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Abstract
Sentiment Classification models are typically001
trained to be as generalizable as possible.002
Invariance to the specific user is considered003
desirable since models are shared across004
multitudes of users. However, these models005
are often unable to produce personalized006
responses for individual users, based on their007
data. Contrary to widely-used personalization008
techniques based on few-shot and meta learning,009
we propose UserIdentifier, a novel scheme for010
training a single shared model for all users. Our011
approach produces personalized responses by012
prepending a fixed, user-specific non-trainable013
string (called “user identifier”) to each user’s in-014
put text. Unlike prior work, this method doesn’t015
need any additional model parameters, any extra016
rounds of personal few-shot learning or any017
change made to the vocabulary. We empirically018
study different types of user identifiers (numeric,019
alphanumeric and also randomly generated)020
and demonstrate that, surprisingly, randomly021
generated user identifiers outperform the prefix-022
tuning based state-of-the-art approach by up to023
13%, on a suite of sentiment analysis datasets.024

1 Introduction025

Personalization arises in applications where dif-026

ferent clients need models specifically customized027

to their environment and user profiles (Yang and028

Eisenstein, 2017; Mazaré et al., 2018; Flek, 2020).029

This need for customization stems from the inherent030

heterogeneity existing in the data and the labels,031

especially when the task is classification (Kulkarni032

et al., 2020; Wang et al., 2018). Fig. 1 shows an033

example of the sentence “That is just great!”. This034

sentence could carry a positive sentiment, a neutral035

apathetic sentiment, or even a completely negative036

sentiment. A non-personalized model cannot037

correctly predict the label for different users.038

Most techniques for personalization generally039

involve two phases: first, a shared, global model is040

built between all users, and then, it is personalized041

for each client using their data (Kulkarni et al.,042
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Figure 1: An overview of the proposed method,
UserIdentifier, compared to its prefix-tuning counterpart.
pkat1 , pbee1 denote the trainable prefix vector for users
kat and bee, in the prefix tuning method (Zhong et al.,
2021). UserIdentifier, on the other hand, does not have
trainable user-specific parameters and uses random
per-user (UID) strings (“anka Sau” and “Beh KY”),
to condition a shared model, for each user.

2020; Schneider and Vlachos, 2019; Lee et al., 043

2021). In such cases, each user has either an entirely 044

separate model, or additional personal parameters, 045

causing significant overheads, both in terms of 046

storage of the large models, and the computation 047

complexity of training separate models for each 048

user. UserAdapter (Zhong et al., 2021), the state-of- 049

the-art in personalized sentiment analysis, takes a 050

prefix-tuning based approach (Li and Liang, 2021), 051

as shown in Fig. 1. In the first phase, a global model 052

is trained in a user-agnostic way on a large dataset. 053

In the second phase, each user u is assigned their 054

own prefix vector, pu1 , which is trained separately for 055

them, on their own data. If there are N users, there 056

would be N separate rounds of training, producing 057

N vectors. During this prefix-tuning phase, the 058

underlying transformer-based classification model 059

is frozen and shared between users, and the final 060

N vectors are stored for inference. 061

To alleviate these training and storage costs and 062

also improve overall performance, we propose train- 063

ing a single, shared personalized model, which can 064
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capture user-specific knowledge by conditioning065

on a unique, user-specific sequence of tokens from066

the classifier’s vocabulary. We name this sequence067

“user identifier”, and dub the underlying method068

of adding user identifiers to the input UserIdentifier.069

This is shown in Fig. 1, where we add the randomly070

generated, and non-trainable user identifiers “anka071

Sau” and “Beh KY” to each user’s sample, and072

then train the transformer classifier model, on these073

augmented samples. The user identifiers just use the074

underlying model’s vocabulary and embeddings,075

and do not add any tokens nor any user embeddings076

to the model. They are also static over time, and077

unique to each user, which means the user “bee”078

in Fig. 1 will have “Beh KY” pre-pended to all079

their samples, and no other user has this identifier.080

This is similar to the prompting of models like GPT-081

3 (Brown et al., 2020), however, here the prompt is082

fixed and used as data augmentation during training,083

and the model is not generative. As such, we only do084

training once, and have one set of shared parameters085

for all users. The approach is similar in essence086

to that of (Daumé III, 2009), which augments each087

individual feature with domain annotations.088

We experiment with different types of strings089

for user identifiers, such as real usernames from090

the dataset, consecutive numbers, random digits,091

random non-alphanumeric tokens and random to-092

kens (all types) and observe that, surprisingly,093

random identifiers, sampled from all possible to-094

kens in the vocabulary perform best, providing095

1.5%−13% classification accuracy improvement096

on average, over the prefix-tuning based method097

UserAdapter (Zhong et al., 2021). We also study098

different lengths of identifiers. We report our re-099

sults on three different sentiment analysis datasets100

(Sentiment 140, IMDB, and Yelp). We also show101

that UserIdentifier is effective in a federated learning102

setup (Appendix A.1), which is a real-world applica-103

tion of such personalization (Kulkarni et al., 2020).104

2 UserIdentifier105

2.1 Method106

UserIdentifier is a data augmentation method which107

consists of adding a sequence of user-specific108

tokens (user identifier, uid, drawn from the109

tokenizer’s vocabulary) to each sample, x, to110

provide user-related cues to the model and help111

it learn individual behaviour and preferences, all112

in one shared model. Figure 1 shows how this113

augmentation works. Each utterance is prepended114

Table 1: Dataset specifications
Dataset # Users # Samples # Classes

IMDB 1,012 137,710 10
Yelp 4,460 428,369 5
Sent140 1,100 56,557 2
Sent140 (skewed) 473 23,155 2

by the user identifier to create the augmented 115

sample [uid;x], and then used as input to the model, 116

for the training stage. There is no restriction on 117

what the make-up or the length of the user identifier 118

sequence can be, as long as it is not longer than 119

the maximum sequence length the model can input. 120

However, in practice, since the sequence length is 121

shared with the textual content of the user’s input, it 122

is better that the identifier sequence is not too long, 123

so as to not lose the data. We study different types of 124

identifiers and ablate them in Sections 3.3 and 4.2. 125

For parameterizations of the user identifiers, we 126

use parameter tying, where the user identifiers use 127

the same set of parameters for their embeddings 128

as the rest of the user’s input text. The entire 129

transformer model is being trained to minimize the 130

cross-entropy loss for the classification, with train- 131

ing input x augmented as [uid;x] with its user id. 132

3 Experimental Setup 133

3.1 Tasks, Datasets, and Models 134

We evaluate the proposed method on the task of 135

sentiment analysis. Table 1 shows a summary of 136

the datasets used in our experiments. We use the 137

IMDB (Diao et al., 2014) and Yelp (Tang et al., 138

2015) datasets for comparison with the UserAdapter 139

method (Zhong et al., 2021) and for the ablation 140

studies. Each user’s data is split into train, test, 141

and validation sets, with 0.8, 0.1, 0.1 ratios. For 142

comparison purposes, we are using a subset of the 143

available users, i.e. those with fewer than 50 sam- 144

ples, as done by Zhong et al. in support of few-shot 145

learning, for reporting test accuracy. We use the 146

RoBERTa-base model for this set of experiments. 147

In addition to IMDB and Yelp, we also report 148

the performance of the proposed method on the 149

Sentiment140 dataset citesent140, caldas2018leaf, 150

which is a set of Tweets collected from Twitter 151

and labeled positive or negative based on the 152

emojis in each Tweet. For this dataset, We use 153

the methodology provided by Li et al. (2019) to 154

preprocess and partition this dataset. We create 155

a second version of this dataset, and mark it as 156

“skewed”. For this skewed data, the users have 157

been selected such that their sentiments are mostly 158
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Table 2: Comparison of sentiment classification accuracy of UserIdentifier, with the baselines of Section 3.2. Num.,
Def. and Rand. refer to the different types of user identifiers introduced in Section 3.3.

Dataset Conventional UserAdapter
Trainable User Emb. UserIdentifier

Num. Def. Rand. All Num. Def. Rand. All

R
oB

E
R

Ta IMDB 45.1 46.2 45.5 – 48.9 50.1 – 52.5
Yelp 68.3 70.2 68.3 – 70.6 69.5 – 71.3

B
E

R
T Sent140 84.7 – 84.7 86.3 86.5 84.9 87.1 87.1

Sent140 (Skewed) 86.3 – 87.2 89.3 90.0 87.5 90.3 90.4

Table 3: Classification accuracy vs the length (#tokens)
and type (Section 3.3) of user identifier sequence)

Seq. Len. Rand. Dig Rand. Non. Rand. All

IM
D

B

5 48.8 51.3 52.2
10 47.4 51.7 52.5
20 47.1 50.2 51.1
50 46.5 48.7 50.8
200 33.3 32.8 40.1

Y
el

p

5 68.6 69.3 70.8
10 68.7 69.6 71.3
20 68.4 68.6 71.0
50 67.8 69.0 70.6
200 63.2 60.2 65.1

skewed, i.e. we only include users with 80% or159

more positive or negative Tweets. We do this to160

create a setup where data is more heterogeneously161

distributed. We use BERT-base-uncased for162

evaluations on the Sentiment140 dataset.163

3.2 Baselines164

Conventional Training. Conventional finetuning165

of the pre-trained transformer model on the full166

dataset, without personalization.167

UserAdapter. In UserAdapter, the work closest168

to ours, a per-user embedding is learned through169

few-shot learning and stored. These personal170

vectors are prepended to the users’ data to create171

personal responses. This work proposes prefix-172

tuning (Li and Liang, 2021) on a user-level. Unlike173

our method, UserAdapter consists of two phases,174

as discussed in the introduction.175

Trainable User Embeddings. UserIdentifier uses176

the same set of parameters (BERT embeddings)177

for embedding both the sample content, and the178

user identifiers. In other words, the text and user179

embedding parameters are tied. To untie these180

parameters, we introduce a third baseline, with181

trainable user embeddings. In this setup, while the182

tokens used for the user identifier are still drawn183

from the pre-trained model’s tokenizer vocabulary,184

we’re creating and training a separate set of global185

parameters for the user embedding, instead of using 186

the pre-trained model’s embedding. These extra 187

embedding parameters are placed in parallel to 188

the model’s existing embedding layer. Each input 189

sequence is partitioned to the content and the UID, 190

the content is fed to the model’s existing embedding 191

layer and the UID is fed to the new embedding. 192

3.3 Types of User Identifiers 193

We investigate five scenarios (types of sequences) 194

for the user identifiers. The length of the user 195

identifier sequences can vary in terms of number 196

of tokens (L) for the last three of these scenarios. 197

Default (Def.): This scenario uses the real user id 198

(e.g., username) of that user, when provided by the 199

dataset and if they are not private. We only have this 200

option available for the Sentiment140 dataset. 201

Consecutive Numbers (Num.): We assign each 202

user a unique number, from 1 to N , representing 203

each user (up to N users). 204

Random sequence of digits (Rand. Dig.): In this 205

scenario, L independent and identically distributed 206

(i.i.d) samples from the set of digits (0 to 9) are 207

drawn, creating a sequence of lengthL for each user. 208

Random sequence of tokens with non- 209

alphanumeric characters (Rand. Non.): L 210

i.i.d samples are drawn from a subset of tokens 211

(with size 400) that contain non-alphanumeric 212

characters, e.g., the token Ã"". The motivation for 213

this scenario is that such user identifiers might be 214

easier for the model to distinguish from the text (if 215

we make sure the textual content in the sample has 216

no overlapping tokens with the identifier). 217

Random sequence of all tokens (Rand. All): This 218

scenario draws L i.i.d samples from the set of all 219

available tokens in the tokenizer vocabulary. 220

4 Results 221

Apart from the evaluations here, We have also 222

provided evaluations of applying our method to 223

federated learning in Appendix A.1, and applying 224

it to new unseen user samples in A.2. 225
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4.1 Comparison with Baselines226

A comparison of UserIdentifier with the state-227

of-the-art UserAdapter method, and the other228

baselines is presented in Table 2. For the Num.229

(consecutive numbers) and Def. (default username)230

scenarios, as detailed in Section 4.2, the length of231

the user identifier sequences depends solely on the232

tokenization process. For the case of Rand. All233

(randomly sampled from all vocabulary tokens),234

however, it is shown that the sequence length of235

10 tokens provides the best performance through236

the ablation study, therefore the results are reported237

for this length. Since the default usernames for238

IMDB and Yelp datasets are not provided, the239

corresponding results are not reported here.240

It is shown that UserIdentifier with randomly241

generated identifiers outperforms all baselines,242

in all tasks. Our intuition is that UserIdentifier243

outperforms UserAdapter because of collaborative244

learning and personalization happening simulta-245

neously, unlike in the case of UserAdapter where246

personalization is performed separately for each247

user. The performance of trainable user embeddings248

appears inferior to that of UserIdentifier, which could249

be attributed to the parameter tying used in UserI-250

dentifier. This parameter tying couples the learning251

problems for both domains (user identifier and text)252

and allows us to jointly learn from the full data, as253

in (He et al., 2019). For the Sentiment140 dataset,254

we can see that increasing the heterogeneity or skew255

in the dataset boosts the benefits brought about by256

UserIdentifier. This shows that the proposed method257

performs better in setups where personalization is258

actually needed (Deng et al., 2020).259

4.2 Ablation Studies260

Table 3 shows our ablation study into the length and261

the type of the user identifier sequence, for IMDB262

and Yelp datasets. The most evident trend is that263

performance significantly degrades in both datasets264

when the length of the user identifier sequence265

exceeds 20 tokens, holding for all identifier types.266

This is because the length of the input text itself267

is essentially decreased (the maximum sequence268

length for RoBERTa is 512, and the textual content269

of the sample is truncated to fit the user identifier270

in), when increasing the length of the identifier.271

This decreases the useful information which could272

be used to infer sentiment, and in turn it has an273

adverse effect on accuracy.274

A rather surprising observation is that randomly275

sampling from the tokenizer’s entire vocabulary276

outperforms sampling only from digits or from the 277

non-alphanumeric tokens. This can be attributed to 278

the different sizes of the sampling spaces for these 279

three types, and the probability of overlap in user 280

identifier from user to user. For the random digits 281

(Rand. Dig.) the sample space size for each token 282

position is 10, the number of possible digits. For 283

the non-alphanumeric tokens, we have limited them 284

to 400, and for the token type all (Rand. All), the 285

possible sample space is 47,400. This means that 286

the probability of having token overlaps in user 287

identifiers is much much smaller in the last scheme, 288

than it is for the other two, or in other words, the 289

hamming distance between different user identifiers 290

is higher with this method. 291

One hypothesis that might explain the success of 292

random user identifiers: random user identifiers are 293

similar to random feature projections (Rahimi et al., 294

2007), but, in contrast with learnable embeddings, 295

they are defined in terms of the pretrained model’s 296

original token embeddings. This may have a 297

positive effect on optimization during fine-tuning. 298

4.3 User-level Study Accuracy 299

Figure 2 shows the distribution of test-accuracy 300

changes across users, for conventional training 301

(Conv.) and the Rand. All scheme from UserIdentifier. 302

We have chosen the best version of our model from 303

Table 2 for this figure. We can see that the number of 304

users with low accuracy decreases in both datasets. 305

Also, the standard deviation of accuracy across users 306

decreases compared to conventional training when 307

using UserIdentifier, it drops from 27.0% to 25.6% 308

for IMDB, and from 21.2% to 21.0% for Yelp. We 309

provide more plots and analysis on this in A.3. 310
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Figure 2: Distribution of test accuracy across users.

5 Conclusion 311

In this work, we present a novel approach for 312

learning global models, producing personalized 313

classification responses. This method which 314

doesn’t require model extensions or specialized 315

training algorithms, consists of appending a fixed, 316

non-trainable, unique identifier string to each 317

sample during training and inference. 318
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Ethical Considerations319

Our proposed model is intended to be used for ad-320

dressing the problem of personalization, by learning321

one shared model for all users, and querying it using322

a personal identifier. One potential measure that323

needs to be taken for deployment of such technology324

is to setup proper authentication tools, so that each325

user can only query with their own identifier and326

prevent users from breaching privacy by querying327

other users’ models. However, this could be a328

concern in other personalization setups too.329
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A Appendix434

A.1 Federated Learning as an Application435

Federated learning is a form of distributed learning436

where data never leaves each user’s device (Wang437

et al., 2021; Konečnỳ et al., 2018; Mireshghallah438

et al., 2020). Instead, the user trains a model on their439

device locally, and then shares the gradients (model440

updates) with a centralized server, which aggregates441

the gradients from different users and sends the442

updated model back to all of them, for further train-443

ing. We target this setup since it is a good candidate444

for personalization, given how a conventionally445

trained global model often fails to accommodate all446

users (Kulkarni et al., 2020; Mansour et al., 2020).447

Table 4 shows the performance gain of applying448

UserIdentifier, in a federated setup. UserIdentifier can449

be readily applied in federated learning, by assign-450

ing identifiers to each user and then asking them451

to append it to all their samples. We have used the452

Rand. All type of user identifier for this experiment,453

since we observed in previous sections that it was454

the most effective. In general, the baseline perfor-455

mance and the performance gain in the federated456

setup is slightly lower than centralized learning,457

which is due to the distributed nature of FL, and458

the fact that only the average of multiple gradient459

updates are shared with the server for aggregation.460

Table 4: Performance of UserIdentifier for sentiment
classification in a federated learning setup.

Dataset Conventional User Identifier

R
oB

E
R

Ta IMDB 44.30 47.23
Yelp 68.40 70.60

B
E

R
T Sent140 84.40 86.30

Sent140 (Skewed) 86.50 90.00

A.2 Performance on Unseen Users461

To measure how robust the proposed method is to462

new users that have never been seen before, we463

run evaluation on new users, and report the results464

in Table 5. For this experiment we have used the465

best models from Tables 2, and tested them on466

samples from new users, without appending any467

user identifiers. It is noteworthy that there is some468

distribution shift between these unseen users and469

the seen users from Table 2, especially for Yelp, as470

we used samples that were not used in the original471

training/test/val setup (this test set contains 5000472

samples for Yelp and 1357 samples for IMDB).473

The UserIdentifier column refers to accuracy474

of those datapoints on models trained with user475

Table 5: Evaluation results on unseen users.
UserIdentifierAccuracy (%) Conventional Model Accuracy (%)

IMDB 50.4 50.9
Yelp 50.1 49.8

identifiers, and the conventional column shows the 476

accuracy but on a conventionally trained model, 477

which would be the baseline. We can see that both 478

models behave similarly, which suggests that for 479

unseen datapoints, the UserIdentifier trained model 480

falls back to a conventional model, and does not 481

behave even worse. 482

A.3 Further User-level Accuracy Studies 483

Figure 3 shows the change in user accuracy, when 484

we use UserIdentifier for training, instead of conven- 485

tional training for each user. In other words, the 486

horizontal axis shows conventionalacc−UIDacc 487

for each user, and the vertical axis shows the count 488

of users. 489

As the plots show, on average across the two 490

datasets, 32.1% of the users see improvements in 491

accuracy, whereas 54.2% don’t see any change. 492
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Figure 3: Distribution of test accuracy change across
users.

A.4 Maximally Distant User Identifiers 493

To better understand the effect of edit distance 494

between user identifiers, We also experimented 495

with maximally distanced identifiers (for the Rand. 496

All setup), where the maximum distance would be 497
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the length of the identifier here, since each token498

in the identifier can take substantially large number499

of values. For this experiment, we used rejection500

sampling for user ids, as in if a new random sampled501

had any token overlaps with existing user ids, we502

would reject it and sample a new one. We observed503

results very similar to the ones with the random504

identifiers, which we hypothesize is because the505

random identifiers are already highly distanced506

and rarely overlap (less than 10% of the users have507

non-maximal distance).508
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