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Abstract001

Recent advances in reinforcement learning002
from human feedback (RLHF) and autoregres-003
sive transformers have driven the evolution004
of large language models such as GPT-4.0,005
DeepSeek R1, and Llama 3.3, enabling richer006
and more personalized responses. However,007
prevailing RLHF paradigms—from Proximal008
Policy Optimization (PPO) to Direct Prefer-009
ence Optimization (DPO)—still rely on binary-010
preference labels. While this approach reduces011
immediate annotation costs, it demands exten-012
sive human labeling and captures only coarse,013
group-level tastes. It suffers from high annota-014
tion overhead and limited adaptability to indi-015
vidual users. To address these limitations, we016
introduce Adaptive Reward-Following (ARF),017
a self-assessment framework that converts free-018
form user feedback into continuous prefer-019
ence signals using a high-precision satisfaction020
scorer (70% accuracy on GoEmotions, Senti-021
ment140, and DailyDialog). We further refine022
and debias these signals through data augmenta-023
tions—synonym replacement, trace truncation,024
and score bias annotation—and use a Dynamic025
Adapter Preference Tracker to model evolving026
user tendencies in real time. Building on these027
components, our novel Trace Bias (TB) fine-028
tuning algorithm optimizes continuous reward029
trajectories rather than binary labels. Experi-030
ments on Qwen-2/2.5, Gemma-2, and Llama-031
3.2 across four preference domains show that032
ARF outperforms PPO by 3.3% and DPO by033
7.6%, while maintaining alignment with RLHF034
objectives. ARF delivers a scalable, person-035
alized, and cost-effective paradigm for next-036
generation RLHF in large language models.037

1 Introduction038

The rapid evolution of Large Language Models039

(LLMs) has dramatically improved performance040

across a wide variety of tasks. As these models041

become more robust and generally capable, the042

focus has shifted from factual accuracy toward 043

deeper personalization and alignment with individ- 044

ual user intent. Reinforcement Learning from Hu- 045

man Feedback (RLHF) has emerged as the de facto 046

fine-tuning strategy—powering systems like GPT- 047

4 (OpenAI et al., 2024), DeepSeek-R1 (DeepSeek- 048

AI et al., 2025), and Llama-3 (Grattafiori et al., 049

2024). Yet, prevailing RLHF pipelines (e.g., 050

PPO (Schulman et al., 2017b), DPO (Rafailov et al., 051

2024)) hinge on massive, binary-preference anno- 052

tations, often involving hundreds or thousands of 053

crowdworkers. This approach incurs substantial 054

human cost and only captures coarse, group-level 055

tendencies rather than the nuanced tastes of each 056

user. 057

To mitigate annotation overhead and broaden 058

participation, prior work has explored variants such 059

as RLAIF (Lee et al., 2024b) and crowd-sourced 060

preference distillation (Zhang et al., 2024), which 061

convert coarse feedback into richer signals and im- 062

prove sample efficiency. While these methods re- 063

duce labeling burden and enhance model gener- 064

alization, they still depend on externally sourced 065

human annotations and manual prompt engineer- 066

ing. Crucially, without fundamentally rethinking 067

how feedback is collected, they cannot track true in- 068

dividual preference trajectories—doomed to repeat 069

the same group-bias limitations. 070

In this paper, we introduce Adaptive Reward- 071

Following (ARF), a self-supervised RLHF frame- 072

work designed to minimize manual labeling while 073

capturing fine-grained, per-user preferences. As 074

illustrated in Figure 1, our pipeline consists of four 075

stages: (1) Automatically collecting satisfaction 076

QA data from user feedback; (2) Augmenting and 077

storing samples via synonym substitution, trunca- 078

tion, and preference-biased reweighting to build a 079

diversified reward corpus; (3) Training and continu- 080

ously updating a lightweight ARF scorer with soft 081

labels to predict satisfaction scores; (4) Fine-tuning 082

the LLM using the TraceBias algorithm, which 083
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Figure 1: Illustrates the overall workflow of our framework. We begin by automatically collecting satisfaction QA
data based on user feedback (Step 1). These samples are then stored and augmented through synonym substitution,
truncation, and reweighting to form a diversified reward corpus (Step 2). The ARF scorer is trained with soft labels
to predict satisfaction scores and is continuously updated (Step 3). Finally, the TraceBias algorithm leverages
ARF-generated rewards to fine-tune the LLM (Step 4), completing a fully self-supervised RLHF pipeline.

directly optimizes on ARF-generated soft reward084

trajectories. This fully self-supervised workflow085

not only eliminates the need for binary compar-086

isons and significantly reduces annotation costs,087

but also makes precise modeling of individual user088

preferences possible.089

Empirical evaluations on Qwen-2/2.5 (Team090

et al., 2024; Qwen et al., 2025), Gemma-2 (Team091

et al., 2024), and Llama-3.2 (Grattafiori et al., 2024)092

across four diverse preference domains show that093

ARF outperforms PPO by 3.3% and DPO by 7.6%,094

while preserving theoretical alignment with estab-095

lished RLHF objectives. These results demonstrate096

that ARF provides a scalable, cost-effective route097

to truly personalized LLM fine-tuning.098

2 Background099

2.1 The Core Pipeline of RLHF for LLMs100

Despite design variations, The Bradley-Terry(BT)101

model and policy gradient optimization form the102

foundation of RLHF training. While implemen-103

tations vary (e.g., PPO (Schulman et al., 2017b)104

and DPO (Rafailov et al., 2024)), all methods share105

these core components.106

Supervised Fine-Tuning (SFT): The pipeline107

begins with SFT on large-scale corpora to instill108

general knowledge in LLMs. For downstream ap-109

plications, domain-specific datasets are used for110

further fine-tuning. While this results in high task-111

specific accuracy, such models often lack adapt-112

ability and personalization in real-world interactive113

settings.114

Preference Data Collection: To incorporate115

human feedback, a preference dataset is con-116

structed using paired outputs (e.g., (prompt, 117

answer1, answer2)). A Bradley-Terry (BT) 118

model (BRADLEY, 1955) is commonly used to 119

estimate the preference probability between re- 120

sponses yw ≻ yl as: 121

P(yw ≻ yl|x) =
exp(R(x, yw))

exp(R(x, yw)) + exp(R(x, yl))
,

(1) 122

where R(x, y) denotes a learned reward function. 123

Reinforcement Learning with Human Feedback: 124

RLHF methods rely primarily on: (1) reward mod- 125

eling from preferences, and (2) policy gradient(PG) 126

optimization. The policy is trained to maximize 127

expected return: 128

∇θJ(θ) = Eτ∼πθ

[
T∑
t=0

∇θ log πθ(at|st) ·Rt

]
,

(2) 129

where Rt =
∑T

k=t γ
k−trk is the discounted return. 130

Advantage-based methods refine this further: 131

∇θJ(θ) = Et [∇θ log πθ(at|st) ·Aπ(st, at)] ,
(3) 132

with the advantage function defined as: 133

Aπ(st, at) = Qπ(st, at)− V π(st). (4) 134

The multi preference-based dataset and PG op- 135

timization constitutes the foundation of RLHF 136

training, often enhanced by optimization tech- 137

niques such as Trust Region Policy Optimization 138

(TRPO) (Schulman et al., 2017a), Rank Responses 139

to Align Language Models with Human Feedback 140

(RRHF) (Yuan et al., 2023), and Reinforcement 141

Learning from Human Feedback with AI Feed- 142

back(RLAIF) (Lee et al., 2024a). 143
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2.2 Preference-Based Optimization has a144

Constant Foundation145

While RLHF methods continue to evolve, most re-146

main grounded in the BT preference modeling and147

policy gradient framework defined in Section 2.1.148

To demonstrate this, we analyze the two dominant149

approaches: PPO and DPO.150

PPO-Based Optimization: Building on Equa-151

tion 2.1, PPO first trains a reward model via152

Bradley-Terry ranking loss:153

LR = −E(x,yw,yl) log σ(R(x, yw)−R(x, yl)),
(5)154

then applies clipped policy gradients to optimize155

πθ:156

LPPO(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), ϵ)Ât

)]
.

(6)157

DPO as a Reward-Free Alternative: DPO by-158

passes explicit reward modeling by directly opti-159

mizing function’s preference margin:160

LDPO(θ) = −E(x,yw,yl) log σ161 (
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)
(7)

162

where β is a temperature parameter and πref is a163

reference policy.164

In essence, PPO and DPO are structurally simi-165

lar—both optimize over preference pairs to align166

models with human intent. Their main difference167

lies in whether an explicit reward model is used.168

However, both remain reliant on human-generated169

comparisons and operate within the constrained170

policy optimization framework, which fundamen-171

tally limits their autonomy and scalability, We have172

conducted a more in-depth theoretical analysis in173

the appendix B.174

3 Methodology175

Built upon the structural foundation outlined in176

Section 2.1, ARF-RLHF comprises three core train-177

ing stages: model initialization, preference scor-178

ing, and policy optimization. Model initialization179

adopts an open-source state-of-the-art LLM. Prefer-180

ence scoring is achieved through a composite scorer181

that integrates a high-precision satisfaction scorer182

with a ARF scorer, which continuously adapts over183

time. These evolving scoring signals directly in-184

form policy optimization, carried out using the185

TraceBias algorithm. TraceBias performs contin- 186

uous fine-tuning based on soft reward signals in- 187

ferred from the scoring system, thus eliminating 188

reliance on binary labels and enabling more nu- 189

anced policy updates. 190

The following subsections elaborate on each 191

component: we begin with the scoring system—the 192

interplay between the static and preference tracker. 193

Next, we describe the score-shift mechanism within 194

the augmentation database, including temporal bias 195

correction and dual-scorer alignment. Finally, we 196

analyze the TraceBias algorithm and its role in op- 197

timizing policies within the ARF-RLHF pipeline. 198

3.1 Adaptive Reward-Following(ARF) Scorer 199

Recent studies suggest that human communication 200

not only conveys explicit semantic content but also 201

implicitly reflects user satisfaction and willingness 202

to continue the interaction (Chen and Chen, 2016; 203

Shanahan et al., 2006; Henry et al., 2021; Prabhu- 204

moye et al., 2017). Building upon this observation, 205

we introduce two complementary scorers: a static 206

satisfaction scorer for collecting quality estimates, 207

and an ARF scorer that periodically updates to cap- 208

ture evolving individual preferences directly from 209

interactions. 210

3.1.1 Static Satisfaction Scorer 211

Both the static satisfaction scorer and the ARF 212

scorer are built upon the lightweight RoBERTa- 213

mini (Liu et al., 2019) architecture, balancing low 214

latency with strong semantic understanding. 215

To enable self-supervised reward modeling, the 216

static scorer predicts the quality of a given (prompt, 217

response) pair based on the user’s subsequent reply. 218

Specifically, it takes the user’s follow-up message 219

as input and outputs a satisfaction score reflecting 220

the user’s sentiment toward the previous system 221

response. 222

We project the final hidden states of RoBERTa- 223

mini to three sentiment classes: bad, neutral, and 224

good, and aggregate token-level logits to obtain 225

sequence-level satisfaction distribution: 226

C3 = Linear(HLast) (8) 227
228

Cavg = Softmax

(
1

n

n∑
i=1

C(i)
3

)
(9) 229

Here, HLast denotes the final hidden states from 230

RoBERTa-mini, and C3 ∈ Rn×3 represents token- 231

level satisfaction logits, where n is the input se- 232

quence length. The final prediction Cavg ∈ R3 sum- 233
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Figure 2: We compare the gradient norm statistics of PPO, using a clip range ϵ = 0.2 as in the original paper (Schul-
man et al., 2017b) and TraceBias with DAM. DAM exhibits lower variance and more stable gradient magnitudes,
suggesting improved training stability and potential for enhanced performance.(V is shown in appendix I)

marizes sequence-level satisfaction through mean234

pooling followed by softmax normalization. The235

importance of three sentiment classes structure is236

further discussed in Discussion 5.2.237

These static predictions are collected as soft-238

labels to train the ARF scorer, which learns to as-239

sign reward scores to collected or new (prompt,240

response) pairs in an offline fashion. The ARF241

scorer then serves as the reward function in Trace-242

Bias, guiding LLM fine-tuning without requiring243

manual preference annotations.244

3.1.2 ARF Scorer245

During user interaction, the ARF scorer is period-246

ically fine-tuned to adapt to evolving user prefer-247

ences. At each training step, it outputs a predicted248

satisfaction distribution Ĉ for LLM feedback. The249

prediction is supervised using soft labels derived250

from user feedback or historical interactions.251

To accelerate convergence while preserving base-252

line estimation, the ARF scorer builds on the static253

satisfaction scorer. The averaged satisfaction vec-254

tor Cavg, distilled from user follow-up messages,255

provides soft guidance for supervision. We employ256

the standard cross-entropy loss for training:257

Lsupervised = CE(Ĉ, Cavg) (10)258

Building on this, to further address overfitting259

and catastrophic forgetting when real-time data is260

scarce, we introduce an Experience Replay (ER)261

mechanism. A sampling ratio ERratio probabilisti-262

cally switches training between historical data and263

current feedback. Specifically:264

Ltotal =

{
LER = CE(Ĉ, Cstatic), if p < ERratio

Lsupervised = CE(Ĉ, Cavg), otherwise
265

Here, Cstatic denotes labels from the static satis- 266

faction dataset (e.g. DailyDialog (Li et al., 2017), 267

GoEmotions (Demszky et al., 2020)), and p is a ran- 268

dom sampling variable. This alternating strategy 269

allows the ARF scorer to benefit from both sta- 270

ble historical signals and dynamic user feedback, 271

improving generalization and robustness. 272

3.2 Augmentation Database 273

Leveraging the adaptive scoring foundation and 274

aiming to make better use of the limited real user 275

feedback, we construct an Augmentation Database 276

that expands training data via synonym substitution 277

and random trace truncation. To ensure augmented 278

samples reflect evolving user preferences, we intro- 279

duce a score-shift mechanism that blends static and 280

adaptive sentiment distributions. 281

3.2.1 Preference-Biased Data Scoring 282

Algorithm 283

Directly applying the ARF-scorer to evaluate 284

synonym-augmented samples is suboptimal, espe- 285

cially in the early stages when the scorer has not 286

yet adapted to the user’s evolving preferences. To 287

address this, we propose a preference-biased data 288

scoring algorithm that considers both the static sat- 289

isfaction scorer’s output Cbasic_avg and the ARF- 290

scorer’s output CARF_avg. 291

We compute a dynamic weighting coefficient 292

Scos based on the cosine similarity between the two 293

score vectors, adjusted via a sigmoid function: 294

Scos = σ
((

CosSim(CARF_avg, Cbasic_avg)− 0.5
)
· Ssig

)
(11)

295

Here, σ denotes the sigmoid function, and Ssig 296

is a scaling hyperparameter that controls how sen- 297

sitive the mixture weight is to score differences 298
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(see Appendix D for selection strategy). Since the299

outputs CARF_avg and Cbasic_avg are normalized as300

in Eq. 8, their cosine similarity falls within [0, 1],301

which we center around 0 by subtracting 0.5 to302

achieve a symmetric input range for the sigmoid.303

The final score for augmented data CAug is com-304

puted as a weighted average of both scores:305

CAug = CARF_avg ·Scos+Cbasic_avg ·(1−Scos) (12)306

This formula realizes the weighted fusion of307

static scoring and dynamic preference scoring, en-308

suring the stability and adaptability of the scoring309

during the preference evolution process.310

3.2.2 Regular Re-Evaluation of Historical311

Scores312

As user preferences naturally evolve over time, pre-313

viously collected feedback and augmented data314

may become misaligned with current expectations.315

However, since the ARF-scorer is continuously316

updated, using it alone to re-score historical data317

could result in loss of alignment with past prefer-318

ences.319

To maintain continuity across preference shifts,320

we propose to regularly update old scores using the321

same preference-biased data scoring mechanism.322

Let Cold_avg denote the old score and Cnew_avg the323

updated ARF-scorer’s output. The updated weight324

CNew is computed as:325

Scos = σ
((

CosSim(Cnew_avg, Cold_avg)− 0.5
)
· Ssig

)
(13)326327

CNew = Cnew_avg · Scos + Cold_avg · (1−Scos) (14)328

This mechanism ensures that new scoring re-329

flects both the current user preference and the his-330

torical decision boundary, enabling the ARF-scorer331

to retain knowledge of previous patterns rather than332

overfitting to recent feedback alone.333

3.3 TraceBias Algorithm334

With sufficient preference-enriched interaction335

data, we optimize policy behavior through a direct336

score-based actor-critic algorithm named Trace-337

Bias. While theoretically aligned with PPO and338

DPO (see Appendix B.3), TraceBias adopts a token-339

wise strategy and novel normalization mechanisms340

to enable stable, fine-grained reward-guided opti-341

mization—without relying on binary comparison342

labels.343

The algorithm consists of two key components:344

(1) a Double Average Method (DAM) that nor-345

malizes satisfaction scores and token-level policy346

ratios, stabilizing training across variable-length se- 347

quences; and (2) an advantage function derived 348

from trajectory-level score differences between 349

fine-tuned and reference models, serving as the 350

core optimization signal. 351

3.3.1 Double Average Method (DAM) 352

As part of the stabilization process, we correct gra- 353

dient inconsistencies caused by varying sequence 354

lengths. Rather than using explicit gradient clip- 355

ping—which may discard useful signals—we apply 356

two normalization strategies: one for satisfaction 357

scores and one for token-level policy ratios. 358

Let T denote the sequence length, i index the 359

sample, x(i) be the input context, and y
(i)
t the t-th 360

output token. Pθ and Pold represent the current and 361

reference sample policy probabilities. We normal- 362

ize token-level log-probabilities as follows, where 363

π
(i)
θ and π

(i)
old denote the average log-probabilities 364

under the current and reference policies, and π
(i)
ratio 365

serves as the update ratio used in optimization: 366

π
(i)
θ =

1

T

T∑
t=1

logPθ(y
(i)
t | x(i)) (15) 367

368

π
(i)
old =

1

T

T∑
t=1

logPold(y
(i)
t | x(i)) (16) 369

370

π
(i)
ratio = exp(π

(i)
θ − π

(i)
old) (17) 371

Through regularization of continuous scores via 372

Cavg (see Eq. 8) and normalization of token-level 373

policy ratios, these mechanisms jointly mitigate 374

gradient imbalance—where longer sequences am- 375

plify log-prob norms and shorter ones weaken up- 376

dates—and enhance gradient consistency more ef- 377

fectively than direct clipping, as confirmed by gra- 378

dient norm analysis (Fig. 2). 379

3.3.2 Trace Scores with Discounted Step-wise 380

Evaluation 381

After applying regularization to stabilize token- 382

level optimization, we next compute the score dif- 383

ference between generated and reference trajecto- 384

ries—denoted as St-real and St-ref, respectively—to 385

estimate the advantage function. 386

At each step j, we compute a relative preference 387

score based on the sentiment distribution: 388

S(j) = C(j)
avg[:2] − C(j)

avg[0] (18) 389

where C(j)
avg[:2] captures positive dimensions and 390

C(j)
avg[0] negative ones. 391

5



To aggregate these step-wise signals across a392

multi-turn trajectory, we apply a discount factor γ393

to compute trajectory-level scores, where S(j)
ref and394

S(j)
real denote the per-turn scores of the reference and395

generated responses at step j, respectively:396

St-real =
T∑

j=1

γj−1 · S(j)
real, St-ref =

T∑
j=1

γj−1 · S(j)
ref

(19)397

The sentiment gap S(i)
t-ref − S(i)

t-real then serves as398

an advantage signal guiding policy updates. This399

mechanism enables TraceBias to model evolving400

user sentiment over time, weighting earlier and401

later parts of a dialogue differently rather than treat-402

ing outputs uniformly.403

3.3.3 Final Representation of TraceBias404

TraceBias integrates trajectory-level preference sig-405

nals with token-level policy dynamics to construct406

its optimization objective. By combining trajectory-407

level advantage signals with DAM-normalized408

token-level policy ratios, TraceBias achieves stable409

and fine-grained reward-guided updates—without410

relying on binary preference labels. The final opti-411

mization objective Lfinal is expressed as:412

Lfinal = −
N∑
i=1

(
S(i)

t-ref − S(i)
t-real

)
· π(i)

ratio (20)413

This objective underpins TraceBias’s stable, fine-414

grained updates and provides a robust optimization415

foundation for the broader ARF framework.416

4 Experiments417

4.1 Experimental Setup418

We evaluate ARF-RLHF framework and base-419

line RLHF methods on four lightweight LLMs:420

Gemma2-2B, Qwen2-1.5B, Qwen2.5-1.5B, and421

LLaMA3.2-2B. Each model is fine-tuned using422

one of the following RLHF approaches: our pro-423

posed TraceBias, which leverages trajectory-level424

bias and token-wise normalization without binary425

comparisons; DPO, which uses pairwise prefer-426

ence modeling via the Bradley-Terry framework;427

PPO, a scalar-reward-based policy optimization428

method; and RLAIF, which constructs comparison429

datasets automatically using LLMs.430

To assess generalization across diverse tasks,431

we use five QA datasets from Big-Bench (Srivas-432

tava et al., 2023): Alpaca (Pawlik and Grigoriadis,433

2024) (instruction following), GSM8K (Cobbe434

et al., 2021) (mathematical reasoning), Strate- 435

gyQA (Geva et al., 2021) (commonsense QA), 436

TopicalChat (Gopalakrishnan et al., 2023) (open- 437

domain dialogue), and CNN/DailyMail (See et al., 438

2017) (summarization)—used primarily for robust- 439

ness testing due to noise. Preference-labeled data is 440

constructed via synonym substitution and scoring 441

with pretrained models (see Appendix E). 442

We also introduce a multi-domain satisfac- 443

tion dataset, Emotion3, comprising 78,630 sam- 444

ples aggregated from DailyDialog, GoEmotions, 445

ISEAR (Scherer and Wallbott, 1997), and Sen- 446

timent140 (Go et al., 2009). Emotion labels 447

are mapped to satisfaction levels and partially re- 448

scored using LLaMA3-13B and Qwen2.5-7B. Man- 449

ual verification ensures label quality (details in Ap- 450

pendix H). 451

All models are fine-tuned using LoRA (Hu et al., 452

2022). Hyperparameter configurations are pro- 453

vided in Appendix A. 454

4.2 Main Results 455

Following the setup, we conduct targeted ex- 456

periments to validate our framework through 457

component-wise analysis, isolating the impact of 458

key mechanisms via ablations and diagnostics. Be- 459

low, we provide an overview of these core experi- 460

ments. 461

• Static Scorer: Experiment 4.3 evaluates the 462

reliability of the static satisfaction scorer 463

used for preference collection, while Discus- 464

sion 5.2 further substantiates its robustness. 465

• ARF Scorer: Experiment 4.4 examines how 466

effectively the ARF scorer adapts to evolving 467

preferences over time. 468

• TraceBias Effectiveness: Experiments 4.5 469

and 4.6 demonstrate that TraceBias yields 470

more informative feedback signals under both 471

human and LLM-generated preferences. We 472

also added CaseStudy in appendix K. 473

• Mechanism Validation: Experiments 4.7, 474

4.8, and Experiments 4.9 highlight the role 475

of key design components such as Experience 476

Replay (ER), Dynamic Advantage Matching 477

(DAM), and Preference-Biased Scoring. 478

4.3 Evaluation of the Static Satisfaction 479

Scorer 480

The overall performance of the ARF framework 481

strongly depends on the quality of the static satis- 482

faction model used for initial data collection and 483

supervision. While we describe the construction of 484
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Figure 3: Tracking preference shifts using ARF. A drop
in score indicates alignment with newly introduced neg-
ative preferences.

this model and its large-scale annotation base in Ap-485

pendix H, its effectiveness must still be validated.486

We evaluate the scorer on five benchmark emotion487

classification datasets: DailyDialog, GoEmotions,488

ISEAR, Sentiment140, and Emotion3 (a merged489

set). As shown in Table 1, the model consistently490

achieves over 70% accuracy across all datasets.491

4.4 Adaptive Preference Tracking via ARF492

Leveraging the static scorer’s accuracy, we test493

the ARF scorer’s dynamic tracking by injecting494

bias-specific data every 500 steps in the order495

ALPACA→GSM8K→StrategyQA→TopicalChat.496

When more than two biases overlap, we apply497

negative supervision to the earliest bias. The498

resulting scoring shifts are shown in Figure 3.499

The results demonstrate that ARF adapts effec-500

tively to changing preferences. Initially, we ob-501

serve synchronized gain/loss patterns between AL-502

PACA and StrategyQA, and between GSM8K and503

TopicalChat, likely due to semantic similarity. De-504

spite this, ARF successfully distinguishes between505

tasks once negative preferences are introduced (e.g.,506

ALPACA at step 1500), indicating its robustness to507

subtle semantic correlations.508

4.5 RLHF Method Comparison under Unified509

Evaluation510

Due to the instability and prompt sensitivity of511

AI-judge evaluations, we instead employ a unified512

reward model for both data filtering and evaluation.513

This removes variation from prompt design, sam-514

pling temperature, and model architecture(More515

in discussion 5.1). We compare PPO, DPO, and516

our TraceBias method under identical scoring su-517

pervision, across four tasks and four base models:518

Qwen2 1.5B, Qwen2.5 1.5B, LLaMA3.2 3B, and519

Gemma2 2B. The normalized performance relative520

Dataset DailyDialog GoEmotions ISEAR Sentiment140 Emotion3

Accuracy (%) 70.05 73.65 76.00 74.10 71.60

Table 1: Test accuracy of the static satisfaction scorer
on various sentiment datasets. Hyperparameter details
are provided in Appendix 8.

Figure 4: Average performance comparison of RLHF
methods (PPO, DPO, TraceBias) under consistent scor-
ing and preference targets. Single models’ preformance
in appendix J.

ratio compare to SFT is shown in Figure 4. 521

On average, TraceBias outperforms both PPO 522

and DPO, with an improvement of 3.3% over PPO 523

and 7.6% over DPO. We attribute this to the sta- 524

bility introduced by the DAM mechanism and the 525

expressiveness of the trace-based update design. 526

While there are isolated tasks where PPO or DPO 527

perform better, TraceBias consistently ranks high- 528

est in aggregate performance. 529

4.6 LLM-Based Preference: RLAIF vs. ARF 530

To test TraceBias under machine-generated pref- 531

erences, we construct a 1K preference dataset on 532

StrategyQA using DeepSeek-v3(The detailed AI 533

evaluation output in appendix F). Using this dataset, 534

we train RLHF pipelines using PPO and DPO, de- 535

noted RLAIF-PPO and RLAIF-DPO. We compare 536

them against TraceBias using the same reward su- 537

pervision. As shown in Table 2, TraceBias outper- 538

forms both RLAIF variants, indicating its robust- 539

ness to the quality of preference data. 540

Interestingly, while DPO slightly outperforms 541

PPO in this setting, its dependence on precise com- 542

parisons makes it more sensitive to data quality. In 543

contrast, TraceBias and PPO are better suited for 544

Evaluation method RLAIF-PPO RLAIF-DPO TraceBias

Score Ratio 30.3 32.8 36.9

DeepSeek V3(win rate vs SFT) 43% 49% 52%

Table 2: The evaluation of multiple RLAIF variants
against the TraceBias method on the StrategyQA dataset,
using DeepSeek-v3 preference annotations.

7



ER Ratio GSM8K (Preference) Emotion3

Basic 53.52 73.84
0 60.59 59.32
0.5 56.40 70.88

Table 3: Ablation of ER ratio in ARF training. ER=0.5
balances adaptation and generalization.

noisy or weakly-supervised preference signals.545

4.7 Effect of Experience Replay (ER) in ARF546

We hypothesize that ER helps mitigate catastrophic547

forgetting or overfitting in ARF training. To test548

this, we compare ARF with and without ER under549

1000 training steps. As shown in Table 3, disabling550

ER leads to better accuracy on recent data but a551

significant drop in generalization, supporting our552

claim.553

4.8 Gradient Stability Analysis-DAM vs. Clip554

As shown in Figure 2, we analyze gradient norms555

across PPO and TraceBias (using traceStep = 1 for556

fairness). TraceBias exhibits lower gradient mag-557

nitude and variance, even compared to PPO with558

clipping, supporting our claim that DAM promotes559

smoother and more stable learning dynamics.560

4.9 On the Necessity of Rescoring in561

Preference-Biased Scoring562

We conduct an ablation to evaluate the necessity563

of periodic rescoring during Adaptive Preference564

Tracking(Experiment 4.4). As shown in Table 4,565

disabling rescoring leads to increased scores even566

after preference reversal—indicating stale supervi-567

sion and misalignment. In contrast, enabling rescor-568

ing correctly reflects negative feedback, reinforc-569

ing dynamic preference adaptation. This confirms570

rescoring as a critical mechanism for maintaining571

signal integrity in evolving reward landscapes.572

5 Discussion573

5.1 How to proof our experiments’ accuracy?574

As noted in Section 4.5, AI-agent–based evaluation575

(e.g., using an LLM judge) exhibits high variance576

from prompt wording, task quirks, model archi-577

tecture, and random seeds, yielding inconsistent578

and unreliable results. To mitigate this, we com-579

plement AI-agent metrics (Section 4.6) and a uni-580

fied, scorer-based protocol: for reward-oriented581

methods (e.g., TraceBias, PPO), we train against582

a pretrained reward model and evaluate with a583

Condition ALPACA GSM8K

With ReScore -9.4% -0.5%
Without ReScore 7.2% 3.7%

Table 4: Impact of rescoring on ALPACA and GSM8K
after preference reversal. Negative values indicate suc-
cessful adaptation.

shared, immutable scorer; for comparison-based 584

methods (e.g., DPO), we use the same scorer to as- 585

sess preference alignment. Crucially, every method 586

and run uses the exact same held-out test exam- 587

ples (none seen during training), and the scorer 588

never changes—eliminating any method-specific 589

coupling or information leakage. This ensures a 590

stable, unbiased comparison of each method’s con- 591

vergence to the target preference. 592

5.2 On the Reliability of Satisfaction 593

Supervision 594

Satisfaction annotations are inherently subjective- 595

labeling tasks involving large numbers of human 596

annotators often reflect diverse preferences, even 597

SOTA LLMs show bias when re-labeling Emotion3, 598

with neutral predictions ranging from 24.0% to 599

37.3% (variance 29.51, Appendix G). Neutrality 600

proves especially ambiguous, leading to unstable 601

supervision. Although our static scorer reaches 602

only 70% accuracy, it mitigates such uncertainty 603

by excluding neutral scores during TraceBias up- 604

dates (Eq. 18), using them instead to dampen noisy 605

gradients e.g., Good: 0.02, Neutral: 0.90, Bad: 606

0.08 yields S = −0.06 resulting in minimal up- 607

dates. This design—by ensuring softer updates for 608

items dominated by neutral evaluations—avoids 609

rigid binary comparisons under ambiguity, thereby 610

improving robustness, reducing annotation vari- 611

ance, and enabling reliable tracking of individual 612

preferences beyond crowd-level bias. 613

6 Conclusion 614

We introduce ARF-RLHF, a reinforcement learning 615

framework aligning language models to user prefer- 616

ences. It includes an Adaptive Reward-Following 617

scorer for satisfaction estimation, a perturbation- 618

augmented preference generalization database, and 619

TraceBias, an actor–critic optimization method 620

with token-level stabilization. Theoretical anal- 621

ysis confirms compatibility with PPO/DPO, and 622

experiments validate preference optimization un- 623

der limited supervision. 624
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Limitations787

While our method offers significant theoretical and788

empirical advantages, we acknowledge the follow-789

ing limitations:790

• Lack of Real Huamn evaluation: The 791

scorer-based evaluation protocol is designed 792

for fair comparison of RLHF methods, focus- 793

ing on minimizing noise factors. It does not 794

yet capture generalization performance in real- 795

world scenarios. Future work will include 796

human blind testing or cross-validation with 797

alternative scorers to further validate the re- 798

sults. 799

• Model Scale Constraint: Due to resource 800

constraints, we conduct experiments on 801

1.5B–3B models. While our method is 802

architecture-agnostic and theoretically scal- 803

able, its effectiveness on larger LLMs (e.g., 804

7B, 13B, 65B) remains to be explored in fu- 805

ture work. 806

A Hyper Parameters 807

All experiments’ Hyper parameters shows below: 808

1. Static Scorer Evaluation: table 8 809

2. Adaptive Preference Tracking: table 9 810

3. RLHF Comparison: table 10 811

4. RLAIF vs. ARF: table 11 812

5. Effect of Experience Replay (ER) in ARF 12 813

6. Gradient Stability Analysis for DAM 13 814

All experiments were conducted on 2 * NVIDIA 815

GTX 2080 Ti GPUs with CUDA unified memory 816

enabled, using multi-GPU parallelism. Training 817

consumed approximately 390 GPU-hours per de- 818

vice. 819

B The Essential Homology of DPO, PPO, 820

and TraceBias 821

The Actor-Critic (AC) algorithm can be formulated 822

as: 823

LAC(θ) = −
N∑
t=1

log πθ(at | st) ·At (21) 824

In this section, we demonstrate the theoretical 825

connections among PPO, DPO, and our proposed 826

TraceBias. We argue that these methods share a 827

common optimization structure, thereby validating 828

the theoretical soundness of TraceBias. 829
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B.1 PPO as a clip Constrained Actor-Critic830

Variant831

PPO (Schulman et al., 2017b) can be defined as:832

LPPO(θ) = Et [min (rt(θ)At, clip(rt(θ), ϵ)At)]
(22)833

where rt(θ) is the importance sampling ratio834

between the current and previous policies:835

rt(θ) =
πθ(at | st)
πθold(at | st)

(23)836

and the clipping function is defined as:837

clip(rt(θ), ϵ) =


1− ϵ, if rt(θ) < 1− ϵ

rt(θ), if 1− ϵ ≤ rt(θ) ≤ 1 + ϵ

1 + ϵ, if rt(θ) > 1 + ϵ
(24)838

By expanding the objective, we obtain:839

LPPO(θ) = Et

[
min

(
πθ(at | st)
πθold(at | st)

At, clip840

(
πθ(at | st)
πθold(at | st)

, ϵ

)
At

)]
(25)

841

If we ignore the clipping operation—which842

serves as a regularization mechanism to limit the843

policy update magnitude—the PPO objective re-844

duces to:845

LPPO(θ) ∝
N∑
t=1

rt(θ)At (26)846

Here, rt(θ) reflects the policy ratio πθ(at|st)
πθold (at|st)

,847

which encourages increasing the likelihood of ac-848

tions with high advantage At. This shows that PPO849

essentially shares the same optimization direction850

as AC, differing only in the incorporation of a trust-851

region-inspired constraint to stabilize training.852

B.2 DPO as a KL-Constrained Actor-Critic853

Variant854

Direct Preference Optimization (DPO) (Rafailov855

et al., 2024) leverages the Bradley-Terry model to856

represent pairwise preferences as follows:857

P(y+ ≻ y− | x) = exp(r(y+))

exp(r(y+)) + exp(r(y−))
(27)858

Its associated loss is:859

LR(ϕ,D) = −E(x, yw, yl) 860[
log

exp(r(yw))

exp(r(yw)) + exp(r(yl))

]
(28) 861

The DPO objective derived from this model is: 862

LDPO(πθ; πref) = −E(x,yw,yl) [ log 863

σ

(
β log

πθ(yw | x)πref(yl | x)
πθ(yl | x)πref(yw | x)

)]
(29)

864

Introducing a normalization constant Z(x), the 865

implicit optimal policy π∗(y | x) can be defined 866

as: 867

π∗(y | x) =
πref(y | x) · exp( 1β r(y))

Z(x)
(30) 868

where the partition function Z(x) is: 869

Z(x) =
∑
y′

πref(y
′ | x) · exp

(
1

β
r(y′)

)
(31) 870

Taking the logarithm of both sides yields: 871

log π∗(y | x) = log πref(y | x)+ 1

β
r(x, y)−logZ(x)

(32) 872

We can then derive: 873

r(x, y) = β log
π∗(y | x)
πref(y | x)

+ β logZ(x) (33) 874

By applying r(x, y) in the pairwise preference 875

model P(y+ ≻ y− | x) and utilizing the Plackett- 876

Luce model (see Appendix A.3 of (Rafailov et al., 877

2024) for more details), the DPO objective can be 878

equivalently rewritten as: 879

max
πθ

{
Ex∼D, y∼πθ(·|x)

[
rϕ(x, y)

]
− βKL

(
πθ(· | x) ∥πref(· | x)

)} (34) 880

Here, the optimization objective is to maximize 881

the expected reward regularized by a KL diver- 882

gence term. Assuming A(x, y) = r(x, y), and 883

temporarily ignoring the KL regularization, this 884

reduces to an actor-critic style objective: 885

LDPO(θ) ∝ Ey∼πθ(·|x) [A(x, y)] (35) 886

This implies that DPO and actor-critic share ef- 887

fectively the same optimization objective when the 888
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reward signal is defined as the advantage. In prac-889

tice, this expectation can be approximated by:890

LDPO(θ) ≈
N∑
i=1

log πθ(yi | xi) ·A(xi, yi) (36)891

Thus, DPO can be interpreted as a KL-892

regularized actor-critic method, where the reward893

signal is derived from preference feedback rather894

than scalar returns.895

B.3 TraceBias as a DAM-Constrained896

Actor-Critic Variant897

We have previously outlined the Actor-Critic (AC)898

interpretation of TraceBias in our methodology.899

Here, we provide a formal derivation from the ex-900

panded formulation to its AC-style representation.901

Lfinal = −
T∑
i=1

(St-ref − St-real) · exp(π(i)
θ − π

(i)
old)

(37)
902

Following our methodology, the token-level re-903

ward (or score) is defined via discounted(γ) step-904

wise preferences as follows:905

St-real =

T∑
j=1

γj−1 · S(j)
real, St-ref =

T∑
j=1

γj−1 · S(j)
ref

(38)906

Accordingly, we define the advantage function907

by measuring the difference between the real and908

reference trajectories:909

Ai = S(i)
t-ref − S(i)

t-real (39)910

Substituting this into the objective, TraceBias911

can be rewritten in an actor-critic form:912

LTraceBias =
T∑
i=1

Ai · exp(π(i)
θ − π

(i)
old) (40)913

To improve optimization stability, we introduce914

the DAM smooth surrogate strategy, which pools915

token-level scores and normalizes the policy ratio916

across the trajectory. Analogous to the clipping917

term in PPO and the KL regularization in DPO,918

DAM serves as a regularization mechanism: We919

define the token-level ratio as:920

π
(i)
θ =

1

T

T∑
t=1

logPθ(y
(i)
t | x(i)) (41)921

π
(i)
old =

1

T

T∑
t=1

logPold(y
(i)
t | x(i)) (42) 922

Then, the normalized trajectory-level policy ratio 923

is computed as: 924

π
(i)
ratio = exp(π

(i)
θ − π

(i)
old) (43) 925

Thus, the final form of TraceBias is: 926

LTraceBias =

T∑
i=1

Ai · π(i)
ratio (44) 927

This derivation shows that TraceBias can be di- 928

rectly interpreted as an Actor–Critic method with- 929

out introducing additional approximations, high- 930

lighting its theoretically grounded and streamlined 931

formulation. 932

B.4 Summary 933

Although PPO, DPO, and TraceBias differ sig- 934

nificantly in their final objectives, all can be re- 935

formulated as variants of the Actor-Critic (AC) 936

framework. By optimizing the expected reward 937

weighted by advantage, each method introduces dis- 938

tinct regularization strategies—such as PPO’s clip- 939

ping, DPO’s KL constraint, or TraceBias’s DAM 940

normalization—to improve training stability. This 941

unified perspective highlights that TraceBias is not 942

only theoretically grounded but also competitive 943

with existing policy optimization techniques. 944

C The pseudo code of TraceBias 945

The TraceBias pseudo code shows in alg 1. 946

D The selection of sigmoid Scale 947

Scale plays a crucial role in determining the sen- 948

sitivity of the norm function, as it directly affects 949

most parameters. We recommend selecting scales 950

within the range of [4,8], as excessively large val- 951

ues can push most parameters towards the bound- 952

aries of the Sigmoid function interval, limiting 953

their effective range. Table 5 illustrates when 954

(CosSim(CARF_avg, Cbasic_avg)− 0.5) equals values 955

0.2 is converted together with the corresponding 956

function value range by the Sigmoid function under 957

different proportional settings. It is worth noting 958

that when the scale is set to 1, the relatively large 959

0.2 level in sigmoid results in a mapping value of 960

only 0.5498. However, when the ratio increases to 961

16, the same input is mapped to nearly 1, indicating 962
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Scale value Scale Impact on Sigmoid under 0.2 interval

1(Too small) 0.5498 [0.3775,0.6225]
4 0.6900 [0.1192,0.8808]
6 0.7685 [0.0474,0.9526]
8 0.8320 [0.018,0.9820]
16(Too big) 0.9608 [0.0003,0.9997]

Table 5: The table shows how different scale values map
to specific intervals after applying the Sigmoid function.

that the range is overly compressed. Based on these963

observations, we strongly recommend selecting a964

scale within the range of [4,8] for the numerical965

deviation annotation algorithm, as it ensures a bal-966

anced transformation without pushing values to967

extremes.968

E RLHF Dataset Construction969

To support comparison-based fine-tuning methods970

such as DPO and PPO, we construct a simulated971

binary preference dataset. Given the prohibitive972

cost of large-scale human annotation, and the fact973

that this dataset is primarily used to compare fine-974

tuning preferences across methods rather than for975

real-world deployment, we adopt a surrogate con-976

struction strategy that also aligns with the training977

of our ARF preference model.978

Concretely, we employ the naw.SynonymAug979

module from the nlpaug library to perform four980

rounds of synonym substitution using WordNet,981

generating paraphrased variants that preserve se-982

mantic intent while introducing surface-level diver-983

sity.984

Before constructing the binary comparison985

dataset, we annotate the augmented ’former’ sam-986

ples with soft labels using our fine-tuned static987

satisfaction scorer. To amplify preference signals988

and avoid potential overfitting, we prepend task-989

specific prompts that were never included in the990

scorer’s training data. Specifically:991

• Good prompt: Great! You gave a992

correct answer. Here is the next993

question: ...994

• Bad prompt: Your answer is absolutely995

wrong! This is the next question.996

Stop giving such terrible and997

misleading feedback! ...998

The annotated samples are then used to fine-999

tune the ARF scorer, which serves as a proxy1000

for user-aligned preferences. To ensure fairness,1001

each RLHF method (including PPO and DPO) con-1002

structs its training pairs using the same ARF scorer:1003

for each pair, the sample with a higher score is des-1004

Evaluation method Win Loss Equal

RLAIF-PPO 43% 50% 7%

RLAIF-DPO 49% 47% 4%

TraceBias 52% 44% 4%

Table 6: The win, loos, equal rate compare to SFT
method

Model Positive (%) Neutral (%) Negative (%)

Actual Samples (Uniform) 33.3 33.3 33.3
GPT-4o 40.3 30.3 29.3
DeepSeek-v3 44.0 24.0 32.0
Gemini 2.0 Flash 35.0 37.3 27.6

Variance 13.64 29.51 13.28

Table 7: Label distribution variance across models on
Emotion3 samples. High neutral sentiment divergence
highlights inconsistency in satisfaction estimation.

ignated as the preferred (positive) response, while 1005

the lower-scored one is treated as negative. This 1006

guarantees that all methods are aligned in their op- 1007

timization direction and evaluated under consistent 1008

supervision. 1009

F DeepSeek agent’s Evaluation under 1010

RLAIF task 1011

We using below prompt to compare the output of 1012

baselines and SFT, the win/loos/evqual tabel shows 1013

in tabel 6. The prompt of comparison shows below: 1014

Question: ’...’ Answer1: ’...’ Answer2: 1015

’...’ Please use strict criteria to 1016

determine which answer is more in line 1017

with human preferences 1 or 2 only answer 1018

a number. 1019

G Table of Subjective Experiments 1020

The table 7 reveals that even state-of-the-art 1021

LLMs exhibit significant variance in emotion judg- 1022

ment, especially in distinguishing neutral senti- 1023

ment—underscoring the inherent noise in satisfac- 1024

tion estimation. 1025

H Satisfaction Dataset Construction 1026

To construct a large-scale, diverse, and high-quality 1027

satisfaction classification dataset aligned with our 1028

three-level labeling schema (bad, neutral, good), 1029

we aggregate a total of 78,630 samples from four 1030

widely-used emotion and sentiment datasets: 1031

• DailyDialog (Li et al., 2017): A multi-turn 1032

dialogue dataset that closely mirrors everyday 1033
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Figure 5: V Gradient norm comparison between PPO (with clip range ϵ = 0.2) and TraceBias with DAM.

conversational scenarios.1034

• GoEmotions (Demszky et al., 2020): A fine-1035

grained, high-quality emotion classification1036

dataset spanning a wide range of affective1037

states.1038

• ISEAR (Scherer and Wallbott, 1997): A clean1039

and structured emotion dataset based on psy-1040

chological self-reports.1041

• Sentiment140 (Go et al., 2009): A large-scale1042

Twitter sentiment dataset that reflects informal1043

and noisy online communication.1044

To unify the labeling across datasets with hetero-1045

geneous annotation schemes, we define a common1046

strength-based mapping strategy, converting exist-1047

ing emotion tags into a standardized 7-level satis-1048

faction scale (see Table 14). For relatively clean1049

datasets (DailyDialog, GoEmotions, ISEAR), we1050

directly apply this mapping to assign satisfaction1051

scores.1052

Given the informal nature of Sentiment140, ad-1053

ditional cleaning is necessary. We sample 15,0001054

instances and perform multi-round evaluation using1055

both Qwen2 7B and LLaMA3 13B. Each sample1056

is scored twice by each model; the maximum and1057

minimum scores are discarded, and the mean of the1058

remaining two is taken as the final label. Samples1059

with high variance across scores are further man-1060

ually verified to ensure annotation reliability. The1061

result is a cleaned subset of 15,000 samples from1062

Sentiment140 with stable satisfaction labels.1063

After consolidating all datasets, we create a uni-1064

fied Emotion7 dataset with 7 satisfaction levels.1065

We then perform a coarse mapping to form the final1066

Emotion3 dataset: levels [0, 1] as bad, 1.5 as neu-1067

tral, and [2, 3] as good. This dataset provides broad1068

domain coverage, consistent labels, and stylistic1069

diversity, serving as the basis for training our static1070

satisfaction scorer.1071

Figure 6: Qwen2’s Performance

I Gradient Comparison V 1072

Figure 5 V Gradient norm comparison between 1073

PPO (clip) and TraceBias (DAM). Lower variance 1074

and norm suggest improved stability. 1075

J Models’ Performance under different 1076

RLHF Baselines 1077

We shows all models’ RLHF performance below: 1078

• Qwen2-1.5B: table 6 1079

• Qwen2.5-1.5B: table 7 1080

• Gemma2-2B: table 8 1081

• Llama3.2-3B: table 9 1082

We applied softmax with temperature (set to 0.1) 1083

purely for visualization purposes. 1084

K CaseStudy under Llama3.2 1085

To preserve the original formatting of model out- 1086

puts, we retain their format in the paper. For ex- 1087

cessively long responses, we replace parts with 1088

ellipses ("...") for clarity. Representative examples 1089

are provided in Table 15, Table 16, Table 17, and 1090

Table 18. 1091
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Figure 7: Qwen2.5’s Performance

Figure 8: Gemma2’s Performance

Figure 9: Llama3.2’s Performance

Algorithm 1: TraceBias with DAM
Input: Augmented dialogue dataset Daug, reward

modelR, policy model πθ , reference model
πref, max length Lmax, discount factor γ,
environment E

Output: Updated parameters θ
while training do

repeat
Sample a dialogue trajectory
{(xt, y

∗
t , st)}Tt=1 ∼ Daug;

Initialize context C ← [system prompt],
total loss L ← 0;

Initialize LabelReward← 0,
RealReward← 0;

for t = 1 to T do
Append user input xt to context C;
LabelReward += γt−1 · st;
Generate output yt ∼ πθ(· | C);
if length(C) > Lmax then

break
// Compute per-token

log-probabilities from both
models

log πθ = log_softmax(πθ(C));
log πref = log_softmax(πref(C));
// Compute average token-level

log-probs (DAM token -level
average)

log πθ(yt) =
1

|len(yt)|
∑|yt|

i=1 log πθ(y
(i)
t | C);

log πref(yt) =
1

|len(yt)|
∑|yt|

i=1 log πref(y
(i)
t | C);

// Compute real reward via
environment

rt ← E(yt);
RealReward += γt−1 · rt;
// Importance sampling ratio
wt = exp (log πθ(yt)− log πref(yt));
// Add weighted reward mismatch

to loss
L +=
−wt · (LabelReward− RealReward);

Append assistant response yt to context
C;

until valid sample obtained;
// Gradient update
Backpropagate: ∇θL;
Update: θ ← θ − η · ∇θL;
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Hyper Parameters TrainStep Test Step Learning Rate Batch MLP Hidden Size

Static Scorer 20000 500 1e-6 20 328

Table 8: hyper-parameters of Static Scorer Evaluation

Hyper Parameters TrainStep Test Step Learning Rate ERRatio MLP Hidden Size

ARF Scorer 2000 500 1e-6 0.5 328

Table 9: hyper-parameters of Adaptive Preference Tracking via ARF

Hyper Parameters LoRA Rank Epoch Test Step/Epoch Train Step/Epoch Learning Rate TraceBias gamma clip epsilon PPO [c1,c2] DPO beta

PPO 8 4 100 500 1e-6 - 0.2 [0.01,0.01] -

DPO 8 4 100 500 1e-6 - - - 0.1

TraceBias 8 4 100 500 1e-6 0.99 - - -

Table 10: hyper-parameters of Adaptive Preference Tracking via ARF

Hyper Parameters LoRA Rank Epoch Test Step/Epoch Train Step/Epoch Learning Rate TraceBias gamma clip epsilon PPO [c1,c2] DPO beta

PPO 8 2 100 250 1e-5 - 0.2 [0.01,0.01] -

DPO 8 2 100 250 1e-5 - - - 0.1

TraceBias 8 2 100 250 1e-5 0.99 - - -

Table 11: hyper-parameters of RLAIF vs. ARF

ERRatio TrainStep Test Step Learning Rate MLP Hidden Size

0.5 1000 500 1e-5 328

0 1000 500 1e-5 328

Table 12: hyper-parameters of Experience Replay (ER) in ARF

Hyper Parameters LoRA Rank Train Step Learning Rate TraceBias gamma clip epsilon PPO [c1,c2]

PPO 8 300 1e-6 - 0.2 [0.01,0.01]

TraceBias 8 300 1e-6 0.99 - -

Table 13: hyper-parameters of Gradient DAM test
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Strength Label DailyDialog ISEAR GoEmotion
0.0 extremely neg disgust disgust disappointment

embarrassment
grief
sadness

0.5 neg anger, sadness sadness anger
disgust
remorse

1.0 neg nero fear fear annoyance
confusion
disapproval
nervousness

1.5 nero no emotion caring
curiosity
neutral

2.0 pos nero approval
desire
realization
relief
surprise

2.5 pos surprise joy admiration
amusement
excitement
joy
love
optimism
pride

3.0 extreme pos happiness admiration
gratitude

Table 14: Emotion categories mapped to continuous strength scores across datasets.

Table 15: GSM8K

Field Content
Prompt Q: Reggie and his brother are having a basketball shooting contest. They each

get to take 10 shots. Layups are worth 1 point, free throws are worth 2 points,
and anything further away is worth 3 points. Reggie makes 3 layups, two free
throws, and one long shot. His brother only shoots long shots and makes 4 of
them. How many points does Reggie lose by? A:

label Reggie makes 3 points off layups because 3 × 1 = <<3*1=3>>3 Reggie makes
4 points off free-throws because 2 × 2 = <<2*2=4>>4 Reggie makes 3 points
off long shots because 1 × 3 = <<1*3=3>>3 Reggie scores 10 points because
3 + 4 + 3 = <<3+4+3=10>>10 His brother scores 12 points because 4 × 3 =
<<4*3=12>>12 Reggie loses by 2 because 12 minus 10 = <<12-10=2>>2 2

SFT To find out how many points Reggie lost by, we calculate both totals explicitly:
Reggie’s points: layups 3 × 1 = 3; free throws 2 × 2 = 4; long shot 1 × 3 = 3;
sum = 10. Brother’s points: 4 × 3 = 12. Since 10 < 12, Reggie loses by 2 points.

TraceBias To determine the points Reggie scored, we need to calculate the points from
each type of shot. Reggie made 3 layups (3 × 1 = 3 points), 2 free throws (2 ×
2 = 4 points), and 1 long shot (1 × 3 = 3 points). Total: 3 + 4 + 3 = 10 points.
His brother made 4 long shots (4 × 3 = 12 points). Difference: 12 minus 10 = 2
points.

Comment The TraceBias response employ formal mathematical notation and rigorous
step-by-step reasoning to enhance precision and clarity.
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Table 16: ALPACA

Field Content
Prompt Q: Describe the character of Romeo from Romeo and Juliet. A:
label "Romeo is a passionate, impulsive, and hopelessly romantic young man, who

falls deeply in love with Juliet at first sight. He is a member of House Montague
in the play Romeo and Juliet, and is depicted as sensitive, idealistic, and poetic,
idolizing love and its power. Although he’s brave and skilled in combat, Romeo
is also shown as prone to intense emotions, leading him to act impulsively and
recklessly. His strong feelings often cloud his judgement, which eventually
leads to the tragic end of the play. Despite his flaws, Romeo is a loyal friend,
devoted son and nephew, and an unwavering lover, willing to do anything for
the woman he loves."

SFT Romeo Montague is the protagonist of William Shakespeare’s tragic play Romeo
and Juliet. He is a young, passionate, and impulsive nobleman from the rival
Montague family.

1. Romantic and passionate: falls in love at first sight and sacrifices every-
thing for Juliet.

2. Impulsive and impetuous: acts on emotion without forethought.

3. Loyal and devoted: fiercely protects family and Juliet.

4. Youthful and inexperienced: mistakes due to naiveté.

5. Emotionally expressive: conveys feelings through poetry.

6. Self-destructive: reckless decisions contribute to tragedy.

His tragic fate underscores the destructive power of hate and the redemptive
power of love.

TraceBias Romeo, the protagonist of Shakespeare’s tragic love story, is a complex, pas-
sionate, and impulsive nobleman from the House of Montague. Key Character-
istics: (1) Impulsive and passionate; (2) Romantic and idealistic; (3) Impetuous;
(4) Loyal and devoted. Motivations: love for Juliet, family loyalty, desire for
vengeance. Flaws: impulsivity, lack of prudence, emotional instability. His
character symbolizes love’s power and the human spirit.

Comment The TracceBias response is thorough with the format more close to label.
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Table 17: StrategyQA

Field Content
Prompt Q: Did compact discs make computer gaming more popular? A:
label Yes. Compact discs contained significantly more storage space than the pre-

viously popular floppy disc format. Gaming studios were therefore able to
significantly improve the graphics, sounds, and features of their games to make
them more immersive. The better games led to a massive increase in popularity
for computer gaming.

SFT Compact discs (CDs) did play a role in making computer gaming more popular,
but it was not the sole factor.

• CD-ROM technology: enabled large-game distribution on a single disc.

• Improved graphics and sound: enhanced audio-visual experience (e.g.
Doom, Myst).

• Wider availability: expanded platform reach.

• Industry growth: attracted investment and talent.

Other influences included hardware advances, online gaming, and marketing
strategies.

TraceBias Yes. CDs significantly popularized PC gaming in the 1990s. The CD-ROM
format’s increased capacity and audio quality drove a surge in game sales,
fueling industry growth.

Comment The SFT response is verbose and includes peripheral historical details; Trace-
Bias more concise focus on the primary mechanisms by which CD technology
impacted gaming would enhance clarity and relevance.

Table 18: TopicalChat

Field Content
Prompt agent_B: "Did you know Steve Spurrier coach the Redskins?" . . . agent_B:
label "he has 12 victories in 32 games so maybe thats why he got fired , I think the

team had high hopes on him."
SFT It appears that agent_A and agent_B are discussing Steve Spurrier’s career:

1. Confirmed that Spurrier coached the Redskins.

2. Recounted anecdote about his duck-lips TV moment.

3. Noted his 1966 Heisman Trophy at Florida.

4. Identified misattribution of Tampa Bay Bandits.

5. Speculated on team embarrassment and website omission.

TraceBias agent_B: "I know, its hard to find characters as known and famous as Steve
lol..." agent_A: "I think you’re right. I mean, Steve Spurrier ... need to give him
the recognition he deserves."

Comment The SFT submission fails to recognize the continuation task and instead pro-
vides a summary, whereas the TraceBias submission demonstrates proper dia-
logue continuation and contextual sensitivity.
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