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ABSTRACT

Diffusion models have demonstrated outstanding generative capabilities but re-
main vulnerable to adversarial perturbations. These perturbations, originally in-
tended for data copyright protection, expose a critical robustness weakness in dif-
fusion models. Existing defenses mainly based on data purification, which require
prior assumptions and incur high computational costs. In this work, we investi-
gate the impact of perturbations on different modules of diffusion models and
introduce Inversion-Guided Weight Masking and Patching (IMAP), a purification-
free method designed to restore diffusion models customized on adversarially
perturbed data. Our approach first applies a prompt re-mapping strategy before
customization. We then use DDIM inversion to identify critical convolutional ker-
nels affected by perturbations and perform weight masking and adaptive patching
to restore the model. IMAP requires no clean data or costly per-image purifi-
cation. Extensive experiments on CelebA-HQ and VGGFace2 demonstrate that
IMAP significantly improves generation quality under various adversarial scenar-
ios. Furthermore, through comparisons with purification-based techniques, we
demonstrate the effectiveness of IMAP and show that it can be effectively inte-
grated with existing purification-based methods.

1 INTRODUCTION

Diffusion models have achieved remarkable success across various generative tasks (Ho et al.,
2020; Song et al., 2021b; Rombach et al., 2022), including text-to-image synthesis (Song et al.,
2021b; Rombach et al., 2022; Dhariwal & Nichol, 2021; Gafni et al., 2022), image-to-image trans-
lation (Saharia et al., 2022; Parmar et al., 2023), image editing (Meng et al., 2022; Hertz et al.,
2023; Tumanyan et al., 2023), and time-series applications (Croitoru et al., 2023; Lin et al., 2024).
Among these, Stable Diffusion (Rombach et al., 2022) stands out for its strong generative ability
and flexibility. Moreover, existing methods like DreamBooth (Ruiz et al., 2023) enable efficient cus-
tomization using only a small amount of samples, and boost the wide adoption of diffusion models
in generative applications.

Despite their generative ability, diffusion models exhibit a critical weakness: low robustness to ad-
versarial attacks (Van Le et al., 2023; Liang et al., 2023; Xue et al., 2023; Shan et al., 2023; Liang
& Wu, 2023; Liu et al., 2024b). In particular, customized models fine-tuned on adversarial data
can suffer from severe degradation in synthesis quality. Data providers can add carefully designed
perturbations to the clean data to generate adversarial data, especially in text-to-image scenario.
These perturbations preserve semantic meaning but severely mislead the model during learning.
Specifically, when given a text prompt corresponding to a target concept such as a specific iden-
tity or painting style, the model fails to generate accurate and high-quality images that match the
target concept. However, previous studies have also observed that when generating images with
prompts different from those used during training, customized diffusion models can still reproduce
the targeted concept with high quality (Liu et al., 2024a; Wan et al., 2024). This indicates that the
model has actually learned the perturbed concept. Liu et al. further point out that data perturbations
exploit the shortcut learning vulnerabilities of customized diffusion models, causing a latent-space
misalignment between images and prompts (Liu et al., 2024a).
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Prompt: e.g. “a photo of sks person”
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Figure 1: Illustration of shortcut learning issue and our approach. Top row shows the effect of
adversarial perturbation on diffusion model customization, and the rest rows illustrate our approach.

To address such perturbations, recent work has focused mainly on purification-based methods (Zhao
et al., 2024; Cao et al., 2023; Hönig et al., 2024). These approaches aim to remove the perturbation
from the data before customization by some image purification techniques. While effective to some
extent, purification-based methods face several limitations. First, without prior knowledge of the
clean data distribution, purification can introduce uncontrolled alterations to critical content. The
model’s ability to learn the intended concept then depends on whether the purified data match the
clean distribution. Second, these methods often require expensive, per-image optimization steps.

In this work, we investigate the impact of adversarial perturbations on different modules of diffusion
models and propose Inversion-Guided Weight Masking and Patching (IMAP): a purification-free
restoration for diffusion models on perturbed data. We address shortcut vulnerabilities at the model
level by restoring compromised shortcuts, as shown in Figure 1. Our approach first applies a prompt
re-mapping technique before customization. We then leverage DDIM inversion (Song et al., 2021a)
to investigate the convolutional layers that highly correlate with perturbations. DDIM inversion
allows us to reverse the diffusion process and reconstruct the initial noise from a generated image.
To our best knowledge, this is the first application of DDIM inversion for defending diffusion models
against data perturbations. Finally, we perform weight masking and adaptive patching to restore the
model. Extensive experiments under various perturbations demonstrate that IMAP-defended models
better generate the intended concepts. In summary, our contributions are as follows:

• We investigate how data perturbations impact diffusion models and propose a novel
method, IMAP, to handle these challenging scenarios. IMAP restores abnormal shortcuts,
effectively eliminating generation inconsistencies without needing access to clean data or
relying on data purification.

• We conduct extensive experiments on CelebA-HQ (Karras et al., 2018) and VGGFace2
(Cao et al., 2018), comparing various perturbation methods using multiple metrics. The
results demonstrate the effectiveness of our approach.

• We further conduct comparative experiments with two advanced purification-based meth-
ods (Hönig et al., 2024; Cao et al., 2023), and the experimental results demonstrate
the superiority of our approach. Additionally, our method can be integrated with these
purification-based techniques to further enhance performance.

2 RELATED WORKS

Customized text-to-image diffusion models. Text-to-image diffusion models (Ho et al., 2020;
Song et al., 2021b; Rombach et al., 2022; Dhariwal & Nichol, 2021; Gafni et al., 2022) generate
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high-fidelity images from textual prompts using U-Net (Ronneberger et al., 2015) based denoising
backbones. Latent diffusion models (LDMs) (Rombach et al., 2022) further improve efficiency by
operating in a learned latent space. To condition image generation, prompts are embedded via text
encoders and injected into the diffusion process. Recent methods such as DreamBooth (Ruiz et al.,
2023), Textual Inversion (Gal et al., 2023), and ControlNet (Zhang et al., 2023) allow for low-cost
customization on small-scale data.

Adversarial perturbations and defenses in diffusion models. Recent works have introduced data
perturbations into diffusion pipelines to protect data from unauthorized usage (Van Le et al., 2023;
Liang et al., 2023; Xue et al., 2023; Shan et al., 2023; Salman et al., 2023). These perturbations,
inspired by adversarial attacks on classification models, aim to preserve semantic meaning in data
for human recognition yet harmful to generative models. PhotoGuard (Salman et al., 2023) counters
image editing. Glaze (Shan et al., 2023) prevents diffusion models from mimicking an artist’s style.
Anti-DreamBooth (Van Le et al., 2023) targets DreamBooth customization method. AdvDM and
SDS serires (Liang et al., 2023; Xue et al., 2023) optimize perturbations to interfere with learning,
while PAP (Wan et al., 2024) proposes the first prompt-agnostic method.

Defenses include purification-based approaches such as IMPRESS (Cao et al., 2023), GrIDPure
(Zhao et al., 2024), and Noisy-Upscaling (Hönig et al., 2024), but they incur high overhead and risk
distorting useful content. Liu et al. (2024a) propose a causal defense via contrastive decoupling, still
requiring data purification. Model unlearning has also been explored as a defense against adversarial
attacks (Truong et al., 2025), but most approaches rely on clean data for concept restoration, making
them unsuitable for scenarios where such data is unavailable. To the best of our knowledge, existing
diffusion-related works lack methods that address adversarial data by leveraging the model’s own
capacity instead of external priors.

Shortcut learning. Shortcut learning occurs when models rely on spurious correlations instead of
core semantics (Geirhos et al., 2020). This phenomenon underlies both backdoor attacks (Wang
et al., 2019) and adversarial vulnerabilities. Liu et al. (2024a) highlight how adversarial examples
in customized diffusion models can exploit such shortcuts. While this issue is well-studied in clas-
sification tasks, shortcut learning in diffusion models remains relatively underexplored.

3 PRELIMINARIES

Diffusion process. Diffusion models are a type of generative models, including a forward diffusion
process and a reverse process. Let ϵ ∼ N(0, 1) and ᾱt denotes

∏t
i=1 αi. For a given data sample x0

and timestep t ∈ [1, T ], diffusion model gradually adds Gaussian noise onto it to get xt according
to Eq. (1) in the forward process, where αt = 1− βt and βt ∈ (0, 1) is the variance schedule.

xt =
√
αtxt−1 +

√
1− αtϵ =

√
ᾱtx0 +

√
1− ᾱtϵt, (1)

In the reverse process, the model learns to denoise from xt+1 by minimizing the L2 distance be-
tween the noise ϵ̂t predicted by the neural network θ and the true noise ϵt used in the forward process.
The loss function for conditional diffusion models with text prompt c is as follows:

LDM
cond(θ, x0) = Ex0,t,c,ϵ∈N(0,1)||ϵ− ϵ̂xt+1,t,c||22. (2)

DreamBooth. DreamBooth (Ruiz et al., 2023) is a type of parameter efficient fine-tuning method
to personalize text-to-image diffusion models. For a given concept ‘sks’ and the class name ‘[class
noun]’ of the concept, DreamBooth learns the new concept by a generic prompt c, such as “a photo
of sks [class noun]”, and a prior prompt cpr like “a photo of [class noun]”. First, DreamBooth
generates a set of class images randomly with the frozen pretrained model and cpr. To fine-tune
the pretrained model on concept sks while preventing language drift, based on Eq. (2), DreamBooth
employs a two-part training loss as Eq. (3):

LDM
db (θ, x0) = Ex0,t,t′ ||ϵ− ϵ̂xt+1,t,c||22 + λ||ϵpr − ϵ̂x′

t′+1
,t′,cpr ||

2
2, (3)

where ϵ, ϵpr ∈ N(0, 1), λ is a hyperparameter that adjusts the importance of prior loss, x′ is sampled
from the class-image dataset, and x′

t′+1 is the noisy variable of x′.
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DDIM inversion. Given an image x0, using the deterministic DDIM (Song et al., 2021a) formu-
lation, DDIM inversion estimates the noise latent xT such that the denoising process approximately
reconstructs x0 under a fixed noise schedule by approximating ϵ̂xt+1,t,c with ϵ̂xt,t,c:

xt+1 =

√
αt+1√
αt

(
xt −

√
1− αt · ϵ̂xt,t,c

)
+

√
1− αt+1 · ϵ̂xt,t,c. (4)

4 METHODOLOGY

4.1 MOTIVATION

Building on the observation by Liu et al. (2024a) that adversarial perturbations cause shortcut learn-
ing by creating a mismatch between images and prompts, we conducted controlled experiments to
isolate their effects on the text encoder (TE) and U-Net. Our detailed analysis, provided in Ap-
pendix A, reveals that each component plays a distinct role in generating perturbed outputs. We
found that a perturbed TE embeds misleading, noise-like semantics, leading to artifacts like dis-
torted backgrounds. A perturbed U-Net then reinforces this behavior by adopting faster but less
stable generation paths. A further investigation localized the most significant adversarial effects to
specific U-Net modules, particularly UpBlock1 and DownBlock2/3. Motivated by these findings,
our work proposes a comprehensive solution to repair the vulnerabilities in both the U-Net and the
TE, allowing us to fix the model with minimal intervention.

4.2 IMAP: INVERSION-GUIDED WEIGHT MASKING AND PATCHING

DreamBooth FT on 
adversarially 

perturbed dataset

(a)
Applying mask

Mask

DDIM Inversion

Base DM

SD 2.1

Fine-tuned

DM

Final

DM
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As instance 

data
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As class data

DreamBooth FTAs class data

Sample
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Sample
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: a photo of sks person
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: a photo of noised sks person
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“a photo of noised sks person”;

“a DSLR portrait of noised sks person”.

(b) (c)

Mask construction

method

Prompt re-mapping
Original prompt: a photo of sks person

Modified prompt: a photo of  sks personnoised

Figure 2: Method Overview. Our method consists of three stages: (a) fine-tuning, (b) weight
masking, and (c) patching. In (a), we re-map the text prompt before DreamBooth fine-tuning to
separate concept and perturbation. In (b), we apply a weight mask to the fine-tuned model, guided
by DDIM inversion. In (c), we perform adaptive patching using data synthesized by the base model.

In this section, we study a challenging scenario where a diffusion model is fine-tuned solely on
perturbed data without access to the corresponding clean images. These perturbations are visually
imperceptible but are intentionally crafted to manipulate the model’s behavior at inference time.
Our goal is to understand how such perturbations affect the internal components of the model, and
to recover faithful generation performance despite the absence of clean supervision.

Let D = {(xi, c)}Ni=1 be a dataset of perturbed images xi = fp(x
i
clean), where fp is an unknown

data perturbation function, and c is the shared training prompt. Let θpre denote the parameters of a
pretrained diffusion model, and θ the parameters after DreamBooth fine-tuning on dataset D. Due to
the perturbations, the model θ tends to generate anomalous or irrelevant content, even when provided
with a correct prompt. Our goal is to estimate updated model parameters θ∗, such that:

∀c ∈ C, G(θ∗, c) ≈ G(θclean, c), (5)

where G(θ, c) denotes the image generated by model θ given prompt c, and θclean is a hypothetical
model fine-tuned on the clean dataset {(xi

clean, c)}, which is not accessible in practice.
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Figure 3: Mask construction method. The method output a mask for given D and Di
g with a preset

threshold (2% in the figure), where i ∈ {A,B,C}. In DDIM inversion process, we focus on the
convolutional layers of the target blocks as we mentioned in Section 4.1, and we obtain the feature
maps to distinct kernels that contribute most in shortcut generating.

To address this challenge, we propose a lightweight correction framework with three stages: fine-
tuning, weight masking, and patching. We first fine-tune the model using only perturbed samples
via DreamBooth, with slightly modified prompts to semantically decouple the protected content
from the perturbation. In the masking stage, we analyze intermediate U-Net activations to identify a
small set of kernels consistently correlated with adversarial signals and set them to zero. Finally, we
patch the model using synthetic data generated by the pretrained model to restore the target concept
without reinforcing adversarial patterns. An overview of the pipeline is shown in Figure 2.

Prompt re-mapping for concept-perturbation separation. In our fine-tuning stage, we introduce
a prompt re-mapping strategy to link the perturbed concept to a specific term rather than the original
one. For a concept ‘sks’ and its class name ‘[class noun]’, we use the prior prompt cpr like “a photo
of [class noun]” for DreamBooth. Instead of the standard instance prompt “a photo of sks [class
noun]”, we modify it to “a photo of noised sks [class noun]”. This adjustment explicitly conditions
the model to associate the perturbed concept with the term ‘noised sks’ instead of ‘sks’, allowing
us to leverage the differences in the generation process between terms–‘sks’, ‘noised’, and ‘noised
sks’–and the perturbed images. It helps isolate perturbation-related activations, enabling targeted
masking that suppresses spurious kernels while preserving core concept features.

Inversion-guided weight masking. Liu et al. (2024a) show that adversarial perturbations trigger
shortcut learning in customized diffusion models. Neural Cleanse (Wang et al., 2019) attributes the
success of backdoor attacks in DNNs to shortcut learning, and mitigates them via trigger inversion,
masking, and patching. Inspired by this, we analyze generation in DMs via DDIM inversion, apply
masking to suppress perturbation-sensitive activations, and patch with clean data to recover fidelity.
See Figure 3.

In our masking stage, after fine-tuning the model on perturbed dataset D, we synthesize three refer-
ence datasets Dg = {DA

g , D
B
g , DC

g } using prompts: cA–“a photo of sks [class noun]”, cB–“a photo
of noised [class noun]” and cC–“a photo of noised sks [class noun]”. For each {Di

g, c
i}, we apply

DDIM inversion to extract feature maps F i of the convolutional layers. Similarly, we obtain F p

for the perturbed training set D. We compute distances Dist(F i, F p) and select kernels with high
similarity or difference under a predefined threshold Thr:

Si
sim, Si

diff = Select(Dist(F i, F p), Thr), Ssim =
⋃

Si
sim, Sdiff =

⋃
Si
diff . (6)

Inspired of Plug-and-Play (Tumanyan et al., 2023) and FreeControl (Mo et al., 2024), we build se-
mantic basis for F p via PCA to handle the high dimension vectors. We then compute the Wasserstein
distance (WD) between F i and its PCA-based reconstruction:

basis, F p
PCA = PCA(F p), Dist(F i, F p) = WD(F i, Recon(Proj(F i, basis)). (7)

Empirically, Ssim tends to capture low-quality artifacts shared across the three prompts due to
perturbation-induced shortcuts. In contrast, Sdiff highlights kernels sensitive to semantic changes.
Thus, we define the final mask as S = Ssim − Sdiff , preserving concept-relevant activations while
suppressing perturbation-sensitive ones.

5
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Adaptive patching via targeted fine-tuning. Even though the masking stage zeroes out kernels that
are highly correlated with the perturbations, the model still fails to generate ideal images. From the
perspective of shortcut learning, this is because, despite removing the most perturbation-sensitive
kernels, the specified prompt can still induce the remaining kernels to shift the generation process
toward the shortcut. Similar findings have been observed in DNNs: NC demonstrated that while the
top 1% of neurons are highly correlated with backdoor-induced shortcuts, removing at least 30% of
the neurons is necessary to completely eliminate the effect (Wang et al., 2019). This phenomenon
can be attributed to the massive redundancy in neural pathways in DNNs (Hu et al., 2016).

However, in diffusion models, we cannot afford to zero out numerous kernels, as this would signifi-
cantly reduce the model’s feature extraction capability, leading to the inability to generate meaning-
ful images. Thus, we further introduce an adaptive patching strategy based on our earlier prompt
re-mapping. It repairs masked U-Net kernels and restores the text encoder’s capacity to capture
task-relevant semantics, effectively suppressing shortcuts without compromising content fidelity.

In the previous stages, we fine-tuned the model using the modified prompt cC , linking the perturbed
concept to the term ‘noised sks’. In adaptive patching stage, our goal is to restore the guiding role
of the term ‘noised’. Specifically, we leverage the pretrained model (i.e., the base model before fine-
tuning) to generate a dataset Dpt using prompt cB with ‘noised’ term in advance. We then fine-tune
the pruned model with Dpt via DreamBooth to perform adaptive model-parameter correction, ensur-
ing that both the U-Net and text encoder are restored and the term ‘noised’ can correctly contribute
to the generation process. In this stage, we use the prior class prompt cpr as before. This patching
step serves to fix the pruned kernels by reinforcing the model’s ability to handle the ‘noised’ text
term while preventing it from falling back to shortcut-based generation.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and perturbations. We conduct our experiments on human-face generation task using
the CelebA-HQ (Karras et al., 2018) and VGGFace2 (Cao et al., 2018) datasets. For each dataset,
we randomly choose 5 different identites, and 4 clean images per identity with adversarial images
conducted via seven types of perturbations: AntiDB, AdvDM(+/-), Glaze, SDS(+/-), SDST, where
(+/-) denotes the use of gradient ascent/descent to construct the perturbation.

Customization settings. We choose the latest Stable Diffusion v2.1 as the pretrained base DM, and
adopt DreamBooth (Ruiz et al., 2023) to customize DMs on both clean and adversarial data. We
generate 200 pics by the base DM to build the class images for DreamBooth using the prior prompt
cpr : “a photo of person”. For each model, we use a text prompt “a photo of [term] person”as instance
prompt c for training and two prompts: ctrain-“a photo of [term] person” and cdiff -“a dslr portrait
of [term] person” for sampling, where [term] is settled as ‘sks’ for the clean fine-tuned models and
‘noised sks’ for both baseline our IMAP restored models under different perturbations. We run
experiments on 4 NVIDIA RTX A6000 (48G) GPUs. More details are provided in Appendix B.2.

Evaluation metrics. We evaluate our IMAP restored method by generating 30 pics per prompt per
model. The Full Reference (FR) metrics, FID (Heusel et al., 2017), SSIM (Wang et al., 2004), and
PSNR compare images generated by our baseline or IMAP models against those generated by the
clean-ft models in terms of distributional similarity, structural fidelity, and pixel-level accuracy, and
the No Reference (NR) metrics, TOPIQ (topiq nr swin face) (Chen et al., 2024; Qin et al., 2023)
and QAlign (qalign 8bit) (Wu et al., 2024) measure face quality without reference. All metrics are
implemented using the IQA-PyTorch toolbox (Chen & Mo, 2022).

5.2 EFFECTIVENESS OF IMAP UNDER DIFFERENT ADVERSARIAL PERTURBATIONS

Our IMAP method aims to mitigate the impact of adversarial perturbations on customized DMs,
while preserving the integrity of the newly learned concept. We evaluate its effectiveness through a
series of comparative experiments, where different perturbation strategies are applied.

Figure 4 illustrates representative image generation results under various adversarial perturbations
on the VGGFace2 dataset. As shown in the figure, our IMAP defense significantly improves gener-
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Figure 4: Visual comparison of images generated by customized diffusion models under differ-
ent adversarial perturbations(with and without IMAP). Each column corresponds to a different
perturbation method applied during fine-tuning. IMAP consistently improves robustness against
perturbations while preserving the identity of the learned concept. See Appendix for more results.

Table 1: Quantitative evaluation on VGGFace2 across multiple metrics under different sam-
pling prompt settings. ↓/↑ indicate that lower/higher values are better. We compare IMAP-defensed
models against baselines customized on various types of perturbed data. Results are reported under
both sampling prompts (ctrain and cdiff ) as well as individually. Each value is the average metric
over models trained on 5 data identities per dataset; see Appendix for results under each identity.

Adversarial
Perturbations

FID↓ PSNR↑ SSIM↑ TOPIQ↑ QAlign↑

Baseline IMAP Baseline IMAP Baseline IMAP Baseline IMAP Baseline IMAP

Both prompts: ctrain, cdiff

AntiDB 377.84 159.41 9.38 10.96 0.21 0.35 0.20 0.56 1.55 2.75
AdvDM(+) 397.33 184.83 9.05 10.76 0.20 0.34 0.13 0.54 1.43 2.48
AdvDM(-) 147.99 136.43 11.12 11.72 0.38 0.42 0.34 0.46 1.97 2.59
Glaze 224.52 170.91 9.11 10.39 0.21 0.31 0.34 0.51 1.60 2.59
SDS(+) 378.86 183.22 9.38 10.86 0.21 0.35 0.16 0.55 1.49 2.81
SDS(-) 147.67 142.90 11.10 11.78 0.38 0.42 0.32 0.39 1.91 2.31
SDST 327.41 199.61 10.02 10.92 0.28 0.36 0.35 0.47 2.12 2.54

Train prompt: ctrain

AntiDB 438.98 206.38 8.84 9.67 0.18 0.27 0.12 0.47 1.51 2.15
AdvDM(+) 453.04 253.01 8.59 9.45 0.18 0.25 0.07 0.42 1.42 1.72
AdvDM(-) 167.60 186.53 10.92 10.47 0.35 0.35 0.35 0.38 2.04 2.23
Glaze 234.71 224.88 8.58 8.83 0.16 0.19 0.30 0.33 1.39 1.65
SDS(+) 428.63 258.50 8.85 9.58 0.19 0.25 0.12 0.40 1.43 2.02
SDS(-) 172.89 187.84 10.68 10.67 0.34 0.36 0.33 0.34 1.94 2.10
SDST 332.71 269.40 10.00 10.05 0.26 0.29 0.39 0.38 2.25 2.08

Diff prompt: cdiff

AntiDB 361.33 165.05 9.92 12.24 0.24 0.44 0.27 0.66 1.60 3.35
AdvDM(+) 380.05 166.96 9.50 12.07 0.23 0.43 0.18 0.66 1.45 3.24
AdvDM(-) 174.16 131.46 11.32 12.97 0.42 0.50 0.34 0.53 1.90 2.95
Glaze 257.25 164.92 9.64 11.95 0.25 0.42 0.39 0.70 1.81 3.52
SDS(+) 367.77 160.44 9.92 12.15 0.23 0.44 0.20 0.69 1.55 3.60
SDS(-) 162.26 140.05 11.53 12.90 0.42 0.49 0.32 0.45 1.87 2.51
SDST 366.41 178.62 10.04 11.78 0.30 0.44 0.32 0.56 1.98 3.01
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Table 2: Quantitative evaluation on CelebA-HQ across multiple metrics using both sampling
prompts. See Appendix for results under each prompt individually.

Adversarial
Perturbations

FID↓ PSNR↑ SSIM↑ TOPIQ↑ QAlign↑

Baseline IMAP Baseline IMAP Baseline IMAP Baseline IMAP Baseline IMAP

AntiDB 226.25 137.58 10.29 11.08 0.22 0.34 0.48 0.64 2.12 3.08
AdvDM(+) 387.31 182.72 9.56 10.87 0.21 0.34 0.12 0.53 1.46 2.51
AdvDM(-) 137.77 134.69 11.75 12.09 0.38 0.42 0.37 0.47 2.09 2.63
Glaze 215.03 171.86 9.89 10.69 0.20 0.29 0.47 0.54 2.23 2.78
SDS(+) 367.32 162.34 9.78 10.95 0.21 0.34 0.21 0.56 1.62 2.81
SDS(-) 132.55 133.95 11.87 12.18 0.39 0.42 0.35 0.44 2.01 2.46
SDST 268.10 164.48 10.21 10.97 0.25 0.37 0.40 0.47 2.58 2.42

ation quality compared to the baseline, especially under AntiDB, AdvDM(+) and SDS(+) perturba-
tions. In these settings, the baseline models fail to generate recognizable human faces and instead
produce outputs heavily corrupted with structured noise patterns. In contrast, IMAP effectively
mitigates or even eliminates such artifacts, yielding cleaner and more realistic results.

For AdvDM(-) and SDS(-), while baseline outputs are blurry yet still depict identifiable faces, IMAP
generates sharper and more coherent results. Under Glaze and SDST, IMAP also brings noticeable
improvements, though to a lesser extent. In particular, SDST introduces structured noise that IMAP
cannot fully remove but significantly mitigates, leading to higher-fidelity face reconstructions.

Moreover, IMAP suppresses noise more effectively when sampling with the fine-tuning prompt ctrain
used during fine-tuning. With a different prompt cdiff, it continues to generate sharp images while
better preserving key facial attributes, demonstrating its generalization beyond the training prompt.

Table 1 presents quantitative results on the VGGFace2 dataset, comparing IMAP against different
baselines under three prompt settings: both prompts (ctrain and cdiff) jointly, and each individually.
Under the joint setting, IMAP significantly improves generation performance across all metrics.
Notably, it reduces FID by up to 58% (e.g., AntiDB: 377.84 → 159.41) achieves a threefold im-
provement in TOPIQ (e.g., AntiDB, AdvDM(+), SDS(+)), demonstrating strong robustness and
effectiveness. Overall, IMAP consistently yields greater improvements under cdiff than ctrain. For
instance, in the ctrain setting with AdvDM(-) and SDS(-), IMAP slightly underperforms the baseline
in FID and PSNR, while still outperforming it in other metrics. This may be because these pertur-
bations primarily cause mild blurring rather than major distributional shifts. Moreover, since ctrain is
used during fine-tuning, it may be more tightly entangled with the perturbation, making it harder to
correct distributional shifts than to improve perceptual facial quality. Results on CelebA-HQ dataset
under both prompts are reported in Table 2, with per-prompt results included in Appendix D.2.

5.3 COMPARATIVE EXPERIMENTS BETWEEN IMAP AND DIFFERENT PURIFICATION
METHODS

Clean fine-tuned Baseline

A
d

v
D

M
(-

)
A

d
v
D

M
(+

)

IMAP NU+IMAP IMPRESS IMPRESS+IMAPNU

Figure 5: Visual comparison results between IMAP and different purification-based methods.

To validate the efficiency and practical applicability of IMAP, we selected two advanced purification
methods for comparison: Noisy-Upscaling (Hönig et al., 2024) and IMPRESS (Cao et al., 2023).
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Table 3: Quantitative evaluation on VGGFace2 across multiple metrics under two experimen-
tal conditions: using only the purification method versus using both purification and IMAP.
See Appendix for results under each prompt individually.

Adversarial
Perturbations

FID↓ PSNR↑ SSIM↑ TOPIQ↑ Qalign↑

Purify
only

Purify
+IMAP

Purify
only

Purify
+IMAP

Purify
only

Purify
+IMAP

Purify
only

Purify
+IMAP

Purify
only

Purify
+IMAP

Purification method:Noisy-Upscaling

AntiDB 107.58 116.45 11.09 11.19 0.38 0.39 0.60 0.62 3.10 3.19
AdvDM(+) 204.58 143.68 9.95 10.80 0.25 0.34 0.38 0.55 1.75 2.71
AdvDM(-) 109.27 111.95 11.20 11.32 0.41 0.41 0.54 0.56 2.75 2.98
Glaze 109.29 112.54 11.11 11.36 0.37 0.39 0.56 0.59 2.84 3.02
SDS(+) 238.37 157.12 9.97 10.84 0.22 0.33 0.35 0.55 1.63 2.73
SDS(-) 114.54 111.15 10.91 11.51 0.39 0.42 0.51 0.53 2.63 2.78
SDST 170.38 146.44 10.27 10.85 0.31 0.37 0.46 0.52 2.38 2.75

Purification method:IMPRESS

AntiDB 312.22 167.46 9.70 11.12 0.21 0.35 0.28 0.55 1.55 2.69
AdvDM(+) 388.10 190.75 9.36 10.61 0.20 0.34 0.17 0.52 1.59 2.54
AdvDM(-) 145.07 137.96 10.87 11.58 0.40 0.43 0.31 0.39 1.76 2.19
Glaze 236.11 179.68 9.16 10.43 0.22 0.32 0.34 0.51 1.61 2.55
SDS(+) 350.50 198.51 9.46 10.71 0.20 0.33 0.22 0.51 1.52 2.60
SDS(-) 140.37 144.29 10.77 11.33 0.39 0.41 0.34 0.40 1.83 2.30
SDST 346.76 216.40 9.47 10.47 0.26 0.34 0.30 0.42 2.22 2.37

Under the recommended settings from their respective papers, we measured the additional com-
putation time required by each method compared to the baseline. Using a single NVIDIA RTX
A6000 (48GB) GPU, for processing 4 protected images per training task, Noisy-Upscaling required
approximately 10 minutes, while IMPRESS needed about 40 minutes. In contrast, IMAP required
approximately 30 minutes for masking and patching. However, it is important to note that IMAP’s
computation time is independent of the size of the training dataset. Therefore, when dealing with
large training sets for the same concept, IMAP demonstrates significantly better efficiency than
purification-based methods.

Since IMAP and purification-based methods target different stages of customization, they can
be used in combination. In Table 3, we present partial experimental results under VGGFace2,
which clearly show that applying IMAP after training can substantially enhance the effectiveness
of purification-based methods. Furthermore, by comparing the IMAP column in Table 1 with the
Purify-Only column in Table 3, we observe that in standalone experiments, IMAP’s performance
generally falls between that of IMPRESS and Noisy-Upscaling. In Figure 5, we show the visual
comparison of different methods under two perturbations for brevity. Given IMAP’s high efficiency
and flexibility in combining with purification-based methods, we believe IMAP provides a practi-
cal and scalable solution for model protection tasks, particularly in scenarios involving large-scale
training datasets. Experimental results under CelebA are shown in Appendix D.3.

6 CONCLUSION

This paper proposes IMAP, a purification-free framework for restoring diffusion models affected by
data perturbations. We investigate how such perturbations alter the relationship between text em-
beddings and the U-Net backbone in customized diffusion models. IMAP addresses shortcut vul-
nerabilities through prompt re-mapping, weight masking, and adaptive patching, without requiring
clean concept data. Extensive experiments across multiple perturbations and facial datasets demon-
strate that IMAP improves distribution consistency and facial clarity of generated images, effectively
mitigating the impact of adversarial perturbations. Notably, IMAP achieves higher computational
efficiency than purification-based methods—particularly for large-scale datasets—as its runtime is
independent of training data size. Moreover, IMAP shows strong compatibility with purification
techniques, and their combined use significantly enhances robustness against perturbations.
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TECHNICAL APPENDICES

• A. Detailed Motivation and Preliminary Experiments
• B. Details of Experimental Setting and Access to Code

– B.1. Access to Code and Compute Resources
– B.2. Detailed Settings for Model Customization
– B.3. Detailed Settings for Adversarial Perturbations
– B.4. Detailed Settings for IMAP

• C. More Visual Comparison of Generated Images
• D. Supplementary Experimental Results

– D.1. Error Bars
– D.2. Supplementary Results for Section 5.2
– D.3. Supplementary Results for Section 5.3
– D.4. Evaluating IMAP Transferability with Fixed-Masks across Datasets

A DETAILED MOTIVATION AND PRELIMINARY EXPERIMENTS

Since Liu et al. (2024a) show that adversarial perturbations leads to shortcut learning in customized
diffusion models by causing a mismatch between images and prompts in latent space, we build on
this idea to study how adversarial perturbations affects the relationship between text embeddings
and the U-Net.

C-TE P-TE

C
-U

N
et

50 steps

(a) (b) (c)

(d) (e) (f)

100 steps

P
-U

N
et

Figure 6: Sample outputs of mixed text en-
coder (TE) and U-Net combinations. C-TE/C-
UNet and P-TE/P-UNet refer to models fine-
tuned on clean and perturbed data (via Anti-
DreamBooth), respectively. Left column shows
outputs with 50 denoising steps; middle and
right columns show outputs with 100 steps.

Impact of perturbed fine-tuning on text en-
coder and U-Net.

We first generate adversarial data using Anti-
DreamBooth (Van Le et al., 2023), then fine-tune
for 1000 DreamBooth steps on both clean and ad-
versarial datasets, respectively. As shown in Fig-
ure 6, we swap TE and U-Net between the two
models and compare the outputs. This lets us iso-
late the effects of adversarial data on the text en-
coder (TE) and U-Net.

Comparing Figure 6 (c) and (f), we find that P-
TE with C-UNet still generates clear facial fea-
tures, but the background shows complex patterns
similar to the fully perturbed model (P-TE/P-
UNet). This suggests that the perturbed TE em-
beds noise-like semantics, while the clean U-Net
preserves core features and suppresses part of the
adversarial effect. In contrast, C-TE with P-UNet
produces clean outputs close to the fully clean
model (C-TE/C-UNet), showing that P-UNet can
still generate well if the text embedding is not
adversarially manipulated. This highlights that
both TE and U-Net contribute to the final qual-
ity. P-TE leverages the generation capacity of C-
UNet to inject misleading semantics, leading to
background artifacts despite preserved identity. P-UNet further reinforces this shortcut behavior,
strengthening the adversarial signal and driving the model away from clean generation.

Interestingly, under the same clean TE, reducing the denoising steps (e.g., from 100 to 50) allows the
mixed model (C-TE/P-UNet) to outperform the clean model in both speed and image quality. This
suggests that P-UNet learns a rough but stable generation path that converges faster. Similar behavior
is observed in adversarial training, where models skip fine details but gain stability. In contrast, C-
UNet captures more structure but is sensitive to the initial state, making denoising harder with fewer
steps. P-UNet tends to follow shortcut-like recovery paths that are quicker and more robust.
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Localization of adversarially affected U-Net modules.

To identify the key U-Net modules that contribute most to adversarial effects, we perform another
experiment on both clean and perturbed data with frozen TE. We fine-tune only the U-Net and then
construct a mixed model (M-UNet) by replacing minimal blocks in the perturbed U-Net (P-UNet)
with the corresponding blocks from the clean one (C-UNet). By comparing the outputs, we aim for
M-UNet to recover clean-like results. This analysis highlights UpBlock1 and DownBlock2/3, and
DownBlock3 as the most impactful blocks. A visual comparison is shown in Figure 7.

C-UNet P-UNet M-UNet C-UNet P-UNet M-UNet C-UNet P-UNet M-UNet C-UNet P-UNet M-UNet

Figure 7: Comparison of images generated by different U-Net block combinations, with frozen
TE during fine-tuning. C/P/M-UNet refer to clean, perturbed, and mixed models. M-UNet replaces
UpBlock1, DownBlock2, and DownBlock3 in P-UNet with the corresponding blocks from C-UNet.
The U-Net consists of has four DownBlocks, one MidBlock, and four UpBlocks, indexed from zero.

B DETAILS OF EXPERIMENTAL SETTING AND ACCESS TO CODE

B.1 ACCESS TO CODE AND COMPUTE RESOURCES

An anonymous repository has been provided for code access during the review process:

https://anonymous.4open.science/r/IMAP-anonymous

Although all experiments can be executed on a single NVIDIA RTX A6000 GPU (48 GB), we
conduct our experiments using 4 such GPUs to parallelize experiment runs.

For each dataset, the full experimental pipeline takes approximately 28 hours on a single NVIDIA
RTX A6000 (48 GB) GPU. This includes training a total of 75 models and sampling 60 images (30
per prompt) for each model: (1 clean fine-tuned model, 7 perturbed baselines, and 7 IMAP-defended
models) × 5 identities.

B.2 DETAILED SETTINGS FOR MODEL CUSTOMIZATION

We use Stable Diffusion V2.1 as pretrained base model. For each experiment based on DreamBooth
customization method, we use 4 images as instance dataset, and generate 200 images using cpr as
class dataset Dpr. We set the training step to 1000, the learning rate to 5e-7, and the train batch size
to 2 during the fine-tuning stage. All input and generated images have a resolution of 512×512.

B.3 DETAILED SETTINGS FOR ADVERSARIAL PERTURBATIONS

We focus on the object-driven image synthesis in the context of human face generation, using the
VGGFace2 and CelebA-HQ datasets. For each dataset, we randomly choose 5 identities with 12
images per identity. The images are evenly split into three subsets: a clean reference subset, a target
subset, and an additional clean reference. Base on these subsets, we conduct the perturbed dataset
with 4 images per identity, with the original target subset as clean dataset.

All adversarial perturbation methods are evaluated under a fixed perturbation budget of δ = 16/255.
As Glaze does not provide access to its source code and does not allow control over the perturbation
budget, we use its maximum perturbation setting.

B.4 DETAILED SETTINGS FOR IMAP

In the weight masking stage, we generate 20 images per prompt for DDIM inversion, using 50
inversion steps. We compute the mean of the feature maps across timesteps 10 to 20, as the later
steps are essentially close to random noise.
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In the adaptive patching stage, we use the dataset Dpt, consisting of 200 images generated by the
pretrained model with the prompt cB-“a photo of noised person”- as the instance dataset. The class
dataset Dpr is the same as that used in the fine-tuning stage. The patching step is set to 1000, with
a learning rate of 5e-8.

C MORE VISUAL COMPARISONS OF GENERATED IMAGES

We provide additional visual comparisons of the generated images under different sampling prompts
between the baseline model and our IMAP-defended model. Samples under the ctrain prompt are
shown in Figure 8, while those under the cdiff prompt are shown in Figure 9.

These comparisons further illustrate the robustness and visual fidelity achieved by our proposed
defense.
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Figure 8: Visual comparison of images generated by customized diffusion models under differ-
ent adversarial perturbations and data identities using prompt ctrain. Each subfigure is titled
in the format dataset/data-identity. In each subfigure, the top row shows results from the clean
fine-tuned model, the middle row shows results from the baseline model, and the bottom row shows
results from the IMAP-defended model. Each column corresponds to a different adversarial pertur-
bation method.
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Figure 9: Visual comparison of images generated by customized diffusion models under differ-
ent adversarial perturbations and data identities using prompt cdiff .
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D SUPPLEMENTARY EXPERIMENTAL RESULTS

D.1 ERROR BARS

Due to customizing DMs on different identities for each dataset, the results may exhibit variations.
Thus, we conduct independent experiments under same settings for each identity, and then calculate
the mean and the standard deviation for each evaluated metric per dataset.

For each metric to be evaluated, we perform independent experiment under same settings and ran-
dom seed on N = 5 data identities for each dataset, obtaining N result values v1, v2, ..., vN . The
mean µ and the standard deviation σ of these values are calculated as follows:

µ =
1

N

N∑
i=1

vi (8)

σ =

√√√√ 1

N − 1

N∑
i=1

(vi − µ)2 (9)

D.2 SUPPLEMENTARY RESULTS FOR SECTION 5.2

We provide a more detailed quantitative evaluation with error bars, as shown in Table 4 to Table 13.

Specifically, the experiments from Table 4 to Table 8 correspond to the VGGFace2 dataset, and
the experiments from Table 9 to Table 13 correspond to the CelebA-HQ dataset. In the tables, we
provide a quantitative evaluation of the images generated by the baseline model and the IMAP-
defended model, compared to the clean fine-tuning model, under different metrics for each data
identity and perturbation.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 4: Quantitative evaluation on VGGFace2 under different sampling prompt settings
(FID↓).

Adersarial
Perturbations

Dataset: VGGFace2, Metric: FID↓

Identity n000050 n000057 n000058 n000063 n000138 mean std

Both prompts: ctrain, cdiff

AntiDB baseline 346.13 436.45 345.46 373.57 387.60 377.84 37.42
IMAP 159.83 124.27 128.33 212.96 171.67 159.41 36.12

AdvDM(+) baseline 411.30 437.97 361.70 413.97 361.72 397.33 34.14
IMAP 170.72 154.72 166.23 208.13 224.34 184.83 29.81

AdvDM(-) baseline 158.14 122.13 155.84 173.38 130.44 147.99 21.13
IMAP 145.29 122.02 111.25 161.41 142.18 136.43 19.86

Glaze baseline 271.04 176.92 216.95 246.48 211.18 224.52 35.87
IMAP 202.16 126.76 165.36 199.45 160.85 170.92 31.11

SDS(+) baseline 363.34 411.69 364.44 376.15 378.68 378.86 19.58
IMAP 155.11 161.73 176.57 209.58 213.09 183.22 26.85

SDS(-) baseline 169.26 122.73 145.04 172.03 129.31 147.67 22.50
IMAP 145.81 118.38 132.38 174.15 143.79 142.90 20.60

SDST baseline 329.68 299.14 363.41 320.32 324.47 327.41 23.23
IMAP 194.19 158.66 163.89 248.75 232.56 199.61 40.26

Train prompt: ctrain

AntiDB baseline 428.43 469.25 440.37 445.30 411.56 438.98 21.34
IMAP 180.41 181.47 174.64 283.27 212.09 206.38 45.41

AdvDM(+) baseline 444.74 472.07 436.34 475.97 436.07 453.04 19.52
IMAP 200.39 227.58 268.08 270.30 298.69 253.01 38.82

AdvDM(-) baseline 174.67 137.70 166.71 195.02 163.90 167.60 20.68
IMAP 182.59 148.32 159.60 234.92 207.25 186.53 35.26

Glaze baseline 236.26 190.02 221.05 267.64 258.59 234.71 30.99
IMAP 239.78 175.06 235.17 251.36 223.02 224.88 29.64

SDS(+) baseline 392.33 468.60 418.05 439.47 424.68 428.63 28.11
IMAP 186.12 253.12 271.76 290.18 291.30 258.50 43.37

SDS(-) baseline 190.56 134.91 171.12 189.96 177.87 172.89 22.77
IMAP 182.12 150.11 190.90 226.22 189.87 187.84 27.12

SDST baseline 292.33 298.78 386.70 358.38 327.36 332.71 39.95
IMAP 232.92 226.17 214.05 335.21 338.67 269.40 62.03

Diff prompt: cdiff

AntiDB baseline 320.13 440.80 287.71 358.75 399.24 361.33 60.98
IMAP 195.78 108.91 124.64 218.08 177.81 165.05 46.65

AdvDM(+) baseline 415.90 435.79 332.90 390.97 324.67 380.05 49.50
IMAP 192.39 131.34 108.42 208.30 194.36 166.96 44.16

AdvDM(-) baseline 186.30 144.32 191.00 200.54 148.65 174.16 25.83
IMAP 144.33 128.98 103.47 145.73 134.78 131.46 17.10

Glaze baseline 345.80 200.73 250.96 285.48 203.26 257.25 60.80
IMAP 204.98 138.47 141.95 198.17 141.01 164.92 33.58

SDS(+) baseline 371.00 389.44 353.05 348.29 377.07 367.77 17.05
IMAP 169.44 127.03 126.53 189.72 189.48 160.44 31.81

SDS(-) baseline 184.08 139.49 157.70 195.37 134.64 162.26 26.81
IMAP 146.89 123.70 115.57 170.38 143.73 140.05 21.49

SDST baseline 415.33 343.93 391.02 326.22 355.56 366.41 36.18
IMAP 198.11 145.70 166.79 215.40 167.10 178.62 27.79
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Table 5: Quantitative evaluation on VGGFace2 under different sampling prompt settings
(PSNR↑).

Adersarial
Perturbations

Dataset: VGGFace2, Metric: PSNR↑

Identity n000050 n000057 n000058 n000063 n000138 mean std

Both prompts: ctrain, cdiff

AntiDB baseline 9.95 9.43 9.46 9.09 8.97 9.38 0.38
IMAP 10.84 12.12 10.66 10.11 11.07 10.96 0.74

AdvDM(+) baseline 8.89 9.11 9.40 8.57 9.25 9.05 0.33
IMAP 10.27 11.39 10.95 10.12 11.06 10.76 0.54

AdvDM(-) baseline 10.96 10.76 11.56 10.69 11.64 11.12 0.45
IMAP 12.02 11.61 12.27 11.02 11.68 11.72 0.47

Glaze baseline 8.84 9.65 8.93 8.38 9.75 9.11 0.58
IMAP 10.40 10.64 10.29 9.85 10.76 10.39 0.35

SDS(+) baseline 9.36 9.67 9.79 8.82 9.27 9.38 0.38
IMAP 10.98 11.51 10.70 10.44 10.68 10.86 0.41

SDS(-) baseline 10.76 10.79 11.71 10.66 11.60 11.10 0.51
IMAP 11.98 12.27 12.35 10.95 11.37 11.78 0.61

SDST baseline 9.47 10.59 11.11 9.38 9.54 10.02 0.78
IMAP 10.61 11.73 11.23 10.03 10.98 10.92 0.64

Train prompt: ctrain

AntiDB baseline 8.96 9.35 8.76 8.54 8.59 8.84 0.33
IMAP 9.37 10.74 9.39 8.89 9.97 9.67 0.71

AdvDM(+) baseline 8.42 8.77 8.94 8.34 8.49 8.59 0.25
IMAP 8.73 9.93 9.48 9.36 9.72 9.45 0.45

AdvDM(-) baseline 11.05 10.66 11.35 10.32 11.23 10.92 0.43
IMAP 10.73 10.79 10.99 9.60 10.26 10.47 0.56

Glaze baseline 8.64 9.13 8.85 7.59 8.73 8.58 0.59
IMAP 8.49 9.26 8.63 8.53 9.22 8.83 0.38

SDS(+) baseline 8.79 9.62 9.12 8.43 8.30 8.85 0.54
IMAP 9.60 9.86 9.55 9.48 9.41 9.58 0.17

SDS(-) baseline 10.32 10.56 11.41 10.02 11.08 10.68 0.56
IMAP 10.44 11.61 11.16 9.89 10.25 10.67 0.70

SDST baseline 9.06 10.86 11.54 9.21 9.33 10.00 1.12
IMAP 9.59 11.12 11.04 8.70 9.79 10.05 1.03

Diff prompt: cdiff

AntiDB baseline 10.94 9.52 10.15 9.65 9.36 9.92 0.64
IMAP 12.31 13.49 11.93 11.33 12.16 12.24 0.79

AdvDM(+) baseline 9.36 9.46 9.87 8.80 10.01 9.50 0.48
IMAP 11.81 12.84 12.42 10.87 12.40 12.07 0.76

AdvDM(-) baseline 10.87 10.86 11.76 11.05 12.05 11.32 0.55
IMAP 13.31 12.42 13.55 12.44 13.11 12.97 0.51

Glaze baseline 9.05 10.17 9.02 9.17 10.78 9.64 0.80
IMAP 12.31 12.01 11.95 11.17 12.29 11.95 0.47

SDS(+) baseline 9.94 9.72 10.47 9.21 10.24 9.92 0.49
IMAP 12.37 13.16 11.85 11.40 11.94 12.15 0.66

SDS(-) baseline 11.21 11.01 12.02 11.29 12.12 11.53 0.50
IMAP 13.51 12.94 13.55 12.01 12.48 12.90 0.67

SDST baseline 9.88 10.32 10.68 9.54 9.74 10.04 0.46
IMAP 11.63 12.33 11.42 11.36 12.17 11.78 0.44
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Table 6: Quantitative evaluation on VGGFace2 under different sampling prompt settings
(SSIM↑).

Adersarial
Perturbations

Dataset: VGGFace2, Metric: SSIM↑

Identity n000050 n000057 n000058 n000063 n000138 mean std

Both prompts: ctrain, cdiff

AntiDB baseline 0.23 0.19 0.21 0.21 0.20 0.21 0.02
IMAP 0.33 0.40 0.32 0.34 0.38 0.35 0.04

AdvDM(+) baseline 0.18 0.19 0.23 0.20 0.22 0.20 0.02
IMAP 0.31 0.36 0.32 0.35 0.36 0.34 0.02

AdvDM(-) baseline 0.34 0.38 0.38 0.37 0.46 0.38 0.04
IMAP 0.40 0.41 0.41 0.42 0.49 0.42 0.04

Glaze baseline 0.16 0.23 0.17 0.17 0.30 0.21 0.06
IMAP 0.28 0.31 0.28 0.32 0.35 0.31 0.03

SDS(+) baseline 0.20 0.21 0.22 0.20 0.23 0.21 0.01
IMAP 0.35 0.34 0.30 0.39 0.37 0.35 0.03

SDS(-) baseline 0.33 0.37 0.38 0.37 0.46 0.38 0.05
IMAP 0.39 0.42 0.41 0.41 0.48 0.42 0.03

SDST baseline 0.23 0.27 0.29 0.27 0.34 0.28 0.04
IMAP 0.33 0.37 0.35 0.33 0.43 0.36 0.04

Train prompt: ctrain

AntiDB baseline 0.17 0.18 0.19 0.19 0.19 0.18 0.01
IMAP 0.22 0.30 0.25 0.25 0.30 0.27 0.04

AdvDM(+) baseline 0.15 0.17 0.20 0.18 0.20 0.18 0.02
IMAP 0.21 0.26 0.21 0.30 0.27 0.25 0.04

AdvDM(-) baseline 0.29 0.35 0.37 0.32 0.42 0.35 0.05
IMAP 0.30 0.33 0.35 0.35 0.43 0.35 0.05

Glaze baseline 0.13 0.16 0.17 0.12 0.22 0.16 0.04
IMAP 0.15 0.19 0.17 0.21 0.25 0.19 0.04

SDS(+) baseline 0.17 0.20 0.19 0.19 0.21 0.19 0.01
IMAP 0.26 0.20 0.21 0.34 0.27 0.25 0.06

SDS(-) baseline 0.27 0.33 0.36 0.33 0.43 0.34 0.06
IMAP 0.29 0.35 0.36 0.35 0.43 0.36 0.05

SDST baseline 0.21 0.25 0.31 0.25 0.31 0.26 0.04
IMAP 0.24 0.28 0.32 0.24 0.35 0.29 0.05

Diff prompt: cdiff

AntiDB baseline 0.30 0.20 0.23 0.24 0.20 0.24 0.04
IMAP 0.44 0.50 0.39 0.43 0.46 0.44 0.04

AdvDM(+) baseline 0.20 0.21 0.26 0.21 0.24 0.23 0.02
IMAP 0.42 0.46 0.42 0.40 0.46 0.43 0.03

AdvDM(-) baseline 0.38 0.41 0.38 0.42 0.50 0.42 0.05
IMAP 0.49 0.48 0.47 0.49 0.55 0.50 0.03

Glaze baseline 0.18 0.30 0.18 0.22 0.39 0.25 0.09
IMAP 0.40 0.44 0.38 0.42 0.46 0.42 0.03

SDS(+) baseline 0.23 0.22 0.24 0.22 0.25 0.23 0.01
IMAP 0.43 0.48 0.40 0.43 0.48 0.44 0.04

SDS(-) baseline 0.38 0.41 0.39 0.42 0.50 0.42 0.05
IMAP 0.49 0.49 0.46 0.47 0.53 0.49 0.03

SDST baseline 0.26 0.29 0.28 0.30 0.36 0.30 0.04
IMAP 0.42 0.46 0.39 0.43 0.50 0.44 0.04

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 7: Quantitative evaluation on VGGFace2 under different sampling prompt settings
(TOPIQ↑).

Adersarial
Perturbations

Dataset: CelebA-HQ, Metric: TOPIQ↑

Identity n000050 n000057 n000058 n000063 n000138 mean std

Both prompts: ctrain, cdiff

AntiDB baseline 0.23 0.03 0.24 0.28 0.20 0.20 0.10
IMAP 0.71 0.56 0.56 0.49 0.50 0.56 0.09

AdvDM(+) baseline 0.13 0.02 0.15 0.09 0.24 0.13 0.08
IMAP 0.58 0.54 0.58 0.52 0.48 0.54 0.04

AdvDM(-) baseline 0.42 0.43 0.28 0.30 0.29 0.34 0.07
IMAP 0.43 0.49 0.49 0.47 0.40 0.46 0.04

Glaze baseline 0.23 0.46 0.38 0.30 0.35 0.34 0.09
IMAP 0.55 0.53 0.49 0.52 0.48 0.51 0.03

SDS(+) baseline 0.15 0.03 0.14 0.22 0.26 0.16 0.09
IMAP 0.69 0.51 0.53 0.54 0.47 0.55 0.08

SDS(-) baseline 0.36 0.36 0.31 0.27 0.31 0.32 0.04
IMAP 0.46 0.38 0.40 0.35 0.38 0.39 0.04

SDST baseline 0.35 0.41 0.31 0.35 0.35 0.35 0.04
IMAP 0.55 0.49 0.44 0.49 0.37 0.47 0.07

Train prompt: ctrain

AntiDB baseline 0.22 0.00 0.14 0.17 0.06 0.12 0.09
IMAP 0.65 0.54 0.44 0.34 0.37 0.47 0.13

AdvDM(+) baseline 0.22 0.00 0.04 0.04 0.07 0.07 0.08
IMAP 0.47 0.44 0.43 0.38 0.37 0.42 0.04

AdvDM(-) baseline 0.35 0.43 0.30 0.34 0.30 0.35 0.06
IMAP 0.27 0.47 0.35 0.42 0.36 0.38 0.07

Glaze baseline 0.28 0.36 0.35 0.23 0.25 0.30 0.06
IMAP 0.35 0.38 0.25 0.34 0.33 0.33 0.05

SDS(+) baseline 0.12 0.01 0.01 0.20 0.25 0.12 0.11
IMAP 0.60 0.31 0.36 0.42 0.32 0.40 0.12

SDS(-) baseline 0.33 0.39 0.33 0.29 0.31 0.33 0.04
IMAP 0.33 0.37 0.33 0.33 0.34 0.34 0.02

SDST baseline 0.40 0.45 0.33 0.39 0.38 0.39 0.04
IMAP 0.42 0.40 0.37 0.46 0.24 0.38 0.08

Diff prompt: cdiff

AntiDB baseline 0.24 0.06 0.33 0.39 0.35 0.27 0.13
IMAP 0.78 0.58 0.67 0.64 0.63 0.66 0.07

AdvDM(+) baseline 0.04 0.04 0.25 0.14 0.41 0.18 0.16
IMAP 0.69 0.65 0.74 0.65 0.59 0.66 0.05

AdvDM(-) baseline 0.49 0.42 0.26 0.27 0.28 0.34 0.10
IMAP 0.59 0.52 0.63 0.51 0.43 0.53 0.08

Glaze baseline 0.18 0.57 0.40 0.37 0.45 0.39 0.14
IMAP 0.75 0.69 0.73 0.70 0.63 0.70 0.04

SDS(+) baseline 0.19 0.04 0.26 0.24 0.27 0.20 0.09
IMAP 0.77 0.70 0.70 0.66 0.63 0.69 0.06

SDS(-) baseline 0.40 0.33 0.30 0.25 0.32 0.32 0.05
IMAP 0.58 0.39 0.48 0.37 0.42 0.45 0.08

SDST baseline 0.31 0.37 0.29 0.30 0.32 0.32 0.03
IMAP 0.69 0.59 0.52 0.51 0.50 0.56 0.08
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Table 8: Quantitative evaluation on VGGFace2 under different sampling prompt settings
(QAlign↑).

Adersarial
Perturbations

Dataset: CelebA-HQ, Metric: QAlign↑

Identity n000050 n000057 n000058 n000063 n000138 mean std

Both prompts: ctrain, cdiff

AntiDB baseline 1.28 1.58 1.33 1.80 1.77 1.55 0.24
IMAP 3.38 2.65 2.54 2.61 2.56 2.75 0.36

AdvDM(+) baseline 1.43 1.35 1.43 1.32 1.64 1.43 0.13
IMAP 2.63 2.43 2.49 2.63 2.21 2.48 0.17

AdvDM(-) baseline 2.04 2.12 1.67 1.99 2.03 1.97 0.17
IMAP 2.45 2.49 2.83 2.61 2.56 2.59 0.15

Glaze baseline 1.41 1.92 1.47 1.56 1.63 1.60 0.20
IMAP 2.74 2.51 2.46 2.79 2.43 2.59 0.16

SDS(+) baseline 1.44 1.44 1.45 1.49 1.63 1.49 0.08
IMAP 3.30 2.63 2.51 3.08 2.52 2.81 0.36

SDS(-) baseline 1.87 1.94 1.83 1.85 2.04 1.91 0.09
IMAP 2.53 2.12 2.32 2.14 2.42 2.31 0.18

SDST baseline 1.91 2.50 1.95 2.36 1.88 2.12 0.29
IMAP 2.92 2.81 2.20 2.52 2.28 2.54 0.32

Train prompt: ctrain

AntiDB baseline 1.26 1.60 1.29 1.75 1.63 1.51 0.22
IMAP 2.87 2.24 1.90 1.79 1.94 2.15 0.44

AdvDM(+) baseline 1.45 1.33 1.43 1.33 1.55 1.42 0.09
IMAP 1.92 1.72 1.52 1.87 1.54 1.72 0.19

AdvDM(-) baseline 1.86 2.14 1.79 2.19 2.22 2.04 0.20
IMAP 1.74 2.31 2.19 2.34 2.55 2.23 0.30

Glaze baseline 1.55 1.49 1.31 1.19 1.41 1.39 0.15
IMAP 1.86 1.57 1.28 1.79 1.75 1.65 0.23

SDS(+) baseline 1.43 1.36 1.42 1.44 1.50 1.43 0.05
IMAP 2.68 1.73 1.57 2.44 1.65 2.02 0.51

SDS(-) baseline 1.72 2.01 1.88 1.93 2.17 1.94 0.17
IMAP 1.97 2.05 2.01 2.05 2.41 2.10 0.18

SDST baseline 2.22 2.71 1.74 2.58 2.02 2.25 0.40
IMAP 2.15 2.52 1.73 2.28 1.72 2.08 0.35

Diff prompt: cdiff

AntiDB baseline 1.30 1.56 1.38 1.85 1.91 1.60 0.27
IMAP 3.90 3.05 3.18 3.44 3.18 3.35 0.34

AdvDM(+) baseline 1.42 1.36 1.44 1.31 1.73 1.45 0.16
IMAP 3.33 3.14 3.46 3.39 2.88 3.24 0.23

AdvDM(-) baseline 2.23 2.10 1.55 1.79 1.84 1.90 0.27
IMAP 3.15 2.67 3.46 2.87 2.59 2.95 0.36

Glaze baseline 1.28 2.35 1.64 1.93 1.86 1.81 0.39
IMAP 3.62 3.45 3.65 3.77 3.12 3.52 0.25

SDS(+) baseline 1.46 1.51 1.47 1.54 1.76 1.55 0.12
IMAP 3.91 3.53 3.46 3.72 3.38 3.60 0.21

SDS(-) baseline 2.03 1.88 1.78 1.77 1.92 1.87 0.11
IMAP 3.09 2.18 2.62 2.22 2.44 2.51 0.37

SDST baseline 1.59 2.30 2.15 2.14 1.73 1.98 0.30
IMAP 3.69 3.10 2.66 2.76 2.84 3.01 0.41

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 9: Quantitative evaluation on CelebA-HQ under different sampling prompt settings
(FID↓).

Adersarial
Perturbations

Dataset: CelebA-HQ, Metric: FID↓

Identity 80 95 103 104 108 mean std

Both prompts: ctrain, cdiff

AntiDB baseline 201.92 230.60 258.97 184.73 255.02 226.25 32.53
IMAP 142.38 140.74 93.48 154.24 157.07 137.58 25.67

AdvDM(+) baseline 369.41 434.86 449.22 318.32 364.74 387.31 54.05
IMAP 157.74 202.75 189.04 166.21 197.86 182.72 19.79

AdvDM(-) baseline 167.90 128.37 127.52 119.97 145.10 137.77 19.18
IMAP 153.49 157.17 98.51 132.71 131.57 134.69 23.35

Glaze baseline 187.28 237.16 249.07 175.00 226.62 215.03 32.23
IMAP 170.77 183.27 160.14 167.13 178.00 171.86 9.07

SDS(+) baseline 315.58 396.82 397.79 342.26 384.15 367.32 36.70
IMAP 164.14 208.39 96.32 131.01 211.84 162.34 49.79

SDS(-) baseline 168.88 119.63 107.04 119.76 147.45 132.55 25.12
IMAP 159.53 137.07 99.79 135.70 137.65 133.95 21.50

SDST baseline 283.22 275.57 303.98 206.29 271.42 268.10 36.75
IMAP 181.17 172.38 150.92 164.40 153.56 164.48 12.69

Train prompt: ctrain

AntiDB baseline 256.62 282.57 305.11 189.55 324.51 271.67 52.44
IMAP 165.29 197.35 134.76 180.43 193.78 174.32 25.46

AdvDM(+) baseline 458.24 479.99 514.19 369.13 451.29 454.57 53.68
IMAP 195.40 299.00 304.53 239.82 268.02 261.35 45.11

AdvDM(-) baseline 138.44 134.26 119.14 146.03 128.38 133.25 10.17
IMAP 154.25 189.95 99.28 163.63 139.92 149.41 33.44

Glaze baseline 222.75 274.01 309.87 216.54 325.11 269.65 49.33
IMAP 216.16 263.94 254.93 190.87 293.04 243.79 40.37

SDS(+) baseline 358.61 491.20 490.71 354.68 453.02 429.64 68.43
IMAP 210.95 297.22 136.98 172.61 326.30 228.81 80.77

SDS(-) baseline 155.51 125.45 98.07 153.87 138.23 134.22 23.66
IMAP 168.59 169.52 109.93 162.32 156.14 153.30 24.83

SDST baseline 266.36 297.70 333.18 206.88 292.43 279.31 46.97
IMAP 217.80 231.36 186.38 215.02 204.31 210.98 16.79

Diff prompt: cdiff

AntiDB baseline 211.68 211.60 245.75 213.24 233.14 223.08 15.60
IMAP 172.55 121.74 85.65 176.42 173.89 146.05 40.74

AdvDM(+) baseline 324.12 420.31 418.16 301.56 323.50 357.53 57.06
IMAP 183.27 152.40 121.18 141.27 203.48 160.32 32.97

AdvDM(-) baseline 242.11 151.43 170.15 129.85 192.89 177.29 43.05
IMAP 195.72 158.74 124.13 147.29 158.70 156.92 25.88

Glaze baseline 207.73 232.04 220.53 173.44 196.92 206.13 22.55
IMAP 193.24 141.10 117.04 188.56 163.52 160.69 32.15

SDS(+) baseline 312.83 338.35 340.26 360.43 348.85 340.15 17.58
IMAP 186.13 169.56 93.18 151.77 167.28 153.58 35.89

SDS(-) baseline 225.75 141.89 144.13 125.69 188.91 165.27 41.16
IMAP 197.82 136.66 118.46 156.35 166.38 155.13 30.15

SDST baseline 338.47 282.64 299.53 241.14 295.53 291.46 35.01
IMAP 208.51 154.60 147.27 166.32 159.35 167.21 24.11
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Table 10: Quantitative evaluation on CelebA-HQ under different sampling prompt settings
(PSNR↑).

Adersarial
Perturbations

Dataset: CelebA-HQ, Metric: PSNR↑

Identity 80 95 103 104 108 mean std

Both prompts: ctrain, cdiff

AntiDB baseline 10.09 10.39 10.79 10.34 9.83 10.29 0.36
IMAP 10.95 10.79 12.42 10.49 10.75 11.08 0.76

AdvDM(+) baseline 9.55 9.42 10.21 9.55 9.08 9.56 0.41
IMAP 11.15 10.85 11.71 10.54 10.12 10.87 0.60

AdvDM(-) baseline 11.08 12.15 12.60 11.68 11.22 11.75 0.63
IMAP 11.59 12.09 13.27 11.55 11.97 12.09 0.70

Glaze baseline 9.94 9.79 10.22 9.55 9.96 9.89 0.25
IMAP 10.62 10.81 11.72 9.83 10.48 10.69 0.68

SDS(+) baseline 9.54 10.18 10.32 9.19 9.66 9.78 0.47
IMAP 10.63 10.50 12.09 10.98 10.53 10.95 0.67

SDS(-) baseline 11.41 11.90 13.20 11.56 11.30 11.87 0.77
IMAP 11.91 12.17 13.36 11.45 12.01 12.18 0.71

SDST baseline 10.26 10.17 10.61 9.90 10.08 10.21 0.26
IMAP 11.14 10.64 11.93 10.53 10.61 10.97 0.59

Train prompt: ctrain

AntiDB baseline 10.21 10.33 10.85 10.44 9.86 10.34 0.36
IMAP 10.29 9.68 11.15 9.61 10.36 10.22 0.62

AdvDM(+) baseline 9.49 8.65 9.99 8.69 8.43 9.05 0.66
IMAP 10.63 9.63 10.80 9.42 9.22 9.94 0.73

AdvDM(-) baseline 11.58 11.26 13.11 11.45 11.40 11.76 0.76
IMAP 11.35 11.34 13.28 10.63 11.58 11.64 0.99

Glaze baseline 9.91 9.54 9.36 8.92 9.64 9.47 0.37
IMAP 9.82 9.73 9.69 8.87 9.51 9.52 0.38

SDS(+) baseline 9.74 9.11 9.94 8.93 9.06 9.36 0.45
IMAP 9.44 9.61 11.01 10.14 9.39 9.92 0.68

SDS(-) baseline 12.02 11.41 13.65 11.14 11.62 11.97 0.99
IMAP 12.18 10.89 13.30 10.52 11.42 11.66 1.11

SDST baseline 10.98 10.56 11.03 9.98 10.03 10.51 0.50
IMAP 11.06 9.68 10.91 9.79 9.10 10.11 0.84

Diff prompt: cdiff

AntiDB baseline 9.96 10.44 10.73 10.25 9.79 10.23 0.37
IMAP 11.62 11.91 13.68 11.38 11.15 11.95 1.01

AdvDM(+) baseline 9.60 10.18 10.44 10.42 9.73 10.07 0.39
IMAP 11.66 12.08 12.63 11.65 11.03 11.81 0.59

AdvDM(-) baseline 10.58 13.03 12.09 11.91 11.05 11.73 0.95
IMAP 11.83 12.85 13.25 12.47 12.37 12.55 0.54

Glaze baseline 9.97 10.05 11.08 10.17 10.27 10.31 0.45
IMAP 11.41 11.89 13.75 10.79 11.45 11.86 1.13

SDS(+) baseline 9.34 11.25 10.69 9.45 10.26 10.20 0.81
IMAP 11.82 11.40 13.16 11.81 11.67 11.97 0.69

SDS(-) baseline 10.80 12.38 12.74 11.97 10.99 11.78 0.85
IMAP 11.64 13.44 13.42 12.39 12.59 12.70 0.76

SDST baseline 9.54 9.79 10.20 9.82 10.13 9.90 0.27
IMAP 11.21 11.59 12.96 11.28 12.13 11.83 0.72
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Table 11: Quantitative evaluation on CelebA-HQ under different sampling prompt settings
(SSIM↑).

Adersarial
Perturbations

Dataset: CelebA-HQ, Metric: SSIM↑

Identity 80 95 103 104 108 mean std

Both prompts: ctrain, cdiff

AntiDB baseline 0.23 0.26 0.21 0.20 0.19 0.22 0.03
IMAP 0.34 0.34 0.43 0.29 0.30 0.34 0.05

AdvDM(+) baseline 0.20 0.21 0.22 0.21 0.19 0.21 0.01
IMAP 0.34 0.36 0.36 0.31 0.31 0.34 0.02

AdvDM(-) baseline 0.31 0.45 0.44 0.34 0.35 0.38 0.06
IMAP 0.36 0.46 0.51 0.37 0.40 0.42 0.06

Glaze baseline 0.20 0.21 0.20 0.20 0.21 0.20 0.01
IMAP 0.27 0.31 0.34 0.25 0.27 0.29 0.04

SDS(+) baseline 0.20 0.24 0.20 0.19 0.20 0.21 0.02
IMAP 0.33 0.33 0.42 0.34 0.31 0.34 0.04

SDS(-) baseline 0.34 0.45 0.48 0.34 0.34 0.39 0.07
IMAP 0.37 0.47 0.50 0.37 0.39 0.42 0.06

SDST baseline 0.22 0.29 0.27 0.23 0.24 0.25 0.03
IMAP 0.33 0.41 0.42 0.33 0.36 0.37 0.04

Train prompt: ctrain

AntiDB baseline 0.19 0.21 0.18 0.20 0.16 0.19 0.02
IMAP 0.27 0.22 0.31 0.20 0.24 0.25 0.05

AdvDM(+) baseline 0.17 0.18 0.19 0.17 0.14 0.17 0.02
IMAP 0.27 0.23 0.24 0.22 0.23 0.24 0.02

AdvDM(-) baseline 0.27 0.38 0.42 0.28 0.32 0.33 0.07
IMAP 0.31 0.40 0.48 0.31 0.36 0.37 0.07

Glaze baseline 0.17 0.14 0.13 0.13 0.14 0.14 0.02
IMAP 0.18 0.18 0.17 0.16 0.17 0.17 0.01

SDS(+) baseline 0.19 0.19 0.18 0.18 0.17 0.18 0.01
IMAP 0.24 0.23 0.33 0.28 0.21 0.26 0.05

SDS(-) baseline 0.32 0.38 0.47 0.28 0.31 0.35 0.07
IMAP 0.34 0.40 0.47 0.31 0.34 0.37 0.06

SDST baseline 0.23 0.29 0.27 0.21 0.22 0.24 0.04
IMAP 0.28 0.37 0.36 0.26 0.31 0.32 0.05

Diff prompt: cdiff

AntiDB baseline 0.26 0.31 0.25 0.21 0.21 0.25 0.04
IMAP 0.40 0.46 0.54 0.37 0.36 0.43 0.07

AdvDM(+) baseline 0.23 0.25 0.25 0.25 0.23 0.24 0.01
IMAP 0.40 0.48 0.49 0.41 0.39 0.43 0.04

AdvDM(-) baseline 0.35 0.52 0.46 0.40 0.38 0.42 0.07
IMAP 0.41 0.52 0.54 0.43 0.44 0.47 0.06

Glaze baseline 0.23 0.28 0.26 0.27 0.28 0.26 0.02
IMAP 0.36 0.43 0.51 0.34 0.36 0.40 0.07

SDS(+) baseline 0.21 0.29 0.22 0.20 0.23 0.23 0.04
IMAP 0.41 0.42 0.51 0.41 0.41 0.43 0.04

SDS(-) baseline 0.36 0.51 0.50 0.40 0.38 0.43 0.07
IMAP 0.40 0.54 0.53 0.43 0.44 0.47 0.06

SDST baseline 0.21 0.30 0.27 0.26 0.26 0.26 0.03
IMAP 0.38 0.45 0.48 0.40 0.42 0.43 0.04
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Table 12: Quantitative evaluation on CelebA-HQ under different sampling prompt settings
(TOPIQ↑).

Adersarial
Perturbations

Dataset: CelebA-HQ, Metric: TOPIQ↑

Identity 80 95 103 104 108 mean std

Both prompts: ctrain, cdiff

AntiDB baseline 0.56 0.51 0.47 0.49 0.36 0.48 0.08
IMAP 0.67 0.64 0.69 0.62 0.58 0.64 0.04

AdvDM(+) baseline 0.17 0.09 0.04 0.17 0.13 0.12 0.06
IMAP 0.59 0.47 0.49 0.57 0.51 0.53 0.05

AdvDM(-) baseline 0.43 0.33 0.34 0.39 0.37 0.37 0.04
IMAP 0.45 0.45 0.44 0.54 0.47 0.47 0.04

Glaze baseline 0.52 0.42 0.40 0.47 0.52 0.47 0.06
IMAP 0.58 0.54 0.50 0.53 0.54 0.54 0.03

SDS(+) baseline 0.25 0.23 0.23 0.10 0.24 0.21 0.06
IMAP 0.58 0.47 0.58 0.70 0.49 0.56 0.09

SDS(-) baseline 0.36 0.34 0.32 0.36 0.36 0.35 0.02
IMAP 0.48 0.43 0.38 0.49 0.42 0.44 0.04

SDST baseline 0.43 0.35 0.46 0.39 0.35 0.40 0.05
IMAP 0.55 0.36 0.43 0.43 0.55 0.47 0.08

Train prompt: ctrain

AntiDB baseline 0.42 0.38 0.44 0.42 0.27 0.39 0.07
IMAP 0.51 0.48 0.69 0.47 0.41 0.51 0.10

AdvDM(+) baseline 0.01 0.02 0.02 0.10 0.02 0.04 0.04
IMAP 0.44 0.35 0.36 0.37 0.37 0.38 0.04

AdvDM(-) baseline 0.39 0.37 0.40 0.37 0.37 0.38 0.02
IMAP 0.37 0.40 0.42 0.45 0.38 0.40 0.03

Glaze baseline 0.33 0.31 0.25 0.25 0.42 0.31 0.07
IMAP 0.34 0.32 0.25 0.32 0.33 0.31 0.04

SDS(+) baseline 0.18 0.13 0.08 0.11 0.12 0.13 0.04
IMAP 0.40 0.28 0.50 0.62 0.29 0.42 0.14

SDS(-) baseline 0.34 0.35 0.36 0.36 0.34 0.35 0.01
IMAP 0.35 0.39 0.33 0.39 0.34 0.36 0.03

SDST baseline 0.45 0.35 0.52 0.44 0.38 0.43 0.07
IMAP 0.44 0.27 0.48 0.35 0.47 0.40 0.09

Diff prompt: cdiff

AntiDB baseline 0.71 0.63 0.50 0.55 0.44 0.57 0.10
IMAP 0.82 0.81 0.70 0.77 0.74 0.77 0.05

AdvDM(+) baseline 0.33 0.16 0.05 0.25 0.24 0.21 0.11
IMAP 0.74 0.59 0.62 0.77 0.64 0.67 0.08

AdvDM(-) baseline 0.46 0.30 0.27 0.41 0.37 0.36 0.08
IMAP 0.53 0.50 0.46 0.64 0.56 0.54 0.07

Glaze baseline 0.70 0.54 0.55 0.68 0.63 0.62 0.07
IMAP 0.82 0.77 0.74 0.74 0.75 0.76 0.03

SDS(+) baseline 0.31 0.32 0.39 0.09 0.35 0.29 0.12
IMAP 0.76 0.65 0.66 0.79 0.69 0.71 0.06

SDS(-) baseline 0.38 0.33 0.28 0.36 0.37 0.35 0.04
IMAP 0.60 0.47 0.43 0.58 0.50 0.52 0.07

SDST baseline 0.42 0.35 0.40 0.34 0.31 0.36 0.04
IMAP 0.65 0.46 0.37 0.52 0.63 0.53 0.12
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Table 13: Quantitative evaluation on CelebA-HQ under different sampling prompt settings
(QAlign↑).

Adersarial
Perturbations

Dataset: CelebA-HQ, Metric: QAlign↑

Identity 80 95 103 104 108 mean std

Both prompts: ctrain, cdiff

AntiDB baseline 2.50 2.10 2.03 2.27 1.70 2.12 0.30
IMAP 3.32 3.20 3.16 2.99 2.74 3.08 0.22

AdvDM(+) baseline 1.74 1.37 1.35 1.52 1.34 1.46 0.17
IMAP 2.76 2.17 2.38 2.64 2.63 2.51 0.24

AdvDM(-) baseline 2.41 1.98 1.84 2.02 2.21 2.09 0.22
IMAP 2.57 2.63 2.40 2.88 2.68 2.63 0.17

Glaze baseline 2.74 1.89 1.94 2.32 2.24 2.23 0.34
IMAP 3.26 2.71 2.60 2.78 2.58 2.78 0.28

SDS(+) baseline 1.95 1.52 1.56 1.57 1.51 1.62 0.18
IMAP 2.96 2.41 2.78 3.34 2.56 2.81 0.36

SDS(-) baseline 2.13 1.97 1.85 1.95 2.12 2.01 0.12
IMAP 2.72 2.41 2.15 2.59 2.45 2.46 0.21

SDST baseline 2.85 2.32 3.13 2.24 2.38 2.58 0.39
IMAP 2.85 1.96 2.25 2.31 2.72 2.42 0.36

Train prompt: ctrain

AntiDB baseline 1.98 1.67 1.89 2.02 1.61 1.84 0.19
IMAP 2.39 2.29 2.71 2.08 1.89 2.27 0.31

AdvDM(+) baseline 1.87 1.38 1.35 1.43 1.44 1.49 0.22
IMAP 1.94 1.44 1.45 1.58 1.75 1.63 0.21

AdvDM(-) baseline 2.22 2.05 2.09 1.98 2.22 2.11 0.11
IMAP 2.25 2.33 2.29 2.40 2.25 2.30 0.06

Glaze baseline 1.93 1.56 1.36 1.40 2.01 1.65 0.30
IMAP 2.06 1.76 1.37 1.68 1.67 1.71 0.25

SDS(+) baseline 1.86 1.56 1.45 1.54 1.39 1.56 0.18
IMAP 2.02 1.41 2.24 2.76 1.55 2.00 0.55

SDS(-) baseline 2.10 1.96 1.93 1.98 2.04 2.00 0.07
IMAP 2.10 2.20 2.01 2.11 2.07 2.10 0.07

SDST baseline 2.70 2.54 3.42 2.46 2.63 2.75 0.38
IMAP 2.55 1.48 2.34 2.00 2.18 2.11 0.41

Diff prompt: cdiff

AntiDB baseline 3.03 2.53 2.15 2.52 1.79 2.40 0.46
IMAP 4.25 4.11 3.62 3.91 3.59 3.89 0.29

AdvDM(+) baseline 1.60 1.35 1.35 1.60 1.25 1.43 0.16
IMAP 3.57 2.90 3.30 3.69 3.51 3.39 0.31

AdvDM(-) baseline 2.59 1.90 1.59 2.07 2.22 2.08 0.37
IMAP 2.89 2.92 2.50 3.35 3.12 2.96 0.31

Glaze baseline 3.54 2.21 2.52 3.25 2.46 2.80 0.57
IMAP 4.46 3.66 3.83 3.88 3.49 3.86 0.37

SDS(+) baseline 2.03 1.48 1.67 1.60 1.63 1.68 0.21
IMAP 3.90 3.42 3.30 3.92 3.58 3.63 0.28

SDS(-) baseline 2.16 1.98 1.77 1.93 2.20 2.01 0.18
IMAP 3.33 2.63 2.29 3.07 2.83 2.83 0.40

SDST baseline 3.00 2.10 2.83 2.01 2.13 2.41 0.47
IMAP 3.16 2.45 2.16 2.63 3.28 2.73 0.47
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D.3 SUPPLEMENTARY FOR SECTION 5.3

We provide full evaluation results for comparative experiments in Tables 14 to 17. Specifically, the
results in Tables 14 and 15 correspond to the comparative experiments under Noisy-Upscaling, and
the results in Tables 16 and 17 correspond to the comparative experiments under IMPRESS.

Table 14: Quantitative evaluation on VGGFace2 across multiple metrics under two experimen-
tal conditions: using only the purification method versus using both purification and IMAP.
We show results using Noisy-Upscaling as purification method in this table.

Adversarial
Perturbations

FID↓ PSNR↑ SSIM↑ TOPIQ↑ Qalign↑

Purify
only

Purify
+IMAP

Purify
only

Purify
+IMAP

Purify
only

Purify
+IMAP

Purify
only

Purify
+IMAP

Purify
only

Purify
+IMAP

Both prompts: ctrain, cdiff

AntiDB 107.58 116.45 11.09 11.19 0.38 0.39 0.60 0.62 3.10 3.19
AdvDM(+) 204.58 143.68 9.95 10.80 0.25 0.34 0.38 0.55 1.75 2.71
AdvDM(-) 109.27 111.95 11.20 11.32 0.41 0.41 0.54 0.56 2.75 2.98
Glaze 109.29 112.54 11.11 11.36 0.37 0.39 0.56 0.59 2.84 3.02
SDS(+) 238.37 157.12 9.97 10.84 0.22 0.33 0.35 0.55 1.63 2.73
SDS(-) 114.54 111.15 10.91 11.51 0.39 0.42 0.51 0.53 2.63 2.78
SDST 170.38 146.44 10.27 10.85 0.31 0.37 0.46 0.52 2.38 2.75

Train prompt: ctrain

AntiDB 120.89 140.75 10.61 10.03 0.33 0.31 0.52 0.51 2.77 2.63
AdvDM(+) 238.11 185.54 9.49 9.46 0.19 0.23 0.32 0.41 1.70 1.95
AdvDM(-) 125.60 138.33 10.52 10.03 0.35 0.34 0.52 0.49 2.74 2.61
Glaze 125.11 134.35 10.67 10.06 0.32 0.31 0.50 0.49 2.62 2.49
SDS(+) 287.61 213.41 9.44 9.54 0.16 0.22 0.28 0.40 1.54 1.96
SDS(-) 135.54 138.79 10.24 9.93 0.34 0.33 0.48 0.45 2.50 2.35
SDST 184.01 196.99 9.72 9.49 0.27 0.28 0.43 0.42 2.39 2.36

Diff prompt: cdiff

AntiDB 134.47 130.89 11.57 12.36 0.43 0.47 0.67 0.73 3.43 3.75
AdvDM(+) 211.49 143.27 10.41 12.14 0.32 0.45 0.44 0.70 1.81 3.47
AdvDM(-) 128.90 122.27 11.87 12.62 0.46 0.48 0.56 0.64 2.77 3.34
Glaze 132.21 129.67 11.56 12.65 0.42 0.47 0.62 0.69 3.07 3.54
SDS(+) 231.02 139.37 10.50 12.14 0.29 0.44 0.41 0.69 1.72 3.50
SDS(-) 136.67 122.26 11.58 13.09 0.44 0.50 0.54 0.60 2.75 3.21
SDST 193.27 140.02 10.82 12.20 0.35 0.45 0.49 0.62 2.38 3.14
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Table 15: Quantitative evaluation on CelebA-HQ across multiple metrics under two exper-
imental conditions: using only the purification method versus using both purification and
IMAP. We show results using Noisy-Upscaling as purification method in this table.

Adversarial
Perturbations

FID↓ PSNR↑ SSIM↑ TOPIQ↑ Qalign↑

Purify
only

Purify
+IMAP

Purify
only

Purify
+IMAP

Purify
only

Purify
+IMAP

Purify
only

Purify
+IMAP

Purify
only

Purify
+IMAP

Both prompts: ctrain, cdiff

AntiDB 104.75 107.37 12.25 11.98 0.38 0.39 0.62 0.64 3.04 3.14
AdvDM(+) 246.66 157.49 10.38 11.08 0.22 0.32 0.41 0.54 1.90 2.55
AdvDM(-) 117.21 114.89 11.60 11.93 0.40 0.42 0.65 0.64 3.21 3.23
Glaze 103.40 107.47 11.91 11.86 0.36 0.37 0.64 0.63 3.25 3.20
SDS(+) 234.57 152.93 10.40 11.14 0.21 0.32 0.37 0.55 1.75 2.61
SDS(-) 127.94 114.84 11.43 11.90 0.39 0.42 0.64 0.62 3.08 3.13
SDST 179.42 146.24 10.62 11.55 0.33 0.38 0.57 0.61 2.95 3.23

Train prompt: ctrain

AntiDB 108.67 116.40 11.72 11.23 0.31 0.31 0.56 0.55 2.82 2.65
AdvDM(+) 281.44 203.55 10.32 10.10 0.17 0.21 0.34 0.37 1.83 1.75
AdvDM(-) 130.99 124.00 11.53 11.29 0.37 0.37 0.60 0.57 3.03 2.88
Glaze 114.06 120.80 11.42 11.11 0.28 0.28 0.52 0.50 2.74 2.57
SDS(+) 270.68 199.50 10.30 10.36 0.17 0.23 0.32 0.39 1.71 1.85
SDS(-) 140.76 123.63 11.50 11.33 0.36 0.37 0.60 0.56 2.92 2.82
SDST 203.01 195.77 10.56 10.68 0.30 0.31 0.52 0.51 2.88 2.80

Diff prompt: cdiff

AntiDB 135.93 132.39 12.79 12.73 0.45 0.47 0.67 0.73 3.26 3.62
AdvDM(+) 246.01 151.13 10.44 12.06 0.26 0.42 0.47 0.72 1.98 3.35
AdvDM(-) 143.89 140.14 11.68 12.56 0.43 0.47 0.69 0.71 3.40 3.57
Glaze 130.28 133.12 12.39 12.61 0.44 0.45 0.76 0.76 3.76 3.83
SDS(+) 234.92 149.10 10.50 11.92 0.25 0.41 0.42 0.71 1.79 3.36
SDS(-) 156.42 142.28 11.35 12.48 0.41 0.46 0.67 0.69 3.25 3.42
SDST 198.90 141.33 10.67 12.42 0.36 0.45 0.61 0.72 3.02 3.66
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Table 16: Quantitative evaluation on VGGFace2 across multiple metrics under two experimen-
tal conditions: using only the purification method versus using both purification and IMAP.
We show results using IMPRESS as purification method in this table.

Adversarial
Perturbations

FID↓ PSNR↑ SSIM↑ TOPIQ↑ Qalign↑

Purify
only

Purify
+IMAP

Purify
only

Purify
+IMAP

Purify
only

Purify
+IMAP

Purify
only

Purify
+IMAP

Purify
only

Purify
+IMAP

Both prompts: ctrain, cdiff

AntiDB 312.22 167.46 9.70 11.12 0.21 0.35 0.28 0.55 1.55 2.69
AdvDM(+) 388.10 190.75 9.36 10.61 0.20 0.34 0.17 0.52 1.59 2.54
AdvDM(-) 145.07 137.96 10.87 11.58 0.40 0.43 0.31 0.39 1.76 2.19
Glaze 236.11 179.68 9.16 10.43 0.22 0.32 0.34 0.51 1.61 2.55
SDS(+) 350.50 198.51 9.46 10.71 0.20 0.33 0.22 0.51 1.52 2.60
SDS(-) 140.37 144.29 10.77 11.33 0.39 0.41 0.34 0.40 1.83 2.30
SDST 346.76 216.40 9.47 10.47 0.26 0.34 0.30 0.42 2.22 2.37

Train prompt: ctrain

AntiDB 391.80 232.23 8.94 9.67 0.16 0.24 0.17 0.44 1.45 1.94
AdvDM(+) 450.99 260.78 8.87 9.12 0.17 0.24 0.06 0.39 1.57 1.77
AdvDM(-) 162.73 170.47 10.62 10.26 0.36 0.36 0.34 0.34 1.82 1.91
Glaze 250.48 233.78 8.57 8.72 0.17 0.20 0.29 0.34 1.30 1.59
SDS(+) 418.29 292.22 8.92 9.37 0.16 0.22 0.12 0.36 1.40 1.73
SDS(-) 159.93 186.33 10.45 10.30 0.35 0.35 0.35 0.33 1.82 1.95
SDST 347.88 291.30 9.35 9.33 0.24 0.25 0.35 0.34 2.49 2.13

Diff prompt: cdiff

AntiDB 284.70 154.43 10.45 12.57 0.26 0.47 0.39 0.67 1.64 3.45
AdvDM(+) 373.00 171.92 9.86 12.10 0.24 0.43 0.27 0.65 1.61 3.31
AdvDM(-) 165.92 144.94 11.12 12.90 0.43 0.49 0.29 0.44 1.69 2.46
Glaze 269.09 174.24 9.75 12.14 0.27 0.44 0.40 0.69 1.92 3.52
SDS(+) 326.66 159.02 10.00 12.05 0.23 0.44 0.32 0.66 1.64 3.48
SDS(-) 160.05 141.42 11.09 12.36 0.43 0.47 0.33 0.48 1.85 2.65
SDST 391.35 188.50 9.59 11.61 0.28 0.42 0.25 0.49 1.95 2.61
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Table 17: Quantitative evaluation on CelebA-HQ across multiple metrics under two exper-
imental conditions: using only the purification method versus using both purification and
IMAP. We show results using IMPRESS as purification method in this table.

Adversarial
Perturbations

FID↓ PSNR↑ SSIM↑ TOPIQ↑ Qalign↑

Purify
only

Purify
+IMAP

Purify
only

Purify
+IMAP

Purify
only

Purify
+IMAP

Purify
only

Purify
+IMAP

Purify
only

Purify
+IMAP

Both prompts: ctrain, cdiff

AntiDB 220.30 145.49 10.54 11.18 0.24 0.33 0.54 0.64 2.42 3.08
AdvDM(+) 373.32 172.21 9.50 10.77 0.18 0.33 0.15 0.55 1.59 2.61
AdvDM(-) 137.72 133.00 11.30 12.06 0.40 0.42 0.34 0.39 1.89 2.12
Glaze 205.91 170.79 9.95 10.75 0.23 0.32 0.47 0.56 2.26 2.72
SDS(+) 363.77 172.74 9.81 11.13 0.19 0.34 0.16 0.53 1.63 2.70
SDS(-) 139.57 141.03 11.34 12.09 0.40 0.42 0.32 0.37 1.87 2.10
SDST 256.47 181.84 9.98 10.98 0.27 0.36 0.36 0.41 2.53 2.34

Train prompt: ctrain

AntiDB 265.08 192.51 10.25 10.39 0.19 0.25 0.41 0.52 2.13 2.22
AdvDM(+) 441.59 240.74 9.20 9.78 0.15 0.24 0.04 0.43 1.58 1.83
AdvDM(-) 133.97 138.39 11.39 11.44 0.38 0.37 0.37 0.38 2.08 2.06
Glaze 227.72 219.94 9.94 9.65 0.20 0.23 0.40 0.39 2.15 1.90
SDS(+) 430.13 237.90 9.49 10.17 0.16 0.25 0.07 0.39 1.61 1.95
SDS(-) 142.32 156.05 11.52 11.61 0.39 0.37 0.35 0.35 2.00 2.01
SDST 280.36 237.88 10.70 10.14 0.27 0.30 0.36 0.34 2.69 2.13

Diff prompt: cdiff

AntiDB 216.89 145.99 10.83 11.98 0.29 0.42 0.67 0.77 2.71 3.94
AdvDM(+) 345.51 163.59 9.81 11.76 0.21 0.42 0.25 0.66 1.61 3.41
AdvDM(-) 180.27 164.18 11.21 12.69 0.42 0.47 0.30 0.39 1.70 2.19
Glaze 224.49 174.78 9.96 11.85 0.26 0.41 0.53 0.72 2.38 3.55
SDS(+) 339.61 158.87 10.14 12.09 0.22 0.43 0.25 0.68 1.64 3.45
SDS(-) 172.67 164.75 11.17 12.57 0.42 0.46 0.29 0.39 1.75 2.18
SDST 264.82 177.65 9.26 11.82 0.28 0.42 0.36 0.48 2.37 2.55
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D.4 EVALUATING IMAP TRANSFERABILITY WITH FIXED-MASKS ACROSS DATASETS

We analyzed kernel masking patterns across all experiments and found that, under the same perturba-
tion, certain kernels were frequently masked across different identities and even across datasets. Un-
der the same perturbation, specific kernels tended to be frequently masked across different identities
and even across different datasets. In contrast, different perturbations could lead to significant local
variations in the masking patterns. Notably, SDST resulted in more dispersed masking compared to
AntiDB, as illustrated in the Figure 10. This suggests that critical kernels are more dependent on the
type of perturbation than on the dataset. To verify this, we constructed a perturbation-specific fixed
mask based on VGGFace2 statistics and applied it to both VGGFace2 and CelebA-HQ. Results in
Table 18 support this hypothesis.

Table 18: Quantitative evaluation on different datasets using both sampling prompts under
the fixed-mask setting. The fixed mask is derived from prior VGGFace2 experiments by selecting
kernels that were masked in at least 4 out of 5 times for each perturbation, and applied to both
datasets to evaluate effectiveness and transferability.

Adversarial
Perturbations

FID↓ PSNR↑ SSIM↑ TOPIQ↑ QAlign↑

Baseline IMAP Baseline IMAP Baseline IMAP Baseline IMAP Baseline IMAP

Both prompts under VGGFace2

AntiDB 377.84 162.43 9.38 11.00 0.21 0.35 0.20 0.55 1.55 2.72
AdvDM(+) 397.33 194.55 9.05 10.79 0.20 0.34 0.13 0.53 1.43 2.45
AdvDM(-) 147.99 136.04 11.12 11.77 0.38 0.43 0.34 0.45 1.97 2.56
Glaze 224.52 170.16 9.11 10.43 0.21 0.31 0.34 0.51 1.60 2.59
SDS(+) 378.86 190.29 9.38 10.80 0.21 0.34 0.16 0.54 1.49 2.78
SDS(-) 147.67 143.03 11.10 11.77 0.38 0.42 0.32 0.40 1.91 2.33
SDST 327.41 202.82 10.02 10.98 0.28 0.36 0.35 0.47 2.12 2.60

Both prompts under CelebA-HQ

AntiDB 226.25 135.11 10.29 11.05 0.22 0.33 0.48 0.64 2.12 3.11
AdvDM(+) 387.31 184.19 9.56 10.88 0.21 0.33 0.12 0.52 1.46 2.51
AdvDM(-) 137.77 131.34 11.75 12.14 0.38 0.42 0.37 0.47 2.09 2.61
Glaze 215.03 167.13 9.89 10.76 0.20 0.29 0.47 0.54 2.23 2.79
SDS(+) 367.32 164.27 9.78 11.01 0.21 0.35 0.21 0.56 1.62 2.80
SDS(-) 132.55 133.94 11.87 12.14 0.39 0.42 0.35 0.44 2.01 2.48
SDST 268.10 169.12 10.21 11.08 0.25 0.37 0.40 0.47 2.58 2.51
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Figure 10: Counts of masked times for each kernel under different perturbations (AntiDB
and SDST) and datasets. We consider all the kernels that have been masked at least once in all
experiments, the color of each square denotes masked times of each kernel under same datasets.
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