
FlowRefiner: A Robust Traffic Classification
Framework against Label Noise

Mingwei Zhan1, Ruijie Zhao2*, Xianwen Deng1, Zhi Xue1†, Qi Li3,
Zhuotao Liu3, Guang Cheng2, Ke Xu3†

1Shanghai Jiao Tong University 2Southeast University 3Tsinghua University
{mw.zhan,2594306528,zxue}@sjtu.edu.cn {ruijiezhao,chengguang}@seu.edu.cn

{qli01,zhuotaoliu,xuke}@tsinghua.edu.cn

Abstract

Network traffic classification is essential for network management and security. In
recent years, deep learning (DL) algorithms have emerged as essential tools for
classifying complex traffic. However, they rely heavily on high-quality labeled
training data. In practice, traffic data is often noisy due to human error or inaccurate
automated labeling, which could render classification unreliable and lead to severe
consequences. Although some studies have alleviated the label noise issue in
specific scenarios, they are difficult to generalize to general traffic classification
tasks due to the inherent semantic complexity of traffic data. In this paper, we
propose FLOWREFINER, a robust and general traffic classification framework
against label noise. FLOWREFINER consists of three core components: a traffic
semantics-driven noise detector, a confidence-guided label correction mechanism,
and a cross-granularity robust classifier. First, the noise detector utilizes traffic
semantics extracted from a pre-trained encoder to identify mislabeled flows. Next,
the confidence-guided label correction module fine-tunes a label predictor to correct
noisy labels and construct refined flows. Finally, the cross-granularity robust
classifier learns generalized patterns of both flow-level and packet-level, improving
classification robustness against noisy labels. We evaluate our method on four
traffic datasets with various classification scenarios across varying noise ratios.
Experimental results demonstrate that FLOWREFINER mitigates the impact of label
noise and consistently outperforms state-of-the-art baselines by a large margin.
The code is available at https://github.com/NSSL-SJTU/FlowRefiner.

1 Introduction

Network traffic classification is a fundamental task for the management, security, and optimization of
modern networks. It enables critical capabilities such as identifying malicious behaviors (1; 2; 3),
enforcing quality-of-service (QoS) policies (4; 5; 6), and monitoring application usage (7). It can
also support user-centric analysis such as profiling in social network applications by fine-grained
inference of user actions (8; 9). As network applications and protocols continue to evolve, traffic data
have become increasingly complex, reflecting not only protocol interactions but also diverse user
behaviors and service patterns (10). These complexities make automated traffic classification both
more important and more challenging (11; 12; 13).

In recent years, deep learning (DL) algorithms have emerged as powerful tools for traffic analysis
for handling such complexity (14; 15; 16; 17; 18). By leveraging large-scale labeled raw traffic
data, DL-based models can automatically extract discriminative representations and achieve accurate
classification performance. However, the success of DL-based methods heavily relies on the quality

∗Corresponding author. †Project advisors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/NSSL-SJTU/FlowRefiner

of labeled training data, and their performance can degrade significantly in the presence of label noise
(19). On the other hand, label noise, caused by incorrect, ambiguous, or inconsistent annotations,
is especially a critical issue in traffic analysis tasks. Erroneous labels can hinder generalization in
real-world scenarios and lead to severe consequences, such as failing to detect malicious traffic as
suspicious or misclassifying latency-sensitive applications in QoS enforcement. Unfortunately, label
noise is especially common in realistic traffic due to the complexity and variability of real-world
environments and the flaws of automated labeling techniques (20; 21). Though labels of lab-generated
traffic could be refined through controlled environments and manual annotation processes, the label
quality of realistic traffic is still challenging since the automated labeling is prone to errors (22).

Despite its significance, the issue of label quality is rarely noticed and discussed in existing DL-based
traffic classification methods. Only a few studies (23; 24) explicitly target label noise in the context
of malicious traffic, a specific subfield of traffic analysis focused primarily on intrusion detection.
However, these approaches can hardly generalize to general traffic classification tasks, as some (23)
are limited to binary classification, while others (24) rely on strong benign–malicious separability that
does not hold in more diverse traffic scenarios. In addition, though various methods (25; 26; 27; 28)
have been developed to address label noise in other fields (e.g., computer vision), they still struggle
in traffic classification due to the inherent structural complexity and obfuscated semantics of traffic
data. Thus, dealing with label noise in general traffic data remains a crucial and unresolved issue.

In this paper, we propose FLOWREFINER, a robust and general traffic classification framework
against label noise. Unlike existing approaches from computer vision or malicious traffic detec-
tion, FLOWREFINER is tailored to the unique characteristics of traffic data and supports general
classification across diverse scenarios. FLOWREFINER effectively detects, corrects, and classifies
traffic with noisy labels in a uniform framework, achieving high performance without relying on
high-quality labeled data, which are costly and difficult to obtain in increasingly complex network en-
vironments. Moreover, by accurately identifying mislabeled flows, FLOWREFINER provides valuable
feedback to assist network administrators and annotators in improving traffic data quality. Specifi-
cally, FLOWREFINER consists of three key components: a traffic semantics-driven noise detector, a
confidence-guided label correction mechanism, and a cross-granularity robust classifier. First, we
deploy a pre-trained traffic encoder to extract latent traffic semantic representations for noisy flow
isolation. Then, the majority labels within each cluster guide the division of flows into clean flows
and noisy flows. Next, the confidence-guided label correction refines the noisy flows by fine-tuning a
traffic label predictor on clean data and correcting mislabeled samples based on predicted confidence
scores, thus reintroducing the corrected noisy flows into the clean flows to form the refined flows.
Finally, our cross-granularity robust classifier integrates both flow-level and packet-level classification,
enabling the model to capture generalized patterns rather than focusing on noise-driven isolated
features. It ensures robustness and improves classification performance even in the presence of noisy
labels. In summary, our contributions are as follows:

• We introduce FLOWREFINER, a robust method for general traffic classification that effectively
detects, corrects, and classifies traffic with noisy labels. To the best of our knowledge, this is the
first work to address the label noise issues across diverse traffic classification tasks.

• We propose a traffic semantics-driven noise detector. It leverages the traffic semantics extracted by
the pre-trained traffic encoder to detect outlier labels as noise, where the raw flows are divided into
clean flows and noisy flows.

• We fine-tune a traffic label predictor based on isolated clean flows to perform confidence-guided
label correction of detected noisy flows. The correction results can assist network administrators
and annotators to improve traffic label quality.

• We design a cross-granularity robust classifier that integrates both flow-level and packet-level
classification tasks to improve robustness, preventing the encoder from overfitting to noisy labels.

• We evaluate FLOWREFINER on four real-world traffic datasets with different noise ratios. Results
show that our method can achieve robust traffic classification against label noise and significantly
outperforms the state-of-the-art baselines.

2 Related Work

Traffic Classification Methods. In traffic analysis, traditional rule-based methods initially relied on
fixed attributes like port numbers and protocols to classify traffic. However, with the rise of encryption

2

Label
Predictor

𝑥!𝑥!𝑥!

Label
Predictor

𝑥!𝑥!𝑥!

Clean
Flows

Noisy
Flows

𝑥!𝑥!y!

𝑥!𝑥!𝑦$!

Target

Confidence

High

Low

Refined
Flows

Traffic
C

lassifier

𝑥!𝑥!𝑥!

Traffic
C

lassifier

Share Weight

𝑥!𝑥!y!

𝑥!𝑥!𝑦$!
𝑥!𝑥!

𝑥!𝑥!

𝑥!𝑥!

𝑥!𝑥!𝑥!
"

Packets

Random
Select

Flow

Packet

𝑥!𝑥!𝑦$!
"

Target

Traffic Semantics-Driven Noise Detector Confidence-Guided Label Correction Cross-Granularity Robust Classifier

Flow-level

Packet-level

Majority Labels

Outlier Labels 𝑥!𝑥!𝑦$!

𝑥!𝑥!y!

M
anual A

nnotated
Traffic

𝑥!𝑥!𝑥!

𝑥!𝑥!y!

Traffic
Encoder

…

Feature
Vectors

Label
Noise

Class 1:
Class 2:

Class 3:

Raw Flows

Fine-grained
Clustering

Test Mode

Figure 1: The overview of FLOWREFINER.

protocols such as SSL and TLS, their effectiveness has gradually decreased because these protocols
conceal key traffic characteristics (29; 7). To overcome these limitations, machine learning (ML)
techniques, including support vector machine (SVM) and random forest (RF), leveraged statistical
features from traffic data to automate feature selection and improve classification accuracy (30; 7).
Although these ML-based methods marked a significant advancement, they heavily depend on
handcrafted features, which limits adaptability across various traffic types (13).

Deep learning (DL) methods have brought a shift towards automatic feature extraction from raw
traffic data, with convolutional neural networks (CNNs), recurrent neural networks (RNNs), and
Transformers being widely adopted for learning hierarchical representations (16; 14). Recent arts
have also explored pre-training techniques, with PERT and ET-BERT (31; 32) applying NLP-inspired
BERT models (33) to encrypted traffic classification, and Flow-MAE (34), YaTC (35) using masked
autoencoders (MAE) (36) to improve robustness in feature extraction under encryption. However,
they are particularly prone to label noise, as their high capacity allows them to overfit incorrect labels
(37; 19). Some works (24; 38; 39; 40) have noticed the label noise issue in deep learning-based
intrusion detection systems, and propose corresponding methods for malicious traffic. However, they
lack generalizability to more general traffic classification tasks. It is urgent to propose an effective
method to resist noisy labels for general traffic analysis tasks.

Label Noise Learning Methods. Various methods have been developed to address label noise
in other fields such as computer vision. A series of approaches like Generalized Cross-Entropy
(GCE) (27) and Symmetric Cross-Entropy (SCE) (28) modify traditional loss functions to better
handle noisy labels. GCE combines cross-entropy with mean absolute error to make learning more
noise-resistant, while SCE balances penalization of misclassified samples. In addition, some works
(26) (25) investigate filtering noisy samples that rely on the loss value distribution. On the other hand,
data augmentation technique has been wild used against label noise. As a classic robust augmentation,
Mixup (41) applies interpolation between samples to generate robust training data. But it struggles
when applied to the structured nature of encrypted traffic flows, where such interpolations may
not produce meaningful results. Recent methods like Manifold DivideMix (42), which incorporate
contrastive learning, offer improved robustness to severe noise. However, they rely on well-defined
meaningful data augmentation, which is hardly performed in structured traffic data, limiting their
ability to handle label noise within traffic flows.

In summary, while these label noise learning methods offer powerful mechanisms in other fields, the
traffic classification still lacks effective solutions that can robustly handle noisy labels. To fill this
gap, we propose FLOWREFINER, a robust framework specifically designed to detect, correct, and
classify traffic with noisy labels, offering a comprehensive solution for label noise in general traffic
classification.

3 FLOWREFINER

We introduce FLOWREFINER, a robust method for general traffic classification that effectively detects,
corrects, and classifies traffic with noisy labels. Our framework starts with traffic semantics extracted
by the advanced pre-trained encoder could reflect the similarities and diversity of flow characteristics,

3

providing a basis for detecting label-noisy flows (detailed in Sec. 3.1). After that, a predictor is
fine-tuned via detected clean flows to correct noisy labels and construct refined flows with low-level
label noise(detailed in Sec. 3.2). Finally, a traffic classifier with a cross-granularity structure is
designed to perform robust general traffic classification against label noise (detailed in Sec. 3.3).

3.1 Traffic Semantics-Driven Noise Detector

Traffic semantics-driven noise detector aims to identify and isolate noisy labels in traffic data
effectively. It achieves effective noisy flow detection by leveraging the traffic semantics extracted
from the flows and combining their similarity with label distribution.

Traffic Semantics Extraction. We first build a traffic semantics-oriented encoder via the pre-
training paradigm to extract the latent representation of traffic data. Benefiting from the learned
semantics from the unlabeled traffic data in pre-training, the pre-trained traffic encoder can effectively
extract traffic semantics (32), while remaining immune to interference from potential noisy labels.

We adopt the Masked Autoencoder (MAE) (36) style pre-training paradigm to enable the encoder
to capture the traffic semantics by randomly masking input and reconstructing the missing portions
(which is further detailed in Appendix A). In addition, the encoder deploys the Transformer archi-
tecture as the backbone for feature extraction. Formally, let X = {x1, x2, . . . , xN} represent the
dataset, where xi is an individual flow sample. The pre-trained encoder, denoted as fenc(·), processes
each sample xi and produces a d-dimensional feature vector: zi = fenc(xi), zi ∈ Rd.

Extracted Traffic Semantics
via Pre-training

Group II

Group IV
Group III

Group I

Class 1

Class 2
Group I Group IVGroup II Group III

Group I Group IVGroup III

Diverse Semantics from
the Same Class

Class 4Class 1

Class 2 Class 3Class 1

Group I

Group II

Similar Semantics from
Diverse Classes

Figure 2: The t-SNE visualization of the traffic
semantics.

Noise Detection based on Traffic Semantics.
The distances between traffic semantics embed-
dings can effectively reflect the similarities in
flow content and function. These similarities
have the potential to highlight instances of label
noise, as similar flows with discrete labels are
likely candidates for noisy labels. However, as
we visualized via t-SNE in Figure 2, since the
traffic semantics have not yet been aligned with
the correct labels, there are two main concerns
that should be considered during noise detection:
There are two main challenges in detecting label
noise via similarities: (1) Traffic data in the same class may not exhibit consistent behaviors, forming
diverse compact clusters in the latent space; (2) Traffic data from different classes may appear se-
mantically similar, leading to groups of mixed-category flows. Therefore, we designed a fine-grained
clustering and defined majority labels for each cluster to address the above issues and detect noisy
labels.

To capture the different behaviors inside the same class, we further cluster the semantics similarity
between flows with a more fine-grained level than categories. Specifically, we partition extracted
flow samples into K clusters, according to their extracted feature vectors {z1, z2, . . . , zN} by the
K-means algorithm, where each flow sample is grouped based on its semantic proximity to other
samples. Especially, the number of clusters is defined as K = n× C, where C represents the total
number of classes and n is an integer hyperparameter introduced to control the granularity of the
clustering. The objective function for K-means clustering is to minimize the sum of squared distances
between the feature vectors and the corresponding cluster centroids:

min
µk

N∑
i=1

K∑
k=1

⊮(zi ∈ Ck)∥zi − µk∥2, (1)

where µk is the centroid of the k-th cluster, and ⊮(zi ∈ Ck) is an indicator function that assigns zi to
the nearest cluster Ck. Subsequently, flows within the same cluster share the most similar semantics,
and the presence of inconsistent labels within each cluster is regarded as potential noise.

Considering the potential similar activity of flows from different categories, we define the majority
labels for each cluster to represent the inside overlapped true classes. Let Lk be the set of labels for
the samples in cluster Ck. The majority label Lmajor

k is determined as the top m most frequent labels

4

in the cluster. Samples with labels that are not among the majority labels Lmajor
k in their cluster are

treated as statistical outliers, and their labels are considered noisy.

Finally, we detect and divide the raw flows into a clean flow set and a noisy flow set:

Dclean = {(xi, yi) | xi ∈ Ck, yi ∈ Lmajor
k },Dnoisy = {(xi, yi) | xi ∈ Ck, yi /∈ Lmajor

k }, (2)

where yi is the raw label for sample xi, and Lmajor
k is the majotity label of cluster Ck. The clean flows

Dclean can be used to support further training, while the noisy flows Dnoisy can be flagged and reported
to the manager or annotator for review.

3.2 Confidence-Guided Label Correction

Through the semantic-driven noise detector, most noisy flows are identified and isolated from the
clean flows according to their label-independent traffic semantics. Furthermore, this clean flow set
can provide valid supervision to further correct the label distribution of the noisy flows and expand
the available training data. For this purpose, we design the confidence-guided label correction module
to correct flow labels in the noisy flow set based on prediction confidence.

Traffic Label Predictor Fine-tuning. In this stage, we aim to fine-tune the latent representations
of flows to align with the labels of selected clean flows Dclean, thereby obtaining a confidence-
aware traffic label predictor that can assess the category of selected noisy flows Dnoisy based on
confidence scores. Formally, let Xclean = {x1, x2, . . . , xNc

} be the set of clean flow samples
in Dclean, and yclean = {y1, y2, . . . , yNc

} be their corresponding labels. Then, we leverage the
supervised learning paradigm to fine-tune our label predictor fprd(x), which consists of the pre-
trained encoder and an added classification head, aiming to minimize the cross-entropy loss: LCE =

−
∑Nc

i=1 yi log(fprd(xi)).

Our well-trained label predictor provides confidence scores, pi = max(fprd(xi)), which represent
the predictor’s certainty regarding the predicted class. These confidence scores serve as the basis for
further label correction of noisy flows.

Noise Label Correction. To refine the available flows with label noise and avoid losing valuable
diversified information, we correct the original labels of noisy flows based on the predicted confidence
scores. Specifically, for each noisy flow sample and its label (xi, yi) ∈ Dnoisy, the predictor outputs a
predicted label ŷi along with its confidence score pi = max(fprd(xi)), which is the highest softmax
probability from the label predictor. Based on these confidence scores, we refine the labels of noisy
flows into two categories (as examples in Figure 6 of the Appendix B):

(1) High-Confidence Flow Labels (pi ≥ τh): These samples have high confidence in their predicted
labels and are thus assumed to share a similar distribution with the clean set. Thus, we correct their
labels with the predicted labels ŷi and merge them into the refined flows.

(2) Low-Confidence Flow Labels (pi ≤ τl): These samples have low confidence and likely lie
outside the semantic distribution of the clean set. Since they are difficult for the classifier to categorize,
we retain their original labels and introduce them to the refined flows to maintain diversity and expand
the semantic distribution of samples.

Note that τh and τl represent the thresholds for refining high and low confidence flow labels, respec-
tively. Combined with the clean flows, the obtained refined flows Drefined contain fewer noisy labels
but preserve a more representative semantic distribution of the raw data, including samples that lie
outside the initial clean flows’s boundaries. The final refined flows are formulated as follows:

Drefined = Dclean ∪ {(xi, ŷi) | pi > τh} ∪ {(xi, yi) | pi < τl}, (3)

where the Dclean represent clean flows from the semantic-driven noise detector, the xi is each sample
of noisy flows Dnoisy, ŷi is the predict label, yi is the raw label, and pi is the confidence score.

3.3 Cross-Granularity Robust Classifier

Based on the refined flows with low-level label noise, we perform traffic encoder fine-tuning for robust
traffic classification. Due to strong fitting capabilities, deep learning models are prone to memorize

5

mislabeled samples themself, rather than capturing generalizable patterns (43; 44). To avoid the
encoder memorizing specific flows with false labels, we propose a cross-granularity robust classifier
that integrates both flow-level and packet-level traffic classification tasks. Thus, our classifier can
capture generalized patterns that are valid on both tasks, rather than attention to isolated invalid
features that are misdirected by noisy labels.

The robust traffic classifier contains two parallel shared weight encoders and classification heads,
which could be formulaically treated as a single encoder and denoted as fenc and fhead. The structure
and explanation of the shared-weight classifier that can handle both flow and traffic samples are
detailed in Appendix C. The encoder is also based on the Transformer and loads the parameters
pre-trained by MAE. It first processes each flow xi by dividing it into sequential packets then selects
one packet xp

i randomly to serve as the other input sample:

xp
i = RandomSelect({pac1i , pac2i , · · · | xi}). (4)

Next, the flow sample xi is inputted to the encoder and linear heads to generate ŷi, a flow-level
prediction of the label. Following the above process, the flow classification task is performed with
the flow sample xi and label yi from the refined flows by minimizing the cross-entropy loss. Then,
the packet classification task is trained subsequentially during each epoch. Similarly, the randomly
selected packet sample is inputted to the encoder and classification head, and obtains the packet level
prediction ŷpi . By associating packet sample xp

i with the flow label yi via the cross-entropy loss, the
classifier performs packet classification and learns traffic patterns on another granularity.

By the cross-granularity classification tasks, the classifier can utilize both global (flow-level) and
local (packet-level) features within the refined flows, providing more varied input against label noise.
Specifically, by introducing randomness in the packet selection, the classifier obtains different sample
variants in each epoch, thus avoiding the memorization of specific flows with false labels. In addition,
the trained cross-granularity robust classifier can serve for both flow-level or packet-level traffic
classification under the label noise according to the practical needs, bringing not only robustness but
also flexibility.

4 Experiments

4.1 Experiment Settings

Datasets. We conduct our experiments on four real-world traffic datasets: ISCXVPN (45), Cross-
Platform (46), USTC-TFC (16), and Malware (47), each representing different traffic scenarios. Each
dataset sample in our experiments corresponds to a network flow, which is obtained via session-aware
splitting according to the standard 5-tuple (source IP, destination IP, source port, destination port, and
protocol). In FLOWREFINER, we process each flow into a formatted matrix via the MFR algorithm
(35). To comprehensively evaluate the robustness of our methods against label noise, we generate
noisy datasets for each scenario with different noise ratios (5%, 10%, 20%, 40%, 60%). The details
of these datasets are shown in Appendix D.

Baselines. To evaluate the performance of FLOWREFINER, we compare it with six state-of-the-art
traffic classification methods. These include two traditional ML- and DL-based methods, App-
scanner (7) and FS-Net (14); three advanced pre-training methods, ET-BERT (32), MAE (34), and
YaTC (35); and the malicious traffic label noise method, MCRe (24). In addition, we introduce three
packet classification baselines (48; 16; 32) and six general label noise learning baselines , CE, LSR
(49), Mixup (41), GCE (27), SCE (28), Co-teaching (26), and Dividemix (25), to further extend the
evaluations.

Implementation Details. In the training stage, we set the batch size as 64, the epochs as 20, and
the learning rate as 4∗10−3 with the AdamW optimizer (50). In noise detection, we set the parameter
of clustering granularity as n = 5, and the top m = 2 most frequent labels in the cluster are defined
as the majority labels. The high and low confidence thresh- olds are setted as τh = 0.9 and τl = 0.7.
All experiments are implemented in four NVIDIA GeForce RTX3090 GPUs with PyTorch 1.9.0. We
summarize the hyperparameter settings in Appendix F.

6

Table 1: Performance Comparison with Traffic Classification Baselines under Different Noise Ratios.

Dataset Noise Appscanner FS-Net ET-BERT MAE YaTC MCRe Ours

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

ISCXVPN

5% 81.49 82.12 87.97 88.05 86.12 86.11 91.04 91.08 92.44 92.35 83.01 83.63 93.67 93.34
10% 79.22 79.63 85.47 85.49 85.24 85.18 89.81 89.80 89.28 89.03 81.05 81.63 91.04 90.48
20% 77.27 77.95 82.57 82.57 78.91 79.07 79.26 79.29 82.60 82.49 79.88 80.64 90.86 90.15
40% 73.70 73.85 74.37 75.08 59.92 61.78 63.62 64.21 66.43 67.15 76.56 76.62 85.06 84.19
60% 57.14 57.89 56.40 58.24 34.79 36.21 42.00 43.19 43.23 45.37 69.92 70.55 73.29 72.90

CrossPlatform

5% 68.00 67.34 61.88 61.04 98.97 98.99 97.67 97.69 98.91 98.91 67.66 67.59 99.71 99.71
10% 66.40 65.92 59.61 59.62 98.39 98.41 95.19 95.24 98.32 98.32 63.67 63.45 99.56 99.55
20% 62.53 62.39 57.89 58.07 94.46 94.49 90.67 90.75 93.51 93.58 61.48 61.14 98.76 98.75
40% 55.32 55.51 50.54 50.49 78.42 79.30 73.98 75.12 80.47 80.92 53.91 52.44 95.34 95.20
60% 43.29 44.76 39.76 41.21 56.26 59.04 48.54 50.62 57.22 58.94 43.44 40.76 84.33 84.29

USTC-TFC

5% 62.40 57.64 87.50 87.61 95.03 94.98 94.82 94.82 94.62 94.58 93.75 94.91 96.07 96.02
10% 63.94 60.83 86.95 86.89 93.79 93.77 94.00 93.95 93.79 93.99 93.36 94.71 95.65 95.60
20% 62.65 59.95 84.76 84.70 92.33 92.34 86.13 86.46 89.86 89.75 91.02 92.91 94.20 93.93
40% 56.26 50.56 77.89 77.52 81.98 81.69 74.12 73.82 80.54 80.11 89.06 91.41 91.72 91.69
60% 51.73 50.98 70.62 70.22 58.59 58.09 47.62 48.11 56.31 56.57 75.78 75.02 78.88 78.71

Malware

5% 78.16 77.86 77.81 77.90 85.95 86.01 92.57 92.59 93.11 93.11 65.62 66.77 93.38 93.33
10% 76.63 76.36 76.71 76.67 84.46 84.34 90.54 90.56 90.95 90.94 63.28 64.85 91.35 91.28
20% 76.43 76.14 75.78 75.83 77.83 78.03 81.49 81.43 83.51 83.50 62.50 64.19 88.24 88.03
40% 71.26 70.67 71.40 71.08 61.35 61.49 65.27 65.39 67.97 68.49 57.23 58.83 83.51 83.33
60% 63.02 62.71 57.81 57.13 42.43 43.83 46.08 47.16 46.35 46.45 55.47 56.21 73.11 72.61

4.2 Comparison with Baselines

Traffic Classification Baselines. The performance of our method and other traffic analysis methods
on the four traffic datasets under different noise ratios is shown in Table 1. Overall, the performance
of all baselines degrades significantly as the label noise rate increases, which highlights the substantial
impact of label noise on DL-based methods. Traditional models such as Appscanner and FS-Net
are particularly vulnerable, showing rapid performance drops even under moderate noise. Although
advanced pre-training methods such as ET-BERT, MAE, and YaTC perform well under low-noise
settings such as 5% and 10%, their robustness deteriorates noticeably as the noise level increases.
MCRe, which is designed for handling label noise in malicious traffic, shows strong robustness on the
USTC-TFC that includes multiple benign and malicious traffic categories. However, its performance
degrades significantly on other general classification tasks, such as VPN or mobile app traffic, as
well as on the Malware dataset, which contains only recent malware families, due to its reliance on
distinct benign-malicious separability.

We can observe that FLOWREFINER consistently outperforms all baselines across datasets and noise
levels. Our traffic semantics-driven noise detector and confidence-guided label correction can validly
isolate noisy labels and refine the raw flows. Then, the cross-granularity robust classifier can capture
meaningful hierarchical semantics and avoid remembering specific noisy flows. As a result, our
method consistently achieves accuracy and F1 scores exceeding 70% even at a 60% label noise
ratio, where the majority of training samples are incorrectly labeled. Besides, FLOWREFINER also
shows better packet-level classification performance compared to the advanced packet classifiers in
Appendix G. It can be concluded that our method provides a robust traffic classification framework
against label noise to achieve superior performance on various traffic datasets under noisy label
conditions.

Label Noise Learning Baselines. We further reproduce six general label noise learning methods
from other fields on traffic data with consistent encoders for fair comparison, as illustrated in Table
2. LSR and SCE show almost no improvement over CE (i.e., the baseline), while Mixup and GCE
can handle label noise relatively effectively due to the interpolating and adaptive loss design. More
advanced methods, such as Co-teaching and Dividemix, achieve competitive performance. However,
Co-teaching relies on a fixed forgetting rate to select small-loss samples as noise, which could not
satisfy various noise conditions. DivideMix, on the other hand, uses a Gaussian mixture model based
on loss value distribution to distinguish noise, but it fails when clean or noisy samples are too few to
support reliable modeling. In contrast, our method detects noisy flows by modeling traffic semantics
rather than relying on loss value distribution, making it more aligned with the nature of traffic data.
The results show that FLOWREFINER achieves high performance under different noise ratios and
leads the noisy label learning baseline by a large margin.

7

Table 2: Comparison of F1 Scores with Label Noise Learning Baselines under Different Noise Ratios.

Method ISCXVPN CrossPlatform USTC-TFC Malware

5% 10% 20% 40% 60% 5% 10% 20% 40% 60% 5% 10% 20% 40% 60% 5% 10% 20% 40% 60%

CE 78.38 77.66 74.65 56.42 39.95 93.29 92.20 85.75 70.86 48.07 86.67 83.58 80.56 66.25 50.76 78.60 78.11 78.78 64.93 52.94
LSR 78.22 76.29 75.65 58.03 41.43 94.56 90.45 87.45 70.81 48.41 88.73 84.93 78.36 67.52 55.27 87.91 83.74 81.93 65.58 55.03
Mixup 79.33 77.79 79.10 66.46 48.31 90.83 89.05 86.58 78.48 61.59 91.89 90.29 87.40 73.77 64.12 89.77 88.12 82.22 73.33 62.63
GCE 75.39 74.59 71.80 65.08 49.05 93.29 92.81 92.19 90.19 79.69 82.28 80.38 78.42 77.00 68.01 86.22 81.76 80.15 74.59 64.46
SCE 77.04 73.80 73.44 59.49 40.68 94.04 93.41 87.12 76.82 60.33 86.74 85.10 85.04 73.84 56.54 88.87 83.90 77.93 67.79 56.61
Co-teaching 78.24 84.14 87.65 76.69 55.89 82.29 87.83 92.04 83.93 62.61 86.24 88.16 81.21 81.21 57.22 86.85 88.20 84.20 80.80 60.29
Dividemix 81.93 83.79 81.24 76.61 68.88 84.48 86.72 86.63 81.62 75.34 89.16 87.77 91.11 84.84 78.43 85.91 86.15 83.47 82.41 70.34

Ours 93.34 90.48 90.15 84.19 72.90 99.71 99.55 98.75 95.20 84.29 96.02 95.60 93.93 91.69 78.71 93.33 91.28 88.03 83.33 72.61

Table 3: Comparison of F1
Scores on Class-dependent
Noise Scenarios.

Method ISCXVPN USTC-TFC

YaTC 77.01% 86.01%
MCRe 76.76% 80.47%
Co-teaching 76.80% 76.17%
DivideMix 74.14% 85.94%
Mixup 69.86% 78.56%

Ours 80.97% 88.40%

5 10 20 40 60
Noise Ratio (%)

0

20

40

60

80

100

De
te

ct
io

n
Ra

tio
 (%

)

(a)

Noise Detection

ISCXVPN
CrossPlatform
USTC-TFC
Malware

5 10 20 40 60
Noise Ratio (%)

0

20

40

60

80

100

Co
rre

ct
io

n
Ra

tio
 (%

)

(b)

Noise Correction

ISCXVPN
CrossPlatform
USTC-TFC
Malware

Detection Correction
CICIDS2017

40

52

64

76

88

100

Ra
tio

 (%
)

47.31

59.23

84.61 81.92

(c)

Real-world Evaluaion

MCRe
Ours

Figure 3: Performance of (a) noise detection, (b) noise correction, and
(c) real-world evaluation.

Class-dependent Noise Evaluation. Class-dependent noise occurs when the probability of label
corruption is not uniform across classes, meaning certain classes are more prone to having mislabeled
samples than others. We perform the evaluation on ISCXVPN and USTC-TFC with different ratios of
class-dependent noise, where categories with similar patterns are more likely to be mislabeled as each
other. The average F1 scores among noise ratios of FLOWREFINER and optimal baselines are shown
in Figure 3. The complete results of all baselines and noise ratios are detailed in Appendix H. It can
be observed that all methods perform worse compared to the complete random noise setting, since
the class-dependent noise leads to more severe category confusion and shifted decision boundaries.
Note that our method can still achieve significant performance advantages over the optimal baseline,
demonstrating better robustness under different noise types.

4.3 Label Noise Evaluation

Noise Detection Performance. We evaluate the performance of the traffic semantics-driven noise
detector in Figure 3 (a). The detector consistently identifies a large portion of noisy-labeled flows
across all datasets, with the detection ratio, i.e., the proportion of detected noise among all noisy
samples, remaining above 75% even at 60% noise. This robustness is particularly valuable in security-
sensitive tasks such as malware detection, where undetected noise may lead to critical failures. These
results confirm the detector’s effectiveness in isolating noisy flows and supporting reliable traffic
annotation and management.

Noise Correction Performance. The confidence-guided label correction is responsible for cor-
recting the labels of the previously selected noisy flows. The correction ratio, i.e. accuracy of the
noisy flow correction, is shown in Figure 3 (b). It can be seen that our method can accurately select
and assign the correct labels to noisy flows based on prediction confidence, consistently achieving a
correction accuracy of over 80% in most scenarios. Particularly on the CrossPlatform and USTC-TFC
datasets, labels are almost all correctly assigned to the selected noisy flows, demonstrating the notable
performance of the label predictor in this module.

Real-World Noisy Dataset Evaluation. Previous studies (20; 21) have revealed significant label
noise in the CICIDS2017 dataset (51), and provide a corrected version with revised flow labels. Based
on the dataset, we conduct a real-world evaluation, where the training set retains the original noisy
labels, and the test set is relabeled according to (20). MCRe, the other traffic label noise method and
the only baseline capable of both detecting and correcting label noise, is introduced to the comparison.
As shown in Figure 3 (c), our method successfully identifies 84.61% of the noisy flows in training
set, significantly outperforming MCRe. Furthermore, the accuracy of our noise detection is 81.92%,
achieving high agreement with the expert relabeling.

8

Table 4: Ablation Study of F1 Scores on The Four Traffic Datasets. The abbreviations are explained as
follows: TSND: Traffic Semantics-Driven Noise Detector, CLC: Confidence-Guided Label Correction
Module, CRC: Cross-Granularity Robust Classifier.

Method ISCXVPN CrossPlatform USTC-TFC Malware

5% 10% 20% 40% 60% 5% 10% 20% 40% 60% 5% 10% 20% 40% 60% 5% 10% 20% 40% 60%

Ours 93.34 90.48 90.15 84.19 72.90 99.71 99.55 98.75 95.20 84.29 96.02 95.60 93.93 91.69 78.71 93.33 91.28 88.03 83.33 72.61
w/o TSND 93.00 88.99 84.10 64.27 48.60 97.69 95.93 88.52 68.84 46.85 95.99 93.87 91.43 75.66 48.95 93.14 92.27 84.14 67.65 47.42
w/o CLC 88.85 85.09 80.12 77.76 69.71 92.81 90.84 89.69 86.35 78.01 94.88 93.26 92.78 89.70 77.59 80.32 79.15 79.11 74.78 65.29
w/o CRC 91.33 88.39 85.05 78.42 65.16 97.99 98.07 95.41 88.23 70.04 95.55 95.40 93.38 90.01 74.60 86.95 89.56 83.85 78.68 63.87

4.4 Ablation Study

The ablation study is conducted to evaluate the contribution of each component in FLOWREFINER.
As shown in Table 4, the performance declines consistently on all traffic datasets when any of the
key components is removed. In particular, the removal of the traffic semantics-driven noise detector
(TSND) results in the most severe performance degradation under high noise ratios. For example,
on the ISCXVPN dataset with 60% noise, removing TSND leads to a significant drop in accuracy
from 73.29% to 47.62%. Similarly, on the CrossPlatform dataset, accuracy drops from 84.33% to
44.89%. This highlights the critical role of the TSND in accurately identifying and isolating noisy
flows, which ensures that the subsequent components operate with more reliable data. When the
confidence-guided label correction (CLC) is ablated, the performance also degrades, suggesting that
this component can effectively against label noise by handling difficult cases and expanding the clean
set. Note that our method has less performance degradation on the USTC-TFC dataset compared to
other datasets under the ablation of CLC. This is because our noise detector has detected most of the
noisy flows in USTC-TFC according to Figure 3, offering a highly clean flow set for traffic classifier
training. Finally, the removal of the structure of cross-granularity robust classifier (CRC) results in
stable performance reductions under all datasets and noise ratios. It proves that the joint task of both
flow and packet classification could improve the robustness under different noise ratios.

4.5 Discussions

1 3 5 7
Clustering Granularity

55

65

75

85

95

F1
 S

co
re

 (%
)

5%
10%
20%

40%
60%

1 2 3 4
Majority Label Count

55

65

75

85

95

F1
 S

co
re

 (%
)

5%
10%
20%

40%
60%

Figure 4: Parameters Impact.

The Impact of Parameters. We investigate the effect of two key
parameters in our noise detection module: the clustering granularity n
and the majority label count. The clustering granularity n defines the
total number of clusters K = n×C, where C is the number of classes.
It controls how finely label-independent semantics are modeled. As
shown in Figure 4, on the ISCXVPN dataset, increasing n from 1
to 5 notably improves the F1 score. A setting of n = 5 achieves
optimal performance by balancing semantic sensitivity and robust-
ness, whereas higher values (e.g., n = 7) lead to over-segmentation
and misclassification of clean samples as noise. The majority label
count determines how many of the most frequent labels in each cluster
are retained as clean. Using only the top-1 label (count = 1) can
misclassify semantically similar clean flows as noise, while larger
counts may retain actual noisy samples. As shown in Figure 4, a
count of 2 provides the best trade-off across noise ratios by tolerating
intra-cluster semantic variation without sacrificing detection precision.
Overall, both parameters play a critical role in balancing noise detec-
tion sensitivity and robustness, with n = 5 and majority label count
= 2 yielding consistently strong performance across settings.

Limitations. As a deep learning-based method, FLOWREFINER requires substantial computational
resources for efficient training, preferably with GPU acceleration. Our framework currently takes
about 3 minutes on an RTX 3090 GPU with 2.79 GB of memory for training. In future work, we will
continue to optimize the training pipeline to reduce computational overhead and improve accessibility,
while also leveraging ongoing progress in lightweight inference and dedicated hardware accelerators,
which are expected to further enhance the practicality and scalability of FLOWREFINER in real-world
deployments.

9

5 Conclusion

In this paper, we proposed FLOWREFINER, a robust framework for general traffic classification under
noisy label conditions. Our method addresses the significant challenges of label noise, including its
detection, correction, and robust classification, thus reducing dependency on high-quality labeled
data. Through the integration of a semantic-driven noise detector, confidence-guided label correc-
tion, and a cross-granularity robust classifier, FLOWREFINER effectively leverages noisy traffic to
improve classification performance. Our experimental results across various datasets and scenarios
demonstrate the ability of FLOWREFINER to outperform state-of-the-art methods in both accuracy
and resilience to noise. This framework provides a valuable solution for enhancing general traffic
analysis, particularly in environments where high-quality labels are difficult to obtain, and sets the
stage for future advancements in traffic classification under noisy conditions.

6 Acknowledgement

The authors thank the anonymous reviewers for their valuable comments and suggestions that helped
improve this paper. This work was supported in part by China National Funds for Distinguished
Young Scientists under Grant 62425201; in part by the National Key Research and Development
Program of China under Grant 2023YFB3107100; in part by the National Natural Science Foundation
of China under Grant 62502089, Grant 62172093, Grant 62132011, and Grant U22B2025; and in
part by Basic Research Program of Jiangsu under Grant BK20251353.

References
[1] C. Fu, Q. Li, M. Shen, and K. Xu, “Frequency domain feature based robust malicious traffic

detection,” IEEE/ACM Transactions on Networking, vol. 31, no. 1, pp. 452–467, 2023.

[2] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An ensemble of autoencoders
for online network intrusion detection,” in Network and Distributed System Security Symposium
(NDSS), 2018.

[3] C. Fu, Q. Li, and K. Xu, “Detecting unknown encrypted malicious traffic in real time via flow
interaction graph analysis,” in Network and Distributed System Security Symposium (NDSS),
2023.

[4] E. Papadogiannaki and S. Ioannidis, “A survey on encrypted network traffic analysis applications,
techniques, and countermeasures,” ACM Computing Surveys, vol. 54, no. 6, 2021.

[5] G. Zhou, Z. Liu, C. Fu, Q. Li, and K. Xu, “An efficient design of intelligent network data plane,”
in 32nd USENIX Security Symposium (USENIX Security), 2023.

[6] R. Xie, J. Cao, E. Dong, M. Xu, K. Sun, Q. Li, L. Shen, and M. Zhang, “Rosetta: Enabling
robust TLS encrypted traffic classification in diverse network environments with tcp-aware
traffic augmentation,” in 32nd USENIX Security Symposium (USENIX Security), 2023, pp.
625–642.

[7] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Appscanner: Automatic fingerprinting
of smartphone apps from encrypted network traffic,” in 2016 IEEE European Symposium on
Security and Privacy (EuroS&P). IEEE, 2016, pp. 439–454.

[8] F. Al-Obaidy, S. Momtahen, M. F. Hossain, and F. Mohammadi, “Encrypted traffic classification
based ml for identifying different social media applications,” in 2019 IEEE Canadian Conference
of Electrical and Computer Engineering (CCECE). IEEE, 2019, pp. 1–5.

[9] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde, “Analyzing android encrypted network
traffic to identify user actions,” IEEE Transactions on Information Forensics and Security,
vol. 11, no. 1, pp. 114–125, 2015.

[10] P. Velan, M. Čermák, P. Čeleda, and M. Drašar, “A survey of methods for encrypted traffic
classification and analysis,” International Journal of Network Management, vol. 25, no. 5, pp.
355–374, 2015.

10

[11] Z. Cao, G. Xiong, Y. Zhao, Z. Li, and L. Guo, “A survey on encrypted traffic classification,” in
International Conference on Applications and Techniques in Information Security, 2014, pp.
73–81.

[12] M. Shen, K. Ye, X. Liu, L. Zhu, J. Kang, S. Yu, Q. Li, and K. Xu, “Machine learning-powered
encrypted network traffic analysis: A comprehensive survey,” IEEE Commun. Surv. Tutorials,
vol. 25, no. 1, pp. 791–824, 2023.

[13] M. Shen, Y. Liu, L. Zhu, K. Xu, X. Du, and N. Guizani, “Optimizing feature selection for
efficient encrypted traffic classification: A systematic approach,” IEEE Network, vol. 34, no. 4,
pp. 20–27, 2020.

[14] C. Liu, L. He, G. Xiong, Z. Cao, and Z. Li, “Fs-net: A flow sequence network for encrypted
traffic classification,” in IEEE Conference on Computer Communications (INFOCOM), 2019,
pp. 1171–1179.

[15] Y. Zeng, H. Gu, W. Wei, and Y. Guo, “Deep-full-range: a deep learning based network encrypted
traffic classification and intrusion detection framework,” IEEE Access, vol. 7, pp. 45 182–45 190,
2019.

[16] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware traffic classification using con-
volutional neural network for representation learning,” in 2017 International conference on
information networking (ICOIN), 2017, pp. 712–717.

[17] J. Zhang, F. Li, F. Ye, and H. Wu, “Autonomous unknown-application filtering and labeling
for dl-based traffic classifier update,” in IEEE Conference on Computer Communications
(INFOCOM), 2020, pp. 397–405.

[18] K. Lin, X. Xu, and H. Gao, “Tscrnn: A novel classification scheme of encrypted traffic based
on flow spatiotemporal features for efficient management of iiot,” Computer Networks, vol. 190,
p. 107974, 2021.

[19] H. Song, M. Kim, D. Park, Y. Shin, and J.-G. Lee, “Learning from noisy labels with deep neural
networks: A survey,” IEEE Transactions on Neural Networks and Learning Systems, vol. 34,
no. 11, pp. 8135–8153, 2022.

[20] G. Engelen, V. Rimmer, and W. Joosen, “Troubleshooting an intrusion detection dataset: the
CICIDS2017 case study,” in IEEE Security and Privacy Workshops. IEEE, 2021, pp. 7–12.

[21] L. Liu, G. Engelen, T. M. Lynar, D. Essam, and W. Joosen, “Error prevalence in NIDS datasets: A
case study on CIC-IDS-2017 and CSE-CIC-IDS-2018,” in IEEE Conference on Communications
and Network Security, 2022, pp. 254–262.

[22] J. L. Guerra, C. Catania, and E. Veas, “Datasets are not enough: Challenges in labeling network
traffic,” Computers & Security, vol. 120, p. 102810, 2022.

[23] Y. Qing, Q. Yin, X. Deng, Y. Chen, Z. Liu, K. Sun, K. Xu, J. Zhang, and Q. Li, “Low-quality
training data only? a robust framework for detecting encrypted malicious network traffic,” in
NDSS, 2024.

[24] Q. Yuan, G. Gou, Y. Zhu, Y. Zhu, G. Xiong, and Y. Wang, “Mcre: A unified framework for
handling malicious traffic with noise labels based on multidimensional constraint representation,”
IEEE Transactions on Information Forensics and Security, vol. 19, pp. 133–147, 2023.

[25] J. Li, R. Socher, and S. C. Hoi, “Dividemix: Learning with noisy labels as semi-supervised
learning,” in International Conference on Learning Representations (ICLR), 2020.

[26] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and M. Sugiyama, “Co-teaching:
Robust training of deep neural networks with extremely noisy labels,” Advances in neural
information processing systems, vol. 31, 2018.

[27] Z. Zhang and M. Sabuncu, “Generalized cross entropy loss for training deep neural networks
with noisy labels,” Advances in neural information processing systems, vol. 31, 2018.

11

[28] Y. Wang, X. Ma, Z. Chen, Y. Luo, J. Yi, and J. Bailey, “Symmetric cross entropy for robust
learning with noisy labels,” in IEEE/CVF International Conference on Computer Vision, 2019,
pp. 322–330.

[29] T. T. Nguyen and G. Armitage, “A survey of techniques for internet traffic classification using
machine learning,” IEEE Communications Surveys & Tutorials, vol. 10, no. 4, pp. 56–76, 2008.

[30] A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zinnen, M. Henze, and K. Wehrle, “Website
fingerprinting at internet scale.” in NDSS, 2016.

[31] H. He, Z. Yang, and X. Chen, “Pert: Payload encoding representation from transformer for
encrypted traffic classification,” in 2020 ITU Kaleidoscope: Industry-Driven Digital Transfor-
mation, 2020, pp. 1–8.

[32] X. Lin, G. Xiong, G. Gou, Z. Li, J. Shi, and J. Yu, “Et-bert: A contextualized datagram
representation with pre-training transformers for encrypted traffic classification,” in ACM Web
Conference (WWW), 2022, pp. 633–642.

[33] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional
transformers for language understanding,” in North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (NAACL-HLT), 2019, pp. 4171–
4186.

[34] Z. Hang, Y. Lu, Y. Wang, and Y. Xie, “Flow-mae: Leveraging masked autoencoder for accurate,
efficient and robust malicious traffic classification,” in Proceedings of the 26th International
Symposium on Research in Attacks, Intrusions and Defenses, 2023, pp. 297–314.

[35] R. Zhao, M. Zhan, X. Deng, Y. Wang, Y. Wang, G. Gui, and Z. Xue, “Yet another traffic
classifier: A masked autoencoder based traffic transformer with multi-level flow representation,”
in Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI), 2023, pp. 5420–5427.

[36] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked autoencoders are scalable
vision learners,” in IEEE/CVF conference on computer vision and pattern recognition, 2022, pp.
16 000–16 009.

[37] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning (still)
requires rethinking generalization,” Communications of the ACM, vol. 64, no. 3, pp. 107–115,
2021.

[38] Q. Yuan, C. Liu, W. Yu, Y. Zhu, G. Xiong, Y. Wang, and G. Gou, “Boau: Malicious traffic
detection with noise labels based on boundary augmentation,” Computers & Security, vol. 131,
p. 103300, 2023.

[39] Q. Yuan, Y. Zhu, G. Xiong, Y. Wang, W. Yu, B. Lu, and G. Gou, “Uldc: Unsupervised learning-
based data cleaning for malicious traffic with high noise,” The Computer Journal, vol. 67, no. 3,
pp. 976–987, 2024.

[40] Y. Qing, Q. Yin, X. Deng, Y. Chen, Z. Liu, K. Sun, K. Xu, J. Zhang, and Q. Li, “Low-quality
training data only? A robust framework for detecting encrypted malicious network traffic,”
2024.

[41] H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical risk
minimization,” in International Conference on Learning Representations (ICLR), 2018.

[42] F. Fooladgar, M. N. N. To, P. Mousavi, and P. Abolmaesumi, “Manifold dividemix: A semi-
supervised contrastive learning framework for severe label noise,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, 2024, pp. 4012–4021.

[43] D. Arpit, S. Jastrzębski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal, T. Maharaj, A. Fischer,
A. Courville, Y. Bengio et al., “A closer look at memorization in deep networks,” in International
conference on machine learning. PMLR, 2017, pp. 233–242.

[44] S. Liu, J. Niles-Weed, N. Razavian, and C. Fernandez-Granda, “Early-learning regularization
prevents memorization of noisy labels,” Advances in neural information processing systems,
vol. 33, pp. 20 331–20 342, 2020.

12

[45] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani, “Characterization of
encrypted and vpn traffic using time-related,” in Proceedings of the 2nd international conference
on information systems security and privacy (ICISSP), 2016, pp. 407–414.

[46] T. Van Ede, R. Bortolameotti, A. Continella, J. Ren, D. J. Dubois, M. Lindorfer, D. Choffnes,
M. van Steen, and A. Peter, “Flowprint: Semi-supervised mobile-app fingerprinting on encrypted
network traffic,” in Network and distributed system security symposium (NDSS), vol. 27, 2020.

[47] Malware2023 Dataset, “A source for packet capture (pcap) files and malware samples,” https:
//malware-traffic-analysis.net/, accessed 2023.

[48] M. Lotfollahi, M. Jafari Siavoshani, R. Shirali Hossein Zade, and M. Saberian, “Deep packet: A
novel approach for encrypted traffic classification using deep learning,” Soft Computing, vol. 24,
no. 3, pp. 1999–2012, 2020.

[49] M. Lukasik, S. Bhojanapalli, A. Menon, and S. Kumar, “Does label smoothing mitigate label
noise?” in International Conference on Machine Learning, 2020, pp. 6448–6458.

[50] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in International Confer-
ence on Learning Representations (ICLR), 2019.

[51] I. Sharafaldin, A. Gharib, A. H. Lashkari, A. A. Ghorbani et al., “Towards a reliable intrusion
detection benchmark dataset,” Software Networking, vol. 2018, no. 1, pp. 177–200, 2018.

13

https://malware-traffic-analysis.net/
https://malware-traffic-analysis.net/

Appendix

A Building of the Traffic Semantics-oriented Encoder

Figure 5 depicts the process of building the traffic semantics-oriented encoder with the pre-training
paradigm of a masked autoencoder (MAE). Initially, the network traffic data captured from Pcap
files undergoes preprocessing to extract and resize the flow content, ensuring the data is in a suitable
format for model training. The processed traffic data is then intentionally masked, and input into
the traffic encoder, which employs the principles of an MAE by aiming to recover the original data
from its corrupted form. The encoder learns to extract robust feature representations by focusing on
the structure left intact by the masking process. Finally, the encoded features are passed through a
decoder that attempts to reconstruct the original input, thereby enabling the model to learn critical
data characteristics effectively and allowing the encoder to extract effective traffic semantics.

Traffic
Pcap

𝑥!

Flow
Content Resized

Content
Masked

Traffic
Encoder

Decoder

Target

Feature
VectorFor

Noise Detector

Figure 5: The pre-training paradigm of masked autoencoder for building traffic semantics-oriented
encoder.

B Two Categories of the Predicted Labels from the Traffic Label Predictor

Based on the label predictor fine-tuned on the clean flows, we could obtain the predicted labels of
detected noisy flows. As shown in Figure 6, we refine the labels of noisy flows into two categories,
i.e., high-confidence flow labels and low-confidence flow labels. The samples with high-confidence
labels share a similar distribution with the clean set, and we use the prediction results to correct their
labels. The samples with low-confidence flow labels represent difficult instances for the predictor.
Thus, we retain their original labels and introduce them to the refined flows to maintain diversity and
expand the semantic distribution of samples.

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

Class 7

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

Class 7

Label
Predictor

(1) High-Confidence
Flow Labels

(2) Low-Confidence
Flow Labels

C
onfidence

C
onfidence

𝑥!𝑥!𝑦#!

Figure 6: Two categories of the predicted labels from the traffic label predictor.

C The Structure Detail of the Cross-Granularity Robust Classifier

Figure 7 presents the structure of the Cross-Granularity Robust Classifier, which is designed to
classify network traffic at both the packet and flow levels. In the flow-level traffic classifier, multiple
parallel packet encoders process each individual packet from the flow. These encoders share weights,

14

Packet
Encoder

Packet
Encoder

Packet
Encoder

𝑥!𝑥!

𝑥!𝑥!

𝑥!𝑥!

Packets

A
ggregator

Share Weight

𝑥!𝑥!𝑥!
"

Random
Select

Packet

Packet
Encoder

Flow-level Traffic
Classifier

Packet-level Traffic
Classifier

𝑥!𝑥!𝑥!
Flow

𝑥!𝑥!𝑦#!

𝑥!𝑥!𝑦#!
"

Flow-level
Classification

Packet-level
Classification

…

Figure 7: The structure detail of the cross-
granularity robust classifier.

indicating that they operate under a unified
framework to maintain consistency in feature
extraction across different packets. The encoded
packet features are then aggregated to form a
comprehensive representation of the flow, which
is subsequently used to perform the flow-level
traffic classification for the entire flow. This
structure of parallel packet encoders of the flow-
level classifier enables a share-weight individ-
ual packet encoder to process packet-level input
and thus perform packet-level classification. In
detail, a packet is selected randomly from the
flow sample, and then classified by the packet-
level traffic classifier. This dual approach allows
the system to leverage fine-grained packet-level
data along with aggregated flow-level informa-
tion, enhancing the robustness and accuracy of
the traffic classification.

D Dataset Information

The details of the four real-world traffic datasets used in this work are shown as follows:

• ISCXVPN (45) contains 7 categories of encrypted traffic, collected by the Canadian Institute for
Cybersecurity via OpenVPN. The dataset consists of 2,275 training samples and 569 test samples.

• CrossPlatform (46) includes encrypted traffic data from various platforms. In our experiments,
we use IOS application traffic in the China region, comprising 30 different categories. The dataset
consists of 5,429 training samples and 1,372 test samples.

• USTC-TFC (16) is a traffic dataset with 10 categories of benign application traffic and 10 categories
of malware traffic. The dataset consists of 1,914 training samples and 483 test samples.

• Malware (47) is a recently published dataset featuring traffic from 10 malware families, available
at https://malware-traffic-analysis.net/about.html. The dataset consists of 2,938
training samples and 740 test samples.

E Baselines

To evaluate the performance of our method, we use six state-of-the-art traffic classification methods
and five label noise learning methods as baselines. The following traffic classification baselines
include one traditional machine learning method, three traditional deep learning methods, and three
advanced pre-training methods.

• Appscanner (7): A traditional machine learning tool that classifies traffic using handcrafted
flow-based features, often less resilient to noisy or encrypted data.

• FS-Net (14): A flow-based model incorporating both classification and reconstruction tasks,
enhancing its robustness to noise and improving semantic feature extraction.

• ET-BERT (32): A BERT-like Transformer pre-trained model, leveraging self-supervised learning
to capture flow-level semantic patterns, offering strong resilience to label noise.

• MAE (34): A self-supervised traffic classifier based on Masked Autoencoder (MAE), masking
parts of traffic flows and reconstructing them, which makes it robust in noisy conditions.

• YaTC (35): A hybrid traffic classification model combining supervised and self-supervised learning,
balancing noise handling and effective traffic feature extraction.

• MCRe (24): A state-of-the-art traffic analysis method focuses on malicious traffic label noise
learning.

In addition, we introduce the following label noise learning baselines, all of which use the same
encoder structure for fair comparison.

15

https://malware-traffic-analysis.net/about.html

5 10 20 40 60
Noise Ratio (%)

0
20
40
60
80

100

F1
 S

co
re

 (%
)

ISCX-VPN

Deeppacket
CNN

ET-BERT
Ours

5 10 20 40 60
Noise Ratio (%)

0
20
40
60
80

100

F1
 S

co
re

 (%
)

CrossPlatform

Deeppacket
CNN

ET-BERT
Ours

5 10 20 40 60
Noise Ratio (%)

0
20
40
60
80

100

F1
 S

co
re

 (%
)

USTC-TFC

Deeppacket
CNN

ET-BERT
Ours

5 10 20 40 60
Noise Ratio (%)

0
20
40
60
80

100

F1
 S

co
re

 (%
)

Malware

Deeppacket
CNN

ET-BERT
Ours

Figure 8: Comparison of packet classification performance with packet-level baselines.

• CE: A standard cross-entropy loss used in classification tasks, which can be sensitive to label noise
as it directly penalizes incorrect predictions.

• LSR (49): Label Smoothing Regularization reduces model overconfidence by distributing probabil-
ity mass to incorrect labels, making the model more robust to noise.

• Mixup (41): A data augmentation technique that generates synthetic samples by interpolating
between two samples and their labels, helping the model generalize better under noisy conditions.

• GCE (27): Generalized Cross-Entropy blends the advantages of MAE and CE to address label
noise, making it more robust by adjusting the loss function dynamically.

• SCE (28): Symmetric Cross-Entropy introduces a correction term to balance the standard CE loss,
aiming to better handle noisy labels by mitigating over-penalization of incorrect predictions.

• Co-teaching (26): Trains two networks simultaneously and lets them teach each other by selecting
small-loss samples, assuming that clean samples have lower loss values. This helps filter out noisy
labels during training.

• DivideMix (25): Uses a Gaussian mixture model to divide samples into clean and noisy sets based
on loss values, then applies semi-supervised learning to train the model using both labeled and
unlabeled data.

F Hyperparameter Information

In all experiments, we use a batch size of 64, train for 20 epochs, and optimize with AdamW
(50) using a learning rate of 4 × 10−3. For noise detection, we set the clustering granularity to
n = 5, with the top m = 2 most frequent labels in each cluster considered as majority labels.
Confidence thresholds are set at τh = 0.9 and τl = 0.7 to balance precision and recall in noise
filtering. Importantly, we apply the same hyperparameter settings across all datasets, demonstrating
that our method achieves strong performance without extensive tuning, highlighting its robustness to
hyperparameter choices.

Table 5: Hyperparameter settings in our experiments.
Parameter Setting
Batch size 64
Epochs 20
Learning rate 4× 10−3

Optimizer AdamW (50)
Clustering granularity (n) 5
Majority label count (m) 2
High confidence threshold (τh) 0.9
Low confidence threshold (τl) 0.7

G Packet Classification Ability

The proposed cross-granularity robust classifier integrates both flow-level and packet-level traffic
classification tasks against label noise, bringing the ability to serve as a robust packet classifier.
We compare the packet-level classification performance with advanced packet classifiers, including
Deeppacket (48), CNN (16), and ET-BERT (32). As shown in Figure 8, in packet-level traffic analysis

16

Table 6: Comparison with Traffic Classification Baselines on Class-dependent Noise Scenarios.

Dataset Noise Appscanner FS-Net ET-BERT MAE YaTC MCRe Ours

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

ISCXVPN

5% 81.49 82.07 87.42 87.58 85.76 85.77 91.39 91.36 93.15 92.98 80.86 81.72 93.32 92.98
10% 81.16 81.70 85.78 86.21 81.90 81.69 90.51 90.45 91.21 91.13 78.52 79.29 92.62 92.28
20% 80.51 80.36 83.04 83.33 80.49 80.52 84.35 84.44 88.75 88.64 77.54 77.38 89.45 88.90
40% 67.20 68.15 69.14 70.29 55.18 55.99 68.71 69.50 67.31 68.28 74.61 74.75 78.03 77.29
60% 49.67 51.14 47.10 47.95 46.04 48.23 46.74 48.35 42.00 44.03 45.51 46.29 52.72 53.38

USTC-TFC

5% 62.14 62.15 86.33 86.53 94.20 94.18 93.58 93.52 95.24 94.20 94.12 94.25 94.62 94.50
10% 61.38 61.38 85.78 85.98 92.96 93.07 93.79 93.75 93.17 93.18 90.23 92.40 94.20 94.16
20% 60.86 55.61 80.39 79.97 91.51 91.52 88.61 88.62 90.68 90.65 89.45 91.80 92.13 92.15
40% 54.98 50.17 76.56 77.01 75.98 76.41 78.88 79.99 83.43 83.73 82.03 83.87 84.47 84.90
60% 42.19 41.75 62.34 62.52 54.65 57.11 56.10 57.27 66.87 68.28 35.55 40.02 75.36 76.30

Table 7: Comparison with Label Noise Learning Baselines on Class-dependent Noise Scenarios.

Dataset Noise CE LSR Mixup GCE SCE Co-teaching DividMix Ours

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

ISCXVPN

5% 78.91 79.06 79.61 79.66 82.95 82.74 76.09 74.58 79.09 79.06 85.41 84.44 85.24 85.37 93.32 92.98
10% 76.09 75.31 77.85 77.34 78.91 78.76 75.04 73.88 77.50 76.47 86.46 85.74 80.84 81.37 92.62 92.28
20% 76.44 76.12 74.34 74.02 76.80 76.67 72.93 71.89 74.34 74.77 87.69 87.37 79.61 80.15 89.45 88.90
40% 58.52 59.16 59.75 59.91 67.48 67.39 68.18 67.23 64.49 64.37 75.57 75.50 76.63 77.00 78.03 77.29
60% 38.84 40.05 34.62 36.01 43.76 45.73 42.88 42.03 41.82 44.02 51.85 50.94 50.44 53.44 53.25 53.62

USTC-TFC

5% 87.16 86.73 86.33 85.67 90.68 90.45 80.12 78.79 86.75 86.45 76.81 73.84 85.92 85.72 94.62 94.50
10% 85.92 86.06 83.85 83.31 89.23 88.51 79.50 78.66 85.92 85.86 77.64 74.63 90.48 90.41 94.20 94.16
20% 81.78 81.27 82.81 82.27 83.22 82.49 78.67 76.84 80.12 79.90 83.44 80.90 89.23 88.98 92.13 92.15
40% 65.21 65.18 66.04 66.20 74.12 74.41 71.42 70.16 71.22 70.62 82.40 81.75 81.78 82.25 84.47 84.90
60% 58.17 58.86 51.55 51.65 55.69 56.93 64.80 65.05 48.44 49.47 68.12 69.73 65.22 66.35 75.36 76.30

tasks, where each sample contains less information, the classification methods suffer from label noise
more. Only FLOWREFINER can achieve F1 scores higher than 80% under 20% noise ratio, while
other packet-level baselines can hardly achieve 60%. It demonstrates that FLOWREFINER could
obtain two levels of robust encrypted traffic classifier at once and adapt to different requirements.

H Class-dependent Noise Evaluation

Class-dependent noise occurs when the probability of label corruption is not uniform across classes,
meaning certain classes are more prone to having mislabeled samples than others.

For instance, in VPN traffic categories, VOIP and Streaming are often mislabeled due to their
similar real-time transmission metrics, such as packet sizes and intervals, once encrypted. FTP and
MAIL, which exhibit prolonged, high-volume traffic traits during large file transfers, are frequently
miscategorized as p2p. Likewise, BROWSING and CHAT, with their frequent interactions and
small packet sizes, become indistinguishable when encrypted, leading to frequent mislabeling. Thus
we injected class-dependent noise into the ISCXVPN dataset to mirror these common mislabeling
scenarios.

On the other hand, in the USTC-TFC malware traffic dataset, FTP and SMB often get confused
due to their similar file transfer behaviors. Both protocols involve significant data packet exchanges
which can appear alike under traffic analysis. Similarly, Gmail and Outlook, both being email
services, often exhibit interchangeable traffic patterns due to similar data flow structures, leading to
potential mislabeling. Services like Skype and Facetime, which both facilitate VoIP communications,
show closely related network signatures that can easily be mistaken for one another when encrypted.
Additionally, applications like WorldOfWarcraft and Skype may be misclassified due to their real-time
interaction requirements, which create similar traffic spikes. BitTorrent, known for peer-to-peer
file sharing, and FTP, used for direct file transfers, also share large file movement characteristics
that can be confused under automated analysis. Furthermore, malware such as Zeus and Cridex, or
Nsis-ay and Virut, exhibit overlapping behaviors in terms of their network communication patterns,
making accurate classification challenging. Thus, we injected these class-dependent noises into the
USTC-TFC dataset to closely simulate these realistic mislabeling scenarios.

We comprehensively performed a comparison with both traffic classification methods and label noise
methods under class-dependent noise, which are shown in Table 6 and Table 7. Results show that our
method can achieve significant performance advantages over the baselines in the class-dependent
noise scenario.

17

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction, we stated that this work proposes a robust and
general traffic classification framework against label noise.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This paper discusses the limitations in Section 4.5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

18

Justification: We do not provide the theoretical result in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the details of the proposed method and experimental setting.
Besides, the source code and the experiment data will be released upon publication.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

19

Answer: [Yes]
Justification: Datasets used in this paper are publicly available. The code will be open-
sourced upon publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We give the training and test details in the Experiment section and the Ap-
pendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The paper presents the results from a single run for each experiment, which is
consistent with previous works on traffic classification.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This work provides the computer resources needed to reproduce the experiment
in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper adheres to the NeurIPS Code of Ethics,
ensuring that all aspects of the work, including the methodology, data handling, and reporting,
conform to the ethical guidelines provided.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This work introduces the importance of traffic analysis techniques to protect
network security and improve the quality of service in Section 1. Furthermore, traffic
analysis techniques have minimal negative social impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

21

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: This paper clearly introduces existing assets and complies with terms of use in
Section 4.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

22

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or human subjects research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or human subjects research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

23

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

24

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	FlowRefiner
	Traffic Semantics-Driven Noise Detector
	Confidence-Guided Label Correction
	Cross-Granularity Robust Classifier

	Experiments
	Experiment Settings
	Comparison with Baselines
	Label Noise Evaluation
	Ablation Study
	Discussions

	Conclusion
	Acknowledgement
	Building of the Traffic Semantics-oriented Encoder
	Two Categories of the Predicted Labels from the Traffic Label Predictor
	The Structure Detail of the Cross-Granularity Robust Classifier
	Dataset Information
	Baselines
	Hyperparameter Information
	Packet Classification Ability
	Class-dependent Noise Evaluation

