of θ̂η
∗
; see (Van der Vaart, 2000, Thm. 5.23)) and hn = h̃n := −H−1

θ∗ Gn[∇Lη∗

θ∗ ]:

nEn[L
η̂

θ̂η̂
− Lη̂

θ∗ ] =
1

2
ĥ⊤nHθ∗ ĥn + ĥ⊤nGn[∇Lη∗

θ∗ ] + oP (1);

nEn[L
η̂

θ∗+h̃n/
√
n
− Lη̂

θ∗ ] =
1

2
h̃⊤nHθ∗ h̃n + h̃⊤nGn[∇Lη∗

θ∗ ] + oP (1).

By the definition of θ̂η̂, the left-hand side of the first equation is smaller than the left-hand side of the second equation.
Therefore, the same must be true of the right-hand sides of the equations. If we take the difference between the equations
and complete the square, we get

1

2

(√
n(θ̂η̂ − θ∗)− h̃n

)⊤
Hθ∗

(√
n(θ̂η̂ − θ∗)− h̃n

)
+ oP (1) ≤ 0.

Since the Hessian Hθ∗ is positive-definite, it must be the case that
√
n(θ̂η̂ − θ∗)− h̃n

p→ 0. By the central limit theorem,
h̃n = −H−1

θ∗ Gn[∇Lη∗

θ∗ ] converges to N (0,Σ∗) in distribution, where

Σ∗ = H−1
θ∗ Var

(
∇ℓθ∗(X, f(X)) + (∇ℓθ∗(X,Y )−∇ℓθ∗(X, f(X)))

ξη
∗

πη∗(X)

)
H−1

θ∗ .

The final statement thus follows by Slutsky’s theorem.

A.4. Proof of Proposition 6.1

We prove the result by an application of the martingale central limit theorem (see, for example, Theorem 8.2.4. in (Durrett,
2019)).

Let ∆̄t denote the increments ∆t with their mean subtracted out, i.e. ∆̄t = ∆t − θ∗. To apply the theorem, we first need to
verify that the increments ∆̄t = ∆t − θ∗ are martingale increments; this follows because

E[∆̄t|Ft−1] = E[∆̄t|ft, πt] = E[ft(Xt)|ft, πt] + E[Yt − ft(Xt)|ft, πt]E
[

ξt
πt(Xt)

|ft, πt
]
− θ∗ = 0,

together with the fact that ∆̄t ∈ Ft.

The martingale central limit theorem is now applicable given two regularity conditions. The first is that 1
n

∑n
t=1 σ

2
t converges

in probability, which holds by assumption. The second condition is the so-called Lindeberg condition, stated below.
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Assumption A.3. We say that ∆t satisfy the Lindeberg condition if

1

n

n∑
t=1

E[∆̄2
t1{|∆̄t| > ϵ

√
n}|Ft−1]

p→ 0

for all ϵ > 0, where ∆̄t = ∆t − θ∗.

Since this condition holds by assumption, we can apply the central limit theorem to conclude
√
n(θ̂

#»π − θ∗) =
1√
n

∑n
t=1 ∆̄t

d→ N (0, σ2
∗).

A.5. Proof of Theorem 6.2

We follow a similar approach as in the proof of Theorem 5.2, which is in turn similar to the classical argument for M-
estimation (Van der Vaart, 2000, Thm. 5.23). In this case, the main difference to the classical proof is that the empirical loss
L

#»π (θ) comprises martingale, rather than i.i.d. increments. We explain the differences relative to the proof of Theorem 5.2.

We define Lθ,i = ℓθ(Xi, fi(Xi)) + (ℓθ(Xi, Yi)− ℓθ(Xi, fi(Xi)))
ξi

πi(Xi)
, and∇Lθ,i is defined analogously. We again use

the notation Gn[g(Lθ)],En[g(Lθ)],Gn[g(∇Lθ)], En[g(∇Lθ)], etc.

As in the classical argument, for any hn = OP (1) we have Gn[
√
n(Lθ∗+hn/

√
n − Lθ∗) − h⊤n∇Lθ∗ ]

p→ 0. This can be
concluded from the martingale central limit theorem, since the variance of the increments tends to zero. Specifically,
define the triangular array Ln,i =

√
n(Lθ∗+hn/

√
n,i − Lθ∗,i) − h⊤n∇Lθ∗,i, and let Vn,i = Var(Ln,i|Fi−1). We have

| 1√
n

∑n
i=1 Ln,i| ≤ maxi

√
Vn,i| 1√

n

∑n
i=1

Ln,i√
Vn,i

|. By the martingale central limit theorem, 1√
n

∑n
i=1

Ln,i√
Vn,i

d→ N (0, 1)

and, since maxi
√
Vn,i

p→ 0, we conclude by Slutsky’s theorem that Gn[
√
n(Lθ∗+hn/

√
n − Lθ∗)− h⊤n∇Lθ∗ ]

p→ 0.

The following steps are the same as in the proof of Theorem 5.2; we conclude that
√
n(θ̂

#»π − θ∗) − h̃n
p→ 0, where

h̃n = −H−1
θ∗ Gn[∇Lθ∗ ]. Finally, we argue that h̃n converges to N (0,Σ∗) in distribution. To see this, first note that all

one-dimensional projections v⊤h̃n converge to v⊤Z, Z ∼ N (0,Σ∗), by the martingale central limit theorem, which is
applicable because the Lindeberg condition holds by assumption (see below for statement) and the variance process Vθ∗,n

converges to V∗. Once we have the convergence of all one-dimensional projections, convergence of h̃n follows by the
Cramér-Wold theorem.

Assumption A.4. We say that the increments satisfy the Lindeberg condition if, for all v ∈ Sd−1,

1

n

n∑
t=1

E[(v⊤∇Lθ∗,t)
21{|v⊤∇Lθ∗,t| > ϵ

√
n}|Ft−1]

p→ 0

for all ϵ > 0.

B. Implementation Details
B.1. Practical Sampling Rules

As explained in Section 5 and Section 6, our sampling rule π(x) is derived from a measure of uncertainty u(x). As clear
from Section 7, the right notion of uncertainty should measure a notion of error dependent on the estimation problem at
hand. In particular, we hope to have u(X) ≈ | (∇ℓθ∗(X,Y )−∇ℓθ∗(X, f(X)))

⊤
h(j)|. For GLMs and means, in light of

Eq. (10) and Eq. (11), this often boils down to training a predictor of |f(X)− Y | from X and, in the case of GLMs, using a
plug-in estimate of the Hessian. This is what we do in our experiments (except in the case of binary classification where we
simply use the uncertainty from Eq. (3)).

Of course, the learned predictor of model errors cannot be perfect; as a result, π(x) ∝ u(x) cannot naively be treated as the
oracle rule πopt. For example, the model might mistakenly estimate (near-)zero uncertainty (u(X) ≈ 0) when |f(X)− Y |
is large, which would blow up the estimator variance. To fix this issue, we find that it helps to stabilize the rule π(x) ∝ u(x)
by mixing it with a uniform rule.

Denote the uniform rule by πunif(x) = nb/n. Clearly the uniform rule meets the budget constraint, since nE[πunif(X)] =
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Algorithm 1 Batch active inference
Input: unlabeled data X1, . . . , Xn, sampling budget nb, predictive model f , error level α ∈ (0, 1)

1: Choose uncertainty measure u(x) based on f
2: Let π(x) = η̂ u(x), where η̂ = nb

nÊ[u(X)]
; let πunif = nb

n

3: Select τ ∈ (0, 1) and choose sampling rule π(τ)(x) = (1− τ) · π(x) + τ · πunif

4: Sample labeling decisions ξi ∼ Bern(π(τ)(Xi)), i ∈ [n]
5: Collect labels {Yi : ξi = 1}
6: Compute batch active estimator θ̂π

(τ)

(Eq. (6))

Algorithm 2 Sequential active inference
Input: unlabeled data X1, . . . , Xn, sampling budget nb, initial predictive model f1, error level α ∈ (0, 1), fine-tuning

batch size B
1: Set Dtune ← ∅
2: for t = 1, . . . , n do
3: Choose uncertainty measure ut(x) for ft
4: Set πt(x) as in Eq. (8) with ηt = nb

nÊ[ut(X)]
; let πunif = nb

n

5: Select τ ∈ (0, 1) and choose sampling rule π(τ)
t (x) = (1− τ) · πt(x) + τ · πunif

6: Sample labeling decision ξt ∼ Bern(π
(τ)
t (Xt))

7: if ξt = 1 then
8: Collect label Yt
9: Dtune ← Dtune ∪ {(Xt, Yt)}

10: if |Dtune| = B then
11: Fine-tune model on Dtune: ft+1 = finetune(ft,Dtune)
12: Set Dtune ← ∅
13: else
14: ft+1 ← ft
15: end if
16: else
17: ft+1 ← ft
18: end if
19: end for
20: Compute sequential active estimator θ̂

#»π (τ)

(Eq. (7))

nb. For a fixed τ ∈ [0, 1] and π(x) ∝ u(x), we define the τ -mixed rule as

π(τ)(x) = (1− τ) · π(x) + τ · πunif(x).

Any positive value of τ ensures that π(τ)(x) > 0 for all x, avoiding instability due to small uncertainty estimates u(x).
When historical data is available, one can tune τ by optimizing the empirical estimate of the (asymptotic) variance of θ̂π

(τ)

given by Theorem 5.2. For example, in the case of mean estimation, this would correspond to solving:

τ̂ = argmin
τ∈[0,1]

nh∑
i=1

1

π(τ)(Xh
i )

(Y h
i − f(Xh

i ))
2, (14)

where (Xh
i , Y

h
i ), . . . , (Xh

nn
, Y h

nh
) are the historical data points. Otherwise, one can set τ to be any user-specified constant.

In our experiments, in the batch setting we tune τ on historical data when such data is available. In the sequential setting we
simply set τ = 0.5 as the default.

B.2. Experimental Details

The batch and sequential active inference methods used in our experiments are outlined in Algorithm 1 and Algorithm 2.

In Figure 3 and Figure 4 we report the percentage of budget saved by active inference relative to the baselines when the
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Figure 3. Save in sample budget due to active inference. Reduction in sample size required to achieve the same confidence interval
width with active inference and (top) classical inference and (bottom) uniform sampling, respectively, across the applications shown in
Figure 1.
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Figure 4. Save in sample size budget due to fine-tuning. Reduction in sample size required to achieve the same confidence interval width
with active inference with fine-tuning and (top) active inference with no fine-tuning and (bottom) the uniform baseline (PPI), respectively,
in the applications shown in Figure 2.

methods are matched to be equally accurate. More precisely, for varying nb we compute the average interval width achieved
by the uniform and classical baselines; then, we look for the budget size nactiveb for which active inference achieves the
same average interval width, and report (nb − nactiveb )/nb · 100% as the percentage of budget saved.

In all our experiments, we have a labeled dataset of n examples. We treat the solution on the full dataset as the ground-truth
θ∗ for the purpose of evaluating coverage. In each trial, the underlying data points (Xi, Yi) are fixed and the randomness
comes from the labeling decisions ξi. In the sequential experiments, we additionally randomly permute the data points at the
beginning of each trial. The experiments in the batch setting average the results over 1000 trials and the experiments in
the sequential setting average the results over 100 trials. The Pew dataset is available at (Pew, 2020); the census dataset is
available through Folktables (Ding et al., 2021); the Alphafold dataset is available at (Angelopoulos et al., 2023b).

As discussed in Section B.1, to avoid values of π(x) that are very close to zero we mix the “standard” sampling rule based
on the reported measure on uncertainty u(x) with a uniform rule πunif = nb

n according to a parameter τ ∈ (0, 1). In
post-election survey research, we have training data for the prediction model and we use the same data to select τ so as
to minimize an empirical approximation of the variance Var(θ̂π

(τ)

), as in Eq. (14). In the AlphaFold example and both
problems with model fine-tuning we set τ = 0.5 for simplicity. In the census example, the trained predictor of model error
e(x) rarely gives very small values, and so we set τ = 0.001.
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Figure 5. Non-asymptotic experiments. Example intervals in five randomly chosen trials (left), average confidence interval width
(middle), and coverage (right) in post-election survey research with non-asymptotic confidence intervals.

In each experiment, we vary nb over a grid of uniformly spaced values. We take 20 grid values for the batch experiments
and 10 grid values for the sequential experiments. The plots of interval width and coverage linearly interpolate between the
respective values obtained at the grid points. There linearly interpolated values are used to produce the plots of budget save:
for all values of nb from the grid, we look for n′b such that the (linearly interpolated) width of active inference at sample size
n′b matches the interval width of classical (resp. uniform) inference at sample size nb. For the leftmost plot in Figure 1 and
Figure 2, we uniformly sample five trials for a fixed nb and show the intervals for all methods in those same five trials. We
arbitrarily select nb to be the fourth largest value in the grid of budget sizes for all experiments.

C. Non-Asymptotic Results
While our main results focus on asymptotic confidence intervals based on the central limit theorem, some of our results—in
particular, those for mean estimation—have direct non-asymptotic and time-uniform analogues.

We explain this extension for the sequential algorithm, as it subsumes the extension for the batch setting. Let ∆t =
ft(Xt)+(Yt−ft(Xt))

ξt
πt(Xt)

. As explained in Section 6, ∆t have a common conditional mean: E[∆t|∆1, . . . ,∆t−1] = θ∗.
Moreover, if Yt and ft(Xt) are almost surely bounded, and πt(Xt) is almost surely bounded from below, then ∆t are
bounded as well. (Given that we construct πt by “τ -mixing” it with a uniform rule, as explained in Section B.1, in our
applications πt(Xt) is always bounded from below since πt(x) ≥ τ nb

n .) Therefore, given that we have bounded observations
(with a known bound) having a common conditional mean, we can apply the recent betting-based methods (Waudby-Smith
& Ramdas, 2024; Orabona & Jun, 2023) for constructing non-asymptotic confidence intervals and time-uniform confidence
sequences satisfying P(θ∗ ∈ Ct,∀t) ≥ 1− α.

We demonstrate the non-asymptotic extension in the problem of post-election survey analysis from Section 8. Figure 5
provides a non-asymptotic analogue of the corresponding batch results from Figure 1, applying the method from Theorem 3
of Waudby-Smith & Ramdas (2024) to form a non-asymptotic confidence interval. Qualitatively we observe a similar
comparison as before—active inference outperforms both uniform sampling and classical inference—though the methods
naturally overcover as a result of using non-asymptotic intervals that do not have exact coverage.
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