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ABSTRACT

Diffusion models have demonstrated outstanding generative capabilities but re-
main vulnerable to adversarial perturbations. These perturbations, originally in-
tended for data copyright protection, expose a critical robustness weakness in dif-
fusion models. Existing defenses mainly based on data purification, which require
prior assumptions and incur high computational costs. In this work, we investi-
gate the impact of perturbations on different modules of diffusion models and
introduce Inversion-Guided Weight Masking and Patching (IMAP), a purification-
free method designed to restore diffusion models customized on adversarially
perturbed data. Our approach first applies a prompt re-mapping strategy before
customization. We then use DDIM inversion to identify critical convolutional ker-
nels affected by perturbations and perform weight masking and adaptive patching
to restore the model. IMAP requires no clean data or costly per-image purifi-
cation. Extensive experiments on CelebA-HQ and VGGFace2 demonstrate that
IMAP significantly improves generation quality under various adversarial scenar-
ios. Furthermore, through comparisons with purification-based techniques, we
demonstrate the effectiveness of IMAP and show that it can be effectively inte-
grated with existing purification-based methods.

1 INTRODUCTION

Diffusion models have achieved remarkable success across various generative tasks (Ho et al.,
2020; Song et al., 2021b; Rombach et al., 2022), including text-to-image synthesis (Song et al.,
2021b; Rombach et al., 2022; Dhariwal & Nichol, 2021; Gafni et al., 2022), image-to-image trans-
lation (Saharia et al., 2022; Parmar et al., 2023), image editing (Meng et al., 2022; Hertz et al.,
2023; Tumanyan et al., 2023), and time-series applications (Croitoru et al., 2023; Lin et al., 2024).
Among these, Stable Diffusion (Rombach et al., 2022) stands out for its strong generative ability
and flexibility. Moreover, existing methods like DreamBooth (Ruiz et al., 2023) enable efficient cus-
tomization using only a small amount of samples, and boost the wide adoption of diffusion models
in generative applications.

Despite their generative ability, diffusion models exhibit a critical weakness: low robustness to ad-
versarial attacks (Van Le et al., 2023; Liang et al., 2023; Xue et al., 2023; Shan et al., 2023; Liang
& Wu, 2023; Liu et al., 2024b). In particular, customized models fine-tuned on adversarial data
can suffer from severe degradation in synthesis quality. Data providers can add carefully designed
perturbations to the clean data to generate adversarial data, especially in text-to-image scenario.
These perturbations preserve semantic meaning but severely mislead the model during learning.
Specifically, when given a text prompt corresponding to a target concept such as a specific iden-
tity or painting style, the model fails to generate accurate and high-quality images that match the
target concept. However, previous studies have also observed that when generating images with
prompts different from those used during training, customized diffusion models can still reproduce
the targeted concept with high quality (Liu et al., 2024a; Wan et al., 2024). This indicates that the
model has actually learned the perturbed concept. Liu et al. further point out that data perturbations
exploit the shortcut learning vulnerabilities of customized diffusion models, causing a latent-space
misalignment between images and prompts (Liu et al., 2024a).
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Figure 1: Illustration of shortcut learning issue and our approach. Top row shows the effect of
adversarial perturbation on diffusion model customization, and the rest rows illustrate our approach.

To address such perturbations, recent work has focused mainly on purification-based methods (Zhao
et al., 2024; Cao et al., 2023; Honig et al., 2024). These approaches aim to remove the perturbation
from the data before customization by some image purification techniques. While effective to some
extent, purification-based methods face several limitations. First, without prior knowledge of the
clean data distribution, purification can introduce uncontrolled alterations to critical content. The
model’s ability to learn the intended concept then depends on whether the purified data match the
clean distribution. Second, these methods often require expensive, per-image optimization steps.

In this work, we investigate the impact of adversarial perturbations on different modules of diffusion
models and propose Inversion-Guided Weight Masking and Patching (IMAP): a purification-free
restoration for diffusion models on perturbed data. We address shortcut vulnerabilities at the model
level by restoring compromised shortcuts, as shown in Figure 1. Our approach first applies a prompt
re-mapping technique before customization. We then leverage DDIM inversion (Song et al., 2021a)
to investigate the convolutional layers that highly correlate with perturbations. DDIM inversion
allows us to reverse the diffusion process and reconstruct the initial noise from a generated image.
To our best knowledge, this is the first application of DDIM inversion for defending diffusion models
against data perturbations. Finally, we perform weight masking and adaptive patching to restore the
model. Extensive experiments under various perturbations demonstrate that IMAP-defended models
better generate the intended concepts. In summary, our contributions are as follows:

* We investigate how data perturbations impact diffusion models and propose a novel
method, IMAP, to handle these challenging scenarios. IMAP restores abnormal shortcuts,
effectively eliminating generation inconsistencies without needing access to clean data or
relying on data purification.

* We conduct extensive experiments on CelebA-HQ (Karras et al., 2018) and VGGFace2
(Cao et al., 2018), comparing various perturbation methods using multiple metrics. The
results demonstrate the effectiveness of our approach.

* We further conduct comparative experiments with two advanced purification-based meth-
ods (Honig et al., 2024; Cao et al.,, 2023), and the experimental results demonstrate
the superiority of our approach. Additionally, our method can be integrated with these
purification-based techniques to further enhance performance.

2 RELATED WORKS

Customized text-to-image diffusion models. Text-to-image diffusion models (Ho et al., 2020;
Song et al., 2021b; Rombach et al., 2022; Dhariwal & Nichol, 2021; Gafni et al., 2022) generate
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high-fidelity images from textual prompts using U-Net (Ronneberger et al., 2015) based denoising
backbones. Latent diffusion models (LDMs) (Rombach et al., 2022) further improve efficiency by
operating in a learned latent space. To condition image generation, prompts are embedded via text
encoders and injected into the diffusion process. Recent methods such as DreamBooth (Ruiz et al.,
2023), Textual Inversion (Gal et al., 2023), and ControlNet (Zhang et al., 2023) allow for low-cost
customization on small-scale data.

Adversarial perturbations and defenses in diffusion models. Recent works have introduced data
perturbations into diffusion pipelines to protect data from unauthorized usage (Van Le et al., 2023;
Liang et al., 2023; Xue et al., 2023; Shan et al., 2023; Salman et al., 2023). These perturbations,
inspired by adversarial attacks on classification models, aim to preserve semantic meaning in data
for human recognition yet harmful to generative models. PhotoGuard (Salman et al., 2023) counters
image editing. Glaze (Shan et al., 2023) prevents diffusion models from mimicking an artist’s style.
Anti-DreamBooth (Van Le et al., 2023) targets DreamBooth customization method. AdvDM and
SDS serires (Liang et al., 2023; Xue et al., 2023) optimize perturbations to interfere with learning,
while PAP (Wan et al., 2024) proposes the first prompt-agnostic method.

Defenses include purification-based approaches such as IMPRESS (Cao et al., 2023), GrIDPure
(Zhao et al., 2024), and Noisy-Upscaling (Honig et al., 2024), but they incur high overhead and risk
distorting useful content. Liu et al. (2024a) propose a causal defense via contrastive decoupling, still
requiring data purification. Model unlearning has also been explored as a defense against adversarial
attacks (Truong et al., 2025), but most approaches rely on clean data for concept restoration, making
them unsuitable for scenarios where such data is unavailable. To the best of our knowledge, existing
diffusion-related works lack methods that address adversarial data by leveraging the model’s own
capacity instead of external priors.

Shortcut learning. Shortcut learning occurs when models rely on spurious correlations instead of
core semantics (Geirhos et al., 2020). This phenomenon underlies both backdoor attacks (Wang
et al.,, 2019) and adversarial vulnerabilities. Liu et al. (2024a) highlight how adversarial examples
in customized diffusion models can exploit such shortcuts. While this issue is well-studied in clas-
sification tasks, shortcut learning in diffusion models remains relatively underexplored.

3 PRELIMINARIES

Diffusion process. Diffusion models are a type of generative models, including a forward diffusion

process and a reverse process. Let € ~ N(0,1) and &; denotes H§:1 ;. For a given data sample g
and timestep ¢ € [1, 7], diffusion model gradually adds Gaussian noise onto it to get z; according
to Eq. (1) in the forward process, where oy = 1 — 3; and §; € (0, 1) is the variance schedule.

Tt = /O T—1 + V 1-— Q€ = 4/ @t$0 + 1-— &tet, (1)

In the reverse process, the model learns to denoise from x;,; by minimizing the %5 distance be-
tween the noise €; predicted by the neural network 6 and the true noise €; used in the forward process.
The loss function for conditional diffusion models with text prompt c is as follows:

Lg)%i(ga 330) = Ewo7t,c,6€N(0,1)||E - éxt+17tac|‘§' 2

DreamBooth. DreamBooth (Ruiz et al., 2023) is a type of parameter efficient fine-tuning method
to personalize text-to-image diffusion models. For a given concept ‘sks’ and the class name ‘[class
noun]’ of the concept, DreamBooth learns the new concept by a generic prompt c, such as “a photo
of sks [class noun]”, and a prior prompt c,, like “a photo of [class noun]”. First, DreamBooth
generates a set of class images randomly with the frozen pretrained model and c,,. To fine-tune
the pretrained model on concept sks while preventing language drift, based on Eq. (2), DreamBooth
employs a two-part training loss as Eq. (3):

[’dDbM(ev 330) = El‘o,t,t’ ||6 - éwt+17t70 |§ + )‘||€P7‘ - éﬂv'

t/+1°

trcon |13 3)

where €, €, € N(0, 1), X is a hyperparameter that adjusts the importance of prior loss, z’ is sampled
from the class-image dataset, and z,  , is the noisy variable of 2’.
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DDIM inversion. Given an image x, using the deterministic DDIM (Song et al., 2021a) formu-
lation, DDIM inversion estimates the noise latent x such that the denoising process approximately
reconstructs xo under a fixed noise schedule by approximating €, +1,t,c With €xp toct

Vt+1 A .
Tt1 = \/Oli (.’Et —V 1— Qi+ ezt,t,C) + \ 1-— Q41 €x, toce (4)
t

4 METHODOLOGY

4.1 MOTIVATION

Building on the observation by Liu et al. (2024a) that adversarial perturbations cause shortcut learn-
ing by creating a mismatch between images and prompts, we conducted controlled experiments to
isolate their effects on the text encoder (TE) and U-Net. Our detailed analysis, provided in Ap-
pendix A, reveals that each component plays a distinct role in generating perturbed outputs. We
found that a perturbed TE embeds misleading, noise-like semantics, leading to artifacts like dis-
torted backgrounds. A perturbed U-Net then reinforces this behavior by adopting faster but less
stable generation paths. A further investigation localized the most significant adversarial effects to
specific U-Net modules, particularly UpBlockl and DownBlock2/3. Motivated by these findings,
our work proposes a comprehensive solution to repair the vulnerabilities in both the U-Net and the
TE, allowing us to fix the model with minimal intervention.

4.2 IMAP: INVERSION-GUIDED WEIGHT MASKING AND PATCHING

Sample > Class-noised person: As instance data
a photo of noised sks person S
Class-person: S . Asclassdata _ _ _ |
a photo of sks person \:
AE Class dats 1 DreamBooth FT

Base DM v Fine-tuned Masked 1 Final
SD 2.1 DM DM v DM
(a) DreamBooth FT on
9 adversarially 9 % (b) Applying mask 9 % (c) Applying bias 9
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ym——- ‘ [
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Figure 2: Method Overview. Our method consists of three stages: (a) fine-tuning, (b) weight
masking, and (c) patching. In (a), we re-map the text prompt before DreamBooth fine-tuning to
separate concept and perturbation. In (b), we apply a weight mask to the fine-tuned model, guided
by DDIM inversion. In (c), we perform adaptive patching using data synthesized by the base model.

In this section, we study a challenging scenario where a diffusion model is fine-tuned solely on
perturbed data without access to the corresponding clean images. These perturbations are visually
imperceptible but are intentionally crafted to manipulate the model’s behavior at inference time.
Our goal is to understand how such perturbations affect the internal components of the model, and
to recover faithful generation performance despite the absence of clean supervision.

Let D = {(2% ¢)}Y, be a dataset of perturbed images z* = f,(z¢,,,,, ), where f, is an unknown
data perturbation function, and c is the shared training prompt. Let 6, denote the parameters of a
pretrained diffusion model, and # the parameters after DreamBooth fine-tuning on dataset D. Due to
the perturbations, the model 6 tends to generate anomalous or irrelevant content, even when provided
with a correct prompt. Our goal is to estimate updated model parameters 6*, such that:

Ve € C, (](9*, C) ~ g(eclearu 0)7 )

where G(6, ¢) denotes the image generated by model 6 given prompt ¢, and 8.4, is a hypothetical

model fine-tuned on the clean dataset {(z,,,,,,¢)}, which is not accessible in practice.
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To address this challenge, we propose a lightweight correction framework with three stages: fine-
tuning, weight masking, and patching. We first fine-tune the model using only perturbed samples
via DreamBooth, with slightly modified prompts to semantically decouple the protected content
from the perturbation. In the masking stage, we analyze intermediate U-Net activations to identify a
small set of kernels consistently correlated with adversarial signals and set them to zero. Finally, we
patch the model using synthetic data generated by the pretrained model to restore the target concept
without reinforcing adversarial patterns. An overview of the pipeline is shown in Figure 2.

Prompt re-mapping for concept-perturbation separation. In our fine-tuning stage, we introduce
a prompt re-mapping strategy to link the perturbed concept to a specific term rather than the original
one. For a concept ‘sks’ and its class name ‘[class noun]’, we use the prior prompt ¢, like “a photo
of [class noun]” for DreamBooth. Instead of the standard instance prompt “a photo of sks [class
noun]”, we modify it to “a photo of noised sks [class noun]”. This adjustment explicitly conditions
the model to associate the perturbed concept with the term ‘noised sks’ instead of ‘sks’, allowing
us to leverage the differences in the generation process between terms—‘sks’, ‘noised’, and ‘noised
sks’—and the perturbed images. It helps isolate perturbation-related activations, enabling targeted
masking that suppresses spurious kernels while preserving core concept features.

Inversion-guided weight masking. Liu et al. (2024a) show that adversarial perturbations trigger
shortcut learning in customized diffusion models. Neural Cleanse (Wang et al., 2019) attributes the
success of backdoor attacks in DNNs to shortcut learning, and mitigates them via trigger inversion,
masking, and patching. Inspired by this, we analyze generation in DMs via DDIM inversion, apply
masking to suppress perturbation-sensitive activations, and patch with clean data to recover fidelity.
See Figure 3.

In our masking stage, after fine-tuning the model on perturbed dataset D, we synthesize three refer-
ence datasets Dy = {DA DB D?} using prompts: ¢—“a photo of sks [class noun]”, ¢Z—“a photo

of noised [class noun]” and cC “a photo of noised sks [class noun]”. For each {Dg, Z}, we apply
DDIM inversion to extract feature maps F of the convolutional layers. Similarly, we obtain F?

for the perturbed training set D. We compute distances Dist(F*, F?) and select kernels with high
similarity or difference under a predefined threshold T'hr:

Stims Stipy = Select(Dist(F*, F?), Thr),  Ssim =) Stim:  Sairs = JShiss- (6

Inspired of Plug-and-Play (Tumanyan et al., 2023) and FreeControl (Mo et al., 2024), we build se-
mantic basis for /"7 via PCA to handle the hlgh dimension vectors. We then compute the Wasserstein
distance (WD) between F"* and its PCA-based reconstruction:

basis, Fpo 4 = PCA(FP), Dist(F', F) = W D(F", Recon(Proj(F", basis)). (7)

Empirically, S, tends to capture low-quality artifacts shared across the three prompts due to
perturbation-induced shortcuts. In contrast, Sg; ¢ highlights kernels sensitive to semantic changes.
Thus, we define the final mask as S = Sy — Saiy s, preserving concept-relevant activations while
suppressing perturbation-sensitive ones.
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Adaptive patching via targeted fine-tuning. Even though the masking stage zeroes out kernels that
are highly correlated with the perturbations, the model still fails to generate ideal images. From the
perspective of shortcut learning, this is because, despite removing the most perturbation-sensitive
kernels, the specified prompt can still induce the remaining kernels to shift the generation process
toward the shortcut. Similar findings have been observed in DNNs: NC demonstrated that while the
top 1% of neurons are highly correlated with backdoor-induced shortcuts, removing at least 30% of
the neurons is necessary to completely eliminate the effect (Wang et al., 2019). This phenomenon
can be attributed to the massive redundancy in neural pathways in DNNs (Hu et al., 2016).

However, in diffusion models, we cannot afford to zero out numerous kernels, as this would signifi-
cantly reduce the model’s feature extraction capability, leading to the inability to generate meaning-
ful images. Thus, we further introduce an adaptive patching strategy based on our earlier prompt
re-mapping. It repairs masked U-Net kernels and restores the text encoder’s capacity to capture
task-relevant semantics, effectively suppressing shortcuts without compromising content fidelity.

In the previous stages, we fine-tuned the model using the modified prompt ¢, linking the perturbed
concept to the term ‘noised sks’. In adaptive patching stage, our goal is to restore the guiding role
of the term ‘noised’. Specifically, we leverage the pretrained model (i.e., the base model before fine-
tuning) to generate a dataset D, using prompt P with ‘noised’ term in advance. We then fine-tune
the pruned model with D, via DreamBooth to perform adaptive model-parameter correction, ensur-
ing that both the U-Net and text encoder are restored and the term ‘noised’ can correctly contribute
to the generation process. In this stage, we use the prior class prompt ¢, as before. This patching
step serves to fix the pruned kernels by reinforcing the model’s ability to handle the ‘noised’ text
term while preventing it from falling back to shortcut-based generation.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and perturbations. We conduct our experiments on human-face generation task using
the CelebA-HQ (Karras et al., 2018) and VGGFace2 (Cao et al., 2018) datasets. For each dataset,
we randomly choose 5 different identites, and 4 clean images per identity with adversarial images
conducted via seven types of perturbations: AntiDB, AdvDM(+/-), Glaze, SDS(+/-), SDST, where
(+/-) denotes the use of gradient ascent/descent to construct the perturbation.

Customization settings. We choose the latest Stable Diffusion v2.1 as the pretrained base DM, and
adopt DreamBooth (Ruiz et al., 2023) to customize DMs on both clean and adversarial data. We
generate 200 pics by the base DM to build the class images for DreamBooth using the prior prompt
cpr © “aphoto of person”. For each model, we use a text prompt “a photo of [term] person”as instance
prompt ¢ for training and two prompts: crqin-"a photo of [term] person” and cq; s r-*“a dslr portrait
of [term] person” for sampling, where [term] is settled as ‘sks’ for the clean fine-tuned models and
‘noised sks’ for both baseline our IMAP restored models under different perturbations. We run
experiments on 4 NVIDIA RTX A6000 (48G) GPUs. More details are provided in Appendix B.2.

Evaluation metrics. We evaluate our IMAP restored method by generating 30 pics per prompt per
model. The Full Reference (FR) metrics, FID (Heusel et al., 2017), SSIM (Wang et al., 2004), and
PSNR compare images generated by our baseline or IMAP models against those generated by the
clean-ft models in terms of distributional similarity, structural fidelity, and pixel-level accuracy, and
the No Reference (NR) metrics, TOPIQ (topiq_nr_swin_face) (Chen et al., 2024; Qin et al., 2023)
and QAlign (qalign_8bit) (Wu et al., 2024) measure face quality without reference. All metrics are
implemented using the IQA-PyTorch toolbox (Chen & Mo, 2022).

5.2 EFFECTIVENESS OF IMAP UNDER DIFFERENT ADVERSARIAL PERTURBATIONS

Our IMAP method aims to mitigate the impact of adversarial perturbations on customized DMs,
while preserving the integrity of the newly learned concept. We evaluate its effectiveness through a
series of comparative experiments, where different perturbation strategies are applied.

Figure 4 illustrates representative image generation results under various adversarial perturbations
on the VGGFace?2 dataset. As shown in the figure, our IMAP defense significantly improves gener-
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Figure 4: Visual comparison of images generated by customized diffusion models under differ-
ent adversarial perturbations(with and without IMAP). Each column corresponds to a different
perturbation method applied during fine-tuning. IMAP consistently improves robustness against
perturbations while preserving the identity of the learned concept. See Appendix for more results.

Table 1: Quantitative evaluation on VGGFace2 across multiple metrics under different sam-
pling prompt settings. |/7 indicate that lower/higher values are better. We compare IMAP-defensed
models against baselines customized on various types of perturbed data. Results are reported under
both sampling prompts (C¢rqin and cqiss) as well as individually. Each value is the average metric
over models trained on 5 data identities per dataset; see Appendix for results under each identity.

Adversarial | FID, | PSNRT |  SSIM{ | TOPIQT | QAlignt
Perturbations | Baseline IMAP | Baseline IMAP | Baseline IMAP | Bascline IMAP | Baseline IMAP

Both prompts: Cirain, Cdiff

AntiDB 377.84 15941| 938 1096 | 0.21 0.35 0.20 0.56 1.55 2.75
AdvDM(+) 397.33 184.83| 9.05 10.76 | 0.20 0.34 0.13 0.54 1.43 248
AdvDM(-) 14799 136.43| 11.12 11.72| 0.38 0.42 0.34 0.46 1.97 2.59

Glaze 22452 17091| 09.11 1039 | 0.21 0.31 0.34 0.51 1.60 2.59
SDS(+) 378.86 183.22| 938 1086 | 0.21 0.35 0.16 0.55 1.49 2.81
SDS(-) 147.67 14290 | 11.10 11.78 | 0.38 0.42 0.32 0.39 1.91 231
SDST 32741 199.61| 10.02 1092 | 0.28 0.36 0.35 0.47 2.12 2.54

Train prompt: Cirain

AntiDB 438.98 206.38| 8.84 9.67 0.18 0.27 0.12 0.47 1.51 2.15
AdvDM(+) 453.04 253.01| 8.59 9.45 0.18 0.25 0.07 0.42 1.42 1.72
AdvDM(-) 167.60 186.53| 10.92 1047 | 0.35 0.35 0.35 0.38 2.04 2.23

Glaze 23471 224.88| 8.58 8.83 0.16 0.19 0.30 0.33 1.39 1.65

SDS(+) 428.63 258.50| 8.85 9.58 0.19 0.25 0.12 0.40 1.43 2.02

SDS(-) 172.89 187.84| 10.68 10.67 | 0.34 0.36 0.33 0.34 1.94 2.10

SDST 33271 269.40| 10.00 10.05| 0.26 0.29 0.39 0.38 2.25 2.08
Diff prompt: cqizy

AntiDB 361.33 165.05| 9.92 1224 | 0.24 0.44 0.27 0.66 1.60 3.35

AdvDM(+) 380.05 166.96| 9.50 12.07 | 0.23 0.43 0.18 0.66 1.45 3.24
AdvDM(-) 174.16 13146 | 1132 1297 | 042 0.50 0.34 0.53 1.90 2.95

Glaze 25725 16492 964 1195| 025 0.42 0.39 0.70 1.81 3.52
SDS(+) 367.77 160.44| 992  1215| 0.23 0.44 0.20 0.69 1.55 3.60
SDS(-) 162.26 140.05| 11.53 1290 | 042 0.49 0.32 0.45 1.87 2.51
SDST 366.41 178.62| 10.04 11.78 | 0.30 0.44 0.32 0.56 1.98 3.01
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Table 2: Quantitative evaluation on CelebA-HQ across multiple metrics using both sampling
prompts. See Appendix for results under each prompt individually.

Adversarial | FID, | PSNRT |  SSIMT | TOPIQT | QAlignt
Perturbations | Baseline IMAP | Baseline IMAP | Baseline IMAP | Baseline IMAP | Baseline IMAP
AntiDB 226.25 137.58| 10.29 11.08 0.22 0.34 0.48 0.64 2.12 3.08

AdvDM(+) 387.31 182772 956 1087 | 0.21 0.34 0.12 0.53 1.46 2.51
AdvDM(-) 137.77 134.69| 11.75 12.09 | 0.38 0.42 0.37 0.47 2.09 2.63

Glaze 215.03 171.86| 9.89 10.69 | 0.20 0.29 0.47 0.54 2.23 2.78
SDS(+) 367.32 16234 9.78 1095 | 021 0.34 0.21 0.56 1.62 2.81
SDS(-) 132.55 13395| 11.87 1218 | 0.39 0.42 0.35 0.44 2.01 2.46
SDST 268.10 164.48| 1021 1097 | 0.25 0.37 0.40 0.47 2.58 242

ation quality compared to the baseline, especially under AntiDB, AdvDM(+) and SDS(+) perturba-
tions. In these settings, the baseline models fail to generate recognizable human faces and instead
produce outputs heavily corrupted with structured noise patterns. In contrast, IMAP effectively
mitigates or even eliminates such artifacts, yielding cleaner and more realistic results.

For AdvDM(-) and SDS(-), while baseline outputs are blurry yet still depict identifiable faces, IMAP
generates sharper and more coherent results. Under Glaze and SDST, IMAP also brings noticeable
improvements, though to a lesser extent. In particular, SDST introduces structured noise that IMAP
cannot fully remove but significantly mitigates, leading to higher-fidelity face reconstructions.

Moreover, IMAP suppresses noise more effectively when sampling with the fine-tuning prompt ¢y,
used during fine-tuning. With a different prompt cg;ist, it continues to generate sharp images while
better preserving key facial attributes, demonstrating its generalization beyond the training prompt.

Table 1 presents quantitative results on the VGGFace2 dataset, comparing IMAP against different
baselines under three prompt settings: both prompts (cuain and cgife) jointly, and each individually.
Under the joint setting, IMAP significantly improves generation performance across all metrics.
Notably, it reduces FID by up to 58% (e.g., AntiDB: 377.84 — 159.41) achieves a threefold im-
provement in TOPIQ (e.g., AntiDB, AdvDM(+), SDS(+)), demonstrating strong robustness and
effectiveness. Overall, IMAP consistently yields greater improvements under cgifr than cyi,. For
instance, in the ¢y, setting with AdvDM(-) and SDS(-), IMAP slightly underperforms the baseline
in FID and PSNR, while still outperforming it in other metrics. This may be because these pertur-
bations primarily cause mild blurring rather than major distributional shifts. Moreover, since i 1S
used during fine-tuning, it may be more tightly entangled with the perturbation, making it harder to
correct distributional shifts than to improve perceptual facial quality. Results on CelebA-HQ dataset
under both prompts are reported in Table 2, with per-prompt results included in Appendix D.2.

5.3 COMPARATIVE EXPERIMENTS BETWEEN IMAP AND DIFFERENT PURIFICATION
METHODS

AN/ o . j ” Lo il b
Clean fine-tuned NU+IMAP IMPRESS IMPRESS+IMAP

Figure 5: Visual comparison results between IMAP and different purification-based methods.

To validate the efficiency and practical applicability of IMAP, we selected two advanced purification
methods for comparison: Noisy-Upscaling (Honig et al., 2024) and IMPRESS (Cao et al., 2023).
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Table 3: Quantitative evaluation on VGGFace2 across multiple metrics under two experimen-
tal conditions: using only the purification method versus using both purification and IMAP.
See Appendix for results under each prompt individually.
Adversarial | FID| | PSNR? | SSIM? | TOPIQT |  Qalignt
Perturbations

Purify  Purify | Purify Purify | Purify Purify | Purify Purify | Purify Purify
only +IMAP| only +IMAP | only +IMAP| only +IMAP| only +IMAP

Purification method:Noisy-Upscaling

AntiDB 107.58 116.45 | 11.09 11.19 | 0.38 0.39 0.60 0.62 3.10 3.19
AdvDM(+) |[204.58 143.68 | 995 10.80 | 0.25 0.34 0.38 0.55 1.75 2.71
AdvDM(-) 109.27 11195 | 11.20 11.32 | 041 0.41 0.54 0.56 275 2.98

Glaze 109.29 11254 | 11.11  11.36 | 0.37 0.39 0.56 0.59 2.84 3.02

SDS(+) 23837 157.12 | 997 10.84 | 0.22 0.33 0.35 0.55 1.63 2.73

SDS(-) 11454 111.15 | 1091 11.51 | 0.39 0.42 0.51 0.53 2.63 2.78

SDST 170.38 146.44 | 10.27 10.85 | 0.31 0.37 0.46 0.52 2.38 2.75
Purification method:IMPRESS

AntiDB 312.22 16746 | 9.70 11.12 | 0.21 0.35 0.28 0.55 1.55 2.69

AdvDM(+) |388.10 190.75 | 936 10.61 | 0.20 0.34 0.17 0.52 1.59 2.54
AdvDM(-) 145.07 137.96 | 10.87 11.58 | 0.40 0.43 0.31 0.39 1.76 2.19

Glaze 236.11 179.68 | 9.16 1043 | 0.22 0.32 0.34 0.51 1.61 2.55
SDS(+) 350.50 198.51 | 946  10.71 | 0.20 0.33 0.22 0.51 1.52 2.60
SDS(-) 140.37 144.29 | 10.77 11.33 | 0.39 0.41 0.34 0.40 1.83 2.30
SDST 346.76 216.40 | 947 1047 | 0.26 0.34 0.30 0.42 222 2.37

Under the recommended settings from their respective papers, we measured the additional com-
putation time required by each method compared to the baseline. Using a single NVIDIA RTX
A6000 (48GB) GPU, for processing 4 protected images per training task, Noisy-Upscaling required
approximately 10 minutes, while IMPRESS needed about 40 minutes. In contrast, IMAP required
approximately 30 minutes for masking and patching. However, it is important to note that IMAP’s
computation time is independent of the size of the training dataset. Therefore, when dealing with
large training sets for the same concept, IMAP demonstrates significantly better efficiency than
purification-based methods.

Since IMAP and purification-based methods target different stages of customization, they can
be used in combination. In Table 3, we present partial experimental results under VGGFace2,
which clearly show that applying IMAP after training can substantially enhance the effectiveness
of purification-based methods. Furthermore, by comparing the IMAP column in Table 1 with the
Purify-Only column in Table 3, we observe that in standalone experiments, IMAP’s performance
generally falls between that of IMPRESS and Noisy-Upscaling. In Figure 5, we show the visual
comparison of different methods under two perturbations for brevity. Given IMAP’s high efficiency
and flexibility in combining with purification-based methods, we believe IMAP provides a practi-
cal and scalable solution for model protection tasks, particularly in scenarios involving large-scale
training datasets. Experimental results under CelebA are shown in Appendix D.3.

6 CONCLUSION

This paper proposes IMAP, a purification-free framework for restoring diffusion models affected by
data perturbations. We investigate how such perturbations alter the relationship between text em-
beddings and the U-Net backbone in customized diffusion models. IMAP addresses shortcut vul-
nerabilities through prompt re-mapping, weight masking, and adaptive patching, without requiring
clean concept data. Extensive experiments across multiple perturbations and facial datasets demon-
strate that IMAP improves distribution consistency and facial clarity of generated images, effectively
mitigating the impact of adversarial perturbations. Notably, IMAP achieves higher computational
efficiency than purification-based methods—particularly for large-scale datasets—as its runtime is
independent of training data size. Moreover, IMAP shows strong compatibility with purification
techniques, and their combined use significantly enhances robustness against perturbations.
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This paper was written by the authors, and a large language model (LLM) was used exclusively for
minor edits, grammar checking, and improving the clarity of the text. All ideas, research, and the
final content remain the sole intellectual work of the authors.
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TECHNICAL APPENDICES

* A. Detailed Motivation and Preliminary Experiments
* B. Details of Experimental Setting and Access to Code

— B.1. Access to Code and Compute Resources

B.2. Detailed Settings for Model Customization

— B.3. Detailed Settings for Adversarial Perturbations
B.4. Detailed Settings for IMAP

* C. More Visual Comparison of Generated Images

* D. Supplementary Experimental Results
— D.1. Error Bars
D.2. Supplementary Results for Section 5.2
D.3. Supplementary Results for Section 5.3
D.4. Evaluating IMAP Transferability with Fixed-Masks across Datasets

A DETAILED MOTIVATION AND PRELIMINARY EXPERIMENTS

Since Liu et al. (2024a) show that adversarial perturbations leads to shortcut learning in customized
diffusion models by causing a mismatch between images and prompts in latent space, we build on
this idea to study how adversarial perturbations affects the relationship between text embeddings
and the U-Net.

Impact of perturbed fine-tuning on text en-
coder and U-Net.

We first generate adversarial data using Anti-
DreamBooth (Van Le et al., 2023), then fine-tune
for 1000 DreamBooth steps on both clean and ad-
versarial datasets, respectively. As shown in Fig-
ure 6, we swap TE and U-Net between the two
models and compare the outputs. This lets us iso- - -*
late the effects of adversarial data on the text en-
coder (TE) and U-Net.

C-UNet

Comparing Figure 6 (c) and (f), we find that P- el
TE with C-UNet still generates clear facial fea- ! i §
tures, but the background shows complex patterns s ‘@ o5
similar to the fully perturbed model (P-TE/P- 50 steps | 100 steps
UNet). This suggests that the perturbed TE em-

beds noise-like semantics, while the clean U-Net Figure 6: Sample outputs of mixed text en-
preserves core features and suppresses part of the  ¢coder (TE) and U-Net combinations. C-TE/C-
adversarial effect. In contrast, C-TE with P-UNet {UNet and P-TE/P-UNet refer to models fine-
produces clean outputs close to the fully clean tyned on clean and perturbed data (via Anti-
model (C-TE/C-UNet), showing that P-UNet can  DreamBooth), respectively. Left column shows
still generate well if the text embedding is not outputs with 50 denoising steps; middle and

adversarially manipulated. This highlights that right columns show outputs with 100 steps.
both TE and U-Net contribute to the final qual-

ity. P-TE leverages the generation capacity of C-

UNet to inject misleading semantics, leading to

background artifacts despite preserved identity. P-UNet further reinforces this shortcut behavior,
strengthening the adversarial signal and driving the model away from clean generation.

P-UNet

Interestingly, under the same clean TE, reducing the denoising steps (e.g., from 100 to 50) allows the
mixed model (C-TE/P-UNet) to outperform the clean model in both speed and image quality. This
suggests that P-UNet learns a rough but stable generation path that converges faster. Similar behavior
is observed in adversarial training, where models skip fine details but gain stability. In contrast, C-
UNet captures more structure but is sensitive to the initial state, making denoising harder with fewer
steps. P-UNet tends to follow shortcut-like recovery paths that are quicker and more robust.
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Localization of adversarially affected U-Net modules.

To identify the key U-Net modules that contribute most to adversarial effects, we perform another
experiment on both clean and perturbed data with frozen TE. We fine-tune only the U-Net and then
construct a mixed model (M-UNet) by replacing minimal blocks in the perturbed U-Net (P-UNet)
with the corresponding blocks from the clean one (C-UNet). By comparing the outputs, we aim for
M-UNet to recover clean-like results. This analysis highlights UpBlockl and DownBlock2/3, and
DownBlock3 as the most impactful blocks. A visual comparison is shown in Figure 7.

t M-UNet

-

Figure 7: Comparison of images generated by different U-Net block combinations, with frozen
TE during fine-tuning. C/P/M-UNet refer to clean, perturbed, and mixed models. M-UNet replaces
UpBlock1, DownBlock2, and DownBlock3 in P-UNet with the corresponding blocks from C-UNet.
The U-Net consists of has four DownBlocks, one MidBlock, and four UpBlocks, indexed from zero.

B DETAILS OF EXPERIMENTAL SETTING AND ACCESS TO CODE

B.1 ACCESS TO CODE AND COMPUTE RESOURCES

An anonymous repository has been provided for code access during the review process:
https://anonymous.4open.science/r/IMAP-anonymous

Although all experiments can be executed on a single NVIDIA RTX A6000 GPU (48 GB), we
conduct our experiments using 4 such GPUs to parallelize experiment runs.

For each dataset, the full experimental pipeline takes approximately 28 hours on a single NVIDIA
RTX A6000 (48 GB) GPU. This includes training a total of 75 models and sampling 60 images (30
per prompt) for each model: (1 clean fine-tuned model, 7 perturbed baselines, and 7 IMAP-defended
models) x 5 identities.

B.2 DETAILED SETTINGS FOR MODEL CUSTOMIZATION

We use Stable Diffusion V2.1 as pretrained base model. For each experiment based on DreamBooth
customization method, we use 4 images as instance dataset, and generate 200 images using c,, as
class dataset D,,.. We set the training step to 1000, the learning rate to 5e-7, and the train batch size
to 2 during the fine-tuning stage. All input and generated images have a resolution of 512x512.

B.3 DETAILED SETTINGS FOR ADVERSARIAL PERTURBATIONS

We focus on the object-driven image synthesis in the context of human face generation, using the
VGGFace2 and CelebA-HQ datasets. For each dataset, we randomly choose 5 identities with 12
images per identity. The images are evenly split into three subsets: a clean reference subset, a target
subset, and an additional clean reference. Base on these subsets, we conduct the perturbed dataset
with 4 images per identity, with the original target subset as clean dataset.

All adversarial perturbation methods are evaluated under a fixed perturbation budget of § = 16/255.
As Glaze does not provide access to its source code and does not allow control over the perturbation
budget, we use its maximum perturbation setting.

B.4 DETAILED SETTINGS FOR IMAP
In the weight masking stage, we generate 20 images per prompt for DDIM inversion, using 50

inversion steps. We compute the mean of the feature maps across timesteps 10 to 20, as the later
steps are essentially close to random noise.
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In the adaptive patching stage, we use the dataset D,;, consisting of 200 images generated by the

pretrained model with the prompt cZ-“a photo of noised person”- as the instance dataset. The class
dataset D,,. is the same as that used in the fine-tuning stage. The patching step is set to 1000, with
a learning rate of Se-8.

C MORE VISUAL COMPARISONS OF GENERATED IMAGES

We provide additional visual comparisons of the generated images under different sampling prompts
between the baseline model and our IMAP-defended model. Samples under the c¢;;.4;, prompt are
shown in Figure 8, while those under the cg4; ¢y prompt are shown in Figure 9.

These comparisons further illustrate the robustness and visual fidelity achieved by our proposed
defense.
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Figure 8: Visual comparison of images generated by customized diffusion models under differ-
ent adversarial perturbations and data identities using prompt c;,.,;,,. Each subfigure is titled
in the format dataset/data-identity. In each subfigure, the top row shows results from the clean
fine-tuned model, the middle row shows results from the baseline model, and the bottom row shows
results from the IMAP-defended model. Each column corresponds to a different adversarial pertur-
bation method.
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Figure 9: Visual comparison of images generated by customized diffusion models under differ-
ent adversarial perturbations and data identities using prompt cg; ;.
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D SUPPLEMENTARY EXPERIMENTAL RESULTS

D.1 ERROR BARS

Due to customizing DMs on different identities for each dataset, the results may exhibit variations.
Thus, we conduct independent experiments under same settings for each identity, and then calculate
the mean and the standard deviation for each evaluated metric per dataset.

For each metric to be evaluated, we perform independent experiment under same settings and ran-
dom seed on N = 5 data identities for each dataset, obtaining N result values v, va,...,vn. The
mean g and the standard deviation o of these values are calculated as follows:

| &

u=ﬁ;vi ®)
s

o= mZ(w—M)Q 9

D.2 SUPPLEMENTARY RESULTS FOR SECTION 5.2

We provide a more detailed quantitative evaluation with error bars, as shown in Table 4 to Table 13.

Specifically, the experiments from Table 4 to Table 8 correspond to the VGGFace2 dataset, and
the experiments from Table 9 to Table 13 correspond to the CelebA-HQ dataset. In the tables, we
provide a quantitative evaluation of the images generated by the baseline model and the IMAP-
defended model, compared to the clean fine-tuning model, under different metrics for each data
identity and perturbation.
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Table 4: Quantitative evaluation on VGGFace2 under different sampling prompt settings
(FID)).

Adersarial \ Dataset: VGGFace2, Metric: FID]

Perturbations | y4e11ity | n000050 n000057 n000058 n000063 n000138 | mean  std
Both prompts: Cirain, Cdiff
An(DB baseline | 346.13  436.45 345.46 373.57 387.60 |377.84 37.42
nt IMAP | 159.83 12427 12833 21296 171.67 |159.41 36.12
AdvDM(s) | Daseline | 41130 43797 36170 41397 36172 |397.33 34.14
IMAP | 17072 15472 16623  208.13 22434 |184.83 29.81
AdvDM() | baseline | 15814 1221315584 17338 13044 | 14799 2113
IMAP | 14529 122.02 11125 16141 142.18 |136.43 19.86
Glaze baseline | 271.04 17692 21695 246.48 211.18 |224.52 35.87
IMAP | 202.16 12676 16536 199.45  160.85 |170.92 31.11
SDS(4) baseline | 363.34  411.69 364.44 376.15 378.68 |378.86 19.58
IMAP | 155.11 16173 17657 209.58 213.09 |183.22 26.85
SDSO) baseline | 169.26  122.73  145.04 172.03 12931 | 147.67 22.50
IMAP | 14581 11838 13238 174.15 143.79 |142.90 20.60
SDST baseline | 329.68 299.14 363.41 32032  324.47 |327.41 2323
IMAP | 194.19 158.66 163.89 24875 232.56 |199.61 40.26
Train prompt: Cirain
ANGDB baseline | 428.43 46925 44037 44530 411.56 |438.98 21.34
IMAP | 18041 18147 17464 28327 212.09 |206.38 45.41
AdvDM(s) | Dascline | 44474 47207 43634 47597 43607 |453.04 19.52
IMAP | 20039 227.58 268.08 27030 298.69 |253.01 38.82
AdvDM(.) | baseline | 17467 13770 16671 19502 16390 | 167.60 20.68
IMAP | 182.59 14832 159.60 234.92 207.25 |186.53 35.26
Gl baseline | 236.26  190.02  221.05 267.64 258.59 |234.71 30.99
aze IMAP | 239.78 17506 235.17 25136 223.02 |224.88 29.64
SDS() baseline | 392.33  468.60 418.05 439.47 424.68 |428.63 28.11
IMAP | 186.12 253.12 271.76  290.18 29130 |258.50 43.37
SDS() baseline | 190.56 13491 171.12 189.96 177.87 | 172.89 22.77
IMAP | 182.12 150.11 190.90 22622 189.87 |187.84 27.12
SDST baseline | 292.33  298.78 38670  358.38  327.36 |332.71 39.95
IMAP | 232.92 226.17 21405 33521 338.67 |269.40 62.03
Diff prompt: cqifs
AGDB baseline | 320.13  440.80 287.71 35875 399.24 |361.33 60.98
IMAP | 19578 10891 124.64 218.08 177.81 |165.05 46.65
AdvDM(s) | Daseline | 41590 43579 33200  390.97 32467 |380.05 49.50
IMAP | 19239 13134 10842 20830 19436 |166.96 44.16
AdvDM(-) | baseline | 18630 14432 191.00 200.54  148.65 | 17416 2583
IMAP | 14433 12898 103.47 14573 13478 |131.46 17.10
Glaze baseline | 345.80 20073 25096 285.48 203.26 |257.25 60.80
IMAP | 204.98 13847 14195 198.17 14101 |164.92 33.58
SDS() baseline | 371.00 389.44 353.05 34829 377.07 |367.77 17.05
IMAP | 16944 127.03 12653 189.72  189.48 |160.44 31.81
SDSC) baseline | 184.08 139.49 157.70 19537 134.64 |162.26 26.81
IMAP | 146.89 12370 11557 17038  143.73 | 140.05 21.49
SDST baseline | 41533 34393 391.02 32622 35556 |366.41 36.18
IMAP | 198.11 14570 16679 215.40 167.10 | 178.62 27.79
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Table 5: Quantitative evaluation on VGGFace2 under different sampling prompt settings
(PSNR?).

Adersarial \ Dataset: VGGFace2, Metric: PSNRT

Perturbations | y4eniity | n000050 n000057 n000058 n000063 n000138 | mean  std
Both prompts: Cirain, Cdiff

. bascline| 9.95 943 946 909 897 | 938 038
IMAP | 1084 1212 1066 1011  11.07 |1096 0.74

bascline| 889 911 940 857 925 | 9.05 033

AWDME) | viap | 1027 1139 1095 1012 11.06 |10.76 0.54
baseline| 1096 1076 1156 1069 1164 |11.12 045

ADVDMG) I pviap | 1202 1161 1227 1102 1168 | 1172 047
Glage bascline| 8.84 965 893 838 975 | 9.1 058
IMAP | 1040 1064 1029 985 1076 |10.39 0.35

SDSG) baseline| 936  9.67 979 882 927 | 938 038
IMAP | 1098 1151 1070 1044  10.68 |10.86 041

SDSO) baseline | 10.76 1079 1171 10.66  11.60 |11.10 051
IMAP | 1198 1227 1235 1095 1137 |11.78 0.6l

SDST baseline| 947 1059 1111 938 954 |10.02 0.78
IMAP | 1061 1173 1123 1003 1098 |1092 0.64

Train prompt: Cirain

DB baseline| 896 935 876 854 859 | 884 033
IMAP | 937 1074 939 889 997 | 967 071

bascline | 842 877 894 834 849 | 859 0.25

ANVDMM) Ipviap | 873 993 948 936 972 | 945 045
baseline | 11.05  10.66 1135 1032 1123 |1092 043

AVDMEO) Ipviap | 1073 1079 1099 960 1026 | 1047 0.56
Glase bascline| 864 9.3 885 759 873 | 858 0.9
IMAP | 849 926 863 853 922 | 883 038

SDS) baseline| 879 962 912 843 830 | 885 054
IMAP | 960 986 955 948 941 | 958 0.17

SDSO) baseline| 1032 1056 1141 1002  11.08 |10.68 0.56
IMAP | 1044 1161 1116 989 1025 |10.67 0.70

SDST baseline| 9.06 1086 1154 921 933 |10.00 1.12
IMAP | 959 1112 1104 870 979 |10.05 1.03

Diff prompt: cqifs

J. baseline | 1094 952 1015 965 936 | 9.92 0.64
i IMAP | 1231 1349 1193 1133 1216 |1224 0.79
baseline| 936 946 987 880 1001 | 9.50 048

AWDMM) I viap | 1181 1284 1242 1087 1240 |12.07 076
baseline | 10.87  10.86 1176 11.05  12.05 | 1132 0.55

AVDMO) I pviap | 1331 1242 1355 1244 1311 |12.97 051
Glage baseline| 9.05 1017 902 917 1078 | 9.64 080
IMAP | 1231 1201 1195 1117 1229 |11.95 047

SDS(H) baseline| 9.94 972 1047 921 1024 | 9.92 049
IMAP | 1237 1316 1185 1140 1194 |12.15 0.66

SDSO) baseline | 1121 11.01 1202 1129 1212 |11.53 050
IMAP | 1351 1294 1355 1201 1248 |12.90 0.67

SDST baseline| 9.88 1032 1068 954 974 |10.04 046
IMAP | 1163 1233 1142 1136 1217 |11.78 044
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Table 6: Quantitative evaluation on VGGFace2 under different sampling prompt settings
(SSIM1).

Adersarial \ Dataset: VGGFace2, Metric: SSIMT

Perturbations | 4e1ity | n000050 n000057 n000058 n000063 n000138 | mean std
Both prompts: Cirain, Cdiff
AntiDB baseline | 0.23 0.19 021 021 020 |021 0.02
nt IMAP 0.33 0.40 0.32 0.34 038 | 035 0.04
baseline | 0.18 0.19 0.23 020 022 |020 002
AWDME) I vap | 031 036 032 035 036 | 034 0.02
baseline | 034  0.38 0.38 0.37 046 | 038 0.04
AWDMO) I vap | 040 041 041 042 049 | 042 0.04
Glage baseline | 0.16  0.23 0.17 0.17 030 | 021 0.06
IMAP | 028 031 0.28 0.32 035 | 031 0.03
SDS(+) baseline | 020 021 022 020 023 |021 001
IMAP | 035 034 030 039 037 | 035 0.03
SDSE) baseline | 0.33 0.37 038 0.37 046 | 038 0.05
IMAP | 039 042 041 0.41 048 | 042 0.03
SDST baseline | 0.23 0.27 0.29 027 034 | 028 0.04
IMAP | 0.33 0.37 0.35 0.33 043 | 036 0.04
Train prompt: Cirain
AntiDB baseline | 0.17 0.18 0.19 0.19 019 |0.18 0.01
IMAP | 022 030 025 0.25 030 | 027 0.04
baseline | 0.15 0.17 020  0.18 020 |0.18 0.02
AVDM®M) I nveap | 021 026 021 030 027 | 025 0.04
baseline | 029  0.35 0.37 0.32 042 | 035 0.05
AWDMG) I pvap | 030 033 035 035 043 | 035 005
al baseline | 0.13 016  0.17 0.12 022 |0.16 0.04
aze IMAP 0.15 0.19 0.17 0.21 025 | 0.19 0.04
SDS(+) baseline | 0.17 020  0.19 0.19 021 |0.19 001
IMAP | 026 020 021 0.34 027 | 025 0.06
SDSC) baseline | 0.27 033 036 033 043 | 034 0.06
IMAP | 029 035 036 035 043 | 036 0.05
SDST baseline | 0.21 0.25 031 0.25 031 | 026 0.04
IMAP | 024 028 032 024 035 | 029 0.05
Diff prompt: cqifs
AntiDB baseline | 030 020 023 0.24 020 | 024 004
IMAP | 044 050 039 0.43 046 | 044 0.04
baseline | 020 021 026 021 024 | 023 0.02
AWDMM) I vap | 042 046 042 040 046 | 043 003
baseline | 0.38 0.41 038 0.42 050 | 042 0.05
AVDMG) | pviap | 049 048 047 049 055 | 050 0.03
Glage baseline | 0.18 030 0.8 0.22 039 |025 0.09
IMAP | 040 044 038 0.42 046 | 042 0.03
SDS(+) baseline | 0.23 022 024 022 025 | 023 001
IMAP | 0.43 0.48 040 043 048 | 044 0.04
SDSC) baseline | 0.38 0.41 0.39 0.42 050 | 042 0.05
IMAP | 049 049 046 047 053 | 049 0.03
SDST baseline 0.26 0.29 0.28 0.30 0.36 0.30 0.04
IMAP | 042 046 039 0.43 050 | 044 0.04
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Table 7: Quantitative evaluation on VGGFace2 under different sampling prompt settings
(TOPIQYT).

Adersarial \ Dataset: CelebA-HQ, Metric: TOPIQT

Perturbations | 4e1ity | n000050 n000057 n000058 n000063 n000138 | mean std
Both prompts: Cirain, Cdiff
DB baseline| 023 003 024 028 020 | 020 0.10
nt IMAP 0.71 0.56 0.56 0.49 050 | 0.56 0.09
baseline| 0.13 002 015 009 024 | 013 008
AWDME) I vap | 058 054 058 052 048 | 0.54 0.04
baseline | 042 043 028 030 029 | 034 007
AWDME) I vap | 043 049 049 047 040 | 046 0.04
Glage baseline| 023 046 038 030 035 | 034 0.09
IMAP | 055 053 049 052 048 | 051 003
SDS) baseline| 0.15 003 014 022 026 | 016 0.09
IMAP | 069 051 053 054 047 | 055 008
SDSO) baseline| 036 036 031 027 031 | 032 004
IMAP | 046 038 040 035 038 | 039 004
SDST baseline| 035 041 031 035 035 | 035 004
IMAP | 055 049 044 049 037 | 047 007
Train prompt: Cirain
DB baseline| 022 000 014 017 006 | 012 0.09
IMAP | 065 054 044 034 037 | 047 013
baseline| 022 000 004 004 007 |007 008
AVDM®M) | niap | 047 044 043 038 037 | 042 0.04
baseline| 035 043 030 034 030 | 035 006
AWDMG) I vap | 027 047 035 042 036 | 038 007
Glase baseline| 028 036 035 023 025 | 030 006
IMAP | 035 038 025 034 033 |033 005
SDS) baseline| 0.2 001 00l 020 025 | 012 011
IMAP | 060 031 036 042 032 | 040 0.12
SDSO) baseline| 033 039 033 029 031 | 033 004
IMAP | 033 037 033 033 034 |034 002
SDST baseline| 040 045 033 039 038 | 039 004
IMAP | 042 040 037 046 024 | 038 008
Diff prompt: cqifs
DB baseline| 024 006 033 039 035 |027 013
IMAP | 078 058 067 064 063 | 066 007
baseline| 0.04 004 025 014 041 | 018 0.16
AWDME) I pvap | 069 065 074 065 059 | 066 005
baseline| 049 042 026 027 028 | 034 0.10
AIDMG) Ivap | 059 052 063 051 043 | 053 008
Glas baseline| 0.18 057 040 037 045 | 039 0.14
aze IMAP 0.75 0.69 0.73 0.70 0.63 | 070 0.04
SDS(H) baseline| 0.19 004 026 024 027 | 020 0.09
IMAP | 077 070 070 066 063 | 069 006
SDSO) baseline| 040 033 030 025 032 | 032 005
IMAP | 058 039 048 037 042 | 045 008
SDST baseline| 031 037 029 030 032 | 032 003
IMAP | 069 059 052 051 050 |056 008
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Table 8: Quantitative evaluation on VGGFace2 under different sampling prompt settings
(QAlign?).
Adersarial \ Dataset: CelebA-HQ, Metric: QAlignT

Perturbations | ety | n000050 n000057 n000058 n000063 n000138 | mean std
Both prompts: Cirain, Cdiff

. baseline | 128 158 133 180 177 | 1.55 024
IMAP | 338 265 254 261 256 | 275 036

baseline | 143 135 143 132 164 | 143 013

AWDMM) I \vap | 2063 243 249 263 221 | 248 017
baseline | 204 212 167 199 203 | 197 0.17

AWDMO) I \vap | 245 249 283 261 256 | 259 015
Glage baseline | 141 192 147 156 163 | 1.60 020
z IMAP | 274 251 246 279 243 | 259 0.16

SDSG) baseline | 144 144 145 149 163 | 149 008
IMAP | 330 263 251 308 252 |281 036

SDSO) baseline | 187 194 183 185 204 | 191 0.09
IMAP | 253 212 232 214 242 | 231 018

SDST baseline| 191 250 195 236 1838 | 212 029
IMAP | 292 281 220 252 228 |254 032

Train prompt: Cirain

J. baseline | 126 160 129 175 163 | 151 022
IMAP | 287 224 190 179 194 | 215 044

baseline | 145 133 143 133 155 | 142 0.09

AVDMM) I pviap | 192 172 152 187 154 | 172 019
baseline | 1.86 214 179 219 222 | 2.04 020

AVDMO) I pveap | 174 231 219 234 255 | 223 030
al baseline | 155 149 131 119 141 | 139 0.15
aze IMAP 1.86 1.57 1.28 1.79 175 | 1.65 023

SDS) baseline | 143 136 142 144 150 | 143 005
IMAP | 268 173 157 244 165 |202 051

SDSO) baseline | 172 201 188 193 217 | 194 017
IMAP | 197 205 201 205 241 |210 0.8

SDST baseline | 222 271 174 258 202 | 225 040
IMAP | 215 252 173 228 172 | 208 035

Diff prompt: cqiy g

J. baseline | 130 156 138 185 191 | 1.60 027
IMAP | 390 305 318 344 318 |335 034

baseline | 142 136 144 131 173 | 145 016

AWDM() I vap | 333 304 346 339 288 | 324 023
baseline | 223 210 155 179 184 | 190 027

AIDMO) I yvap | 305 267 346 287 259 | 295 036
Glage baseline | 128 235 164 193 186 | 1.81 039
IMAP | 362 345 365 377 312 |352 025

SDS) baseline | 146 1.5 147 154 176 | 155 0.12
IMAP | 391 353 346 372 338 |360 021

SDSO) baseline | 203 188 178 177 192 | 1.87 0.1
IMAP | 309 218 262 222 244 | 251 037

SDST baseline| 159 230 215 214 173 | 1.98 030
IMAP | 369 310 266 276 284 |301 041
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Table 9: Quantitative evaluation on CelebA-HQ under different sampling prompt settings
(FID)).

Adersarial \ Dataset: CelebA-HQ, Metric: FID|

Perturbations | jqeniy | 80 95 103 104 108 | mean st
Both prompts: Cirain, Cdiff

An(DB baseline | 201.92 230.60 258.97 184.73 255.02 |226.25 32.53
nt IMAP | 14238 140.74 93.48 154.24 157.07 | 137.58 25.67

AdvDM(s) | Daseline | 369.41 434.86 44922 31832 364.74|387.31 54.05
IMAP | 157.74 202.75 189.04 166.21 197.86 |182.72 19.79

AdVDM(-) | baseline | 167.90 12837 127.52 119.97 145.10|137.77 19.18
IMAP | 15349 157.17 9851 132.71 131.57|134.69 23.35

Glaze baseline | 187.28 237.16 249.07 175.00 226.62 | 215.03 32.23
IMAP | 170.77 183.27 160.14 167.13 178.00 | 171.86 9.07

SDS(4) baseline | 315.58 396.82 397.79 342.26 384.15|367.32 36.70
IMAP | 164.14 208.39 9632 131.01 211.84 |162.34 49.79

SDSO) baseline | 168.88 119.63 107.04 119.76 147.45|132.55 25.12
IMAP [159.53 137.07 99.79 13570 137.65|133.95 21.50

SDST baseline | 283.22 275.57 303.98 206.29 271.42|268.10 36.75
IMAP | 181.17 172.38 150.92 164.40 153.56 | 164.48 12.69

Train prompt: Cirain

ANGDB baseline | 256.62 282.57 305.11 189.55 324.51|271.67 52.44
IMAP [165.29 197.35 134.76 180.43 193.78 | 174.32 25.46

AdvDM(s) | Dascline [458.24 479.99 514.19 369.13 451.29 | 454.57 53.68
IMAP [ 195.40 299.00 304.53 239.82 268.02 [261.35 45.11

AdvDM(.) | Daseline [ 138.44 13426 119,14 146.03 1283813325 10.17
IMAP | 15425 189.95 99.28 163.63 139.92 | 149.41 33.44

al baseline | 222.75 274.01 309.87 216.54 325.11 |269.65 49.33
aze IMAP [216.16 263.94 254.93 190.87 293.04 [243.79 40.37

SDS() baseline | 358.61 491.20 490.71 354.68 453.02|429.64 68.43
IMAP |210.95 297.22 136.98 172.61 326.30 [228.81 80.77

SDS() baseline | 155.51 12545 98.07 153.87 138.23|134.22 23.66
IMAP | 168.59 169.52 109.93 162.32 156.14 | 153.30 24.83

SDST baseline | 266.36 297.70 333.18 206.88 292.43 [279.31 46.97
IMAP |217.80 231.36 186.38 215.02 204.31|210.98 16.79

Diff prompt: cqifs

AnGDB baseline | 211.68 211.60 245.75 213.24 233.14 | 223.08 15.60
IMAP |[172.55 121.74 85.65 176.42 173.89 | 146.05 40.74

AdvDM(s) | Daseline [ 324.12 42031 418.16 301.56 323.50|357.53 57.06
IMAP | 183.27 15240 121.18 141.27 203.48 |160.32 32.97

AdVDM(-) | baseline [ 242.11 15143 17015 129.85 192.89|177.29 43.05
IMAP | 19572 158.74 124.13 147.29 158.70 | 156.92 25.88

Glaze baseline | 207.73 232.04 220.53 173.44 196.92 | 206.13 22.55
IMAP [193.24 141.10 117.04 188.56 163.52|160.69 32.15

SDS() baseline | 312.83 338.35 340.26 360.43 348.85|340.15 17.58
IMAP |186.13 169.56 93.18 151.77 167.28 [ 153.58 35.89

SDSC) baseline | 225.75 141.89 144.13 125.69 188.91|165.27 41.16
IMAP |197.82 136.66 118.46 15635 166.38 | 155.13 30.15

SDST baseline | 338.47 282.64 299.53 241.14 295.53|291.46 35.01
IMAP [208.51 154.60 147.27 166.32 159.35[167.21 24.11
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Table 10: Quantitative evaluation on CelebA-HQ under different sampling prompt settings
(PSNR?).

Adersarial \ Dataset: CelebA-HQ, Metric: PSNR1

Perturbations | 4o niiy | 80 95 103 104 108 | mean std
Both prompts: Cirain, Cdiff

DB baseline | 10.09 10.39 10.79 1034 9.83 | 10.29 036
IMAP | 1095 1079 12.42 1049 10.75|11.08 0.76

baseline | 955 942 1021 955 9.08 | 956 041

AVDM®M) | viap 11015 1085 1171 10.54 10.12|10.87 0.60
baseline | 11.08 12.15 12.60 11.68 11.22|11.75 0.63

AGDMG) I vap [ 1159 12,09 1327 1155 11.97 12,09 070
Glage baseline | 994 979 1022 955 996 | 989 025
IMAP | 10.62 10.81 1172 9.83 1048 |10.69 0.68

SDSH) baseline | 9.54 1018 1032 9.19 9.66 | 9.78 047
IMAP | 10.63 10.50 12.09 1098 10.53 |10.95 0.67

SDSC) baseline | 1141 11.90 1320 1156 11.30|11.87 0.77
IMAP | 1191 1217 1336 1145 12,01 |12.18 0.71

SDST baseline | 1026 10.17 10.61 9.90 10.08 1021 026
IMAP |11.14 10.64 11.93 1053 10.61 |10.97 0.59

Train prompt: Cirain

DB baseline | 1021 10.33 10.85 1044 9.86 | 1034 036
IMAP | 1029 9.68 11.15 9.61 1036|1022 0.62

bascline | 949 865 999 869 843 | 905 0.66

AVDM®M) I nviap | 1063 963 1080 942 922 | 9.94 0.73
baseline | 11.58 11.26 13.11 1145 11.40|11.76 0.76

AWDMG) I \viap [ 1135 1134 1328 1063 11.58|11.64 0.99
Gl baseline | 9.91 954 936 892 9.64 | 947 037
aze IMAP | 982 973 9.69 887 951|952 038
SDS) baseline | 974 9.11 994 893 906 | 936 045
IMAP | 944 961 11.01 10.14 939 | 9.92 0.68

SDSO) baseline | 12.02 1141 13.65 11.14 11.62|11.97 099
IMAP | 12.18 10.89 1330 1052 1142|11.66 1.11

SDST baseline | 1098 10.56 11.03 9.98 10.03 | 1051 0.50
IMAP |11.06 9.68 1091 979 9.10 |10.11 0.84

Diff prompt: cqifs

JU. baseline | 9.96 1044 1073 1025 9.79 [ 1023 037
IMAP | 1162 1191 1368 1138 11.15|11.95 1.0l

baseline | 9.60 10.18 1044 1042 973 |10.07 039

AVDMM) I viap | 11,66 12,08 1263 11.65 11.03|11.81 0.59
baseline | 1058 13.03 12.09 1191 11.05|11.73 095

AVDME) I pvrap | 1183 1285 1325 1247 1237 12.55 0.54
Glage baseline | 9.97 10.05 11.08 10.17 1027|1031 045
IMAP | 1141 11.89 1375 1079 11.45|11.86 1.13

SDS) baseline | 934 1125 10.69 945 1026|1020 081
IMAP |11.82 1140 13.16 11.81 11.67|11.97 0.69

SDSO) baseline | 10.80 12.38 1274 11.97 1099 |11.78 085
IMAP |11.64 1344 1342 1239 12.59|12.70 0.76

SDST baseline | 954 979 1020 9.82 10.13| 990 027
IMAP | 1121 1159 12.96 11.28 12.13|11.83 0.72
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Table 11: Quantitative evaluation on CelebA-HQ under different sampling prompt settings
(SSIM1).

Adersarial \ Dataset: CelebA-HQ, Metric: SSIM7T

Perturbations | 14eniiry | 80 95 103 104 108 | mean std
Both prompts: Cirain, Cdiff
R baseline | 023 026 021 020 0.19] 022 0.03
IMAP | 034 034 043 029 030|034 005
baseline | 020 021 022 021 0.19] 021 001
AVDME) | nviap (034 036 036 031 031|034 002
baseline | 031 045 044 034 035] 038 0.06
ADMG) | viap (036 046 051 037 040 | 042 0.06
Glage baseline | 020 021 020 020 021] 020 0.01
IMAP | 027 031 034 025 027|029 004
SDSG) baseline | 020 024 020 0.19 020] 021 0.02
IMAP | 033 033 042 034 031|034 004
SDSO) baseline | 034 045 048 034 034|039 007
IMAP | 037 047 050 037 039|042 0.06
SDST baseline | 022 029 027 023 024|025 003
IMAP | 033 041 042 033 036|037 0.04
Train prompt: Cirain
DB baseline | 0.19 021 0.18 020 0.16] 0.19 0.02
IMAP |027 022 031 020 024|025 0.05
baseline | 0.17 0.18 0.19 0.17 0.14] 0.17 0.02
AVDMM) I viap 027 023 024 022 023|024 002
baseline | 0.27 038 042 028 032|033 007
AVDME) I pviap (031 040 048 031 036|037 0.07
Glase baseline | 0.17 0.14 0.13 0.3 0.14] 0.14 0.02
IMAP |0.18 0.18 0.17 0.16 0.17|0.17 0.01
SDSG) baseline | 0.19 0.19 0.18 0.18 0.17] 0.18 0.01
IMAP |024 023 033 028 021|026 0.05
SDSO) baseline | 032 038 047 028 031|035 0.07
IMAP | 034 040 047 031 034|037 006
SDST baseline | 023 029 027 021 022] 024 0.04
IMAP | 028 037 036 026 031|032 005
Diff prompt: cqifs
DB baseline | 026 031 025 021 021] 025 0.04
IMAP | 040 046 0.54 037 036|043 007
baseline | 023 025 025 025 023|024 001
AVDM() | niap (040 048 049 041 039 | 043 004
baseline | 035 052 046 040 038|042 0.07
AVDME) I pviap | 041 052 0.54 043 044 | 047 006
Glage baseline | 023 028 026 027 028] 026 0.02
IMAP | 036 043 051 034 036|040 0.07
SDS) baseline | 021 029 022 020 023] 023 0.04
IMAP | 041 042 051 041 041|043 0.04
SDSO) baseline | 036 0.51 050 040 038|043 007
IMAP | 040 054 053 043 044|047 0.06
SDST baseline | 021 030 027 026 026 026 0.03
IMAP | 038 045 048 040 042|043 0.04
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Table 12: Quantitative evaluation on CelebA-HQ under different sampling prompt settings
(TOPIQYT).

Adersarial \ Dataset: CelebA-HQ, Metric: TOPIQ7T

Perturbations | 14eniiry | 80 95 103 104 108 | mean std
Both prompts: Cirain, Cdiff

AntiDB baseline | 0.56 0.51 047 049 0.36| 0.48 0.08
IMAP |0.67 0.64 0.69 0.62 0.58| 0.64 0.04

baseline | 0.17 0.09 004 0.17 0.13] 0.12 0.06

ADME) | VAP [0.59 047 049 057 051|053 005
baseline | 043 033 034 039 037|037 004

ADMG) | \viap 045 045 044 054 047 | 047 0.04
Glage baseline | 0.52 042 040 047 052] 047 0.06
IMAP | 058 054 050 053 0.54| 054 0.03

SDSG) baseline | 0.25 023 023 0.10 024] 021 0.06
IMAP | 058 047 058 0.70 0.49| 056 0.09

SDSO) baseline | 036 034 032 036 036] 035 0.02
IMAP | 048 043 038 049 042|044 0.04

SDST baseline | 043 035 046 039 035|040 0.05
IMAP | 055 036 043 043 0.55| 047 0.08

Train prompt: Cirain

J baseline | 042 038 044 042 027|039 0.07
IMAP | 051 048 0.69 047 041|051 0.10

baseline | 0.01 0.02 002 0.10 0.02] 0.04 0.04

AVDMM) I viap | 044 035 036 037 037|038 0.04
baseline | 0.39 0.37 040 037 037] 038 0.02

AVDME) I viap | 037 040 042 045 038 040 003
Glase baseline | 033 031 025 025 042|031 007
IMAP |034 032 025 032 033|031 0.04

SDSG) baseline | 0.18 0.13 008 0.11 0.12] 0.13 0.04
IMAP | 040 028 0.50 0.62 029 | 042 0.14

SDSO) baseline | 034 035 036 036 034|035 001
IMAP |035 039 033 039 034|036 0.03

SDST baseline | 045 035 052 044 038|043 0.07
IMAP | 044 027 048 035 047|040 0.09

Diff prompt: cqifs

DB baseline | 0.71 0.63 050 055 044] 057 0.10
IMAP | 082 081 0.70 0.77 0.74| 077 0.05

baseline | 033 0.16 0.05 025 024|021 011

ADM() I viap (074 059 0.62 077 0.64| 0.67 0.08
baseline | 046 030 027 041 037|036 0.08

AVDMG) I viap {053 050 046 0.64 0.56 | 054 0.07
Glas baseline | 0.70 0.54 055 0.68 0.63] 0.62 0.07
aze IMAP |0.82 077 0.74 0.74 0.75| 0.76 0.03
SDS(H) baseline | 031 032 039 0.09 035] 029 0.12
IMAP |076 0.65 0.66 0.79 0.69| 071 0.06

SDSO) baseline | 0.38 033 028 036 037] 035 0.04
IMAP |0.60 047 043 058 0.50| 052 0.07

SDST baseline | 042 035 040 034 031] 036 0.04
IMAP |0.65 046 037 052 0.63| 053 0.12
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Table 13: Quantitative evaluation on CelebA-HQ under different sampling prompt settings

(QAlignT).

Adersarial \ Dataset: CelebA-HQ, Metric: QAlignT

Perturbations | 4o niry | 80 95 103 104 108 |mean std
Both prompts: Cirain, Cdiff

. baseline | 2.50 2.10 2.03 227 1.70] 2.12 030
IMAP |332 320 3.16 299 274|308 022

baseline | 1.74 137 135 152 134| 146 0.17

AWDM() | VAP (276 217 238 2.64 2.63 | 251 024
bascline | 241 198 1.84 2.02 221] 2.09 022

ADMG) VAP [2.57 263 240 2.88 2.68 | 2.63 017
Glage bascline | 2.74 1.89 1.94 232 224|223 034
z IMAP |326 271 2.60 2.78 2.58 | 2.78 0.28
SDSG) baseline | 195 152 156 1.57 1.51| 1.62 0.18
IMAP |2.96 241 278 334 2.56| 2.81 036

SDSO) baseline | 2.13 1.97 1.85 1.95 2.12] 2.01 0.12
IMAP | 272 241 2.15 2.59 2.45| 246 021

SDST baseline | 2.85 2.32 3.13 224 238|258 039
IMAP |2.85 1.96 225 231 272|242 036

Train prompt: Cirain

DB baseline | 1.98 1.67 1.89 2.02 1.61| 1.84 0.19
IMAP |239 229 271 208 189|227 031

baseline | 1.87 138 135 143 144| 149 022

AVDMM) I \viap 104 144 145 158 175| 1.63 021
baseline | 2.22 2.05 2.09 1.98 222|211 0.11

AVDMG) I viap 225 233 209 240 2.25| 230 0.06
Glase baseline | 1.93 1.56 136 140 2.01] 1.65 030
IMAP |2.06 1.76 137 168 167|171 025

SDSe) baseline | 1.86 156 145 154 139] 1.56 0.18
IMAP |2.02 141 224 276 155|200 0.55

SDSO) baseline | 2.10 1.96 1.93 1.98 2.04| 2.00 0.07
IMAP |2.10 220 201 2.11 2.07|2.10 0.07

SDST baseline | 2.70 2.54 342 246 2.63| 275 038
IMAP | 255 148 234 200 2.18| 2.11 041

Diff prompt: cqiy g

J. baseline | 3.03 2.53 2.15 252 1.79] 240 046
IMAP | 425 411 3.62 391 359|389 0.29

baseline | 1.60 135 135 1.60 125] 143 0.16

ADM() | VAP (357 290 330 3.69 351|339 031
baseline | 259 1.90 159 2.07 2.22| 2.08 037

AGDMG) | \viap (289 292 250 335 3.2 2.96 031
Glage baseline | 3.54 221 252 325 246 2.80 0.57
IMAP | 446 3.66 3.83 3.88 349|386 037

SDSG) baseline | 2.03 148 1.67 1.60 1.63| 1.68 021
IMAP |3.90 342 330 3.92 3.58]|3.63 028

SDSO) baseline | 2.16 1.98 1.77 1.93 220| 2.01 0.18
IMAP |333 2.63 229 3.07 2.83| 2.83 040

SDST baseline | 3.00 2.10 2.83 2.01 2.13| 241 047
IMAP |3.16 245 2.16 2.63 328|273 047
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D.3 SUPPLEMENTARY FOR SECTION 5.3

We provide full evaluation results for comparative experiments in Tables 14 to 17. Specifically, the
results in Tables 14 and 15 correspond to the comparative experiments under Noisy-Upscaling, and
the results in Tables 16 and 17 correspond to the comparative experiments under IMPRESS.

Table 14: Quantitative evaluation on VGGFace2 across multiple metrics under two experimen-
tal conditions: using only the purification method versus using both purification and IMAP.
We show results using Noisy-Upscaling as purification method in this table.

Adversarial | FID| PSNR7? | SSIM?T TOPIQ?T Qalignt
Perturbations Purify  Purify | Purify Purify | Purify Purify | Purify Purify | Purify Purify
only +IMAP| only +IMAP | only +IMAP | only +IMAP | only +IMAP
Both prompts: Cirain, Cdiff
AntiDB 107.58 11645 |11.09 11.19 |038  0.39 0.60  0.62 310  3.19
AdvDM(+) |204.58 143.68 | 995 10.80 |0.25 0.34 0.38  0.55 .75 271
AdvDM(-) 109.27 11195 |11.20 11.32 [041 0.41 0.54  0.56 275 298
Glaze 109.29 11254 |11.11 1136 |0.37  0.39 056  0.59 284  3.02
SDS(+) 238.37 15712 |997 1084 |0.22 0.33 035 0.55 1.63 2.73
SDS(-) 11454 111.15 | 1091 11.51 |039 042 051  0.53 263 278
SDST 170.38 146.44 | 10.27 1085 |031 0.37 046  0.52 238 275
Train prompt: Cirain
AntiDB 120.89 140.75 | 10.61 10.03 |0.33 0.31 0.52 051 2.77  2.63
AdvDM(+) |238.11 185.54 (949 9.46 0.19  0.23 032 041 1.70 195
AdvDM(-) 125.60 13833 |10.52 10.03 |0.35 0.34 0.52 0.49 2.74 261
Glaze 125.11 13435 | 10.67 10.06 |0.32 0.31 050 049 262 249
SDS(+) 287.61 21341 (944 9.54 0.16  0.22 028  0.40 1.54  1.96
SDS(-) 135.54 138.79 | 10.24 9.93 034 0.33 048 045 250 235
SDST 184.01 196.99 |9.72 949 027  0.28 043 042 239 236
Diff prompt: cqiy g

AntiDB 13447 130.89 | 11.57 1236 |043 047 0.67  0.73 343 375
AdvDM(+) | 21149 143.27 | 1041 1214 |032 045 044  0.70 1.81 347
AdvDM(-) 128.90 122.27 | 11.87 12.62 |0.46 048 056  0.64 277 3.34
Glaze 132.21 129.67 | 11.56 12.65 |042 047 0.62  0.69 3.07 3.54
SDS(+) 231.02 139.37 | 10.50 12.14 [029 0.44 041  0.69 .72 3.50
SDS(-) 136.67 122.26 | 11.58 13.09 |0.44  0.50 0.54  0.60 275 321
SDST 193.27 140.02 | 10.82 1220 |035 0.45 0.49  0.62 238 3.14
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Table 15: Quantitative evaluation on CelebA-HQ across multiple metrics under two exper-
imental conditions: using only the purification method versus using both purification and
IMAP. We show results using Noisy-Upscaling as purification method in this table.

Adversarial | FID| | PSNR7? | SSIM?T | TOPIQT | Qalignt
Perturbations

Purify  Purify | Purify Purify | Purify Purify | Purify Purify | Purify Purify
only +IMAP| only +IMAP | only +IMAP| only +IMAP| only +IMAP

Both prompts: Cirain, Cdiff

AntiDB 104.75 107.37 |12.25 1198 |0.38  0.39 062  0.64 3.04  3.14
AdvDM(+) | 246.66 15749 |10.38 11.08 |0.22 0.32 041  0.54 1.90 2.55
AdvDM(-) 117.21 114.89 | 11.60 1193 |040 0.42 0.65 0.64 321 323

Glaze 103.40 107.47 (1191 1186 |0.36  0.37 0.64 0.63 325 320
SDS(+) 234.57 15293 | 1040 11.14 |0.21 0.32 037 0.55 1.75  2.61
SDS(-) 12794 114.84 | 1143 1190 |039 0.42 0.64 0.62 3.08 313
SDST 17942 146.24 | 10.62 1155 |033  0.38 0.57 0.61 295 3.23

Train prompt: Cirain

AntiDB 108.67 116.40 | 11.72 11.23 |[0.31  0.31 0.56 0.55 282 2.65
AdvDM(+) |281.44 203.55 |10.32 10.10 |0.17 0.21 034 037 183 175
AdvDM(-) 130.99 124.00 |11.53 11.29 |037  0.37 0.60 0.57 3.03 288

Glaze 114.06 120.80 | 11.42 11.11 [0.28 0.28 052 0.50 274 257
SDS(+) 270.68 199.50 | 10.30 1036 |0.17  0.23 032 0.39 1.71  1.85
SDS(-) 140.76 123.63 |11.50 1133 |036 0.37 0.60 0.56 292 282
SDST 203.01 195.77 | 10.56 10.68 |0.30 0.31 0.52 051 2.88 2.80

Diff prompt: cqy ¢

AntiDB 13593 132.39 |12.79 1273 |045 0.47 0.67  0.73 326  3.62
AdvDM(+) |246.01 151.13 | 1044 12.06 |0.26 0.42 047  0.72 198 335
AdvDM(-) 143.89 140.14 | 11.68 12.56 |043  0.47 0.69 0.71 340 357

Glaze 130.28 133.12 | 1239 12.61 |044 045 0.76  0.76 376  3.83
SDS(+) 23492 149.10 | 1050 11.92 |0.25 041 042 0.71 1.79  3.36
SDS(-) 156.42 142.28 | 11.35 1248 |041 0.46 0.67  0.69 325 342
SDST 198.90 141.33 | 10.67 1242 |036 0.45 0.61  0.72 3.02  3.66
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Table 16: Quantitative evaluation on VGGFace2 across multiple metrics under two experimen-
tal conditions: using only the purification method versus using both purification and IMAP.
We show results using IMPRESS as purification method in this table.

Adversarial | FID| | PSNR7? | SSIM?T | TOPIQT | Qalignt
Perturbations

Purify  Purify | Purify Purify | Purify Purify | Purify Purify | Purify Purify
only +IMAP| only +IMAP | only +IMAP| only +IMAP| only +IMAP

Both prompts: Cirain, Cdiff

AntiDB 312.22 16746 |9.70 1112 |021 0.35 028  0.55 1.55  2.69
AdvDM(+) |388.10 190.75 |9.36 10.61 |0.20 0.34 0.17  0.52 1.59 2.54
AdvDM(-) 145.07 137.96 | 10.87 11.58 |0.40 0.43 031  0.39 1.76 219

Glaze 236.11 179.68 | 9.16 1043 [022 0.32 034  0.51 1.61  2.55
SDS(+) 350.50 198.51 (946 10.71 |020 0.33 022 0.51 1.52  2.60
SDS(-) 140.37 144.29 |10.77 11.33 |0.39 041 034 0.40 1.83 230
SDST 346.76 216.40 |947 1047 |026 0.34 030 0.42 222 237

Train prompt: Cirain

AntiDB 391.80 232.23 (894  9.67 0.16  0.24 0.17  0.44 145 194
AdvDM(+) |450.99 260.78 |8.87 9.12 0.17  0.24 0.06 0.39 1.57 177
AdvDM(-) 162.73 170.47 |10.62 10.26 |0.36 0.36 034 0.34 1.82 191

Glaze 250.48 233.78 |8.57 8.72 0.17  0.20 029 0.34 1.30  1.59
SDS(+) 41829 29222 | 892  9.37 0.16  0.22 0.12  0.36 1.40 173
SDS(-) 159.93 186.33 | 1045 1030 [0.35 0.35 035 033 1.82 195
SDST 347.88 291.30 |9.35 9.33 024  0.25 035 034 249 213

Diff prompt: cqy ¢

AntiDB 28470 154.43 | 1045 12,57 |026 047 039  0.67 1.64 345
AdvDM(+) |373.00 171.92 (986 12.10 |0.24 043 027  0.65 1.61 3.31
AdvDM(-) 16592 14494 | 11.12 1290 |043 0.49 029 044 1.69  2.46

Glaze 269.09 174.24 |9.75 1214 |027 0.44 040  0.69 192 3.52
SDS(+) 326.66 159.02 | 10.00 12.05 |[0.23 0.44 032  0.66 1.64 348
SDS(-) 160.05 141.42 | 11.09 1236 |043 047 033 048 1.85  2.65
SDST 391.35 188.50 |9.59 11.61 |028 0.42 025 049 195 261
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Table 17: Quantitative evaluation on CelebA-HQ across multiple metrics under two exper-
imental conditions: using only the purification method versus using both purification and
IMAP. We show results using IMPRESS as purification method in this table.

Adversarial | FID| | PSNR7? | SSIM?T | TOPIQT | Qalignt
Perturbations

Purify  Purify | Purify Purify | Purify Purify | Purify Purify | Purify Purify
only +IMAP| only +IMAP | only +IMAP| only +IMAP| only +IMAP

Both prompts: Cirain, Cdiff

AntiDB 220.30 14549 |10.54 1118 | 024 033 054  0.64 242 3.08
AdvDM(+) |373.32 172.21 | 950 10.77 |0.18 0.33 0.15  0.55 1.59  2.61
AdvDM(-) 137.72 133.00 | 11.30 12.06 |0.40 0.42 034  0.39 1.89 212

Glaze 20591 170.79 | 995 1075 |023 0.32 047  0.56 226 272
SDS(+) 363.77 172.74 |9.81 1113 |0.19 0.34 0.16 0.53 1.63  2.70
SDS(-) 139.57 141.03 | 11.34 12.09 |0.40 0.42 032 037 1.87 210
SDST 25647 181.84 |998 1098 |0.27 0.36 036 041 253 234

Train prompt: Cirain

AntiDB 265.08 192.51 | 10.25 1039 |0.19 0.25 041  0.52 213 2.22
AdvDM(+) |441.59 240.74 (920 9.78 0.15 0.24 0.04 043 1.58 1.83
AdvDM(-) 133.97 13839 |11.39 1144 |0.38 0.37 037 0.38 2.08 2.06

Glaze 227.72 21994 |9.94 9.65 020 0.23 040 0.39 215 190
SDS(+) 430.13 23790 [ 949 1017 |0.16 0.25 0.07  0.39 1.61  1.95
SDS(-) 142.32 156.05 | 11.52 11.61 |[0.39 0.37 035 035 2.00 2.01
SDST 280.36 237.88 |10.70 10.14 |0.27  0.30 036 0.34 2.69 2.13

Diff prompt: cqy ¢

AntiDB 216.89 145.99 |10.83 1198 |0.29 042 0.67  0.77 271 3.94
AdvDM(+) |345.51 163.59 [9.81 11.76 |0.21 0.42 025  0.66 1.61 341
AdvDM(-) 180.27 164.18 | 11.21 12.69 |042 0.47 030 0.39 .70 2.19

Glaze 22449 17478 |996 1185 |0.26 041 053 0.72 238 3.55
SDS(+) 339.61 158.87 | 10.14 12.09 [022 043 025  0.68 1.64 345
SDS(-) 172.67 164.75 | 11.17 1257 |042 0.46 029 0.39 1.75 218
SDST 264.82 177.65 | 9.26 11.82 |0.28 0.42 036 048 237 255
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D.4 EVALUATING IMAP TRANSFERABILITY WITH FIXED-MASKS ACROSS DATASETS

We analyzed kernel masking patterns across all experiments and found that, under the same perturba-
tion, certain kernels were frequently masked across different identities and even across datasets. Un-
der the same perturbation, specific kernels tended to be frequently masked across different identities
and even across different datasets. In contrast, different perturbations could lead to significant local
variations in the masking patterns. Notably, SDST resulted in more dispersed masking compared to
AntiDB, as illustrated in the Figure 10. This suggests that critical kernels are more dependent on the
type of perturbation than on the dataset. To verify this, we constructed a perturbation-specific fixed
mask based on VGGFace? statistics and applied it to both VGGFace2 and CelebA-HQ. Results in
Table 18 support this hypothesis.

Table 18: Quantitative evaluation on different datasets using both sampling prompts under
the fixed-mask setting. The fixed mask is derived from prior VGGFace2 experiments by selecting
kernels that were masked in at least 4 out of 5 times for each perturbation, and applied to both
datasets to evaluate effectiveness and transferability.
Adversarial | FID| | PSNR1 | SSIM?T | TOPIQ? |  QAlign?
Perturbations | g, celine IMAP | Baseline IMAP | Baseline IMAP | Baseline IMAP | Baseline IMAP
Both prompts under VGGFace2

AntiDB 377.84 16243| 938 11.00| 021 0.35 0.20 0.55 1.55 2.72
AdvDM(+) 39733 194.55| 9.05 10.79 | 0.20 0.34 0.13 0.53 1.43 245
AdvDM(-) 147.99 136.04| 11.12 1177 | 0.38 0.43 0.34 0.45 1.97 2.56

Glaze 22452 17016 | 9.11 1043 | 0.21 0.31 0.34 0.51 1.60 2.59

SDS(+) 378.86  190.29| 9.38 10.80 | 0.21 0.34 0.16 0.54 1.49 2.78

SDS(-) 147.67 143.03| 11.10 11.77 | 0.38 0.42 0.32 0.40 1.91 2.33

SDST 32741 202.82| 10.02 1098 | 0.28 0.36 0.35 0.47 2.12 2.60
Both prompts under CelebA-HQ

AntiDB 226.25 135.11| 1029 11.05| 0.22 0.33 0.48 0.64 2.12 3.11

AdvDM(+) 387.31 184.19| 956 10.88 | 0.21 0.33 0.12 0.52 1.46 2.51
AdvDM(-) 137.77 131.34| 11.75 1214 | 0.38 0.42 0.37 0.47 2.09 2.61

Glaze 215.03 167.13| 989 10.76 | 0.20 0.29 0.47 0.54 2.23 2.79
SDS(+) 367.32 164.27| 9.78 11.01 | 0.21 0.35 0.21 0.56 1.62 2.80
SDS(-) 132.55 13394| 11.87 1214 | 0.39 0.42 0.35 0.44 2.01 248
SDST 268.10 169.12| 1021 11.08 | 0.25 0.37 0.40 0.47 2.58 2.51
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Figure 10: Counts of masked times for each kernel under different perturbations (AntiDB
and SDST) and datasets. We consider all the kernels that have been masked at least once in all
experiments, the color of each square denotes masked times of each kernel under same datasets.
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