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Abstract

Recent advances in reinforcement learning
from human feedback (RLHF) and autoregres-
sive transformers have driven the evolution
of large language models such as GPT-4.0,
DeepSeek R1, and Llama 3.3, enabling richer
and more personalized responses. However,
prevailing RLHF paradigms—from Proximal
Policy Optimization (PPO) to Direct Prefer-
ence Optimization (DPO)—still rely on binary-
preference labels. While this approach reduces
immediate annotation costs, it demands exten-
sive human labeling and captures only coarse,
group-level tastes. It suffers from high annota-
tion overhead and limited adaptability to indi-
vidual users. To address these limitations, we
introduce Adaptive Reward-Following (ARF),
a self-assessment framework that converts free-
form user feedback into continuous prefer-
ence signals using a high-precision satisfaction
scorer (70% accuracy on GoEmotions, Senti-
ment140, and DailyDialog). We further refine
and debias these signals through data augmenta-
tions—synonym replacement, trace truncation,
and score bias annotation—and use a Dynamic
Adapter Preference Tracker to model evolving
user tendencies in real time. Building on these
components, our novel Trace Bias (TB) fine-
tuning algorithm optimizes continuous reward
trajectories rather than binary labels. Experi-
ments on Qwen-2/2.5, Gemma-2, and Llama-
3.2 across four preference domains show that
ARF outperforms PPO by 3.3% and DPO by
7.6%, while maintaining alignment with RLHF
objectives. ARF delivers a scalable, person-
alized, and cost-effective paradigm for next-
generation RLHF in large language models.

1 Introduction

The rapid evolution of Large Language Models
(LLMs) has dramatically improved performance
across a wide variety of tasks. As these models
become more robust and generally capable, the

focus has shifted from factual accuracy toward
deeper personalization and alignment with individ-
ual user intent. Reinforcement Learning from Hu-
man Feedback (RLHF) has emerged as the de facto
fine-tuning strategy—powering systems like GPT-
4 (OpenAl et al., 2024), DeepSeek-R1 (DeepSeek-
Al et al., 2025), and Llama-3 (Grattafiori et al.,
2024). Yet, prevailing RLHF pipelines (e.g.,
PPO (Schulman et al., 2017b), DPO (Rafailov et al.,
2024)) hinge on massive, binary-preference anno-
tations, often involving hundreds or thousands of
crowdworkers. This approach incurs substantial
human cost and only captures coarse, group-level
tendencies rather than the nuanced tastes of each
user.

To mitigate annotation overhead and broaden
participation, prior work has explored variants such
as RLAIF (Lee et al., 2024b) and crowd-sourced
preference distillation (Zhang et al., 2024), which
convert coarse feedback into richer signals and im-
prove sample efficiency. While these methods re-
duce labeling burden and enhance model gener-
alization, they still depend on externally sourced
human annotations and manual prompt engineer-
ing. Crucially, without fundamentally rethinking
how feedback is collected, they cannot track true in-
dividual preference trajectories—doomed to repeat
the same group-bias limitations.

In this paper, we introduce Adaptive Reward-
Following (ARF), a self-supervised RLHF frame-
work designed to minimize manual labeling while
capturing fine-grained, per-user preferences. As
illustrated in Figure 1, our pipeline consists of four
stages: (1) Automatically collecting satisfaction
QA data from user feedback; (2) Augmenting and
storing samples via synonym substitution, trunca-
tion, and preference-biased reweighting to build a
diversified reward corpus; (3) Training and continu-
ously updating a lightweight ARF scorer with soft
labels to predict satisfaction scores; (4) Fine-tuning
the LLM using the TraceBias algorithm, which
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Figure 1: Illustrates the overall workflow of our framework. We begin by automatically collecting satisfaction QA
data based on user feedback (Step 1). These samples are then stored and augmented through synonym substitution,
truncation, and reweighting to form a diversified reward corpus (Step 2). The ARF scorer is trained with soft labels
to predict satisfaction scores and is continuously updated (Step 3). Finally, the TraceBias algorithm leverages
ARF-generated rewards to fine-tune the LLM (Step 4), completing a fully self-supervised RLHF pipeline.

directly optimizes on ARF-generated soft reward
trajectories. This fully self-supervised workflow
not only eliminates the need for binary compar-
isons and significantly reduces annotation costs,
but also makes precise modeling of individual user
preferences possible.

Empirical evaluations on Qwen-2/2.5 (Team
et al., 2024; Qwen et al., 2025), Gemma-2 (Team
etal., 2024), and Llama-3.2 (Grattafiori et al., 2024)
across four diverse preference domains show that
ARF outperforms PPO by 3.3% and DPO by 7.6%,
while preserving theoretical alignment with estab-
lished RLHF objectives. These results demonstrate
that ARF provides a scalable, cost-effective route
to truly personalized LLM fine-tuning.

2 Background

2.1 The Core Pipeline of RLHF for LLMs

Despite design variations, The Bradley-Terry(BT)
model and policy gradient optimization form the
foundation of RLHF training. While implemen-
tations vary (e.g., PPO (Schulman et al., 2017b)
and DPO (Rafailov et al., 2024)), all methods share
these core components.

Supervised Fine-Tuning (SFT): The pipeline
begins with SFT on large-scale corpora to instill
general knowledge in LLMs. For downstream ap-
plications, domain-specific datasets are used for
further fine-tuning. While this results in high task-
specific accuracy, such models often lack adapt-
ability and personalization in real-world interactive
settings.

Preference Data Collection: To incorporate
human feedback, a preference dataset is con-

structed using paired outputs (e.g., (prompt,
answer1, answer2)). A Bradley-Terry (BT)
model (BRADLEY, 1955) is commonly used to
estimate the preference probability between re-
Sponses Y, = Y as:

exp(R(Z; Yw))
exp(R(2; yw)) + exp(R(z, yé%%

P(yw -~ yl‘ﬂf) =

where R(x,y) denotes a learned reward function.

Reinforcement Learning with Human Feedback:
RLHF methods rely primarily on: (1) reward mod-
eling from preferences, and (2) policy gradient(PG)
optimization. The policy is trained to maximize
expected return:

T
VoJ(0) = Ernr, Zvo log mg(at|st) - Re |

t=0
2
where R; = Zgzt ~*~tr,, is the discounted return.
Advantage-based methods refine this further:

Vo J(0) = Ei [Vglog mg(ag|sy) - A™ (s, ar)]
3)

with the advantage function defined as:
AT (styar) = Q" (st,ar) — V7 (st). (4

The multi preference-based dataset and PG op-
timization constitutes the foundation of RLHF
training, often enhanced by optimization tech-
niques such as Trust Region Policy Optimization
(TRPO) (Schulman et al., 2017a), Rank Responses
to Align Language Models with Human Feedback
(RRHF) (Yuan et al., 2023), and Reinforcement
Learning from Human Feedback with Al Feed-
back(RLAIF) (Lee et al., 2024a).



2.2 Preference-Based Optimization has a
Constant Foundation

While RLHF methods continue to evolve, most re-
main grounded in the BT preference modeling and
policy gradient framework defined in Section 2.1.
To demonstrate this, we analyze the two dominant
approaches: PPO and DPO.

PPO-Based Optimization: Building on Equa-
tion 2.1, PPO first trains a reward model via
Bradley-Terry ranking loss:

Lr = ~E(zy,.4) 108 o(R(z,yw) — R(z,y1)),
4)
then applies clipped policy gradients to optimize
To.

Lopo () = E, [min (rt(ﬁ)flt, clip(r.(6), E)At)] .
(6)

DPO as a Reward-Free Alternative: DPO by-
passes explicit reward modeling by directly opti-
mizing function’s preference margin:

ﬁDPO(G) = _E(:v,yw Y1) logo
7Tref(yw |$) Wref(yl ‘x)
(7)

where [ is a temperature parameter and 7. is a
reference policy.

In essence, PPO and DPO are structurally simi-
lar—both optimize over preference pairs to align
models with human intent. Their main difference
lies in whether an explicit reward model is used.
However, both remain reliant on human-generated
comparisons and operate within the constrained
policy optimization framework, which fundamen-
tally limits their autonomy and scalability, We have
conducted a more in-depth theoretical analysis in
the appendix B.

3 Methodology

Built upon the structural foundation outlined in
Section 2.1, ARF-RLHF comprises three core train-
ing stages: model initialization, preference scor-
ing, and policy optimization. Model initialization
adopts an open-source state-of-the-art LLM. Prefer-
ence scoring is achieved through a composite scorer
that integrates a high-precision satisfaction scorer
with a ARF scorer, which continuously adapts over
time. These evolving scoring signals directly in-
form policy optimization, carried out using the

TraceBias algorithm. TraceBias performs contin-
uous fine-tuning based on soft reward signals in-
ferred from the scoring system, thus eliminating
reliance on binary labels and enabling more nu-
anced policy updates.

The following subsections elaborate on each
component: we begin with the scoring system—the
interplay between the static and preference tracker.
Next, we describe the score-shift mechanism within
the augmentation database, including temporal bias
correction and dual-scorer alignment. Finally, we
analyze the TraceBias algorithm and its role in op-
timizing policies within the ARF-RLHF pipeline.

3.1 Adaptive Reward-Following(ARF) Scorer

Recent studies suggest that human communication
not only conveys explicit semantic content but also
implicitly reflects user satisfaction and willingness
to continue the interaction (Chen and Chen, 2016;
Shanahan et al., 2006; Henry et al., 2021; Prabhu-
moye et al., 2017). Building upon this observation,
we introduce two complementary scorers: a static
satisfaction scorer for collecting quality estimates,
and an ARF scorer that periodically updates to cap-
ture evolving individual preferences directly from
interactions.

3.1.1 Static Satisfaction Scorer

Both the static satisfaction scorer and the ARF
scorer are built upon the lightweight ROBERTa-
mini (Liu et al., 2019) architecture, balancing low
latency with strong semantic understanding.

To enable self-supervised reward modeling, the
static scorer predicts the quality of a given (prompt,
response) pair based on the user’s subsequent reply.
Specifically, it takes the user’s follow-up message
as input and outputs a satisfaction score reflecting
the user’s sentiment toward the previous system
response.

We project the final hidden states of ROBERTa-
mini to three sentiment classes: bad, neutral, and
good, and aggregate token-level logits to obtain
sequence-level satisfaction distribution:

Cg = Linear(?—lLast) (8)
Cave = Softmax (1 znjc(“> )
avg n 3
=1

Here, | .t denotes the final hidden states from
RoBERTa-mini, and C3 € R™*3 represents token-
level satisfaction logits, where n is the input se-
quence length. The final prediction Caye € R3 sum-
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Figure 2: We compare the gradient norm statistics of PPO, using a clip range e = 0.2 as in the original paper (Schul-
man et al., 2017b) and TraceBias with DAM. DAM exhibits lower variance and more stable gradient magnitudes,
suggesting improved training stability and potential for enhanced performance.(V is shown in appendix I)

marizes sequence-level satisfaction through mean
pooling followed by softmax normalization. The
importance of three sentiment classes structure is
further discussed in Discussion 5.2.

These static predictions are collected as soft-
labels to train the ARF scorer, which learns to as-
sign reward scores to collected or new (prompt,
response) pairs in an offline fashion. The ARF
scorer then serves as the reward function in Trace-
Bias, guiding LLM fine-tuning without requiring
manual preference annotations.

3.1.2 AREF Scorer

During user interaction, the ARF scorer is period-
ically fine-tuned to adapt to evolving user prefer-
ences. At each training step, it outputs a predicted
satisfaction distribution C for LLM feedback. The
prediction is supervised using soft labels derived
from user feedback or historical interactions.

To accelerate convergence while preserving base-
line estimation, the ARF scorer builds on the static
satisfaction scorer. The averaged satisfaction vec-
tor Cayg, distilled from user follow-up messages,
provides soft guidance for supervision. We employ
the standard cross-entropy loss for training:

»Csupervised - CE(éa Cavg) (10)

Building on this, to further address overfitting
and catastrophic forgetting when real-time data is
scarce, we introduce an Experience Replay (ER)
mechanism. A sampling ratio ER o, probabilisti-
cally switches training between historical data and
current feedback. Specifically:

L _ ﬁER = CE(évcstatic)v
total — 5 .
Esupervised = CE(C, Cavg), otherwise

ifp < ERratio

Here, Cg.iic denotes labels from the static satis-
faction dataset (e.g. DailyDialog (Li et al., 2017),
GoEmotions (Demszky et al., 2020)), and p is a ran-
dom sampling variable. This alternating strategy
allows the ARF scorer to benefit from both sta-
ble historical signals and dynamic user feedback,
improving generalization and robustness.

3.2 Augmentation Database

Leveraging the adaptive scoring foundation and
aiming to make better use of the limited real user
feedback, we construct an Augmentation Database
that expands training data via synonym substitution
and random trace truncation. To ensure augmented
samples reflect evolving user preferences, we intro-
duce a score-shift mechanism that blends static and
adaptive sentiment distributions.

3.2.1 Preference-Biased Data Scoring
Algorithm

Directly applying the ARF-scorer to evaluate
synonym-augmented samples is suboptimal, espe-
cially in the early stages when the scorer has not
yet adapted to the user’s evolving preferences. To
address this, we propose a preference-biased data
scoring algorithm that considers both the static sat-
isfaction scorer’s output Cpasic_avg and the ARF-
scorer’s output CARF avg-

We compute a dynamic weighting coefficient
Scos based on the cosine similarity between the two
score vectors, adjusted via a sigmoid function:

Secos = U((COSSim(CARFfanv Cbasic,avg) - 0~5) : Ssig)
(1)
Here, o denotes the sigmoid function, and S;s

is a scaling hyperparameter that controls how sen-
sitive the mixture weight is to score differences



(see Appendix D for selection strategy). Since the
outputs CARF avg and Cpasic_avg are normalized as
in Eq. 8, their cosine similarity falls within [0, 1],
which we center around 0 by subtracting 0.5 to
achieve a symmetric input range for the sigmoid.

The final score for augmented data Cayg is com-
puted as a weighted average of both scores:

CAug - CARF?avg 'Scos + Cbasicfavg . (1 - Scos) (12)

This formula realizes the weighted fusion of
static scoring and dynamic preference scoring, en-
suring the stability and adaptability of the scoring
during the preference evolution process.

3.2.2 Regular Re-Evaluation of Historical
Scores

As user preferences naturally evolve over time, pre-
viously collected feedback and augmented data
may become misaligned with current expectations.
However, since the ARF-scorer is continuously
updated, using it alone to re-score historical data
could result in loss of alignment with past prefer-
ences.

To maintain continuity across preference shifts,
we propose to regularly update old scores using the
same preference-biased data scoring mechanism.
Let Cold_avg denote the old score and Cpew_avg the
updated ARF-scorer’s output. The updated weight
CNew 1s computed as:

Seos =0 ((COSSim(Cnew_avg7 Cold_avg)
(13)
= Cnewfavg : Scos + Cold,avg : (1 cm) (14)

This mechanism ensures that new scoring re-
flects both the current user preference and the his-
torical decision boundary, enabling the ARF-scorer
to retain knowledge of previous patterns rather than
overfitting to recent feedback alone.

CNeW

3.3 TraceBias Algorithm

With sufficient preference-enriched interaction
data, we optimize policy behavior through a direct
score-based actor-critic algorithm named Trace-
Bias. While theoretically aligned with PPO and
DPO (see Appendix B.3), TraceBias adopts a token-
wise strategy and novel normalization mechanisms
to enable stable, fine-grained reward-guided opti-
mization—without relying on binary comparison
labels.

The algorithm consists of two key components:
(1) a Double Average Method (DAM) that nor-
malizes satisfaction scores and token-level policy

—0.5) - Ssig)

ratios, stabilizing training across variable-length se-
quences; and (2) an advantage function derived
from trajectory-level score differences between
fine-tuned and reference models, serving as the
core optimization signal.

3.3.1 Double Average Method (DAM)

As part of the stabilization process, we correct gra-
dient inconsistencies caused by varying sequence
lengths. Rather than using explicit gradient clip-
ping—which may discard useful signals—we apply
two normalization strategies: one for satisfaction
scores and one for token-level policy ratios.

Let T" denote the sequence length, ¢ index the
sample, () be the input context, and yt(i) the ¢-th
output token. Py and P4 represent the current and
reference sample policy probabilities. We normal-
ize token-level log-probabilities as follows, where

(4) (@)

7,  and 74 denote the average log-probabilities

under the current and reference policies, and 7rr(at)i0

serves as the update ratio used in optimization:

T
1 .
=TZM%@’N)(m
t=1
old = Zlog Poia(y ! 7)Y (16)
iy = exp(wé” — =) (17)

Through regularization of continuous scores via
Cavg (see Eq. 8) and normalization of token-level
policy ratios, these mechanisms jointly mitigate
gradient imbalance—where longer sequences am-
plify log-prob norms and shorter ones weaken up-
dates—and enhance gradient consistency more ef-
fectively than direct clipping, as confirmed by gra-
dient norm analysis (Fig. 2).

3.3.2 Trace Scores with Discounted Step-wise
Evaluation

After applying regularization to stabilize token-
level optimization, we next compute the score dif-
ference between generated and reference trajecto-
ries—denoted as Si req) and S e, respectively—to
estimate the advantage function.

At each step 7, we compute a relative preference
score based on the sentiment distribution:

() ()
S( 7= Cdvg[ 2] Caig[O] (18)
where Cz(w;[ ) captures positive dimensions and
¢V negative ones.

avg([0]



To aggregate these step-wise signals across a

multi-turn trajectory, we apply a discount factor
to compute trajectory-level scores, where S,/ (] ) and
Sr(e 4)1 denote the per-turn scores of the reference and
generated responses at step j, respectively:

Streal = Z 'YJ ! Sre]a)h Stref = Z 7] ! Sr(ejf

(19)
The sentiment gap St(rlf — t(_zr)eal then serves as

an advantage signal guiding policy updates. This
mechanism enables TraceBias to model evolving
user sentiment over time, weighting earlier and
later parts of a dialogue differently rather than treat-
ing outputs uniformly.

3.3.3 Final Representation of TraceBias

TraceBias integrates trajectory-level preference sig-
nals with token-level policy dynamics to construct
its optimization objective. By combining trajectory-
level advantage signals with DAM-normalized
token-level policy ratios, TraceBias achieves stable
and fine-grained reward-guided updates—without
relying on binary preference labels. The final opti-
mization objective Ly, is expressed as:
Lfina = — Z <St(-’i‘)ef - t-real) ’ 7Tlgazt)io

st (20)
=1

This objective underpins TraceBias’s stable, fine-
grained updates and provides a robust optimization
foundation for the broader ARF framework.

4 Experiments

4.1 Experimental Setup

We evaluate ARF-RLHF framework and base-
line RLHF methods on four lightweight LLMs:
Gemma2-2B, Qwen2-1.5B, Qwen2.5-1.5B, and
LLaMA3.2-2B. Each model is fine-tuned using
one of the following RLHF approaches: our pro-
posed TraceBias, which leverages trajectory-level
bias and token-wise normalization without binary
comparisons; DPQO, which uses pairwise prefer-
ence modeling via the Bradley-Terry framework;
PPO, a scalar-reward-based policy optimization
method; and RLAIF, which constructs comparison
datasets automatically using LLMs.

To assess generalization across diverse tasks,
we use five QA datasets from Big-Bench (Srivas-
tava et al., 2023): Alpaca (Pawlik and Grigoriadis,
2024) (instruction following), GSMS8K (Cobbe

et al., 2021) (mathematical reasoning), Strate-
gyQA (Geva et al., 2021) (commonsense QA),
TopicalChat (Gopalakrishnan et al., 2023) (open-
domain dialogue), and CNN/DailyMail (See et al.,
2017) (summarization)—used primarily for robust-
ness testing due to noise. Preference-labeled data is
constructed via synonym substitution and scoring
with pretrained models (see Appendix E).

We also introduce a multi-domain satisfac-
tion dataset, Emotion3, comprising 78,630 sam-
ples aggregated from DailyDialog, GoEmotions,
ISEAR (Scherer and Wallbott, 1997), and Sen-
timent140 (Go et al.,, 2009). Emotion labels
are mapped to satisfaction levels and partially re-
scored using LLaMA3-13B and Qwen2.5-7B. Man-
ual verification ensures label quality (details in Ap-
pendix H).

All models are fine-tuned using LoRA (Hu et al.,
2022). Hyperparameter configurations are pro-
vided in Appendix A.

4.2 Main Results

Following the setup, we conduct targeted ex-
periments to validate our framework through
component-wise analysis, isolating the impact of
key mechanisms via ablations and diagnostics. Be-
low, we provide an overview of these core experi-
ments.

* Static Scorer: Experiment 4.3 evaluates the
reliability of the static satisfaction scorer
used for preference collection, while Discus-
sion 5.2 further substantiates its robustness.

* ARF Scorer: Experiment 4.4 examines how
effectively the ARF scorer adapts to evolving
preferences over time.

* TraceBias Effectiveness: Experiments 4.5
and 4.6 demonstrate that TraceBias yields
more informative feedback signals under both
human and LLM-generated preferences. We
also added CaseStudy in appendix K.

* Mechanism Validation: Experiments 4.7,
4.8, and Experiments 4.9 highlight the role
of key design components such as Experience
Replay (ER), Dynamic Advantage Matching
(DAM), and Preference-Biased Scoring.

4.3 Evaluation of the Static Satisfaction
Scorer

The overall performance of the ARF framework
strongly depends on the quality of the static satis-
faction model used for initial data collection and
supervision. While we describe the construction of
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Figure 3: Tracking preference shifts using ARF. A drop
in score indicates alignment with newly introduced neg-
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this model and its large-scale annotation base in Ap-
pendix H, its effectiveness must still be validated.
We evaluate the scorer on five benchmark emotion
classification datasets: DailyDialog, GoEmotions,
ISEAR, Sentiment140, and Emotion3 (a merged
set). As shown in Table 1, the model consistently
achieves over 70% accuracy across all datasets.

4.4 Adaptive Preference Tracking via ARF

Leveraging the static scorer’s accuracy, we test
the ARF scorer’s dynamic tracking by injecting
bias-specific data every 500 steps in the order
ALPACA—GSM8K—StrategyQA—TopicalChat.
When more than two biases overlap, we apply
negative supervision to the earliest bias. The
resulting scoring shifts are shown in Figure 3.

The results demonstrate that ARF adapts effec-
tively to changing preferences. Initially, we ob-
serve synchronized gain/loss patterns between AL-
PACA and StrategyQA, and between GSM8K and
TopicalChat, likely due to semantic similarity. De-
spite this, ARF successfully distinguishes between
tasks once negative preferences are introduced (e.g.,
ALPACA at step 1500), indicating its robustness to
subtle semantic correlations.

4.5 RLHF Method Comparison under Unified
Evaluation

Due to the instability and prompt sensitivity of
Al-judge evaluations, we instead employ a unified
reward model for both data filtering and evaluation.
This removes variation from prompt design, sam-
pling temperature, and model architecture(More
in discussion 5.1). We compare PPO, DPO, and
our TraceBias method under identical scoring su-
pervision, across four tasks and four base models:
Qwen2 1.5B, Qwen2.5 1.5B, LLaMA3.2 3B, and
Gemma?2 2B. The normalized performance relative

Dataset ISEAR  Sentiment140  Emotion3
Accuracy (%) 70.05 73.65 76.00 74.10 71.60

DailyDialog ~ GoEmotions

Table 1: Test accuracy of the static satisfaction scorer
on various sentiment datasets. Hyperparameter details
are provided in Appendix 8.
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Figure 4: Average performance comparison of RLHF
methods (PPO, DPO, TraceBias) under consistent scor-
ing and preference targets. Single models’ preformance
in appendix J.

ratio compare to SFT is shown in Figure 4.

On average, TraceBias outperforms both PPO
and DPO, with an improvement of 3.3% over PPO
and 7.6% over DPO. We attribute this to the sta-
bility introduced by the DAM mechanism and the
expressiveness of the trace-based update design.
While there are isolated tasks where PPO or DPO
perform better, TraceBias consistently ranks high-
est in aggregate performance.

4.6 LLM-Based Preference: RLAIF vs. ARF

To test TraceBias under machine-generated pref-
erences, we construct a 1K preference dataset on
StrategyQA using DeepSeek-v3(The detailed Al
evaluation output in appendix F). Using this dataset,
we train RLHF pipelines using PPO and DPO, de-
noted RLAIF-PPO and RLAIF-DPO. We compare
them against TraceBias using the same reward su-
pervision. As shown in Table 2, TraceBias outper-
forms both RLAIF variants, indicating its robust-
ness to the quality of preference data.
Interestingly, while DPO slightly outperforms
PPO in this setting, its dependence on precise com-
parisons makes it more sensitive to data quality. In
contrast, TraceBias and PPO are better suited for

Evaluation method RLAIF-PPO RLAIF-DPO  TraceBias
Score Ratio 30.3 32.8 36.9
DeepSeek V3(win rate vs SFT) 43% 49% 52%

Table 2: The evaluation of multiple RLAIF variants
against the TraceBias method on the StrategyQA dataset,
using DeepSeek-v3 preference annotations.



ER Ratio GSMBSK (Preference) Emotion3
Basic 53.52 73.84
0 60.59 59.32
0.5 56.40 70.88

Table 3: Ablation of ER ratio in ARF training. ER=0.5
balances adaptation and generalization.

noisy or weakly-supervised preference signals.

4.7 Effect of Experience Replay (ER) in ARF

We hypothesize that ER helps mitigate catastrophic
forgetting or overfitting in ARF training. To test
this, we compare ARF with and without ER under
1000 training steps. As shown in Table 3, disabling
ER leads to better accuracy on recent data but a
significant drop in generalization, supporting our
claim.

4.8 Gradient Stability Analysis-DAM vs. Clip

As shown in Figure 2, we analyze gradient norms
across PPO and TraceBias (using traceStep = 1 for
fairness). TraceBias exhibits lower gradient mag-
nitude and variance, even compared to PPO with
clipping, supporting our claim that DAM promotes
smoother and more stable learning dynamics.

4.9 On the Necessity of Rescoring in
Preference-Biased Scoring

We conduct an ablation to evaluate the necessity
of periodic rescoring during Adaptive Preference
Tracking(Experiment 4.4). As shown in Table 4,
disabling rescoring leads to increased scores even
after preference reversal—indicating stale supervi-
sion and misalignment. In contrast, enabling rescor-
ing correctly reflects negative feedback, reinforc-
ing dynamic preference adaptation. This confirms
rescoring as a critical mechanism for maintaining
signal integrity in evolving reward landscapes.

5 Discussion

5.1 How to proof our experiments’ accuracy?

As noted in Section 4.5, Al-agent-based evaluation
(e.g., using an LLLM judge) exhibits high variance
from prompt wording, task quirks, model archi-
tecture, and random seeds, yielding inconsistent
and unreliable results. To mitigate this, we com-
plement Al-agent metrics (Section 4.6) and a uni-
fied, scorer-based protocol: for reward-oriented
methods (e.g., TraceBias, PPO), we train against
a pretrained reward model and evaluate with a

Condition ALPACA GSMSK
With ReScore -9.4% -0.5%
Without ReScore 7.2% 3.7%

Table 4: Impact of rescoring on ALPACA and GSM8SK
after preference reversal. Negative values indicate suc-
cessful adaptation.

shared, immutable scorer; for comparison-based
methods (e.g., DPO), we use the same scorer to as-
sess preference alignment. Crucially, every method
and run uses the exact same held-out test exam-
ples (none seen during training), and the scorer
never changes—eliminating any method-specific
coupling or information leakage. This ensures a
stable, unbiased comparison of each method’s con-
vergence to the target preference.

5.2 On the Reliability of Satisfaction
Supervision

Satisfaction annotations are inherently subjective-
labeling tasks involving large numbers of human
annotators often reflect diverse preferences, even
SOTA LLMs show bias when re-labeling Emotion3,
with neutral predictions ranging from 24.0% to
37.3% (variance 29.51, Appendix G). Neutrality
proves especially ambiguous, leading to unstable
supervision. Although our static scorer reaches
only 70% accuracy, it mitigates such uncertainty
by excluding neutral scores during TraceBias up-
dates (Eq. 18), using them instead to dampen noisy
gradients e.g., Good: 0.02, Neutral: 0.90, Bad:
0.08 yields S = —0.06 resulting in minimal up-
dates. This design—Dby ensuring softer updates for
items dominated by neutral evaluations—avoids
rigid binary comparisons under ambiguity, thereby
improving robustness, reducing annotation vari-
ance, and enabling reliable tracking of individual
preferences beyond crowd-level bias.

6 Conclusion

We introduce ARF-RLHEF, a reinforcement learning
framework aligning language models to user prefer-
ences. It includes an Adaptive Reward-Following
scorer for satisfaction estimation, a perturbation-
augmented preference generalization database, and
TraceBias, an actor—critic optimization method
with token-level stabilization. Theoretical anal-
ysis confirms compatibility with PPO/DPO, and
experiments validate preference optimization un-
der limited supervision.
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Limitations

While our method offers significant theoretical and
empirical advantages, we acknowledge the follow-
ing limitations:
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* Lack of Real Huamn evaluation: The
scorer-based evaluation protocol is designed
for fair comparison of RLHF methods, focus-
ing on minimizing noise factors. It does not
yet capture generalization performance in real-
world scenarios. Future work will include
human blind testing or cross-validation with
alternative scorers to further validate the re-
sults.

Model Scale Constraint: Due to resource
constraints, we conduct experiments on
1.5B-3B models. While our method is
architecture-agnostic and theoretically scal-
able, its effectiveness on larger LLMs (e.g.,
7B, 13B, 65B) remains to be explored in fu-
ture work.

A Hyper Parameters

All experiments’ Hyper parameters shows below:

1. Static Scorer Evaluation: table 8

2. Adaptive Preference Tracking: table 9

. RLHF Comparison: table 10
RLAIF vs. ARF: table 11
. Effect of Experience Replay (ER) in ARF 12

6. Gradient Stability Analysis for DAM 13

All experiments were conducted on 2 * NVIDIA
GTX 2080 Ti GPUs with CUDA unified memory
enabled, using multi-GPU parallelism. Training
consumed approximately 390 GPU-hours per de-
vice.

B The Essential Homology of DPO, PPO,
and TraceBias

The Actor-Critic (AC) algorithm can be formulated
as:

N
EAC(H) = — Zlogﬂg(at | s¢) - Ay 2D
t=1

In this section, we demonstrate the theoretical
connections among PPO, DPO, and our proposed
TraceBias. We argue that these methods share a
common optimization structure, thereby validating
the theoretical soundness of TraceBias.
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B.1 PPO as a clip Constrained Actor-Critic
Variant

PPO (Schulman et al., 2017b) can be defined as:

LPPO(9) = E; [min (r¢(0) Ay, clip(r¢(0), €)A)]
(22)
where 7¢(6) is the importance sampling ratio
between the current and previous policies:

We(at | St)

g) = e\ 1)
ri®) = (e T 50

(23)

and the clipping function is defined as:

1—e¢ ifry(f)<1l—e
clip(re(0),€) =  74(0), if1—e<r () <1+e
1+e, ifr(0)>1+e€

(24)
By expanding the objective, we obtain:

Wg(at ’ St)
7r901d (a’t ‘ St)

(25

If we ignore the clipping operation—which

serves as a regularization mechanism to limit the

policy update magnitude—the PPO objective re-
duces to:

LPP0) = E, [min ( Ay, clip

N
LPPO(0) o< Y " ri(0) Ay (26)
t=1

mo(at|st)
o (at]st)’
which encourages increasing the likelihood of ac-

tions with high advantage A;. This shows that PPO
essentially shares the same optimization direction
as AC, differing only in the incorporation of a trust-
region-inspired constraint to stabilize training.

Here, () reflects the policy ratio

B.2 DPO as a KL-Constrained Actor-Critic
Variant

Direct Preference Optimization (DPO) (Rafailov
et al., 2024) leverages the Bradley-Terry model to
represent pairwise preferences as follows:

exp(r(y™))

exp(r(y*)) + exp(r(y~))
27)

Pyt -y |a)=

Its associated loss is:
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ER(¢7 D) = _IE(J:7 Yw, Y1)

[10 exp(r(Yw))
exp(r(yw)) + exp(r(y1))

] (28)
The DPO objective derived from this model is:
£DPO (7T9; 7Tref) = _E(x,yw7yl) [log

o <Blog To(Yuw | @) Trer (Y1 | @)

mo(y1 | @) Trot (Yoo | x)ﬂ
(29)

Introducing a normalization constant Z(x), the
implicit optimal policy 7*(y | ) can be defined
as:

7"’ref(y ’ l‘) ’ exp(%r(y))
Z(x)

Ty | z) = (30)

where the partition function Z(x) is:

2() = 3 el | 2) - exp (;r@/)) G31)

Y

Taking the logarithm of both sides yields:

} 1
log ™ (y | z) = log Trer(y | $)+BT(% y)—log Z(x)
(32)
‘We can then derive:

r(z,y) = 610g7%

+ plog Z(x) (33)

By applying r(z,y) in the pairwise preference
model P(y* > y~ | =) and utilizing the Plackett-
Luce model (see Appendix A.3 of (Rafailov et al.,
2024) for more details), the DPO objective can be

equivalently rewritten as:

max { B, yr (o) [76 (2, 9)]

(34)
~ BKYmo(- | @) | mrer(- | 2)) |
Here, the optimization objective is to maximize
the expected reward regularized by a KL diver-
gence term. Assuming A(z,y) = r(z,y), and
temporarily ignoring the KL regularization, this
reduces to an actor-critic style objective:

LPPO(0) o< Eyrory (1) [A(2,9)] (35)

This implies that DPO and actor-critic share ef-
fectively the same optimization objective when the



reward signal is defined as the advantage. In prac-
tice, this expectation can be approximated by:

N
LPPO(0) ~ ) “logma(yi | wi) - Alwi,yi) (36)
i=1
Thus, DPO can be interpreted as a KL-

regularized actor-critic method, where the reward
signal is derived from preference feedback rather
than scalar returns.

B.3 TraceBias as a DAM-Constrained
Actor-Critic Variant

We have previously outlined the Actor-Critic (AC)
interpretation of TraceBias in our methodology.
Here, we provide a formal derivation from the ex-
panded formulation to its AC-style representation.

T
Lfinal = — Z (Stref — Streal) - eXp(ﬂ'éz) - 71—(();:)1)
=1
(37)

Following our methodology, the token-level re-
ward (or score) is defined via discounted(+y) step-
wise preferences as follows:

Storeal = 27] ! Srga)p Storet = Z'Y] ! Sr(gf

(38)

Accordingly, we define the advantage function

by measuring the difference between the real and
reference trajectories:

_ 5O

t-real

A =8Y

t-ref

(39)
Substituting this into the objective, TraceBias
can be rewritten in an actor-critic form:

T .
Z A; - exp( (i) ® (40)
i=1

LTraceBias = 7791 - ﬂold)

To improve optimization stability, we introduce
the DAM smooth surrogate strategy, which pools
token-level scores and normalizes the policy ratio
across the trajectory. Analogous to the clipping
term in PPO and the KL regularization in DPO,
DAM serves as a regularization mechanism: We
define the token-level ratio as:

Z log Py(y

(g |2y @
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)

Z log Po]d

Then, the normalized trajectory-level policy ratio
is computed as:

old 42)

(4) (%)

T ratio — eXp(TrH - ngil) (43)
Thus, the final form of TraceBias is:
T .
LTraceBias = Z A; - 7Tr(z:t)io (44)

i=1

This derivation shows that TraceBias can be di-
rectly interpreted as an Actor—Critic method with-
out introducing additional approximations, high-
lighting its theoretically grounded and streamlined
formulation.

B4 Summary

Although PPO, DPO, and TraceBias differ sig-
nificantly in their final objectives, all can be re-
formulated as variants of the Actor-Critic (AC)
framework. By optimizing the expected reward
weighted by advantage, each method introduces dis-
tinct regularization strategies—such as PPO’s clip-
ping, DPO’s KL constraint, or TraceBias’s DAM
normalization—to improve training stability. This
unified perspective highlights that TraceBias is not
only theoretically grounded but also competitive
with existing policy optimization techniques.

C The pseudo code of TraceBias

The TraceBias pseudo code shows in alg 1.

D The selection of sigmoid Scale

Scale plays a crucial role in determining the sen-
sitivity of the norm function, as it directly affects
most parameters. We recommend selecting scales
within the range of [4,8], as excessively large val-
ues can push most parameters towards the bound-
aries of the Sigmoid function interval, limiting
their effective range. Table 5 illustrates when
(CosSim(CARF _ave, Chasic_ave) — 0.5) equals values
0.2 is converted together with the corresponding
function value range by the Sigmoid function under
different proportional settings. It is worth noting
that when the scale is set to 1, the relatively large
0.2 level in sigmoid results in a mapping value of
only 0.5498. However, when the ratio increases to
16, the same input is mapped to nearly 1, indicating



Scale value Scale Impact on Sigmoid under 0.2 interval Evaluation method Wln LOSS Equal

1(Too small) 0.5498 [0.3775,0.6225]

4 0.6900 [0.1192,0.8808] RLAIF-PPO 43% 50% 7%

6 0.7685 [0.0474,0.9526]

8 0.8320 [0.018,0.9820]

16(Too big) 0.9608 [0.0003,0.9997] RLAIF-DPO 49% 47% 4%
TraceBias 52%  44% 4%

Table 5: The table shows how different scale values map
to specific intervals after applying the Sigmoid function.

that the range is overly compressed. Based on these
observations, we strongly recommend selecting a
scale within the range of [4,8] for the numerical
deviation annotation algorithm, as it ensures a bal-
anced transformation without pushing values to
extremes.

E RLHF Dataset Construction

To support comparison-based fine-tuning methods
such as DPO and PPO, we construct a simulated
binary preference dataset. Given the prohibitive
cost of large-scale human annotation, and the fact
that this dataset is primarily used to compare fine-
tuning preferences across methods rather than for
real-world deployment, we adopt a surrogate con-
struction strategy that also aligns with the training
of our ARF preference model.

Concretely, we employ the naw.SynonymAug
module from the nlpaug library to perform four
rounds of synonym substitution using WordNet,
generating paraphrased variants that preserve se-
mantic intent while introducing surface-level diver-
sity.

Before constructing the binary comparison
dataset, we annotate the augmented ’former’ sam-
ples with soft labels using our fine-tuned static
satisfaction scorer. To amplify preference signals
and avoid potential overfitting, we prepend task-
specific prompts that were never included in the
scorer’s training data. Specifically:

¢ Good prompt: Great!
correct answer. Here
question:

* Bad prompt: Your answer is absolutely
wrong! This is the next question.
Stop giving such terrible and
misleading feedback!

The annotated samples are then used to fine-
tune the ARF scorer, which serves as a proxy
for user-aligned preferences. To ensure fairness,
each RLHF method (including PPO and DPO) con-
structs its training pairs using the same ARF scorer:
for each pair, the sample with a higher score is des-

You gave a
is the next
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Table 6: The win, loos, equal rate compare to SFT
method

Model Positive (%)

333
40.3
44.0
35.0

13.64

Neutral (%)

333
30.3
24.0
37.3

29.51

Negative (%)

333
29.3
32.0
27.6

13.28

Actual Samples (Uniform)
GPT-40

DeepSeek-v3

Gemini 2.0 Flash

Variance

Table 7: Label distribution variance across models on
Emotion3 samples. High neutral sentiment divergence
highlights inconsistency in satisfaction estimation.

ignated as the preferred (positive) response, while
the lower-scored one is treated as negative. This
guarantees that all methods are aligned in their op-
timization direction and evaluated under consistent
supervision.

F DeepSeek agent’s Evaluation under
RLATF task

We using below prompt to compare the output of
baselines and SFT, the win/loos/evqual tabel shows
in tabel 6. The prompt of comparison shows below:

Question: ...’ Answerl: ’...’ Answer2:
o) Please use strict criteria to
determine which answer is more in line
with human preferences 1 or 2 only answer
a number.

G Table of Subjective Experiments

The table 7 reveals that even state-of-the-art
LLMs exhibit significant variance in emotion judg-
ment, especially in distinguishing neutral senti-
ment—underscoring the inherent noise in satisfac-
tion estimation.

H Satisfaction Dataset Construction

To construct a large-scale, diverse, and high-quality
satisfaction classification dataset aligned with our
three-level labeling schema (bad, neutral, good),
we aggregate a total of 78,630 samples from four
widely-used emotion and sentiment datasets:
 DailyDialog (Li et al., 2017): A multi-turn
dialogue dataset that closely mirrors everyday
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Figure 5: V Gradient norm comparison between PPO (with clip range ¢ = 0.2) and TraceBias with DAM.

conversational scenarios.

* GoEmotions (Demszky et al., 2020): A fine-
grained, high-quality emotion classification
dataset spanning a wide range of affective
states.

¢ ISEAR (Scherer and Wallbott, 1997): A clean
and structured emotion dataset based on psy-
chological self-reports.

* Sentiment140 (Go et al., 2009): A large-scale
Twitter sentiment dataset that reflects informal
and noisy online communication.

To unify the labeling across datasets with hetero-
geneous annotation schemes, we define a common
strength-based mapping strategy, converting exist-
ing emotion tags into a standardized 7-level satis-
faction scale (see Table 14). For relatively clean
datasets (DailyDialog, GoEmotions, ISEAR), we
directly apply this mapping to assign satisfaction
scores.

Given the informal nature of Sentiment140, ad-
ditional cleaning is necessary. We sample 15,000
instances and perform multi-round evaluation using
both Qwen2 7B and LLaMA3 13B. Each sample
is scored twice by each model; the maximum and
minimum scores are discarded, and the mean of the
remaining two is taken as the final label. Samples
with high variance across scores are further man-
ually verified to ensure annotation reliability. The
result is a cleaned subset of 15,000 samples from
Sentiment140 with stable satisfaction labels.

After consolidating all datasets, we create a uni-
fied Emotion7 dataset with 7 satisfaction levels.
We then perform a coarse mapping to form the final
Emotion3 dataset: levels [0, 1] as bad, 1.5 as neu-
tral, and [2, 3] as good. This dataset provides broad
domain coverage, consistent labels, and stylistic
diversity, serving as the basis for training our static
satisfaction scorer.
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Qwen?2 1.5b: PPO vs DPO vs TraceBias
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Figure 6: Qwen2’s Performance

I Gradient Comparison V

Figure 5 V Gradient norm comparison between
PPO (clip) and TraceBias (DAM). Lower variance
and norm suggest improved stability.

J Models’ Performance under different
RLHF Baselines

We shows all models’ RLHF performance below:
e Qwen2-1.5B: table 6
* Qwen2.5-1.5B: table 7
* Gemma2-2B: table 8
* Llama3.2-3B: table 9
We applied softmax with temperature (set to 0.1)
purely for visualization purposes.

K CaseStudy under Llama3.2

To preserve the original formatting of model out-
puts, we retain their format in the paper. For ex-
cessively long responses, we replace parts with
ellipses ("...") for clarity. Representative examples
are provided in Table 15, Table 16, Table 17, and
Table 18.
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Figure 7: Qwen2.5’s Performance

Gemmaz2 2b: PPO vs DPO vs TraceBias
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Figure 8: Gemma?2’s Performance

Llama3.2 3b: PPO vs DPO vs TraceBias
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Figure 9: Llama3.2’s Performance
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Algorithm 1: TraceBias with DAM

Input: Augmented dialogue dataset Dy, reward
model R, policy model 7y, reference model
Tref, Max length Ly ax, discount factor -,
environment £

Output: Updated parameters 6

while training do
repeat
Sample a dialogue trajectory
{(mty y;}k7 st)}?:l ~ Daug;

Initialize context C <— [system prompt],
total loss £ < 0;

Initialize LabelReward < 0,
RealReward < 0;

fort =1to T do

Append user input x; to context C;

LabelReward += "1 - s;;

Generate output y; ~ 7o (- | C);

if length(C) > Lmax then

L break

// Compute per-token
log-probabilities from both
models

log g = log_softmax(mg(C));

log et = log_sof tmax(mer(C));

// Compute average token-level
log-probs (DAM token -level
average)

log o (ye) =

m ley:tll 108;71'9(.%51) 1C):
log rer (y1) =
Terray Lo log mer(yg” | ©);

// Compute real reward via
environment

re < E(ye);

RealReward +=~'"1 .1y

// Importance sampling ratio

we = exp (log mo (y¢) — log mrer(y1));

// Add weighted reward mismatch
to loss

L 4=

—wy - (LabelReward — RealReward);

Append assistant response y: to context
C;

until valid sample obtained;

// Gradient update

Backpropagate: VL

Update: 6 <— 0 —n - VoL;




Hyper Parameters  TrainStep  Test Step Learning Rate Batch ~ MLP Hidden Size

Static Scorer 20000 500 le-6 20 328

Table 8: hyper-parameters of Static Scorer Evaluation

Hyper Parameters  TrainStep Test Step Learning Rate ERRatio MLP Hidden Size

ARF Scorer 2000 500 le-6 0.5 328

Table 9: hyper-parameters of Adaptive Preference Tracking via ARF

Hyper Parameters LoRA Rank Epoch  Test Step/Epoch  Train Step/Epoch  Learning Rate ~ TraceBias gamma  clip epsilon ~ PPO [cl,c2]  DPO beta

PPO 8 4 100 500 le-6 - 0.2 [0.01,0.01]
DPO 8 4 100 500 le-6 - - - 0.1
TraceBias 8 4 100 500 le-6 0.99

Table 10: hyper-parameters of Adaptive Preference Tracking via ARF

Hyper Parameters LoRA Rank Epoch  Test Step/Epoch  Train Step/Epoch  Learning Rate ~ TraceBias gamma  clip epsilon ~ PPO [c1,c2]  DPO beta

PPO 8 2 100 250 le-5 - 0.2 [0.01,0.01]
DPO 8 2 100 250 le-5 - - - 0.1
TraceBias 8 2 100 250 le-5 0.99

Table 11: hyper-parameters of RLAIF vs. ARF

ERRatio  TrainStep Test Step  Learning Rate  MLP Hidden Size

0.5 1000 500 le-5 328

0 1000 500 le-5 328

Table 12: hyper-parameters of Experience Replay (ER) in ARF

Hyper Parameters LoRA Rank  Train Step Learning Rate  TraceBias gamma  clip epsilon  PPO [c1,c2]

PPO 8 300 le-6 - 0.2 [0.01,0.01]

TraceBias 8 300 le-6 0.99 - -

Table 13: hyper-parameters of Gradient DAM test
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Strength Label DailyDialog ISEAR GoEmotion
0.0 extremely neg | disgust disgust disappointment
embarrassment
grief
sadness
0.5 neg anger, sadness sadness anger
disgust
remorse
1.0 neg nero fear fear annoyance
confusion
disapproval
nervousness
1.5 nero no emotion caring
curiosity
neutral
2.0 pos nero approval
desire
realization
relief
surprise
2.5 pos surprise joy admiration
amusement
excitement
joy
love
optimism
pride
3.0 extreme pos happiness admiration
gratitude
Table 14: Emotion categories mapped to continuous strength scores across datasets.
Table 15: GSM8K
Field Content
Prompt Q: Reggie and his brother are having a basketball shooting contest. They each
get to take 10 shots. Layups are worth 1 point, free throws are worth 2 points,
and anything further away is worth 3 points. Reggie makes 3 layups, two free
throws, and one long shot. His brother only shoots long shots and makes 4 of
them. How many points does Reggie lose by? A:
label Reggie makes 3 points off layups because 3 x 1 = <<3x1=3>>3 Reggie makes
4 points off free-throws because 2 x 2 = <<2x2=4>>4 Reggie makes 3 points
off long shots because 1 x 3 = <<1%3=3>>3 Reggie scores 10 points because
3 + 4 + 3 =<<3+4+3=10>>10 His brother scores 12 points because 4 x 3 =
<<4%3=12>>12 Reggie loses by 2 because 12 minus 10 = <<12-10=2>>2 2
SFT To find out how many points Reggie lost by, we calculate both totals explicitly:
Reggie’s points: layups 3 x 1 = 3; free throws 2 x 2 = 4; long shot 1 x 3 = 3;
sum = 10. Brother’s points: 4 x 3 = 12. Since 10 < 12, Reggie loses by 2 points.
TraceBias | To determine the points Reggie scored, we need to calculate the points from
each type of shot. Reggie made 3 layups (3 x 1 = 3 points), 2 free throws (2 x
2 =4 points), and 1 long shot (1 x 3 = 3 points). Total: 3 + 4 + 3 = 10 points.
His brother made 4 long shots (4 x 3 = 12 points). Difference: 12 minus 10 = 2
points.
Comment | The TraceBias response employ formal mathematical notation and rigorous
step-by-step reasoning to enhance precision and clarity.
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Table 16: ALPACA

Field

Content

Prompt

Q: Describe the character of Romeo from Romeo and Juliet. A:

label

"Romeo is a passionate, impulsive, and hopelessly romantic young man, who
falls deeply in love with Juliet at first sight. He is a member of House Montague
in the play Romeo and Juliet, and is depicted as sensitive, idealistic, and poetic,
idolizing love and its power. Although he’s brave and skilled in combat, Romeo
is also shown as prone to intense emotions, leading him to act impulsively and
recklessly. His strong feelings often cloud his judgement, which eventually
leads to the tragic end of the play. Despite his flaws, Romeo is a loyal friend,
devoted son and nephew, and an unwavering lover, willing to do anything for
the woman he loves."

SFT

Romeo Montague is the protagonist of William Shakespeare’s tragic play Romeo
and Juliet. He is a young, passionate, and impulsive nobleman from the rival
Montague family.

1. Romantic and passionate: falls in love at first sight and sacrifices every-
thing for Juliet.

2. Impulsive and impetuous: acts on emotion without forethought.
3. Loyal and devoted: fiercely protects family and Juliet.

4. Youthful and inexperienced: mistakes due to naiveté.

5. Emotionally expressive: conveys feelings through poetry.

6. Self-destructive: reckless decisions contribute to tragedy.

His tragic fate underscores the destructive power of hate and the redemptive
power of love.

TraceBias

Romeo, the protagonist of Shakespeare’s tragic love story, is a complex, pas-
sionate, and impulsive nobleman from the House of Montague. Key Character-
istics: (1) Impulsive and passionate; (2) Romantic and idealistic; (3) Impetuous;
(4) Loyal and devoted. Motivations: love for Juliet, family loyalty, desire for
vengeance. Flaws: impulsivity, lack of prudence, emotional instability. His
character symbolizes love’s power and the human spirit.

Comment

The TracceBias response is thorough with the format more close to label.
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Table 17: StrategyQA

Field

Content

Prompt

Q: Did compact discs make computer gaming more popular? A:

label

Yes. Compact discs contained significantly more storage space than the pre-
viously popular floppy disc format. Gaming studios were therefore able to
significantly improve the graphics, sounds, and features of their games to make
them more immersive. The better games led to a massive increase in popularity
for computer gaming.

SFT

Compact discs (CDs) did play a role in making computer gaming more popular,
but it was not the sole factor.

* CD-ROM technology: enabled large-game distribution on a single disc.

* Improved graphics and sound: enhanced audio-visual experience (e.g.
Doom, Myst).

* Wider availability: expanded platform reach.
* Industry growth: attracted investment and talent.

Other influences included hardware advances, online gaming, and marketing
strategies.

TraceBias

Yes. CDs significantly popularized PC gaming in the 1990s. The CD-ROM
format’s increased capacity and audio quality drove a surge in game sales,
fueling industry growth.

Comment

The SFT response is verbose and includes peripheral historical details; Trace-
Bias more concise focus on the primary mechanisms by which CD technology
impacted gaming would enhance clarity and relevance.

Table 18: TopicalChat

Field

Content

Prompt

agent_B: "Did you know Steve Spurrier coach the Redskins?" ... agent_B:

label

"he has 12 victories in 32 games so maybe thats why he got fired , I think the
team had high hopes on him."

SFT

It appears that agent_A and agent_B are discussing Steve Spurrier’s career:
1. Confirmed that Spurrier coached the Redskins.
2. Recounted anecdote about his duck-lips TV moment.
3. Noted his 1966 Heisman Trophy at Florida.

4. Identified misattribution of Tampa Bay Bandits.

9

. Speculated on team embarrassment and website omission.

TraceBias

agent_B: "I know, its hard to find characters as known and famous as Steve
lol..." agent_A: "I think you’re right. I mean, Steve Spurrier ... need to give him
the recognition he deserves."

Comment

The SFT submission fails to recognize the continuation task and instead pro-
vides a summary, whereas the TraceBias submission demonstrates proper dia-
logue continuation and contextual sensitivity.
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