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Abstract

Learning with noisy labels (LNL) is a subfield of supervised machine learning investigating
scenarios in which the training data contain errors. While most research has focused on
synthetic noise, where labels are randomly corrupted, real-world noise from human annota-
tion errors is more complex and less understood. Wei et al. (2022b) introduced CIFAR-N,
a dataset with human-labeled noise and claimed that real-world noise is fundamentally
more challenging than synthetic noise. This study aims to reproduce their experiments
on testing the characteristics of human-annotated label noise, memorization dynamics, and
benchmarking of LNL methods. We successfully reproduce some of the claims but identify
some quantitative discrepancies. Notably, our attempts to reproduce the reported bench-
mark reveal inconsistencies in the reported results. To address these issues, we develop a
unified framework and propose a refined benchmarking protocol that ensures a fairer evalu-
ation of LNL methods. Our findings confirm that real-world noise differs structurally from
synthetic noise and is memorized more rapidly by deep networks. By open-sourcing our
implementation, we provide a more reliable foundation for future research in LNL.

1 Introduction

Learning with noisy labels (LNL) is a fundamental challenge in supervised machine learning, where errors in
training data labels can significantly degrade model performance (Nettleton et al., 2010). Deep neural net-
works, in particular, are prone to memorizing mislabeled examples (Zhang et al., 2017), leading to overfitting
and poor generalization (Xie et al., 2021). Addressing this issue is crucial for real-world applications, where
high-quality labeled data is expensive and human annotation errors are inevitable. Most of the research in
LNL has focused on synthetic noise, where labels are artificially corrupted under controlled conditions, such
as random class swaps. Although this provides a straightforward experimental setup, it fails to capture the
complexity of real-world label noise (Jiang et al., 2020).

A wide range of techniques have been developed to mitigate the effects of noisy labels. The problem setup
shared among all of them involves training an underlying classifier (e.g., a ResNet (He et al., 2015)) with a
learning strategy robust to label noise. Figure 1 illustrates the general setup. Common approaches in the
field include using loss functions robust to noise (Ghosh et al., 2017; Zhang & Sabuncu, 2018; Wang et al.,
2019), adding specialized regularization (Lukasik et al., 2020; Wei et al., 2022a), adjusting loss based on
noise estimations (Patrini et al., 2017; Xia et al., 2019; Reed et al., 2015), filtering noisy samples (Han et al.,
2018; Yu et al., 2019; Wei et al., 2020), and adding additional layers to the base classifier (Goldberger &
Ben-Reuven, 2017; Bai et al., 2021). For a detailed survey of LNL approaches, we refer the reader to Song
et al. (2022).

Despite significant progress, most of these methods have been evaluated under synthetic noise assumptions,
which do not fully reflect real-world annotation errors. Unlike synthetic noise, real-world noise tends to
be instance-dependent (Chen et al., 2021), correlating with visual similarity between classes and annotator
biases (Wei et al., 2022b).

To bridge the gap between synthetic and real-world label noise, Wei et al. (2022b) introduced CIFAR-N,
a dataset containing human-annotated label noise based on CIFAR-10 and CIFAR-100 (Krizhevsky et al.,
2009). They investigate how real-world noise impacts learning and whether existing LNL methods remain
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Figure 1: An illustration of a setup for learning with noisy labels. During the training phase (left side), the
model is trained using samples with potentially corrupted labels. The LNL algorithm tries to mitigate this
noise. During the evaluation phase (right side), the trained model is evaluated with uncorrupted labels.

effective in practical scenarios and claim that learning with real-world noise is fundamentally more challenging
than with synthetic noise. Finally, they evaluate 20 state-of-the-art LNL methods on the proposed dataset.

Their key findings suggest that real-world noise differs structurally from synthetic noise, as it is feature-
dependent and often reflects human annotation tendencies rather than random corruption. Additionally,
deep networks memorize real-world noise more rapidly, overfitting human-labeled noise faster than synthetic
noise, which leads to different learning dynamics. Consequently, the benchmark results indicate that real-
world noise poses a harder challenge for LNL methods, as models trained on synthetic noise often achieve
significantly higher accuracy on clean data than those trained on human-annotated noisy labels.

Despite these contributions, the original work has several limitations. The code used to conduct the exper-
iments is not publicly available, and key methodological details are insufficiently described, making their
claims difficult to verify. Moreover, the benchmark results are published on public leaderboards and used
as is in subsequent works (Chen et al., 2024; Xiao et al., 2023; Zhang et al., 2025), even though flaws in the
testing methodology prevent direct and fair comparisons. To address these issues, we make the following
contributions:

1. We reproduce the experiments described by Wei et al. (2022b) and open-source the code, so the
experiments can be replicated by others. Our source code is publicly available at (URL anonymized
and submitted as supplementary material).

2. We implement a framework to benchmark LNL methods under controlled conditions. With it, we
are able to establish unified noising and testing pipelines for all methods. To our knowledge, our
framework is the first such attempt in the LNL field.

3. We benchmark LNL methods in a controlled environment, fixing the appropriate parameters and
enabling a fair comparison of LNL methods on CIFAR-N.

2 Scope of Reproducibility

The original paper by Wei et al. (2022b) introduces the CIFAR-N dataset, arguing that real-world human
annotation noise differs significantly from synthetic noise and presents a more challenging learning problem.
Their findings are based on a series of experiments comparing the characteristics of real and synthetic noisy
labels, analyzing the memorization behavior of deep networks, and benchmarking 20, at the time, state-of-
the-art LNL methods.
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During their analysis of CIFAR-N, the authors make several key observations: (1) the noise distribution in
CIFAR-N is imbalanced, favoring similar-looking classes, (2) misannotations primarily occur between visually
similar categories, (3) the noise exhibits a mix of symmetric and asymmetric patterns, (4) some noisy labels
may reflect multiple valid annotations rather than errors, and (5) learning on real-world label noise is more
challenging than learning on synthetic noise. Based on these observations, they make three central claims:
(i) human annotation noise is feature-dependent, (ii) deep networks memorize real-world noisy
labels faster than synthetic ones, and (iii) LNL methods more easily model synthetic noise than
real-world human annotation noise.

In this work, we aim to reproduce and validate these claims by conducting an independent evaluation of the
key findings from the original study. Specifically, we investigate:

i. Differences Between Real-World and Synthetic Noise: We replicate the hypothesis testing
methodology to quantitatively compare human annotation noise with synthetic noise. We assess
whether real-world noise is feature-dependent and whether label transitions exhibit different struc-
tural properties (Section 3.2).

ii. Memorization of Noisy Labels by Deep Networks: We reproduce the memorization effect
experiment to examine whether deep neural networks overfit real-world noisy labels faster than
synthetic ones. We analyze the impact of different noise levels and label sets on memorization
trends (Section 3.3).

iii. Benchmarking of LNL Methods: We attempt to reproduce the benchmark results reported for
10 of the 20 LNL methods, evaluating their performance on both real-world and synthetic noise. We
investigate inconsistencies in the reported results and assess whether the stated training methodology
leads to the same outcomes (Section 3.4).

iv. Evaluation of Benchmarking Methodology: We examine whether the benchmarking approach
used in the original paper is fair and consistent across methods (Section 3.5).

Going beyond the original study, we propose a revised benchmarking protocol that ensures comparability
across different LNL techniques. Throughout our study, we carefully document any deviations from the
original methodology and highlight areas where ambiguities in the original paper may have impacted repro-
ducibility. By open-sourcing our implementation (URL anonymized and work submitted as supplementary
material), we aim to provide a transparent framework for future research in learning with noisy labels.

3 Methodology

We follow the authors’ described methodology for all experiments except when reproducing their LNL bench-
mark, which we justify in Section 3.4. Where the procedures are originally not well described or are ambigu-
ous, we describe our selected methodology in greater detail. We also present why their benchmark results
should not be used as a benchmark and provide improvements that enable a fairer comparison.

3.1 Datasets

We use the CIFAR-N datasets provided by the benchmark authors Wei et al. (2022b). Their work is based
on the standard CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009), consisting of 50, 000 train and
10, 000 test images with image-level class annotations. As the names suggest, CIFAR-10 includes 10 label
categories, while CIFAR-100 has 100.

The authors propose noisy extensions for both datasets, which keep the original images but replace the
labels with real-world noisy annotations. Only the training sets of both datasets have these, while the
10, 000 testing labels are kept from the original CIFAR-10 and -100 datasets and are considered noise-free.
The 50, 000 training labels from the original CIFAR datasets are considered ground truth clean labels.

The CIFAR-10N extension includes five sets of noisy labels obtained from different annotators with varying
degrees of noise. Specifically, the authors present the following label sets:
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• Random1, Random2, Random3: These directly include the labels submitted by different anno-
tators. These have a medium noise level, with 17.23%, 18.12%, and 17.64% noise ratios, respectively.

• Aggregate: Labels in this set are obtained from Random1, Random2 and Random3 via major-
ity voting. Whenever there is a 3-way disagreement, the label is selected randomly. Due to the
aggregation, the noise level here is the lowest at 9.03%.

• Worst: Similarly, as in the Aggregate set, labels here are also obtained from the three Random sets
but are aggregated so that incorrect labels are taken wherever possible. As such, the noise level here
is the highest, with 40.21% incorrect labels.

Clean-to-noisy label transition matrices in Figure 2 indicate percentages of misassigned labels and common
mistakes (e.g., mislabeling truck as an automobile).
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Figure 2: Transition matrices of CIFAR10-N for Aggregate, Random1 and Worst label sets. A single row
denotes the percentages of transitions of the row label to any of the column labels. Missing numbers indicate
that no such transition was found in the provided noisy label set. The color bar is log-norm transformed to
highlight noise levels.

Similarly, the CIFAR-100N extension includes two sets of real-world noisy labels. Besides the original 100
categories, the authors also present a new set of coarse annotations of 20 super-classes to help the annotators
during annotation. The annotators are first asked to assign a super-class, from which they then later select
the fine-grained class. The two noisy label sets are then defined as follows:

• Coarse: consists of the 20 super-class labels with a noise rate of 25.60%.

• Fine: consists of all 100 fine categories and has 40.20% of noisy labels.

The authors observe that in CIFAR-100N some label noise may not necessarily indicate incorrect annotations
but rather the presence of multiple valid labels within an image. We visualize some examples in Figure 3.
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(a) A reproduction of Figure 4 by Wei et al. (2022b).
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(b) Images to which their noisy labels might be better suited than their original labels.

Figure 3: Examples of training images with multiple valid labels from CIFAR-100N. The first caption
contains the clean CIFAR-100 label, and the bottom one is the human-annotated "noisy" label.
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They provide examples of such cases, with the frequent case being a fisherman holding a flatfish in his hands.
We reproduce their exemplar images in Figure 3a. During our analysis, we even observed that some noisy
annotations actually describe the images better than their original labels.

3.2 Reproducing Noise Hypothesis Testing

Wei et al. (2022b) qualitatively and quantitatively show that real-world human noise differs from synthetic
noise with hypothesis testing. We follow the same procedure while taking note of certain ambiguous decisions.

We start by fitting a ResNet-34 model on clean CIFAR-10 train labels. The authors do not explicitly explain
how the model was trained, so we use the default training methodology presented in Section 3.4. Once
trained, we use the classifier to get image embeddings for all 50, 000 training images.

Next, for each of the N = 10 classes, we cluster its embeddings into ν = 5 clusters Cn,v, ∀n ∈ N, ∀v ∈ ν using
a K-Means model. As all cluster members belong to the same clean class, we can then obtain a N -dimensional
transition vector for each cluster: pn,v = [P(Ỹ = j|Y = n, X ∈ Cn,v)]j∈[N ]. We do this for both real-world
and synthetic labels, specifically the Random1 label set and its synthetic counterpart. We generate the
synthetic label set by sampling from an asymmetric transition matrix estimated from the CIFAR-N noisy
labels. Following the approach in the original paper, we compute this matrix by counting class-wise label flips
between the human-annotated (noisy) labels and the clean labels. The resulting transition matrix (visualized
in Figure 2) is then used to synthesize new noisy labels, producing a synthetic counterpart following the same
transition matrix but without instance-dependence. At this point, we plot the resulting transition vectors in
each class and cluster and qualitatively check for differences between the real-world and synthetic transition
vectors.

We repeat the previous steps E = 10 times, generating a new set of synthetic labels and embeddings each
time. To get different embeddings, we randomly augment the images with horizontal flips and random crops.
This gives us a set of transition vectors {pe,k,v}e∈[E],k∈[K],v∈[ν] for both synthetic and human noise. From
this data, we can obtain the two sets of l2 distances between the transition vectors – the human-synthetic
distances:

{d
(1)
e,k,v = ||phuman

e,k,v − psynthetic
e,k,v ||22}e∈[E],k∈[K],v∈[ν]

and the synthetic-synthetic distances:

{d
(2)
e,k,v = ||psynthetic

e,k,v − psynthetic
(e+1)%E,k,v||22}e∈[E],k∈[K],v∈[ν].

From here on, we use the same formulation and procedures for the hypothesis test as Wei et al. (2022b).

3.3 Reproducing Noise Memorization

To further investigate the differences between artificial and real-world noise, Wei et al. (2022b), inspect the
learning behavior of a classifier trained on both sets of noisy labels. Specifically, they compare the learning
behavior on Aggregate, Random1, and Worst sets of real-world labels with their synthetic counterparts. The
procedure to obtain synthetic labels remains the same as in Section 3.2. They check whether the ratio
of memorized examples increases faster for synthetic or real-world noisy labels. In a K-class classification
task, given a classifier f , a feature x and confidence threshold η, x is memorized by f if ∃i ∈ [K] s.t.
P (f(x) = i) > η.

The authors do not explain the training setup beyond the fact that ResNet-34 (He et al., 2015) is used as
a classifier with the confidence threshold η = 0.95. From the figures in the original paper, we deduce that
each experiment was run for 150 epochs. Furthermore, we assume that a smooth learning rate schedule was
used, based on the shape of the memorization curves. We obtain the rest of the hyperparameters from the
memorization experiments by Xie et al. (2021) using the SGD optimizer without momentum and setting the
initial learning rate to γ = 1, weight decay to 1e − 4 and a smooth version of their learning rate scheduler
(γt = γ · 0.1 t

50 ).
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3.4 Reproducing the Benchmark

Due to the large computation cost (see Appendix E), we select a subset of 10 methods that show good
performance in the original results: CE (baseline), Co-Teaching (Han et al., 2018), Co-Teaching+ (Yu et al.,
2019), ELR, ELR+ (Liu et al., 2020), Divide-Mix (Li et al., 2020), VolMinNet (Li et al., 2021), CAL (Zhu
et al., 2021), PES (semi) (Bai et al., 2021), SOP, and SOP+ (Liu et al., 2022). Here, we note that the
author’s reported performance for the SOP method is most likely SOP+, so we include both methods in our
benchmark. To ensure a fair comparison with state-of-the-art methods we also include two newer methods:
ProMix(Xiao et al., 2023) and DISC (Li et al., 2023).

The authors do not describe the evaluation procedure for the benchmark, but we have reproduced it based
on GitHub issues and personal correspondence. During training with each LNL method, the classifier is
evaluated in terms of micro-averaged accuracy on a clean test set every epoch. At the end, the highest
achieved accuracy is reported. Each run is repeated three times to obtain the mean accuracy and the
standard deviation.

While being a crucial part of many learning strategies, the benchmark authors do not discuss the hyperpa-
rameters for each method in full detail. Therefore, we reference their official implementations as a starting
point and, as described by the authors, fix the following1: training time to 100 epochs, a stochastic gra-
dient descent optimizer with momentum (0.9), weight decay (5e − 4), an initial learning rate of 0.1 which
decreases to 0.01 at the 60th epoch, and a minibatch size of 128. The authors also note that the ELR (+)
and DivideMix methods received special treatment and were run using their original configurations. We
observe that for SOP the pre-activation ResNet-18 was used 2, and based on the authors’ discussion with
reviewers, that the low noise configuration (λu = 0) was used for DivideMix 3. Following these findings,
we use ResNet-34 for most of the learning strategies and a pre-activation ResNet-18 for SOP, ELR+, and
DivideMix, consistent with the described setup.

As we later show in Section 4.3, following the methodology inferred from the original study, we do not reach
the same results. We argue that fixing the learning rate, optimizer, and the number of epochs without
redoing the hyperparameter search reduces the performance of methods (in a possibly uneven way). Instead,
when using the original hyperparameter configurations for each LNL method along with the optimizers,
learning rates, and training durations, most of the methods perform close to the original reported accuracy.

Given these findings, it is likely that the original authors followed a methodology closer to our reverse-
engineered approach rather than the one explicitly described in their paper. However, due to inconsistencies
between the paper and the available implementation, as well as the discontinued correspondence with the
original authors (see Appendix D.1), we are unable to verify this assumption with certainty.

3.5 Making the Benchmark Fair

We argue that this approach is flawed in several aspects and present a better evaluation procedure. When
benchmarking LNL methods, the authors use a clean test set to measure accuracy every epoch, select-
ing the highest one at the end. This overestimates the real-world performance and is thus unreliable in
practice (Cawley & Talbot, 2010).

During our experiments, we observed that the underlying classifier strongly influences the final performance.
Given that the authors do not use the same ResNet model for all LNL methods (e.g., special treatment of
DivideMix, ELR, and SOP), one cannot directly compare the entries on the benchmark. This is an issue
as their results are currently published on a public leaderboard4, making users unfamiliar with the testing
methodology believe that the results are directly comparable between the entries.

To address these flaws, we adapt the benchmarking procedure as follows. We use the official hyperparameters
for each LNL method and fix only the underlying classifier. We use the PyTorch implementation of ResNet-

1See Wei et al. (2022b) Appendix E.3.
2See Wei et al. (2022b) caption of Table 2 .
3See https://openreview.net/forum?id=TBWA6PLJZQm discussion with reviewer EZud.
4https://paperswithcode.com/task/learning-with-noisy-labels
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34 with random weight initialization. Instead of testing every epoch, we use 5% of the noisy training data
as a validation set to compute accuracy. We report the accuracy on the clean test set corresponding to the
checkpoint with the highest validation accuracy. We present our argument on why accuracy on noisy data
is a good metric for model selection in Appendix B. We repeat each run three times and report the average
accuracy along with the standard deviation.

3.6 Experimental Setup and Code

We implement our framework using PyTorch5 and Lightning6 libraries for easier reproducibility, distributed
training, and robust, identical testing of all methods. The modularity of the framework enables easier
implementation and comparison of future LNL methods. The code is publicly available at (URL anonymized).

4 Results

In this section, we describe the results obtained using the previously specified methodology. Each subsection
corresponds to one of the reproducibility claims outlined in Section 2.

4.1 Reproduced Noise Hypothesis Testing

We confirm the original claim that human-noisy labels in CIFAR-N differ from synthetic ones obtained from
the same transition matrix. We do not match the reported p-value entirely, ours being higher at 9.5 · 10−28

versus 1.8 · 10−36, reported by the original authors. Qualitatively, the differences between the human and
synthetic cluster transition vectors in Figure 4 are also not as prominent as in the original work. However,
they still exhibit a similar pattern, with human noise varying more along the cluster dimension, which implies
feature dependence. We attribute the differences to possibly different training regimes, since the original one
is not described in full detail.
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(a) Human noise (Random 1): noise level ≈ 17.23%.
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(b) Synthetic class-dependent noise with the same T.

Figure 4: Transition vectors within ν = 5 clusters for the first 5 classes for real-world human noise and
corresponding synthetic noise. Qualitatively, human noise shows a greater diversity of transition vectors
between the clusters in each class. We use the Euclidean distance for k-means clustering on ℓ2-normalized
embeddings, which is proportional to the negative cosine similarity used by the authors.

4.2 Reproduced Noise Memorization

Our reimplementation of the noise memorization experiments also supports the claims of Wei et al. (2022b).
Figure 5 presents the memorization dynamics across three label sets with increasing noise levels. The full
lines lying above the dashed ones indicate that models begin memorizing real-world noisy labels more rapidly
than synthetic ones. While the effect is less pronounced than in Figure 6 of Wei et al. (2022b), our results

5https://pytorch.org/
6https://lightning.ai/docs/pytorch/stable/
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consistently demonstrate that models overfit human-labeled noise faster than synthetic noise, especially
under higher noise levels (Worst label). Notably, the memorization of real-world noise remains somewhat
consistent across noise levels, while synthetic labels are memorized with a higher frequency at lower noise
levels. The observed discrepancies can again be attributed to differences in training configurations, as
certain implementation details were either missing from the original paper or remained unclear despite our
correspondence with the authors. We perform additional experiments using different types of synthetic noise
and SGD parameters in Appendix C. While the memorization dynamics differ under different synthetic noises
and hyperparameters, the observations of the original authors hold: deep neural nets memorize features more
easily when learning with real-world human annotations than synthetic ones.
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Figure 5: Noise memorization effects. The red line denotes the proportion of memorized (wrongly
predicted) samples, blue line denotes that of correctly predicted ones. The models start to memorize the
human noisy labels (full line) faster than the synthetic ones (dashed line).

4.3 Reproduced Benchmark

Table 1 shows the results obtained using the evaluation methodology described in Wei et al. (2022b) on
the Aggregate label set. There are significant differences between the results reported in the original paper
and those obtained when following the methodology fully (fixing the same optimizer, learning rate schedule,
and number of epochs for all methods). Upon further investigation, we repeat the experiments using the
methods’ original configurations. The results are closer to those reported by Wei et al. (2022b).

Table 1: Comparison with the reported results on the Aggregate label. We report the results
(accuracy±std) obtained using our reimplementation of the configuration described by the authors, the
original configuration for each method, and the reported results. Only the results for which the authors use
original configurations (denoted by ∗) are close to the reported ones.

Method Described Config Original Config Reported
CE 91.70 ± 0.07 91.70 ± 0.07 87.77 ± 0.38

Co-teaching 90.25 ± 0.13 91.93 ± 0.25 91.20 ± 0.13
Co-teaching+ 86.20 ± 0.88 91.15 ± 0.08 90.61 ± 0.22

ELR∗ 93.00 ± 0.19 93.00 ± 0.19 92.38 ± 0.64
ELR+∗ 95.32 ± 0.06 95.32 ± 0.06 94.83 ± 0.10

DivideMix∗ 95.62 ± 0.09 95.62 ± 0.09 95.01 ± 0.71
VolMinNet 84.02 ± 6.61 90.47 ± 0.17 89.70 ± 0.21

CAL 91.76 ± 0.22 91.84 ± 0.23 91.97 ± 0.32
PES (semi) 91.53 ± 0.44 94.64 ± 0.05 94.66 ± 0.18

SOP+ 93.17 ± 0.66 96.04 ± 0.15 95.61 ± 0.13
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We reproduce the authors’ results on the CIFAR-N dataset using the configurations specific to each evaluated
method. We compare our results with those reported by Wei et al. (2022b) (Tables 2 and 8). Table 2 shows
the results of the reimplemented methods for all label sets in CIFAR-N.

Table 2: Results based on the original methods’ configurations. Results for most of the methods
match those reported in the original work. We report the average best test set accuracy and standard
deviation of three runs.

Method CIFAR-10N CIFAR-100N
Clean Aggregate Random 1 Random 2 Random 3 Worst Clean Noisy

CE 94.21 ± 0.12 91.70 ± 0.07 90.20 ± 0.04 90.12 ± 0.13 90.08 ± 0.05 83.91 ± 0.08 76.23 ± 0.19 61.19 ± 0.51
Co-teaching 92.15 ± 0.11 91.93 ± 0.25 90.69 ± 0.07 90.51 ± 0.14 90.56 ± 0.22 80.92 ± 0.43 72.24 ± 0.44 54.48 ± 0.27

Co-teaching+ 92.90 ± 0.22 91.15 ± 0.08 89.82 ± 0.13 89.64 ± 0.19 89.77 ± 0.26 82.36 ± 0.04 70.39 ± 0.45 55.46 ± 0.34
ELR 93.97 ± 0.12 93.00 ± 0.19 92.20 ± 0.10 92.05 ± 0.12 92.18 ± 0.17 87.89 ± 0.14 75.64 ± 0.21 63.72 ± 0.38

ELR+ 95.81 ± 0.16 95.32 ± 0.06 94.89 ± 0.11 94.88 ± 0.08 94.93 ± 0.07 91.75 ± 0.06 78.82 ± 0.24 67.87 ± 0.07
DivideMix 95.51 ± 0.00 95.62 ± 0.09 95.72 ± 0.11 95.78 ± 0.10 95.71 ± 0.09 93.10 ± 0.10 78.22 ± 0.06 70.91 ± 0.09
VolMinNet 92.71 ± 0.02 90.47 ± 0.17 88.90 ± 0.51 88.81 ± 0.17 88.67 ± 0.10 80.87 ± 0.25 72.73 ± 0.65 58.30 ± 0.05

CAL 93.78 ± 0.18 91.84 ± 0.23 91.10 ± 0.26 90.60 ± 0.10 90.61 ± 0.12 84.82 ± 0.23 74.53 ± 0.21 60.13 ± 0.33
PES (semi) 94.75 ± 0.16 94.64 ± 0.05 95.20 ± 0.08 95.26 ± 0.13 95.20 ± 0.11 92.58 ± 0.05 77.77 ± 0.33 70.32 ± 0.28

SOP+ 96.53 ± 0.05 96.04 ± 0.15 95.70 ± 0.07 95.62 ± 0.18 95.75 ± 0.14 92.89 ± 0.09 77.90 ± 0.29 63.88 ± 0.32
SOP 93.76 ± 0.26 91.69 ± 0.76 89.83 ± 0.24 90.57 ± 0.46 90.88 ± 0.15 83.66 ± 0.64 72.97 ± 1.15 56.17 ± 1.02

For most of the methods, we are able to reproduce the results reported by the authors. One notable difference
is that the baseline CE method performs much better in our experiments. The discrepancy between our
and the reported baseline results is investigated in Appendix A. Some methods use noise rate as an input
parameter (Han et al., 2018; Yu et al., 2019; Li et al., 2020). The parameter is fixed to the default value
obtained from the original implementations. The justification for such a decision is that one does not always
know how many labels are noisy in a real-world scenario. This way, the experimental protocol remains
consistent, and the comparison is fair to all the methods. The decision to fix the noise level parameter
could explain the difference in the Co-teaching(+) methods’ performance on the CIFAR-100N noisy label
set. Similarly, in the case of SOP(+) methods, symmetric noise type was assumed as an input parameter,
which might explain the gap in performance on CIFAR-100N.

4.3.1 Human Noise vs. Synthetic Noise

Following the protocol described by the original authors, we rerun the experiment with synthetic noisy
labels and compare the differences in accuracy for each entry. We subtract the real accuracies from the
newly obtained synthetic ones and report the difference in Table 3.

Table 3: Differences between the real-world and synthetic test accuracies: accsyn − accreal.
Negative gaps representing the method performed better when training on human noise are highlighted in
red. For CIFAR-10N, most of the methods perform better on synthetic noise, indicating a harder learning
task when learning from human-assigned labels. For CIFAR-100N, this is not the case. We report the
expected difference in best test set accuracy and standard deviation.

Method CIFAR-10N CIFAR-100N
Aggregate Random 1 Random 2 Random 3 Worst Noisy

CE 0.71 ± 0.10 0.93 ± 0.39 1.01 ± 0.26 1.10 ± 0.05 3.06 ± 0.21 1.89 ± 0.51
Co-teaching 0.89 ± 0.27 0.46 ± 0.08 0.09 ± 0.15 0.34 ± 0.23 1.40 ± 0.85 −2.26 ± 0.36

Co-teaching+ 1.05 ± 0.16 1.24 ± 0.14 1.12 ± 0.19 1.19 ± 0.34 2.92 ± 0.31 −1.94 ± 1.10
ELR 0.12 ± 0.21 0.31 ± 0.18 0.50 ± 0.13 0.31 ± 0.18 −3.82 ± 0.91 −0.71 ± 0.49

ELR+ 0.20 ± 0.08 0.31 ± 0.13 0.32 ± 0.08 0.33 ± 0.08 −0.66 ± 2.48 −0.28 ± 0.10
DivideMix∗ 0.56 ± 0.10 0.47 ± 0.12 0.54 ± 0.10 0.44 ± 0.11 1.94 ± 0.11 1.08 ± 0.48
VolMinNet 0.89 ± 0.17 1.15 ± 0.51 1.14 ± 0.18 1.41 ± 0.11 3.68 ± 0.67 3.11 ± 0.15

CAL −0.09 ± 0.37 −0.76 ± 0.31 −0.23 ± 0.36 −0.25 ± 0.19 −0.34 ± 0.23 −0.57 ± 0.33
PES (semi) 0.29 ± 0.30 0.31 ± 0.10 0.41 ± 0.23 0.39 ± 0.11 1.71 ± 0.26 0.09 ± 0.77

SOP+ 0.25 ± 0.16 0.38 ± 0.08 0.48 ± 0.18 0.45 ± 0.15 2.07 ± 0.09 0.89 ± 0.36
SOP 0.70 ± 0.99 1.20 ± 0.83 0.17 ± 0.46 0.86 ± 0.29 2.73 ± 1.29 2.44 ± 1.02
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We can see that, for the most part, LNL methods perform better on synthetic data. This is at least the
case for CIFAR-10N, while for CIFAR-100N, the results are evenly split, with 5 methods performing better
and 5 methods performing worse. This matches observations reported in Wei et al. (2022b), indicating that
learning on real-world noise is more difficult to handle.

4.4 Fair LNL Benchmark

We now report the method performance using our benchmark as described in Section 3.5. In our evaluation,
we separate the methods that train two classifiers to make a fairer comparison. In this case, we follow
the original implementations and use both models and average their final predictions when calculating the
accuracies. The results are summarized in Table 4. We report the test set accuracy on the clean test for the
checkpoint that achieved the highest accuracy on the noisy validation set. A similar approach to be used in
practice was suggested by Jiang et al. (2020). For details on our choice, please refer to Appendix B.

Looking at the results in Table 4, we first observe that all methods perform worse than in Table 2. This is
because we use the PyTorch ResNet-34 implementation here instead of the modified one used by the authors
(more on that in Appendix F). Otherwise, the model ranking remains similar, with DivideMix (Li et al.,
2020) and SOP+ (Liu et al., 2022) performing best from the methods used in the original work. The state-
of-the-art method ProMix consistently outperforms all methods on CIFAR-10N. However, on CIFAR-100N,
DivideMix retains the top ranking. Among the methods that use a single model, SOP+ outperforms the
newer DISC method on CIFAR-10N, while the latter achieves the best performance on CIFAR-100N. We still
observe that baseline CE training performs better than previously reported, consistently beating CAL (Zhu
et al., 2021), VolMinNet (Li et al., 2021), and SOP (Liu et al., 2022).

Table 4: Fair LNL Benchmark. To ensure a fair comparison, all methods utilize a ResNet-34 backbone
and are evaluated using their original hyperparameter configurations. We report the test accuracy for the
model checkpoint that achieves the highest validation accuracy on noisy labels. Since some methods train
two classification models, we identify the best-performing method within each group (underlined) and the
overall best-performing method (bolded). The top group utilizes a single model, and the bottom group two.
For all methods, we report the mean and standard deviation across three runs.

Method CIFAR-10N CIFAR-100N
Clean Aggregate Random 1 Random 2 Random 3 Worst Clean Noisy

CE 85.50 ± 0.25 83.50 ± 0.23 81.96 ± 0.77 82.00 ± 0.13 82.19 ± 0.31 75.48 ± 0.30 59.18 ± 0.18 49.51 ± 0.39
ELR+ 88.56 ± 0.23 87.76 ± 0.16 86.75 ± 0.15 86.94 ± 0.07 86.97 ± 0.07 81.50 ± 0.12 61.80 ± 0.25 52.91 ± 0.27

VolMinNet 82.57 ± 0.20 80.42 ± 0.36 79.18 ± 0.10 78.54 ± 0.30 78.56 ± 0.13 72.07 ± 0.49 51.27 ± 0.18 42.39 ± 0.74
CAL 83.38 ± 0.47 81.51 ± 0.21 79.64 ± 0.45 79.50 ± 0.31 79.67 ± 0.26 73.08 ± 0.88 58.02 ± 0.17 47.37 ± 0.49

PES (semi) 87.08 ± 0.08 86.62 ± 0.23 87.63 ± 0.11 87.47 ± 0.20 86.80 ± 0.66 84.12 ± 0.34 60.51 ± 0.14 52.95 ± 0.47
SOP 82.12 ± 0.43 79.78 ± 0.85 79.22 ± 0.57 79.37 ± 0.29 78.66 ± 0.57 71.76 ± 1.98 52.61 ± 0.43 40.98 ± 0.28

SOP+ 90.09 ± 0.03 89.50 ± 0.11 88.82 ± 0.43 88.99 ± 0.16 88.72 ± 0.19 85.18 ± 0.59 61.27 ± 0.39 50.85 ± 0.06
DISC 89.12 ± 0.12 88.12 ± 0.24 87.31 ± 0.28 87.55 ± 0.25 87.44 ± 0.33 83.04 ± 0.13 62.13 ± 0.37 53.09 ± 0.47

Co-teaching 86.56 ± 0.08 86.56 ± 0.27 85.26 ± 0.15 85.11 ± 0.27 84.56 ± 0.22 75.62 ± 0.32 57.07 ± 0.16 43.26 ± 0.43
Co-teaching+ 86.59 ± 0.12 85.16 ± 0.32 83.71 ± 0.28 84.20 ± 0.21 83.92 ± 0.15 76.71 ± 0.50 54.76 ± 0.58 44.25 ± 0.34

ELR+ 88.56 ± 0.23 87.76 ± 0.16 86.75 ± 0.15 86.94 ± 0.07 86.97 ± 0.07 81.50 ± 0.12 61.80 ± 0.25 52.91 ± 0.27
DivideMix 89.59 ± 0.12 89.36 ± 0.22 89.34 ± 0.10 89.61 ± 0.10 89.28 ± 0.31 86.82 ± 0.17 64.21 ± 0.02 56.21 ± 0.38

ProMix 91.53 ± 0.26 90.72 ± 0.14 90.57 ± 0.20 90.61 ± 0.13 90.61 ± 0.25 88.99 ± 0.14 63.53 ± 0.03 55.67 ± 0.10

5 Discussion

We managed to reproduce the hypothesis testing and noise memorization effects. Due to a partially unclear
description of the experiment protocol, we do not obtain the same results as the authors, but the results
nevertheless lead to the same conclusions. The real-world label noise is indeed different from its synthetic
counterpart, and the classifiers start to overfit on it faster, which indicates a harder learning task.

While the authors describe the benchmarking experiment in some detail, we fail to reach the same results
using their methodology. Instead, when we use the original hyperparameter configurations for each LNL
method, we obtain results closer to the reported accuracy for most of the methods. Perhaps most interesting
is that the baseline cross-entropy training performs significantly better than expected, outperforming several
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methods designed explicitly for LNL scenarios even in the most difficult noise settings. This behavior also
persists outside our framework, even in the original code provided by the authors, as we show in Appendix A.
This finding leaves an avenue for possible future work. We provide additional comments on reproducibility
and our discussion with the authors in Appendix D.

5.1 Additional Observations

During our implementation of several LNL methods, we noticed that the original implementations incorrectly
generate synthetic noise. This raises the question of their reported performances. The symmetric noise
produced by the official DivideMix (Li et al., 2020) implementation 7 uses a biased noise rate. For a
given noise rate r, their implementation randomly selects a fraction r of clean labels. The noisy labels are
sampled uniformly from all classes k. This results in 1

k of the samples agreeing with the original label,
resulting in the actual noise rate being r̃ = r − 1

k r instead of r. This is especially evident in high-noise
scenarios where DivideMix performs best. We observe an even bigger error in the ELR (Liu et al., 2020)
implementation of synthetic noise. The method uses two models trained on separate datasets, which are
both noised independently, while also producing noisy labels with a decreased noise rate r̃ described above
8. Here, without loss of generality, we treat the sample as noisy and as having the wrong label in the first
dataset. This results in the probability of at least one of the models observing the correct label for a sample
given that the sample is noisy, being 1 − r̃ instead of 0.

This brings into question the results reported in the respective original works. However, for our benchmark
reproduction, where human noise is used and synthetic noise pipelines are unified, the results are unaffected,
and both methods rank among the top-performing ones.

5.2 Conclusion

This reproducibility study examined the claims made by Wei et al. (2022b) regarding real-world label
noise. We successfully replicated the original noise hypothesis testing and noise memorization experiments
with minor quantitative discrepancies likely stemming from undisclosed training details. Despite these
discrepancies, our results support the authors’ claim that learning on datasets with real-world noisy labels
is more challenging than with synthetic noise. However, our attempts to reproduce the benchmark results
revealed significant deviations. Through a detailed review and reverse engineering of the original codebase, we
identified inconsistencies in the paper’s description, particularly regarding hyperparameter configurations.
We then developed a unified framework for LNL methods, accompanied by an improved benchmarking
procedure, incorporating a validation set on noisy data and consistent use of the ResNet-34 architecture.
This framework provides a more robust platform for evaluating LNL methods, especially in scenarios where
clean validation data is unavailable. Our findings highlight the need for comprehensive documentation and
transparency in scientific research to ensure reproducibility and foster progress in the field.
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A Baseline Performance Results

The largest discrepancy between our and the authors’ results comes from the baseline (CE) training. Wei
et al. (2022b), do not describe the exact procedure for obtaining their results. In our correspondence (see
Appendix D.1), they clarify that they used the best test set performance and report the mean and standard
deviation across five random seeds. This procedure results in a discrepancy between our reproduced results
and the ones reported in the original work (Wei et al., 2022b). We visualize the discrepancy in Figure 6.

We can see that the accuracy of the best checkpoint in our experiments is higher than their reported
performance across all runs. We were not alone in noticing this discrepancy, as at the time of investigation,
there were two open issues on the authors’ official Github repository with the same question. Authors of the
issues report the last obtained accuracies on the Worst label set:≈ 68% 9 and ≈ 67% 10, which are also in
line with our last epoch accuracy (68 ± 0.88).
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Figure 6: Differences between the authors’ reported (dotted) baseline performance and accuracy
obtained in reproduction (full blue) as well as using the original code (orange, red, yellow). The
performance obtained using a reimplemented framework perfectly aligns with the original code. However,
on all the noise labels, their reported accuracy does not coincide with the best accuracy for any of the runs.

9https://github.com/UCSC-REAL/cifar-10-100n/issues/5
10https://github.com/UCSC-REAL/cifar-10-100n/issues/8
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B Argument For Using Accuracy On Noisy Data

Since testing every epoch and reporting the highest result overestimates performance and is thus considered
a bad practice, we have to find an alternative. We want to use the established train-validation-test split in
this case. The first problem in LNL setting arises when we need to decide whether the validation set is noisy
or not, since practices for this are not yet established in the field. Given the nature of the task, we argue
that the validation set should be noisy as well (Jiang et al., 2020). If one has non-noisy data, one can train
on it, implicitly changing the noise ratio of the data. Additionally, some LNL methods (Patrini et al., 2017;
Wei & Liu, 2021) use validation data to estimate parameters for loss functions that are later used to train.
If validation data were to be clean, there would be a direct data leak in such cases.

Consequently, we must decide on a proxy metric for the accuracy on clean data. We consider two options:
using validation losses of each LNL method or validation accuracy. Given that losses vary between the LNL
methods (some have no upper bounds) and are not as stable (see Figure 7), we propose to use accuracy on
noisy validation data for model selection. We propose this, as it remains stable across all tested methods
and strongly correlates with final test performance, preserving model ranking with high probability.
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Figure 7: Validation performance on noisy labels from our benchmark implementations on the Worst
label set. Some methods may assign near-zero probabilities to noisy labels, and due to the unbounded nature
of the cross-entropy loss, this leads to high and unstable loss values (a). However, noisy validation accuracy
remains stable across runs and serves as a reliable predictor of clean test-set performance (b).

We verify our claims empirically by testing how well our approach ranks the models in comparison to the
rankings of their best test set accuracies. For each method, we select the best performance on the test data
and the test performance corresponding to the best validation checkpoint. We average the results across
three runs and compute the Kendall rank correlation coefficient (Kendall, 1938) for method rankings. For
all label sets we obtain statistically significant results, indicating a strong relationship between the ordering
based on noisy validation accuracy and clean test set performance. We report all the orderings with their
corresponding p-value and Kendall-τ statistics below, where we underline all changes in rank:

CIFAR 100 - Clean (τ = 1.00, p = 5.01e − 08)

Val: DivideMix, ELR+, SOP+, PES semi, CE, ELR, CAL, Co-Te., Co-Te.+, SOP, VolMinNet

Test: DivideMix, ELR+, SOP+, PES semi, CE, ELR, CAL, Co-Te., Co-Te.+, SOP, VolMinNet

CIFAR 100N - Noisy (τ = 1.00, p = 5.01e − 08)

Val: DivideMix, PES semi, ELR+, SOP+, CE, ELR, CAL, Co-Te.+, Co-Te., VolMinNet, SOP

Test: DivideMix, PES semi, ELR+, SOP+, CE, ELR, CAL, Co-Te.+, Co-Te., VolMinNet, SOP
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CIFAR 10 - Clean (τ = 1.0, p = 5.01e − 08)

Val: SOP+, DivideMix, ELR+, PES semi, Co-Te.+, Co-Te., CE, ELR, CAL, VolMinNet, SOP

Test: SOP+, DivideMix, ELR+, PES semi, Co-Te.+, Co-Te., CE, ELR, CAL, VolMinNet, SOP

CIFAR 10N - Aggregate (τ = 0.82, p = 1.32e − 04)

Val: SOP+, DivideMix, ELR+, PES semi, Co-Te, Co-Te.+, ELR, CE, CAL, VolMinNet, SOP

Test: SOP+, DivideMix, ELR+, Co-Te., PES semi, Co-Te.+, ELR, CE, CAL, VolMinNet, SOP

CIFAR 10N - Random 1 (τ = 0.6, p = 9.95e − 03)

Val: DivideMix, SOP+, PES semi, ELR+, Co-Te., ELR, Co-Te.+, CE, CAL, SOP, VolMinNet

Test: DivideMix, SOP+, PES semi, ELR+, Co-Te., Co-Te.+, ELR, CE, CAL, SOP, VolMinNet

CIFAR 10N - Random 2 (τ = 1.0, p = 5.01e − 08)

Val: DivideMix, SOP+, PES semi, ELR+, Co-Te., Co-Te.+, ELR, CE, CAL, SOP, VolMinNet

Test: DivideMix, SOP+, PES semi, ELR+, Co-Te., Co-Te.+, ELR, CE, CAL, SOP, VolMinNet

CIFAR 10N - Random 3 (τ = 0.64, p = 5.71e − 03)

Val: DivideMix, SOP+, ELR+, PES semi, Co-Te., Co-Te.+, ELR, CE, CAL, SOP, VolMinNet

Test: DivideMix, SOP+, PES semi, ELR+, Co-Te., Co-Te.+, ELR, CE, CAL, VolMinNet, SOP

CIFAR 10N - Worst (τ = 1.0, p = 5.01e − 08)

Val: DivideMix, SOP+, PES semi, ELR+, ELR, Co-Te.+, Co-Te., CE, CAL, VolMinNet, SOP

Test: DivideMix, SOP+, PES semi, ELR+, ELR, Co-Te.+, Co-Te., CE, CAL, VolMinNet, SOP

Yuan et al. (2024) propose LabelWave, a model selection criterion for training with noisy labels that elim-
inates the need for a validation set. We consider LabelWave a promising alternative to our current model
selection strategy based on noisy validation accuracy. Benchmarking existing LNL methods using LabelWave
as the selection criterion represents an interesting and valuable direction for future work.

C Additional Memorization Experiments

We extend the memorization experiments to include a broader range of synthetic noise types and hyperpa-
rameter configurations. These experiments follow the procedure described in Section 3.3.

To evaluate the effect of different types of synthetic noise, we replace the asymmetric transition matrix
used in Section 4.2 with symmetric and pair-flipping noise matrices. The transition matrices are constructed
following the definitions in Han et al. (2018), and the overall noise rate ρ is estimated from the corresponding
real-world noisy labels.

For symmetric noise, we set the diagonal elements of the transition matrix to 1 − ρ and all off-diagonal
elements to ρ

C−1 , where C is the number of classes. For pair-flipping noise, we again set the diagonal entries
to 1 − ρ, and assign the entire off-diagonal mass ρ to the most common transition class observed in the
real-world noise.
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Figure 8: Effects of different types of synthetic noise on memorization. (a) Pair-flipping noise
constructed based on the most common transitions observed in human-labeled data. (b) Symmetric noise
applied uniformly across all incorrect classes. In both cases, models begin to memorize human-labeled noise
earlier than synthetic noise, despite different memorization dynamics.

We present the results in Figure 8. While synthetic noise types lead to varying memorization behaviors, we
observe that the models still overfit human noisy labels faster than synthetic ones.

We also investigate how different training hyperparameters influence memorization dynamics. Building on
the setup described in Section 3.3, we vary one hyperparameter at a time while keeping the others fixed. In
the first experiment, we replace the exponential learning rate decay with a step decay, reducing the learning
rate by a factor of γ = 0.1 at epoch 50. In the second experiment, we increase the initial learning rate to
0.1. In the third, we raise the weight decay to 5e − 4.

The results, shown in Figure 9, indicate that while these hyperparameter changes do affect memorization be-
havior, the model still consistently memorizes real-world human label noise faster than synthetic noise. This
further supports our conclusion that human-labeled, instance-dependent noise is inherently more susceptible
to early memorization than instance-independent synthetic noise.

D Comments on Reproducibility

In this section, we document our efforts to reproduce the key experiments by Wei et al. (2022b), highlighting
both successes and challenges. Table 5 summarizes the classification of reproducibility outcomes, indicating
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(a) Step learning rate scheduler with a decay at epoch 50.
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(b) Lower initial learning rate set to 0.1.
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(c) Increased weight decay set to 5e − 4.

Figure 9: Effect of hyperparameters on memorization. We observe different memorization dynamics
across hyperparameter setups. However, models consistently memorize human-labeled noise earlier than
synthetic noise

where discrepancies arose. We also detail our communication with the original authors, the aspects of
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the reproduction process that were straightforward, and the challenges we faced, particularly regarding
undocumented hyperparameters, inconsistent training protocols, and unclear benchmarking procedures.

Table 5: Classification of reproducibility results.

Experiment Discrepancy Result
Noise hypothesis testing Missing details in experimental setup. Reproduced

Memorization effects Missing details in experimental setup. Reproduced
Baseline performance Difference in reported vs. observed results. Different

LNL Benchmark Ambiguities in paper descriptions. Reimplemented

D.1 Communication with Original Authors

We contacted the authors two times during our implementation effort. The first time, we inquired about
several inconsistencies between the paper and the provided code. We also asked about the hyperparameter
selection protocol, which backbone models were used, which checkpoints were selected, and some general
evaluation and method-specific questions. The authors responded with a short email, answering some of our
questions but avoiding our questions about inconsistencies.

After some time, we contacted them for the second time. We inquired how the validation sets were handled,
as some methods could not be properly trained without them. We also asked about the specifics of the
hypothesis testing setup and the differences between the original and our reproduced results. This time, the
authors did not respond.

D.2 What was easy

Using the baseline code and the datasets provided by the benchmark authors was easy and only required
minimal tweaking to run. Running most of the LNL strategies’ repositories was also straightforward, as most
authors include instructions for basic use cases and experiment reproduction in the source code repository.

D.3 What was difficult

Throughout the reproduction attempt, we encountered several problems, most of them stemming from
unclear and ambiguous descriptions of the benchmark. Many evaluated methods rely on algorithm-specific
hyperparameters, which the authors did not list. Therefore, an effort was made to try to recover them by
experimentally trying out different combinations in an attempt to match the reported results. The learning
rate schedule for all methods was said to follow a multi-step schedule with a single decay at the 50th epoch.
In the original source code, the switch happens at the 60th epoch.

Several LNL methods use different warm-up training techniques. Some fully reset the model, while others
use the warm-up epochs to find a set of weights that perform best on the validation set and later continue the
training from the pre-trained checkpoint. A shared checkpoint was supposed to be used for the benchmark.
However, the paper does not mention how such a checkpoint was obtained. After communication with the
authors, they clarified that the warmup checkpoint was obtained by training the model with cross-entropy
loss for 200 epochs.

E Computational Requirements

We run all our experiments on a system with 8 Nvidia Titan X Pascal GPUs running Ubuntu 20.04.2
LTS and CUDA version 12.2. With this setup, it takes approximately 1.5 GPU hours to reproduce the
noise hypothesis testing experiment and approximately 27 GPU hours to reproduce the noise memorization
experiment. Reproducing benchmark results on the selected subset of the LNL methods takes approximately
52.5 GPU hours per label set; we present a breakdown of the training times in Table 6. It takes approximately
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2, 000 GPU hours to reproduce our results fully (eight label sets, each with three repeats, and six synthetic
runs with two repeats).

Table 6: Runtimes of the 10 selected methods, for a single repeat of a single noise label.

Method Runtime (h)
CE 1.5
Co-teaching (+) 5.6
ELR 1.8
ELR+ 7.9
DivideMix 14.0
VolMinNet 1.3
CAL 1.5
PES (semi) 12.2
SOP+ 5.5
SOP 1.2
total 52.5

F Hyperparameters

In this section, we report the hyperparameters for all the methods included in our reproduced evaluation
to enable the replication of our results. Table 8 describes the hyperparameters of methods using the Pre-
ActResNet18 (He et al., 2016) backbone, and Table 9 for the methods using the ResNet-34 (He et al.,
2015) backbone. Here we note that most of the methods’ original implementations as well as the model
implementation provided by the authors 11 use ResNet implementations that use stride of 1 instead of 2 in
the first layer, resulting in a four times increase in activation volumes. The modified implementation also
excludes the first max pooling layer (see He et al. (2015) Table 1), resulting in another four-times increase
in activation volumes, for a total of 16 times bigger activation volumes. Modifying these layers increases the
baseline performance significantly (10% when comparing baselines in Tables 2 and 4).

In our reproduction experiments, we use this version of ResNet since it was provided in the author’s original
repository. For our benchmark (Section 4.4) we use the same hyperparameters as described in tables 9 and
8 with the exception of using the official PyTorch implementation of ResNet 12. We report the parameters
for newer methods DISC and ProMix in Table 7.

11https://github.com/UCSC-REAL/cifar-10-100n/blob/main/models/resnet.py
12https://pytorch.org/vision/main/models/resnet.html
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Table 7: Hyperparameters for newer methods.

Method Hyperparameter CIFAR10N CIFAR100N

DISC

optimizer SGD SGD
lr 0.1 0.1
weight_decay 0.001 0.001
SGD momentum 0 0
scheduler MultiStepLR ([80, 160], 0.1) MultiStepLR ([80, 160], 0.1)
epochs 200 200
alpha 5.0 5.0
start_epoch 15 15
sigma 0.5 0.5
momentum 0.99 0.99
lambda_ce 1.0 1.0
lambda_h 1.0 1.0

ProMix

optimizer SGD SGD
lr 0.05 0.05
weight_decay 0.0005 0.0005
momentum 0.9 0.9
scheduler CosineAnnealingLR CosineAnnealingLR
epochs 600 600
warmup_epochs 10 30
rampup_epochs 50 50
noise_type symmetric symmetric
rho_start, rho_end (0.5, 0.5) (0.5, 0.5)
debias_beta_pl 0.8 0.5
alpha_output 0.8 0.5
tau 0.99 0.95
start_expand 250 250
threshold 0.9 0.9
bias_m 0.9999 0.9999
temperature 0.5 0.5
feat_dim 128 128

Table 8: Hyperparameters for methods using PreActResNet18 backbone.

Method Hyperparameter CIFAR10N CIFAR100N

DivideMix

optimizer SGD SGD
lr 0.02 0.02

weight_decay 0.0005 0.0005
momentum 0.9 0.9
scheduler LambdaLR LambdaLR
epochs 300 300
alpha 4 4

noise_type asymmetric asymmetric
p_thresh 0.5 0.5

temperature 0.5 0.5
lambda_u 0 0

warmup_epochs 10 30

ELR+

optimizer SGD SGD
lr 0.02 0.02

weight_decay 0.0005 0.0005
momentum 0.9 0.9
scheduler MultiStepLR ([150], 0.1) MultiStepLR ([200], 0.1)
epochs 200 250
beta 0.7 0.9
lmbd 3 7
alpha 1 1

gamma 0.997 0.997
ema_step 40000 40000
coef_step 0 40000

SOP+

optimizer SGD SGD
lr 0.02 0.02

weight_decay 0.0005 0.0005
momentum 0.9 0.9
scheduler CosineAnnealing CosineAnnealing
epochs 300 300
lr_u 10 1
lr_v 10 10

overparam_mean 0.0 0.0
overparam_std 1e-08 1e-08
ratio_balance 0.1 0.1

ratio_consistency 0.9 0.9
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Table 9: Hyperparameters for methods using ResNet-34 backbone.

Method Hyperparameter CIFAR-10N CIFAR-100N

CAL

optimizer SGD SGD
lr 0.1 0.1

weight_decay 0.0005 0.0005
momentum 0.9 0.9
scheduler MultiStepLR ([60], 0.1) MultiStepLR ([60], 0.1)
epochs 165 165
alpha 0.0 0.0

alpha_scheduler seg seg
warmup_epochs 65 65

alpha_list_warmup [0.0, 2.0] [0.0, 1.0]
milestones_warmup [10, 40] [10, 40]

alpha_list [0.0, 1.0, 1.0] [0.0, 1.0, 1.0]
milestones [10, 40, 80] [10, 40, 80]

CE

optimizer SGD SGD
lr 0.1 0.1

weight_decay 0.0005 0.0005
momentum 0.9 0.9
scheduler MultiStepLR ([60], 0.1) MultiStepLR ([60], 0.1)
epochs 100 100

Co-teaching

optimizer Adam Adam
lr 0.001 0.001

weight_decay 0 0
scheduler alpha_schedule alpha_schedule
epochs 200 200

forget_rate 0.2 0.2
exponent 1 1

num_gradual 10 10
epoch_decay_start 80 100

Co-teaching+

optimizer Adam Adam
lr 0.001 0.001

weight_decay 0 0
scheduler alpha_schedule alpha_schedule
epochs 200 200

init_epoch 20 5
forget_rate 0.2 0.2
exponent 1 1

num_gradual 10 10
epoch_decay_start 80 80

ELR

optimizer SGD SGD
lr 0.02 0.02

weight_decay 0.001 0.001
momentum 0.9 0.9
scheduler CosineAnnealing MultiStepLR ([80, 120], 0.01)
epochs 120 150
beta 0.7 0.9
lmbd 3 7

PES (semi)

optimizer SGD SGD
lr 0.02 0.02

weight_decay 0.0005 0.0005
momentum 0.9 0.9
scheduler CosineAnnealing CosineAnnealing
epochs 300 300
PES_lr 0.0001 0.0001

warmup_epochs 20 35
T2 5 5

lambda_u 5 75
temperature 0.5 0.5

alpha 4 4

SOP

optimizer SGD SGD
lr 0.02 0.02

weight_decay 0.0005 0.0005
momentum 0.9 0.9
scheduler MultiStepLR ([40, 80], 0.1) MultiStepLR ([40, 80], 0.1)
epochs 120 150
lr_u 10 1
lr_v 10 10

overparam_mean 0.0 0.0
overparam_std 1e-08 1e-08
ratio_balance 0.0 0.0

ratio_consistency 0.0 0.0

VolMinNet

optimizer SGD SGD
lr 0.01 0.01

weight_decay 0.0001 0.0001
momentum 0.9 0.9
scheduler MultiStepLR ([30, 60], 0.1) MultiStepLR ([30, 60], 0.1)
epochs 80 80

lam 0.0001 0.0001
init_t 2 2

optimizer_transition_mtx SGD Adam
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