
Efficient Online Learning with Predictive Coding Networks:
Exploiting Temporal Correlations

Abstract— Robotic systems operating at the edge
require efficient online learning algorithms that can
continuously adapt to changing environments while pro-
cessing streaming sensory data. Traditional backprop-
agation, while effective, conflicts with biological plau-
sibility principles and may be suboptimal for continu-
ous adaptation scenarios. The Predictive Coding (PC)
framework offers a biologically plausible alternative with
local, Hebbian-like update rules, making it suitable for
neuromorphic hardware implementation. However, PC’s
main limitation is its computational overhead due to
multiple inference iterations during training. We present
Predictive Coding Network with Temporal Amortization
(PCN-TA), which preserves latent states across tempo-
ral frames. By leveraging temporal correlations, PCN-
TA significantly reduces computational demands while
maintaining learning performance. Our experiments on
the COIL-20 robotic perception dataset demonstrate that
PCN-TA achieves 10% fewer weight updates compared
to backpropagation and requires 50% fewer inference
steps than baseline PC networks. These efficiency gains
directly translate to reduced computational overhead for
moving another step toward edge deployment and real-
time adaptation support in resource-constrained robotic
systems. The biologically-inspired nature of our approach
also makes it a promising candidate for future neuromor-
phic hardware implementations, enabling efficient online
learning at the edge.

I. INTRODUCTION

Backpropagation is a widely used and highly effi-
cient learning algorithm. However, the prevailing con-
sensus today is that the brain is unlikely to implement
backpropagation in its exact form [3]. Most theories
of learning in the brain postulate that learning occurs
purely locally between neurons, without requiring dis-
tant error signals. This type of learning algorithm is
also known as Hebbian plasticity, often summarized
by the famous phrase: "Cells that fire together wire
together" [2]. Hence, reliance on global error informa-
tion makes backpropagation biologically implausible.
To achieve a biologically plausible learning algorithm,
we must seek alternatives that adhere to local learning
rules.

Predictive Coding is a theory of how the brain
learns. The fundamental difference between Predic-
tive Coding and backpropagation lies in how they
propagate and use error signals in a neural network.
Predictive coding theory emphasizes that each neuron
interacts only with nearby neurons, typically those in
adjacent layers, such as its inputs and outputs [7]. This
stands in contrast to backpropagation, which requires
each unit to access information that depends on the

entire network structure, as it computes gradients using
the chain rule, which requires knowledge of the entire
pathway from output to input. A core principle of
Predictive Coding is that each layer in a hierarchical
neural network generates predictions about the activity
of the layer below. learning is guided by the minimiza-
tion of local prediction errors, calculated as the differ-
ence between the actual activity of lower-layer neurons
and the top-down predictions. This process follows
the principle of learning through error minimization,
whereby the network continuously updates its inter-
nal representations and synaptic weights to reduce
these discrepancies over time. A distinctive feature
of Predictive Coding is that, rather than immediately
updating weights for each new input, the network first
undergoes an inference phase. During this phase, it
iteratively adjusts its internal or hidden states in order
to minimize prediction error. In essence, the network
attempts to ”explain” the current input by refining
its internal model, aligning top-down predictions as
closely as possible with the actual neuronal activity.
This iterative process continues until the prediction
errors converge to a minimum, allowing the network
to make more informed and plausible updates.

Millidge et al. [4] introduced a practical imple-
mentation of the predictive coding theory, which we
will hereafter refer to simply as PCN. This framework
differs from classical predictive coding theory, as it
operates under the fixed-prediction assumption: during
the initial feedforward phase, the input propagates
through each layer of the network until it reaches the
output layer. The activations of neurons are used as
a prediction, which remains the same throughout the
entire inference phase of the given sample. In the infer-
ence phase, based on label, input, and the predictions,
each neuron’s internal state is iteratively updated to
minimize the local prediction error. Once the number
of predefined inference steps are finished, the leftover
error are further minimized by a single weight update.
Thanks to the fixed-prediction assumption, this PCN
approximates backpropagation.

However, Millidge et al. argued in [6] that
the main drawback of his PC version lies in its
computational cost: unlike Backpropagation, which
computes gradients in a single pass, this PC variant
requires iterative inference with repeated updates until
prediction errors converge, performed independently
for each input sample. Nevertheless, in online learning
scenarios such as video streams, latent states do not



need to be reinitialized from scratch for every frame,
since consecutive inputs are temporally correlated.
To exploit this property we introduce a Predictive
Coding Network with Temporal Amortization
(PCN-TA), a variant of the baseline PCN that
maintains latent states across frames, effectively
leveraging temporal continuity in sequential data.
This design should reduce the number of required
inference iterations and the number of weight
updates. Before presenting the methodology of our
experiments, we first describe the PCN-TA in greater
detail, followed by a discussion of our experimental
methods and results and concluding with a brief
discussion and summary.

II. MATHEMATICAL FORMULATIONS OF PCN-TA

For both the PCN-TA and the PCN, we have
an arbitrary computation graph, where we consider
G = {Y,V,E}. Each edge yi ∈ Y corresponds to the
application of an activation function that computes
a vertex vi ∈ V. Additionally, we define error units
ϵi ∈ E as the difference between the actual state
value vi and the top-down prediction v̂i: ϵi = vi − v̂i.
In a Predictive Coding network, each hierarchical
layer is composed of functional units that include
a prediction error neuron ϵi and its associated
state neuron vi, representing the actual state of the
corresponding vertex.

In contrast to Backpropagation, which computes
the gradient of the global loss, Predictive Coding
computes and minimizes the gradient of the variational
free energy (VFE) F . The VFE, an objective from
variational inference that renders Bayesian learning
tractable, serves as the function that guides updates of
the state neurons vi. For a more detailed explanation
of the VFE we refer the reader to [1] and [5].

In PCN-TA, the initialization for the first frame
follows the standard Predictive Coding procedure.
Specifically, during the initial feedforward phase, the
input is propagated through the network as in ANNs,
where the activations are used as predictions v̂i. These
predictions are kept same throughout the inference
phase for the given sample. This is the fixed-prediction
assumption and needed to approximate backpropaga-
tion. Additionally initial states (vis) of the neurons are
also set to the predicted values (v̂i). The next steps
of the inference phase consists of iterative update of
these state values, according to vt+1

i = vti + ηv
∂F
∂vt

i
,

with ηv denoting the inference learning rate, which
serves as the step size in the optimization process,
and ∂F

∂vt
i

representing the gradient of the VFE F .
The backward phase is repeated iteratively until the
gradient of the variational free energy with respect to
each layer vi converges to an equilibrium point, that is,
when ∂F/∂vi = 0. After completing inference for the

first sample, we store the resulting hidden state values
to be reused in the next frame x. For full mathematical
description of this process, refer to the pseudocode in
Algorithm 1.

Algorithm 1 PCN-TA for first sample
1: Input: Dataset D; first sample x1 ∈ D; label L;

L}; Inference learning rate ηv; Weight learning
rate ηθ

2: for first sample x in dataset do
3: Let (x1, L) be the first sample with its label
4: v0 ← x1

▷ Forward pass to compute predictions
5: for all v̂i ∈ V do
6: v̂i ← f(P(v̂i); θ)
7: end for
8: ϵL ← L− v̂L

▷ Backward phase: state updates via free
energy descent

9: while not converged do
10: for all (vi, ϵi) ∈ Ĝ do
11: ϵi ← vi − v̂i
12: vt+1

i ← vti + ηv
∂F
∂vt

i

13: end for
14: end while

▷ Update weights after convergence
15: for all θi ∈ E do
16: θt+1

i ← θti + ηθ
∂F
∂θt

i

17: end for
▷ after inference phase, save the state values

for the next sample
18: end for

When the inference phase begins for the next
frame t, we first perform a standard feedforward
pass from the input to the output, initializing the
state values to their predicted counterparts. We then
conduct a second feedforward pass, this time restoring
all state values vi from the hidden states saved in
the previous frame. This strategy streamlines the
inference phase by reducing the number of required
iterations: the network first generates predictions
from input to output, after which the saved hidden
states are reinstated, avoiding the need to reinitialize
the inference process. From that point onward,
the procedure mirrors that of the first sample,
with iterations continuing until convergence. This
process is repeated frame by frame, as illustrated in
Algorithm 2. For real code implementation see the
following repository [10]



Algorithm 2 Inference for Subsequent Samples
(number ̸= 0)

1: Input: Dataset D; sample x ∈ D; label L; L};
Inference learning rate ηv; Weight learning rate
ηθ

2: for sample x in dataset do
3: Let (x, L) be the sample with its label
4: v0 ← x

▷ first Forward pass to compute state values
5: for all v̂i ∈ V do
6: v̂i ← f(P(v̂i); θ)
7: end for

▷ Second feedforward pass, initializing
predictions from the hidden states of the previous
frame

8: for all vti ∈ V do
9: vti ← vt−1

i

10: end for
11: ϵL ← L− v̂L

▷ The procedure then continues as described
in Algorithm 2

▷ Backward phase: state updates via free
energy descent

12: while not converged do
13: for all (vti , ϵi) ∈ Ĝ do
14: ϵi ← vti − v̂i
15: vt+1

i ← vti + ηv
∂F
∂vt

i

16: end for
17: end while

▷ Update weights after convergence
18: for all θi ∈ E do
19: θt+1

i ← θti + ηθ
∂F
∂θt

i

20: end for
▷ after inference phase, save the state values

for the next sample
21: end for

For the further technical details of the previous
work, we refer the reader to [9] and [5], both of
which provide a more in-depth exploration of the core
principles of our Predictive Coding network and graph
for a supervised learning scenario.

III. METHODOLOGY

To demonstrate the advantages of our PCN-TA,
we compared its accuracy against a standard PCN
and a Backpropagation network, all implemented with
the same CNN architecture and learning parameters.
Training was conducted on the COIL-20 dataset [5],
which is particularly well suited for our study
because it provides temporally correlated data ideal
for online learning in artificial neural networks.
The models are trained on sequential video frames
of 20 objects, showing how the objects change
over time. In addition, we evaluate our model in a
Class-Incremental Learning setting, where data are
presented sequentially in batches of novel classes.
The objective of these experiments is to show that

PCN-TA achieves comparable accuracy with fewer
inference iterations than a standard PCN, thereby
reducing computational cost. Furthermore, we report
the average number of weight updates between
frames for the PCN-TA, the standard PCN, and the
Backpropagation network, providing further evidence
of the efficiency of our approach.

For both of these experiments, we had the same
CNN architecture for all three models. Extensive hy-
perparameter tuning of the learning rate was conducted
for all models, with optimal performance achieved at
a weight learning rate of approximately 0.00004. The
first layer in the ANN is a convolutional layer with
an input size of (1, 128, 128), which fits grayscale
images from the COIL-20 dataset with a resolution
of 128x128 pixels. This convolutional layer has 124
filters with a kernel size of 5. The second layer is
a pooling layer with a size of 2. The output of this
layer is flattened and fed into a fully connected layer
with 200 neurons. The data will be transformed to
the next fully connected layer with 128 neurons. The
output layer consists of 20 neurons, each representing
an object in the COIL-20 dataset. The Mean Squared
Error (MSE) metric will be used as our loss function.
Our activation function for each layer, excluding the
pooling, penultimate and output layers, is the ReLU
function. For our penultimate layer, we will use a lin-
ear activation function. We used Ada as the optimizer.

IV. EXPERIMENTS

We will first present the accuracy results of our
image classification experiment, followed by an anal-
ysis of the average weight updates per frame across
epochs for the PCN-TA, the standard PCN, and the
Backpropagation trained network.

A. Accuracy results

Here we will show the experimental results of our
image classification task and compare the accuracy of
two PCN-TAs (with 50 and 100 inference iterations,
respectively), a standard PCN with 100 iterations, and
Backpropagation (Figure 1).

Comparison between PCN-TAs and PCN:
The main results are shown in Fig. 1. Notably the
PCN-TA with 100 iterations has a better accuracy
than the PCN with 100 inference iterations, but also
the PCN-TA with only 50 iterations outperforms the
standard PCN with 100 iterations, demonstrating the
effectiveness of PCN-TA in exploiting temporally
coherent data. This implies that the TA-PCN requires
fewer inference steps to achieve comparable or even
superior accuracy to a standard PCN. The reason is
that it builds on the inference processes of previous
frames, effectively making temporal predictions. By
contrast, the Predictive Coding network does not
exploit prior inference and therefore requires a larger
number of inference steps for each new frame. This



also means that the PCN-TA needs fewer operations
and is more efficient, possibly allowing for edge
deployment. These findings underscore the substantial
gains achieved when hidden states are preserved
across frames, as opposed to reinitializing them from
scratch for each new input.

Comparison between PCN-TAs and
backpropagation: Both PCN-TAs (with 50
and 100 inference iterations) narrow the gap
with backpropagation and ultimately surpass its
performance in the later epochs. The PCN-TAs
with 100 iterations approaches the accuracy of
backpropagation most closely, while the 50-iteration
PCN-TAs demonstrates an excellent trade-off between
computational efficiency and performance.

Comparison between PCN and backpropaga-
tion: The PCN performs slightly worse than the back-
propagation network by the end of training, though
both appear to converge toward similar accuracy.
This observation supports earlier findings [8], which
demonstrated that PCN is algorithmically equivalent
to backpropagation, yielding similar gradient updates.

Fig. 1. The results of the image classification task show that
backpropagation (red line) consistently achieves the highest average
accuracy across all epochs. In contrast, the standard PCN with
100 inference iterations (blue line) performs the worst in nearly
every epoch. Notably, the PCN-TA with only 50 inference iterations
(brown line) outperforms the standard PCN, despite requiring fewer
iterations.

B. Weight Update Sparsity

In this experiment, we measured the average
number of weight updates per frame during training
for the PCN-TA with 100 inference iterations, the
PCN with 100 inference iterations, and a standard
backpropagation network. Updates equal to zero
were excluded from the count, and the values were
averaged over the entire sample set Figure 2.

The results demonstrate that the PCN-TA requires
significantly fewer weight updates per frame than the
PCN. It is important to note that PCN-TA departs from
the goal of approximating Backpropagation, and hence

its weight updates are not similar to the Backpropaga-
tion training. We think that, as only some parts of the
images change from one frame to the next, the number
of neurons that have a mismatch between prediction
and value at the end of the inference phase is much
fewer. By contrast, the PCN, like backpropagation,
must reinitialize for each new frame, resulting in a
different or suboptimal convergence of state values
at the end of the inference phase, hence triggering
considerably more weight updates in the learning
phase. This means that PCN-TA has a sparser weight
updates.

Fig. 2. This chart presents the average number of weight updates
per frame across all epochs. The y-axis shows the average updates
per frame, measured in millions. Backpropagation begins with nearly
1.7 million updates in the first epoch, with the PCN exhibiting a
similar value. In contrast, the PCN-TA starts with a considerably
lower number of updates and maintains this advantage throughout
training. Overall, the PCN and backpropagation display comparable
update counts, whereas the PCN-TA consistently achieves the lowest
number across all epochs.

V. DISCUSSION

We demonstrated that for online learning from
video streams, the PCN with a temporal amortization
mechanism achieves higher test accuracy than the
PCN, while requiring fewer inference steps and, as
the weight update analysis shows, substantially fewer
weight updates. This improvement arises from the
preservation of latent (value) states across frames,
which reduces the need for frequent synaptic weight
adjustments: because consecutive frames are highly
similar, the latent state from the previous frame pro-
vides a strong initial estimate for the next. By con-
tinuously maintaining and updating its latent state,
the PCN-TA effectively anticipates incoming sensory
input, in line with classical Predictive Coding theory.
Unlike the PCN, which reinitializes from scratch at
each frame, the PCN-TA leverages temporal continuity
to minimize redundant computation. Consequently,
fewer inference steps are sufficient to achieve strong
performance, as the model does not reset its internal
state with every new input.



VI. CONCLUSION

By incorporating Temporal Amortization, the
PCN-TA exhibits greater sparsity in weight updates
and achieves higher accuracy than both the PCN and
the backpropagation network. Nevertheless, the dataset
used in this study was relatively small and lacked
significant complexity, which may limit the robustness
and generalizability of the findings. Ideally, the model
would have been trained on a complete video sequence
of an object and evaluated on a separate, distinct video
sequence of the same object captured under different
conditions. The fixed-prediction assumption is also a
limitation for PCN-TA, as it no longer tries to approx-
imate backpropagation, but rather utilizes local sparse
learning for more efficient training in online learning
from temporally correlated data streams. Overall, we
believe this is a valuable step towards edge-deployable
learning systems.

REFERENCES

[1] Rafal Bogacz. A tutorial on the free-energy framework for
modelling perception and learning. Journal of mathematical
psychology, 76:198–211, 2017.

[2] Donald Olding Hebb. The organization of behavior: A neu-
ropsychological theory. Psychology press, 2005.

[3] Timothy P Lillicrap, Adam Santoro, Luke Marris, Colin J
Akerman, and Geoffrey Hinton. Backpropagation and the
brain. Nature Reviews Neuroscience, 21(6):335–346, 2020.

[4] Beren Millidge. Predictivecodingbackprop.
https://github.com/BerenMillidge/
PredictiveCodingBackprop, 2020.

[5] Beren Millidge, Anil Seth, and Christopher L Buckley. Pre-
dictive coding: a theoretical and experimental review. arXiv
preprint arXiv:2107.12979, 2021.

[6] Beren Millidge, Alexander Tschantz, and Christopher L Buck-
ley. Predictive coding approximates backprop along arbitrary
computation graphs. Neural Computation, 34(6):1329–1368,
2022.

[7] Rajesh PN Rao and Dana H Ballard. Predictive coding in
the visual cortex: a functional interpretation of some extra-
classical receptive-field effects. Nature neuroscience, 2(1):79–
87, 1999.

[8] Robert Rosenbaum. On the relationship between predictive
coding and backpropagation. Plos one, 17(3):e0266102, 2022.

[9] Tommaso Salvatori, Ankur Mali, Christopher L Buckley,
Thomas Lukasiewicz, Rajesh PN Rao, Karl Friston, and
Alexander Ororbia. A survey on brain-inspired deep learning
via predictive coding. arXiv preprint arXiv:2308.07870, 2023.

[10] Darius Masoum Zadeh-Jousdani.
https://github.com/Dariush24/
Temporal-Amortization-Predictive-Coding-Network.

https://github.com/BerenMillidge/PredictiveCodingBackprop
https://github.com/BerenMillidge/PredictiveCodingBackprop
https://github.com/Dariush24/Temporal- Amortization-Predictive-Coding-Network
https://github.com/Dariush24/Temporal- Amortization-Predictive-Coding-Network

	INTRODUCTION
	Mathematical Formulations of PCN-TA
	Methodology
	Experiments
	Accuracy results
	Weight Update Sparsity

	Discussion
	Conclusion
	References

