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ABSTRACT

The landscape of publicly available vision foundation models (VFMs), such as
CLIP and Segment Anything Model (SAM), is expanding rapidly. VFMs are en-
dowed with distinct capabilities stemming from their pre-training objectives. For
instance, CLIP excels in semantic understanding, while SAM specializes in spatial
understanding for segmentation. In this work, we introduce a simple recipe to effi-
ciently merge VFMs into a unified model that assimilates their expertise. Our pro-
posed method integrates multi-task learning, continual learning techniques, and
teacher-student distillation. This strategy entails significantly less computational
cost compared to traditional multi-task training from scratch. Additionally, it only
demands a small fraction of the pre-training datasets that were initially used to
train individual models. By applying our method to SAM and CLIP, we derive
SAM-CLIP : a unified model that amalgamates the strengths of SAM and CLIP
into a single backbone, making it apt for edge device applications. We show that
SAM-CLIP learns richer visual representations, equipped with both localization
and semantic features, suitable for a broad range of vision tasks. SAM-CLIP ob-
tains improved performance on several head probing tasks when compared with
SAM and CLIP. We further show that SAM-CLIP not only retains the founda-
tional strengths of its precursor models but also introduces synergistic functional-
ities, most notably in zero-shot semantic segmentation, where SAM-CLIP estab-
lishes new state-of-the-art results on 5 benchmarks. It outperforms previous mod-
els that are specifically designed for this task by a large margin, including +6.8%
and +5.9% mean IoU improvement on Pascal-VOC and COCO-Stuff datasets, re-
spectively.

1 INTRODUCTION

Vision Foundation Models (VFM) such as CLIP (Radford et al., 2021), SAM (Kirillov et al., 2023),
MAE (He et al., 2022), and DINOv2 (Oquab et al., 2023) provide strong backbones that work
well for a wide range of vision tasks when finetuned on domain-specific data. Additionally, some
of these models exhibit notable prompt-based open-form (also known as zero-shot) capabilities,
such as classification from text prompts (Radford et al., 2021) and segmentation from geometric
prompts (e.g., points, bounding boxes, and masks) (Kirillov et al., 2023). Depending on their pre-
training objectives, VFMs can act as feature extractors suitable for diverse downstream tasks. For
instance, models that employ contrastive losses during training (Chen et al., 2020; Radford et al.,
2021; Oquab et al., 2023), utilize low-frequency signals, and generate features that can linearly
separate samples based on their semantic content (Park et al., 2022). Conversely, the pre-training
objectives for MAE and SAM involve denoising masked images and instance mask segmentation,
respectively. These objectives lead to the acquisition of features utilizing high-frequency signals
with localization knowledge but limited semantic understanding (see Figure 4).

Maintaining and deploying separate vision models for different downstream tasks is inefficient (high
memory footprint and runtime, especially on edge devices) and lacks opportunity for cross-model
learning (Sanh et al., 2021). Multitask learning (Zhang & Yang, 2021) is a paradigm capable of
addressing this issue. However, it often requires costly training and simultaneous access to all
tasks (Fifty et al., 2021). Training foundation models often relies on an unsupervised or semi-
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Figure 1: SAM-CLIP inherits most zero-shot capabilities of SAM (instance segmentation) and CLIP
(classification) using a single shared backbone (left). Further, SAM-CLIP is capable of a new task,
zero-shot semantic segmentation, and obtains state-of-the-art results on several benchmarks, with
a large margin compared to previous models specifically designed for this task (right). Detailed
results are provided in Tables 1 and 2.
supervised approach, requiring substantial computational resources. For example, state-of-the-art
CLIP models are trained on extensive datasets, such as LAION (Schuhmann et al., 2022) and Data-
Comp (Gadre et al., 2023), consuming a massive amount of computational power. Similarly, SAM’s
pre-training on 1.1 billion masks is computationally demanding. A multi-objective pre-training
method requires comparable or more data and compute power as single objective VFM training.
Additionally, there are still challenges to be addressed, such as how to best mix datasets, how to
handle interfering gradients and instabilities in multi-task training (Du et al., 2019), and how to
access VFM pre-training datasets that are often proprietary (Radford et al., 2021), which limit the
scalability and feasibility of this approach.

To overcome these challenges, model merging has emerged as a rapidly growing area of re-
search (Sung et al., 2023; Yadav et al., 2023). The majority of merging techniques focus on com-
bining multiple task-specific models into a single model without requiring additional training. For
instance, this can be achieved through techniques such as model weights interpolation (Ilharco et al.,
2022b), parameter importance analysis (Matena & Raffel, 2022), or leveraging invariances in the
models (Ainsworth et al., 2022). These techniques, on the other side, put too much stress on not us-
ing data or not performing additional training/finetuning resulting in decreased performance or lack
of generalization to diverse sets of tasks (Sung et al., 2023). In this work, our goal is to merge VFMs
that are trained with fundamentally different objectives, have distinct capabilities, and possibly in-
teract with other modalities. In this setup, naive merging approaches such as weight interpolation
result in significant forgetting (McCloskey & Cohen, 1989) as we show in Appendix C.

We aim to fill the gap between training-free model merging and multitask training by drawing tech-
niques from continual learning (Li & Hoiem, 2017; Parisi et al., 2019) and knowledge distilla-
tion (Hinton et al., 2015). We treat model merging as a continual learning problem, where, given a
pretrained VFM, the knowledge of a second VFM is merged without forgetting of the initial knowl-
edge. On one side, in contrast to weight averaging techniques, we allow access to a small part of
pretraining data or its surrogates to be replayed during the merging process. We leverage multi-task
distillation on the replay data to avoid forgetting the original knowledge of pretrained VFMs during
the merging process. On the other side, our merging process is significantly more efficient than tra-
ditional multitask training by requiring less than 10% of the data and computational cost compared
to their original pretraining (Section 3).

We instantiate our proposed merging approach by combining SAM and CLIP into a single multi-
task model, called SAM-CLIP , suitable for edge device deployment. This merged model inherits
prompt-based zero-shot capabilities from both CLIP and SAM with minimal forgetting: specifically,
zero-shot classification and image-text retrieval from CLIP, and zero-shot instance segmentation
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from SAM (see Figure 1 left). Further, we illustrate that SAM-CLIP learns richer visual represen-
tations compared to SAM and CLIP, endowed with both spatial and semantic features, resulting in
improved head-probing performance on new tasks (see Figure 4). Finally, SAM-CLIP shows an
emerging capability of zero-shot transfer to a new task: zero-shot semantic segmentation thanks to
combined skills inherited from SAM and CLIP. This task involves generating a segmentation mask
based on a free-form text prompt. It requires both semantic understanding from text and segmen-
tation capabilities, which are skills that SAM-CLIP learns from CLIP and SAM, respectively. We
demonstrate that SAM-CLIP achieves state-of-the-art performance on zero-shot semantic segmen-
tation in a single-stage inference setup over multiple datasets (Figure 1 right). With a compromise of
a negligible drop compared to the performance of individual models on the original tasks (zero-shot
classification and instance segmentation), we get a single model that not only masters both tasks, but
also is capable of accomplishing a new task.

2 BACKGROUND

Vision-Language Models (VLMs) such as CLIP and ALIGN (Jia et al., 2021) are trained on Billion-
scale, often noisy, image-text datasets. These models consist of modality-specific (image and text)
encoders that produce an embedding for each modality. For a randomly sampled batch of image-text
pairs, these models are trained with a contrastive objective to maximize alignment between embed-
dings of positive pairs of image and text. A direct application of such models is zero-shot image-
text retrieval, or zero-shot classification via text prompts (Radford et al., 2021). Other works such
as ViLT (Kim et al., 2021), VLMo (Bao et al., 2022), and BLIP (Li et al., 2022a) explored shared
or mixed architectures between image and text modalities and enabled additional zero-shot capa-
bilities such as Visual Question Answering (VQA) and captioning. Approaches such as LiT (Zhai
et al., 2022), APE (Rosenfeld et al., 2022), and BLIP-2 (Li et al., 2023b) reduce the training cost
of CLIP-like models by deploying pre-trained single-modal models. This is similar to our approach
in terms of harvesting knowledge of available pre-trained models. However, we focus on merging
vision backbones into a unified model in a multi-modal multi-encoder setup. Further, on top of
representation learning abilities, we transfer zero-shot capabilities of the pre-trained models.

Segment Anything Model (SAM) (Kirillov et al., 2023) introduces a large-scale dataset, a model,
and a training recipe to enable segmentation given a prompt. The dataset consists of triplets of an
image, a geometric prompt, and a segmentation mask. SAM consists of an image encoder, a prompt
encoder, and a mask decoder. SAM’s image encoder is a ViT-Det (Li et al., 2022b) pretrained with
MAE (He et al., 2022) objective, which is endowed with rich high-frequency localization knowl-
edge (Park et al., 2022). The prompt-encoder gets a geometric input in the form of points, mask
regions, or bounding boxes. The mask decoder gets the output of both encoders and produces a
high-resolution segmentation mask. SAM is trained using a linear combination of Focal (Lin et al.,
2017) and Dice (Milletari et al., 2016) losses and is capable of generating segmentation masks even
when the input prompt is ambiguous/low-quality. It is noteworthy that Kirillov et al. (2023) briefly
discusses a possible multi-task pre-training strategy to enable free-form text-to-mask capability, but
has not released the model.

There are a few follow-up works to SAM that we briefly discuss here. HQ-SAM (Ke et al., 2023)
adds an additional token and a lightweight learnable layer to a frozen SAM model to enable high-
quality segmentation using a small high-quality annotated segmentation dataset. FastSAM (Zhao
et al., 2023) and MobileSAM (Zhang et al., 2023) employ CNN architecture and knowledge distilla-
tion, respectively, to train smaller and faster variants of the SAM model. Unlike our work, all these
methods target the same task as the original SAM and could potentially be used as the base VFM in
our proposed method. Semantic-SAM (Li et al., 2023a) and SEEM (Zou et al., 2023) use semantic
segmentation annotations for training to enable semantic-aware and multi-granular segmentation,
hence they are not zero-shot semantic segmentation models. These works differ from our approach,
which does not use any semantic segmentation annotations and instead gains semantic knowledge
from distillation with CLIP.

Knowledge Distillation (KD) (Hinton et al., 2015; Buciluǎ et al., 2006) was originally proposed to
train a compressed classifier (student) using knowledge accumulated in a pretrained large model
(teacher). Related to our work, recent works explored distillation methods for VLMs such as
EVA (Fang et al., 2023b;a), DIME-FM (Sun et al., 2023b), CLIPPING (Pei et al., 2023), and CLIP-

3



Under review as a conference paper at ICLR 2024

KD (Yang et al., 2023). They show the transfer of the same zero-shot capability of the teacher model
to the student. Here, in a multi-task setup, we perform distillation and self-distillation (Furlanello
et al., 2018), and demonstrate the transfer of different zero-shot capabilities (from two teachers) into
a single model, as well as the emergence of new zero-shot capability specific to the student model.

Continual Learning (CL) Our setup is also related to Continual Learning (Parisi et al., 2019),
where new knowledge is added to an existing model. The main challenge in continual learning is
catastrophic forgetting (McClelland et al., 1995; McCloskey & Cohen, 1989) referring to the loss
of previously learned knowledge due to learning new tasks. Continual Learning algorithms usually
alleviate forgetting via regularization (Kirkpatrick et al., 2017; Zenke et al., 2017), experience re-
play (Rebuffi et al., 2017; Hayes et al., 2019), regularized replay (Chaudhry et al., 2018; Farajtabar
et al., 2020), dynamic expansion (Yoon et al., 2017; Schwarz et al., 2018), and optimization based
methods (Pan et al., 2020; Mirzadeh et al., 2020), among them, replay based methods proved to be
simple yet very successful ones (Lomonaco et al., 2022; Balaji et al., 2020). In this work, we propose
a simple recipe based on memory replay and distillation to merge VFMs with minimal forgetting.

Zero-shot Semantic Segmentation task aims to predict a dense segmentation mask given a text
prompt in an open form, without prior knowledge of specific object classes of interest or any finetun-
ing. Recent approaches to open-vocabulary segmentation deploy image-text pairs datasets and pre-
trained VLMs such as CLIP and their internal representations to obtain dense segmentation masks,
for example GroupViT (Xu et al., 2022), ViewCo (Ren et al., 2023), CLIPpy (Ranasinghe et al.,
2023), ViL-Seg (Liu et al., 2022), OVS (Xu et al., 2023), TCL (Cha et al., 2023), and SegCLIP (Luo
et al., 2023). In this work, we do not directly use any text data. Instead, all text semantic knowledge
is derived from a pretrained CLIP. An alternative approach is to deploy existing models, without
any training, and generate segmentation masks using multiple backbones in a multi-stage setup. For
example, one can run SAM to get several object proposals and run each through CLIP for semantic
classification (Liu et al., 2023). Some recent works (Karazija et al., 2023; Wang et al., 2023) use
internal attention maps of conditional vision generative models such as StableDiffusion (Rombach
et al., 2022) to obtain segmentation masks. While these approaches are training-free, they require
several stages with complex processing, multiple vision encoders, and many forward passes, making
their deployment for edge devices limited.

Merging Models techniques aim to combine the capability of different models by simple interpola-
tion operations such as weight averaging (Wortsman et al., 2022) and task arithmetic (Ilharco et al.,
2022b). Recently there’s abundance of such techniques (Choshen et al., 2022; Matena & Raffel,
2022; Muqeeth et al., 2023; Wu et al., 2023; Ilharco et al., 2022a; Stoica et al., 2023; Khanuja et al.,
2021; Bai et al., 2022) employing different weight schemes and parameter sensitivity and impor-
tance. The way we train SAM-CLIP , can be regarded as a data-dependent merging approach where
the knowledge of the models is combined by repeatedly reminding them of their original behavior
via replay, while the optimization algorithm explores the parameter space to find an optimum.

3 PROPOSED APPROACH

In this section, we explain our approach for efficiently merging pretrained VFMs. We start with a
base VFM, then transfer knowledge from other auxiliary VFMs to it with minimal forgetting. We
assume that each VFM possesses a vision encoder, and potentially other modality encoders, as well
as task-specific decoders/heads. Our goal is to combine the vision encoders into a single backbone
such that it can be used in conjunction with other modality encoders, which remain frozen.

To focus our exposition, we constrain our discussion to the specific case where SAM serves as the
base VFM, while a CLIP model serves as the auxiliary VFM. This pair presents an intriguing combi-
nation, as both models have been successfully deployed in diverse tasks and exhibit complementary
capabilities. SAM excels in localization and high-resolution image segmentation but has limitations
in semantic understanding. Conversely, CLIP offers a powerful image backbone for semantic under-
standing. We demonstrate it by several probing experiments (see Figure 4). Potentially, one could
start with CLIP as the base VFM and merge knowledge of SAM to it. However, existing pretrained
CLIP ViT models are inefficient in dealing with high-resolution images that are used for SAM train-
ing. Hence, we choose SAM as the base model and inherit its ViT-Det structure that can process
high-resolution inputs efficiently.
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DSAM

Figure 2: Multi-head architecture of SAM-CLIP . Left: the training pipeline where we perform
multi-task distillation from CLIP and SAM teacher models on DCLIP and DSAM datasets, respec-
tively. Right: shows our inference pipeline where with a single backbone we can perform multiple
promptable tasks: classification, instance segmentation, and semantic segmentation. ⊙ denotes the
inner product between text embedding and image patch embeddings.

We assume access to limited subsets of datasets (or their proxies) used to train the base and auxiliary
VFMs, which function as memory replay in our CL setup. These are denoted as DSAM and DCLIP ,
respectively with details provided in Section 4.1.

We employ a multi-head architecture, illustrated in Figure 2. Our base VFM, SAM, has an image
encoder (EncSAM ), a prompt encoder (PromptEncSAM ), and a light mask decoder (MaskDecSAM ).
The auxiliary VFM, CLIP, has an image encoder (EncCLIP ) and a text encoder (TextEncCLIP ). Our
goal is to merge both image encoders to a single backbone called EncSAM-CLIP which is initialized
by EncSAM . Further, we consider lightweight heads corresponding to each VFM, namely, HeadSAM
and HeadCLIP . HeadSAM is initialized with MaskDecSAM and HeadCLIP is initialized with random
weights (since CLIP does not come with a head that we can deploy). We deploy other modality
encoders (i.e., PromptEncSAM and TextEncCLIP ) with no change (frozen).

As a baseline merging approach, we perform KD on DCLIP utilizing a cosine distillation loss (Grill
et al., 2020):

LCLIP = Ex∼DCLIP

[
1− ϕPooling(HeadCLIP (EncSAM-CLIP (x)))

TEncCLIP (x)
]
, (1)

where ϕPooling is a spatial pooling operator that gets patch-level features from HeadCLIP and
produces a normalized image-level embedding. In this setup, parameters of both HeadCLIP and
EncSAM-CLIP are learnable, while the CLIP encoder, EncCLIP , is frozen and used as a teacher. While
this infuses SAM with CLIP’s semantic abilities, it incurs at the cost of catastrophic forgetting of
SAM’s original capabilities. Further, we show that training-free mitigative methods against catas-
trophic forgetting, such as Wise-FT (Wortsman et al., 2022), to be ineffective in our context of VFM
merging, as demonstrated in section C.

To address these challenges, we propose a rehearsal-based multi-task distillation. This serves two
primary goals: 1) facilitate the efficient transfer of knowledge from the auxiliary VFM to the base
model, and 2) preserve the original capabilities of the base model. Inspired by Kumar et al. (2022),
we consider a two-stage training: head-probing and multi-task distillation. An optional stage of
resolution adaptation can be appended if the multiple heads are trained under different resolutions,
which is the case in our experiment of merging SAM and CLIP. See Section 4.1 for details about
resolution adaptation.

I. Head probing: In this stage, we first freeze the image backbone, EncSAM-CLIP , and only train
HeadCLIP with the loss in Equation (1). Intuitively, with this approach, we first learn some reason-
able values for parameters of HeadCLIP (which is initialized randomly) before allowing any change
in EncSAM-CLIP that is prone to forgetting.

II. Multi-task distillation: In this stage, we allow all heads as well as our image encoder to be
learnable. We perform a multi-task training on LCLIP + λLSAM , with:

LSAM = E(x,g)∼DSAM
LFD(HeadSAM (EncSAM-CLIP (x),PromptEncSAM (g)), z), (2)

where, x is a raw image, g is a geometric prompt, z = MaskDecSAM (EncSAM (x)) is segmentation
mask score produced by frozen SAM teacher, and LFD refers to a linear combination of Focal (Lin
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Table 1: Zero-shot evaluations on classification and instance segmentation tasks, comparing
SAM-CLIP with state-of-the-art models that use the ViT-B architecture. SAM-CLIP demonstrates
minimal forgetting compared to the baseline FMs on their original tasks.

Model Training Data 0-Shot Classification (%) 0-Shot Instance Seg. (mAP)

ImageNet ImageNet-v2 Places-365 COCO LVIS
SAM (Kirillov et al., 2023) SA-1B - - - 41.2 36.8

CLIP (Radford et al., 2021) OpenAI-400M 68.3 62.6 42.2 - -
CLIP (Cherti et al., 2023) LAION-2B 71.1 61.7 43.4 - -
CLIP (Gadre et al., 2023) DataComp-1B 73.5 65.6 43.0 - -

SAM-CLIP (Ours) Merged-41M 72.4 63.2 43.6 40.9 35.0

et al., 2017) and Dice (Milletari et al., 2016) used in the original SAM training adapted for distilla-
tion. We train on DSAM ∪DCLIP with total loss of LCLIP +λLSAM . During training, each batch has
some samples from DCLIP and some form DSAM , which contribute to LCLIP and LSAM , respectively
(i.e., samples from CLIP dataset do not contribute to SAM loss and vice versa). To encourage less
forgetting, we use an order of magnitude smaller learning rate for parameters of EncSAM-CLIP and
HeadSAM compared to HeadCLIP at this stage.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Our design choices, as explained below, aim to balance the trade-off between learning from CLIP
(zero-shot classification) and retaining SAM’s knowledge (instance segmentation).

Model Architecture. We employ the ViT-B/16 version of the Segment Anything Model (SAM) as
our base architecture (Kirillov et al., 2023), comprising 12 transformer layers. To integrate CLIP
capabilities, we append a lightweight CLIP head consisting of 3 transformer layers to the SAM
backbone. The patch token outputs from this CLIP head undergo a pooling layer to produce an
image-level embedding, akin to the role of the CLS token output in ViT models. We adopt max-
pooling since we observe that it can lead to better zero-shot classification and semantic segmentation
performance of SAM-CLIP than average pooling. It is noteworthy that max-pooling has been found
to be able to encourage the learning of spatial visual features (Ranasinghe et al., 2023). With the
pooling layer, the CLIP head can output an embedding for the whole image, which can be aligned
with a text embedding just like the original CLIP model (Radford et al., 2021).

Dataset Preparation. For the CLIP distillation, we merge images from several datasets:
CC3M (Sharma et al., 2018), CC12M (Changpinyo et al., 2021), YFCC-15M (Radford et al., 2021)
(a curated subset of YFCC-100M (Thomee et al., 2016) by OpenAI) and ImageNet-21k (Ridnik
et al., 2021). This forms our DCLIP containing 40.6M unlabeled images. For the SAM self-
distillation, we sample 5.7% subset from the SA-1B dataset to form DSAM , which originally com-
prises 11M images and 1.1B masks. We randomly select 1% of DCLIP and DSAM as validation sets.
Overall, we have 40.8M images for training, which we term as Merged-41M in this work.

Training. As we discussed in Sec. 3, the training is conducted in two phases to optimize conver-
gence, in a “probing then full finetuning” style. The first stage of CLIP-head probing takes 20 epochs
on DCLIP , while the backbone is kept frozen. Here, the teacher model is the OpenCLIP (Ilharco
et al., 2021) ViT-L/14 trained on the DataComp-1B dataset (Gadre et al., 2023). In the second stage
(16 epochs), we unfreeze the backbone EncSAM-CLIP and proceed with joint fine-tuning together
with HeadCLIP and HeadSAM , incorporating both CLIP and SAM distillation losses at the ratio of
1:10. The original SAM ViT-B model serves as the teacher in SAM loss. Further, the learning rates
applied to EncSAM-CLIP and HeadSAM are 10 times smaller than that of HeadCLIP in order to reduce
the forgetting of the original SAM abilities. Besides, we adopt a mixed input resolution strategy
for training. A notable difference between SAM and CLIP is their pre-training resolution. SAM is
trained and works best on 1024px resolution while often lower resolutions (e.g., 224/336/448px) are
adopted for CLIP training and inference (Radford et al., 2021; Cherti et al., 2023; Sun et al., 2023a).
Hence, we employ variable resolutions of 224/448px for the CLIP distillation via the variable batch
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(a) Input image (b) Ground-Truth (c) CLIP-head prediction (d) SAM-head refined

Figure 3: Demo on zero-shot semantic segmentation. Passing an input image through the image
encoder, HeadCLIP can predict a semantic segmentation mask, and HeadSAM can refine it to a more
fine-grained mask with auto-generated geometric prompts.

sampler approach of Mehta et al. (2022), while SAM distillation utilizes a 1024px resolution in
accordance with SAM’s original training guidelines (Kirillov et al., 2023). In every optimization
step, we form a batch of 2048 images from DCLIP and 32 images (each with 32 mask annotations)
from DSAM and perform training in a multi-task fashion (see Appendix A for more details).

Resolution Adaption. After the two training stages, SAM-CLIP can accomplish CLIP tasks (e.g.,
zero-shot classification) using the CLIP-head under 224/336/448px, and run inference with the
SAM-head under 1024px. However, if one wants to apply the two heads together on a single in-
put image for certain tasks (we present a demo of this in Sec. 4.4), it would be inefficient to pass the
image twice to the image encoder with two resolutions for the two heads respectively. To remedy
this issue, we adapt the CLIP head for 1024px input using a very short and efficient stage of fine-
tuning: freezing the image encoder and only finetuning the CLIP-head with LCLIP for 3 epochs (it
is the same as the first stage of training, which is also CLIP-head probing) under variable resolutions
of 224/448/1024px. Note: resolution upscaling strategies are prevalent in CLIP training: Radford
et al. (2021); Sun et al. (2023a); Li et al. (2023c) show it is more efficient than training with high
resolution from the beginning.

More Details about implementation and training are presented in the Appendix A.

4.2 ZERO-SHOT EVALUATIONS

CLIP Task: Zero-Shot Image Classification. To examine the CLIP-related capabilities of
SAM-CLIP , we evaluate it with zero-shot image classification on ImageNet (Deng et al., 2009),
ImageNet-v2 (Recht et al., 2019) and Places365 (Zhou et al., 2017), under image resolution of
336px. We use the text templates as Radford et al. (2021) utilizing the textual embeddings from the
text encoder of SAM-CLIP (which is kept frozen from our CLIP teacher) to perform zero-shot clas-
sification without any finetuning. The evaluation results are presented in Table 1. Employing a ViT-B
architecture, our model achieves zero-shot accuracy comparable to the state-of-the-art CLIP ViT-B
models pretrained on LAION-2B (Schuhmann et al., 2022) and DataComp-1B (Gadre et al., 2023)
(both released by Ilharco et al. (2021)), over the three datasets. These results validate the efficacy of
our merging approach in inheriting CLIP’s capabilities. Note: We observe that SAM-CLIP benefits
from a 336px resolution for zero-shot image classification, whereas the baseline CLIP models do
not, as they were trained at a 224px resolution (the reported results of baseline CLIP models in Ta-
ble 1 are evaluated at 224px). The evaluation results of SAM-CLIP at 224px vs. 336px resolutions
are provided in Appendix A.

SAM Task: Zero-Shot Instance Segmentation. For the SAM component of SAM-CLIP , we eval-
uate its performance in instance segmentation, a task at which the original SAM model excels (Kir-
illov et al., 2023), with COCO (Lin et al., 2014) and LVIS (Gupta et al., 2019) datasets. Following
the original practices of Kirillov et al. (2023), we first generate object detection bounding boxes
using a ViT-Det model (ViT-B version) (Li et al., 2022b). These bounding boxes act as geometric
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Table 2: Zero-shot semantic segmentation performance comparison with recent works. Note: The
results of SAM-CLIP below are obtained by using the CLIP-head only. The results with SAM-
head refinement are provided in Table 5. (†SegCLIP is trained on COCO data, so it is not zero-shot
transferred to COCO-Stuff.)

Model Arch Training Data 0-Shot Semantic Segmentation (mIoU %)

Pascal VOC Pascal-Context ADE20k COCO-Stuff COCO-Panoptic

GroupViT (Xu et al., 2022) ViT-S Merged-26M 52.3 22.4 - 24.3 -
ViewCo (Ren et al., 2023) ViT-S Merged-26M 52.4 23.0 - 23.5 -
ViL-Seg (Liu et al., 2022) ViT-B CC12M 37.3 18.9 - 18.0 -
OVS (Xu et al., 2023) ViT-B CC4M 53.8 20.4 - 25.1 -
CLIPpy (Ranasinghe et al., 2023) ViT-B HQITP-134M 52.2 - 13.5 - 25.5
TCL (Cha et al., 2023) ViT-B CC3M+CC12M 51.2 24.3 14.9 19.6 -
SegCLIP (Luo et al., 2023) ViT-B CC3M+COCO 52.6 24.7 8.7 26.5† -

SAM-CLIP (CLIP-head) ViT-B Merged-41M 60.6 29.2 17.1 31.5 28.8

Table 3: Head probing evaluations on semantic segmentation datasets, comparing our model with
SAM and CLIP that use the ViT-B architecture. Avg is the average evaluation results of three heads.

Training Data Pascal VOC ADE20k
Model Linear DeepLabv3 PSPNet Avg Linear DeepLabv3 PSPNet Avg

SAM SA-1B 46.6 69.9 71.2 62.6 26.6 32.8 36.2 31.9
CLIP DataComp-1B 70.7 78.9 79.7 76.4 36.4 39.4 40.7 38.8
SAM-CLIP Merged-41M 75.0 80.3 81.3 78.8 38.4 41.1 41.7 40.4

prompts for SAM’s prompt encoder, which then predicts masks for each object instance. The evalu-
ation results of SAM-CLIP and the original SAM ViT-B are provided in Table 1 (both under 1024px
resolution), showing that SAM-CLIP is very close to SAM on the two benchmarks, not suffering
from catastrophic forgetting during training.

Zero-Shot Transfer to Semantic Segmentation. We extend our evaluation to (text-prompted) zero-
shot semantic segmentation over 5 datasets, Pascal VOC (Everingham et al., 2010), Pascacl Con-
text (Mottaghi et al., 2014), ADE20k (Zhou et al., 2019), COCO-Stuff (Caesar et al., 2018) and
COCO-Panoptic (Kirillov et al., 2019; Lin et al., 2014). We adopt a common evaluation protocol for
this task: i) each input image is resized to 448×448px and pass to the image encoder and CLIP-head
of SAM-CLIP to obtain 28 × 28 patch features; ii) OpenAI’s 80 pre-defined CLIP text templates
are employed to generate textual embeddings for each semantic class, and these embeddings act as
mask prediction classifiers and operate on the patch features from the CLIP head; iii) we linearly
upscale the mask prediction logits to match the dimensions of the input image. Evaluation results
of SAM-CLIP and previous zero-shot models over the five datasets are demonstrated in Fig. 2. No-
tably, SAM-CLIP establishes new state-of-the-art performance on all 5 datasets, with a significant
margin over past works. More details are provided in Appendix B.

4.3 HEAD-PROBING EVALUATIONS ON LEARNED REPRESENTATIONS

By merging the SAM and CLIP models, we anticipate that the resultant model will inherit advan-
tages at the representation level from both parent models. Specifically, SAM excels at capturing
low-level spatial visual details pertinent to segmentation tasks, while CLIP specializes in high-level
semantic visual information encompassing the entire image. We hypothesize that the merged model
combines these strengths, thereby enhancing its utility in broad range of downstream vision tasks.
To investigate this hypothesis, we conduct head-probing (i.e., learn a task specific head with a frozen
image backbone) evaluations on SAM, CLIP, and SAM-CLIP, utilizing different segmentation head
structures (linear head, DeepLab-v3 (Chen et al., 2017) and PSPNet (Zhao et al., 2017)) across two
semantic segmentation datasets, Pascal VOC and ADE20k. The results are presented in Table 3.
We observe that SAM representations do not perform as well as those of CLIP for tasks that require
semantic understanding, even for semantic segmentation task. However, SAM-CLIP outperforms
both SAM and CLIP across different head structures and datasets, thereby confirming its superior
visual feature representation capabilities.

Besides, we apply linear probing to these models for image classification tasks on two datasets,
ImageNet and Places365. Results in Table 4 show that SAM-CLIP attains comparable performance
with CLIP, implying that the image-level representation of SAM-CLIP is also well-learned. All
head probing evaluation results are visualized in Figure 4 to deliver messages more intuitively.
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Figure 4: Representation learning comparison.
Head-probing evaluation of each vision backbone
for classification and semantic segmentation tasks.
SAM-CLIP learns richer visual features compared to
SAM and CLIP.

Table 4: Linear probing eval-
uations on image classification
datasets with ViT-B models.

Model Linear Probing
ImageNet Places365

SAM 41.2 41.5
CLIP (DataComp1B) 81.3 55.1
CLIP (LAION-2B) 79.6 55.2
SAM-CLIP 80.5 55.3

Table 5: Composing both CLIP
and SAM heads of SAM-CLIP for
zero-shot semantic segmentation
on Pascal VOC.
Method Resolution mIoU

CLIP head only 448px 60.6
CLIP+SAM heads 1024px 66.0

4.4 COMPOSING BOTH CLIP AND SAM HEADS FOR BETTER SEGMENTATION

Given that SAM-CLIP is a multi-task model with SAM and CLIP heads, one would naturally ask
if the two heads can work together towards better performance on some tasks. Here, we showcase
that a simple composition of the CLIP and SAM heads can lead to better zero-shot semantic seg-
mentation. Specifically, we resize the input image to 1024px and pass it through EncSAM-CLIP , and
use the CLIP head to generate low-resolution mask prediction (32 × 32) using text prompts. Then,
we generate some point prompts from the mask prediction (importance sampling based on the mask
prediction confidence), and pass the mask prediction and point prompts together to the prompt en-
coder module as geometric prompts. Finally, HeadSAM takes embeddings from both the prompt
encoder and the image encoder to generate high-resolution mask predictions (256× 256) as shown
in Figure 2 (right). Examples of this pipline are shown in Figure 3. One can clearly observe that the
refined segmentation by the SAM-head is more fine-grained. The implementation details about this
pipeline is discussed in Appendix B.

Note that this pipeline requires only one forward pass on EncSAM-CLIP with 1024px resolution. For
fair comparison, in Table 1 and Figure 1 we report SAM-CLIP zero-shot segmentation performance
with 448px resolution using HeadCLIP only. Using our high-resolution pipeline we obtain further
gain in zero-shot semantic segmentation as shown in Table 5.

5 CONCLUSION

We discussed merging publicly available vision foundation models, as digested sources of visual
knowledge, into a single unified architecture. We proposed a simple and efficient recipe based on
multi-task distillation and memory rehearsal. Specifically, we instantiated our proposed approach to
merge SAM and CLIP vision foundation models, and introduced SAM-CLIP . SAM and CLIP have
complementary vision capabilities: one is good on spatial understanding, while the other excels on
semantic understanding of images. We demonstrate multiple benefits as a result of our proposed
approach: 1) We obtain a single vision backbone with minimal forgetting of zero-shot capabili-
ties of the original models, suitable for edge device deployment. 2) We demonstrate the merged
model produces richer representations utilizable for more diverse downstream tasks when compared
to original models in a head-probing evaluation setup. 3) The merged model demonstrates syner-
gistic new zero-shot capability thanks to complementary inherited skills from the parent models.
Specifically, we show that SAM-CLIP obtains state-of-the-art performance on zero-shot semantic
segmentation by combining semantic understanding of CLIP and localization knowledge of SAM.
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A MORE EXPERIMENTAL DETAILS

Software We built our codebase using PyTorch (Paszke et al., 2019) and the CVNets framework
(Mehta et al., 2022). The evaluation code for instance segmentation relies on the publicly released
codebases from Kirillov et al. (2023) and Li et al. (2022b).

Hardware We conducted all experiments on servers equipped with 8×A100 GPUs. For training
our models, we most employed multi-node training across four 8×A100 servers. The local batch
size per server is one-fourth of the global batch size.

CLIP Head Structure We initialized each transformer layer of the CLIP head using parameters
from the last transformer layer of SAM ViT-B, as we found this approach to expedite training com-
pared to random initialization. Following the implementation of CLIP-ConvNeXt in Ilharco et al.
(2021) (the only OpenCLIP model that uses a pooling layer instead of a CLS token), we incorporated
a LayerNorm layer subsequent to the pooling layer. After applying LayerNorm, we use a shallow
MLP with two hidden layers to project the features into the text-embedding space, consistent with
the approach in Rosenfeld et al. (2022).

Hyperparameters We employ AdamW optimizers (Loshchilov & Hutter, 2017) with a learning
rate of 8 × 10−4 (consistent with SAM training (Kirillov et al., 2023)) during the first training
stage (head probing) for 20 epochs. This rate is reduced to 4× 10−5 during the second stage (joint
distillation) for 16 epochs. It should be noted that we apply a learning rate multiplier of 0.1 to
the backbone and SAM head in the second stage to mitigate forgetting. The learning rate in the
resolution adaptation stage (3 epochs) remains the same as in the first stage. The global image batch
size for CLIP distillation is 2048, and for SAM distillation, it is 32 (i.e., 32 images from the SA-1B
dataset (Kirillov et al., 2023)). In the latter case, we randomly sample 32 masks for each image.

Multi-Task Distillation Our training process consists of two stages: 1) Head probing to learn pa-
rameters of HeadCLIP that are initialized randomly, and 2) Joint training of the HeadSAM , HeadCLIP ,
and the ViT backbone EncSAM-CLIP using a multi-task distillation loss.

In the first stage, only the HeadCLIP is trainable, and it is trained using a single CLIP distillation
loss (cosine distance between embeddings as in Equation (1)). At this stage, all image batches are
sampled only from DCLIP . This stage involves training for a fixed duration of 20 epochs without
early stopping. The motivation for this step is to have a warm start for the HeadCLIP in the next
stage where we also allow modifying the backbone, similar to Kumar et al. (2022).

In the second stage, the HeadSAM and the ViT backbone EncSAM-CLIP become also trainable, and we
have a multi-task objective: CLIP Distillation Equation (1) and SAM self-distillation Equation (2).
The balance between the losses is determined by the coefficient λ, which we picked to optimize
the trade-off between learning semantic knowledge from CLIP and forgetting SAM’s segmentation
knowledge. We experimented with λ = 1, 10, 100, and found that λ = 10 offers the best trade-off
between mitigating the forgetting of SAM’s ability and learning CLIP’s ability.

Each training step for the second stage is performed as follows:

• Sample a batch of 2048 images from DCLIP . 2048 is determined based on available total
GPU memory. Run the forward pass, and compute gradients backward from LCLIP (note
that only parameters of the HeadCLIP and EncSAM-CLIP will get gradients after this step).

• Sample a batch of 32 images from DSAM . 32 is determined based on available total GPU
memory. Run the forward pass, and compute gradients backward from LSAM (note that
only parameters of the HeadSAM and EncSAM-CLIP will get gradients after this step).

• Apply one optimization step (note that at this point, the parameters of the EncSAM-CLIP
have accumulated gradients from both of the above two steps).

We early-stop after 16 epochs (out of a full training length of 20 epochs) as we observed more
forgetting (as measured by instance segmentation performance on the COCO dataset) after the 16th
epoch.
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Loss Coefficients We empirically determined the loss coefficient ratio of 1:10 for the CLIP and
SAM distillation losses from three options: 1:1, 1:10, and 1:100. This ratio provides the best
trade-off between mitigating SAM’s ability to forget and fostering the learning of CLIP’s ability.
Specifically, a ratio of 1:1 leads to greater forgetting of SAM’s original ability (as measured by the
performance drop in instance segmentation on COCO), while ratios of 1:10 and 1:100 maintain it
relatively well. However, a ratio of 1:100 impedes the learning of CLIP’s ability (as measured by
zero-shot accuracy on ImageNet). Therefore, we ultimately selected the ratio of 1:10.

Image Resolution for Zero-Shot Classification In Table 1, we report the evaluation results for
both SAM-CLIP and CLIP models using the 224px image resolution. However, we found that
SAM-CLIP benefits from the 336px resolution, whereas the performance of CLIP models dete-
riorates (they exhibit worse accuracy). The 336px results for SAM-CLIP are incorporated into
the diagram in Figure 1. We provide a comparison between the 224px and 336px resolutions for
SAM-CLIP in Table 6.

Table 6: Different input resolutions for zero-shot image classification.

Resolution ImageNet ImageNet-v2 Places365

224px 71.7 63.2 43.4
336px 72.4 63.2 43.6

A.1 COMPARATIVE ANALYSIS OF SEGMENTATION IN SAM VS. SAM-CLIP

Comparison on Instance Segmentation Table 1 provides a quantitative comparison of SAM
and SAM-CLIP on two instance segmentation datasets (COCO and LVIS), showing that
SAM-CLIP maintains comparable performance to SAM. To give readers a more intuitive under-
standing of the segmentation quality of SAM versus SAM-CLIP , we present two examples in
Figure 5. These examples demonstrate that, given the same geometric prompts (bounding box and
point prompt), the segmentation masks predicted by SAM and SAM-CLIP are quite similar, with
slight differences. This suggests that the segmentation quality of SAM-CLIP is indeed comparable
to that of SAM.

Comparison on Semantic Segmentation Figure 3 illustrates the semantic segmentation outputs
of SAM-CLIP , featuring both CLIP-head segmentation predictions and SAM-head refined segmen-
tation predictions. Specifically, the SAM-head refinement utilizes the CLIP-head output and some
auto-generated point prompts from this output. The same point prompts are fed to SAM ViT-B, with
its segmentation prediction shown in Figure 6. It is evident that SAM’s prediction typically segments
only a sub-part of the object indicated by the point prompts, instead of segmenting the entire seman-
tic object class (e.g., “dog,” “horse,” “human”). This indicates that the CLIP-head of SAM-CLIP is
essential for semantic segmentation, as it provides semantic understanding to the SAM-head of
SAM-CLIP . In contrast, the point prompting approach used in SAM (Kirillov et al., 2023) is insuf-
ficient for semantic segmentation. Furthermore, point prompting requires human-provided points,
making it not qualified for zero-shot semantic segmentation. In contrast, SAM-CLIP requires only
text prompts for each object class (e.g., “dog,” “horse,” “human”) to automatically generate seman-
tic segmentation masks (the point prompts are auto-generated from the CLIP-head output in our
pipeline).

B INFERENCE EXPERIMENTS

CLIP and SAM Tasks The inference process for zero-shot classification is identical to that of the
original CLIP (Radford et al., 2021; Cherti et al., 2023). The evaluation of zero-shot instance seg-
mentation also exactly follows the protocol outlined in Kirillov et al. (2023). The image resolutions
for classification and instance segmentation tasks are set at 224px and 1024px, respectively.

Zero-Shot Semantic Segmentation For zero-shot semantic segmentation, we largely adhere to
the practices outlined by Ranasinghe et al. (2023). We insert the class names into 80 prompt tem-
plates created by Radford et al. (2021) and obtain text embeddings using the text encoder. Next,
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(1a) SAM Output (1b) SAM-CLIP Output (2a) SAM Output (2b) SAM-CLIP Output

Figure 5: Comparison of instance segmentation between SAM and SAM-CLIP . The same im-
ages, along with geometric prompts (bounding box and point), are provided to both SAM and
SAM-CLIP , and their respective model outputs are displayed above. While the outputs of SAM
and SAM-CLIP exhibit slight differences, they are overall quite similar.

(1a) Input image of three
dogs

(1b) SAM-CLIP
Segmentation

(1c) SAM Segmentation
for dogs

(2a) Input image of a
horse and a humen

(2b) SAM-CLIP
Segmentation

(2c) SAM Segmentation
for the horse

(2d) SAM Segmentation
for the human

Figure 6: Comparison of SAM vs. SAM-CLIP for semantic segmentation on two images. The seg-
mentation of SAM-CLIP is obtained by: i) using CLIP-head output (i.e., coarse-grained prediction
masks) to generate point prompts automatically, and ii) passing the CLIP-head output and point
prompts to the SAM-head to generate final fine-grained prediction masks. For SAM, the same point
prompts for each class (“dog”, “human”, “human”) are passed to its prompt encoder to generate a
segmentation mask.

we compute the cosine similarity between each text embedding and the corresponding patch feature
(the output of the CLIP head). The class with the highest cosine similarity is selected as the pre-
dicted class for each patch. We then resize the patch class predictions to match the original image
dimensions and calculate mIoU scores. The evaluation resolution is maintained at 448px for fair
comparison with previous methods.

Composing CLIP and SAM Heads To combine both CLIP and SAM heads for zero-shot se-
mantic segmentation, we first resize the image to 1024px and run the CLIP head to obtain mask
predictions (i.e., logits) for each class. Subsequently, we pass the mask prediction corresponding to
each class to the prompt encoder, along with 1-3 auto-generated points. These points are randomly
sampled from pixels where the mask prediction logits exceed a specific threshold (for Pascal VOC,
we find that a threshold of 0.5 is generally sufficient). The output from the prompt encoder is then
fed to the SAM head (i.e., mask decoder) along with the patch token outputs from the ViT back-
bone. Finally, the mask decoder produces fine-grained mask prediction logits for each class, and we
designate the class with the highest logit value as the predicted class for each pixel.

C WEIGHT AVERAGING

Weight averaging is a straightforward post-processing method proven to mitigate forgetting across
a variety of fine-tuning tasks. Specifically, Wise-FT (Wortsman et al., 2022) proposes linearly in-
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(a) Zero-Shot Accuracy (%) (b) Zero-Shot Instance Segmentation (mAP)

Figure 7: Wise-FT (Wortsman et al., 2022) to a CLIP-distilled SAM ViT-B model. The red dashed
line marks the performance of the CLIP teacher model.

terpolating the pretrained and fine-tuned parameters using a coefficient α. In this study, we explore
the application of Wise-FT in our setup. We focus exclusively on CLIP distillation applied to SAM
ViT-B (serving as the student model), with a CLIP ViT-B/16 model acting as the teacher model.
The model is trained on ImageNet-21k for 20 epochs. It is evident that the fine-tuned student model
(α = 1) gains zero-shot classification capabilities at the expense of forgetting its original zero-shot
instance segmentation abilities. Upon applying Wise-FT to the fine-tuned model, we observe an
inherent tradeoff between learning and forgetting. Notably, no optimal point exists where both high
classification accuracy (> 60% on ImageNet) and a high mAP (> 35 mAP on COCO) are achieved
simultaneously.

D LIMITATIONS

Our proposed method for merging existing foundational vision models may inherit the limitations of
the original models. Specifically, our approach might carry over limitations from both the original
SAM and CLIP models, including biases in data distribution. We have not assessed the robustness
and fairness of our method in this work. Another potential limitation is the model size/architecture
of the base VFM (SAM in this paper), which must be adopted from an existing model. How-
ever, we believe this should not be a practical limitation. The original SAM model offers several
sizes/architectures (ViT-B/L/H). Moreover, follow-up works, such as MobileSAM (Zhang et al.,
2023), could be adopted as the base model in our proposed method to achieve a suitable final merged
model. Additionally, our merged image encoder for the auxiliary model (CLIP in this case) requires
an additional head (the CLIP-Head here). In this work, this increases the overall size by approxi-
mately 25% compared to a single ViT-B.

E MORE DISCUSSIONS ON RELATED WORKS

Due to the page limit of the main text, we provide additional discussions of related works in this
Appendix section.

Composition of Separate SAM and CLIP Models It has been shown that composing SAM and
CLIP for semantic segmentation is feasible by using SAM to generate all possible segmentation
masks and then using CLIP to provide labels (IDEA Research, 2023). However, this approach re-
quires loading two models simultaneously (2x memory footprint) and, for each image, needs one
forward pass of the SAM backbone (under 1024 resolution) to generate K object segments, fol-
lowed by a forward pass of the CLIP model for each segment to filter (overall K + 1 passes). With
SAM-CLIP , only one ViT model needs to be loaded (lower memory footprint), and a single for-
ward pass of the ViT backbone is required for each image. Overall, our method offers significant
efficiency advantages over the model composition approach in terms of memory and computational
costs during inference.
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