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ABSTRACT

Vision Transformers (ViTs) have emerged as powerful models in the field of
computer vision, delivering superior performance across various vision tasks.
However, the high computational complexity poses a significant barrier to their
practical applications in real-world scenarios. Motivated by the fact that not all
tokens contribute equally to the final predictions and fewer tokens bring less
computational cost, reducing redundant tokens has become a prevailing paradigm
for accelerating vision transformers. However, we argue that it is not optimal
to either only reduce inattentive redundancy by token pruning, or only reduce
duplicative redundancy by token merging. To this end, in this paper we propose
a novel acceleration framework, namely token Pruning & Pooling Transformers
(PPT), to adaptively tackle these two types of redundancy in different layers.
By heuristically integrating both token pruning and token pooling techniques in
ViTs without additional trainable parameters, PPT effectively reduces the model
complexity while maintaining its predictive accuracy. For example, PPT reduces
over 37% FLOPs and improves the throughput by over 45% for DeiT-S without
any accuracy drop on the ImageNet dataset.

1 INTRODUCTION

In recent years, vision transformers (ViTs) have demonstrated promising results in many vision tasks
such as image classification (Dosovitskiy et al., 2021; Jiang et al., 2021; Touvron et al., 2021; Yuan
et al., 2021), object detection (Carion et al., 2020; Dai et al., 2021; Li et al., 2022; Zhu et al., 2021),
and semantic segmentation (Kirillov et al., 2023; Liu et al., 2021; Wang et al., 2021). Compared
with the convolutional neural networks (CNNs), ViTs have the property of modeling long-range
dependencies with the attention mechanism (Vaswani et al., 2017), which introduces fewer inductive
biases hence has the potential to absorb more training data. However, densely modeling long-range
dependencies among image tokens can lead to computational inefficiency, especially when dealing
with large datasets and training iterations (Carion et al., 2020; Dosovitskiy et al., 2021). This in turn
limits further implementation of ViTs in real-world scenarios.

Given the strong correlation between model complexity and the number of tokens in ViTs, a direct
approach to accelerate ViTs is to reduce the number of redundant tokens. Moreover, some studies
also showed that not all tokens contribute equally to the final predictions (Caron et al., 2021; Pan
et al., 2021) . Existing attempts to achieve token compression mainly consist of two branches of
solutions, i.e., token pruning and token pooling. The former approach emphasizes the design of
different importance evaluation strategies to identify and retain relevant tokens while discarding
irrelevant ones, as demonstrated in previous research (Fayyaz et al., 2022; Liang et al., 2022; Rao
et al., 2021; Xu et al., 2022; Tang et al., 2022). The latter technique primarily concentrates on merging
similar image tokens using a predefined similarity evaluation metric and merge policy (Bolya et al.,
2023; Marin et al., 2021). To summarize, there are two types of redundancy in vision transformers,
i.e., inattentive redundancy and duplicative redundancy. However, it should be noted that the
aforementioned each method only addresses one type of redundancy, i.e., token pruning for inattentive
redundancy while token pooling for duplicative redundancy. We argue that reducing only one type of
redundancy leads to suboptimal acceleration performance.
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Figure 1: Visualizations of token compression results
using different methods on the ImageNet dataset with
DeiT-S. (a) Original images. (b) Token pruning meth-
ods, which discard inattentive tokens. (c) Token pooling
methods, which merge similar tokens within the same
color bounding box. (d) Our method can effectively ad-
dress both types of redundancy while achieving superior
performance.

In this paper, we propose a novel framework,
named as token Pruning & Pooling Transform-
ers (PPT), to jointly tackle the two types of re-
dundancy as shown in Figure 1. Our research
investigates that the importance of image tokens
becomes more distinct as the layer deepens, in-
dicating that applying token pruning techniques
at deeper layers is more suitable. In contrast, the
model prefers to use token pooling methods in
shallow layers, where a large number of tokens
exhibit relatively high similarity. Additionally,
we observe that the distribution of token scores
varies among different samples within the same
layer. Therefore, we propose an instance-aware
adaptive strategy to automatically choose opti-
mal policy of token pruning or pooling in differ-
ent layers. Moreover, our method introduces no
trainable parameters. This indicates that it can
be easily integrated into pre-trained ViTs with minimal accuracy degradation, and fine-tuning with
PPT can lead to improved accuracy and faster training speed, making it especially beneficial for
huge models. Our method is extensively evaluated for different benchmark vision transformers on
ImageNet dataset. Experiment results demonstrate that our method outperforms state-of-the-art token
compression methods, and achieves superior trade-off between accuracy and computational.

We summarize the main contributions as follows: (1) We propose PPT, which is a heuristic framework
that acknowledges the complementary potential of token pruning and token merging techniques for
effifient ViTs. (2) We design a redundancy criterion to guide adaptive decision-making on prioritizing
different token compression policies for various layers and instances. (3) Our method is simple
yet effective and can be easily incorporated into the standard transformer block without additional
trainable parameters. (4) We perform extensive experiments and obtatin promising results for several
different ViTs, e.g., PPT can reduce over 37% FLOPs and improve the throughput by over
45% for DeiT-S without any accuracy drop on ImageNet. We hope our PPT could bring a new
perspective for obtaining efficient vision transformers.

2 RELATED WORK

Vision Transformers. Inspired by the success of Transformers in natural language processing
area (Brown et al., 2020; Kenton & Toutanova, 2019; Vaswani et al., 2017), the recent advance
ViT (Dosovitskiy et al., 2021) shows that the transformer can also achieve promising results in
the computer vision field. However, ViT requires large-scale datasets such as ImageNet-22K and
JFT-300M for model pretraining and huge computation resources. Later, DeiT (Dosovitskiy et al.,
2021) addressed this issue by optimizing the training strategy and introducing a distilled token, which
is designed to learn knowledge from the teacher network and improve model performance. Some
following works (Chen et al., 2021; Han et al., 2021; Liu et al., 2021; Wang et al., 2021; Wu et al.,
2021; Yuan et al., 2021) focus on modifying patch embedding or transformer blocks to introduce
local dependencies into ViTs, resulting in significant performance improvements. LV-ViT (Jiang
et al., 2021) further improves ViTs by utilizing the local information embedded in patch tokens with
a new training objective called token labeling. Although the ViT and its follow-ups have achieved
excellent performance and demonstrated their strong potential as an alternative to CNNs, the high
computational costs remain a challenge for practical implementation in real-world scenarios. The
computational cost of ViTs is mainly attributed to the quadratic and linear time complexity of the
multi-head self-attention (MSA) and feed-forward network (FFN), respectively, with respect to the
number of tokens. As a result, researchers have been exploring token compression as a prevalent
paradigm for accelerating ViTs, which can effectively alleviate the computational burden while
retaining their expressive power and performance.

Token Pruning. As a main branch of token compression, token pruning aims to retain attentive
tokens and prune inattentive ones by designing importance evaluation strategies. In Tang et al. (2022),
The authors adopt a top-down paradigm to estimate the impact of each token and remove redundant
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Figure 2: Overview of the proposed PPT approach. (a) The Adaptive Token Compression module is simple
and can be easily inserted inside the standard transformer block without additional trainable parameter. (b) Our
module can adaptively select either token pruning or token pooling policy to tackle corresponding redundancy
based on the current token distribution, which is intuitively reflected across various instances and layers in (c).
(c) With PPT, similar patches within the same color bounding box are pooled into a single token, while the
masked inattentive patches are pruned, resulting in promising trade-offs between the accuracy and FLOPs.

ones. The IA-RED2 (Pan et al., 2021) is designed to reduce input-uncorrelated tokens hierarchically,
while also taking into account interpretability. DynamicViT (Rao et al., 2021) introduces lightweight
prediction modules to score tokens and discard unimportant tokens. Evo-ViT (Xu et al., 2022) and
EViT (Liang et al., 2022) show that the attention scores between classification tokens and image
tokens can be utilized for importance assignment. A-ViT (Yin et al., 2022) and ATS (Fayyaz et al.,
2022) go further by dynamically adjusting the pruning rate based on the complexity of the input
image. However, mainstream deep learning frameworks do not fully support dynamic token-length
inference during batch processing. While token pruning methods achieve promising performance, we
realize that they pay less attention to redundancy in the foreground region.

Token Pooling. On the other hand, there are some attempts that recognize the significance of pooling
tokens together. To alleviate information loss, Evo-ViT (Xu et al., 2022) and EViT (Liang et al.,
2022) merge the tokens they pruned into a single token. To improve the efficiency of ViTs, Token
Pooling (Marin et al., 2021) utilizes a K-Means-based clustering approach to exploit redundancies in
the images, while ToMe (Bolya et al., 2023) thoroughly investigates token similarity and proposes a
Bipartite Soft Matching algorithm (BSM) to gradually merge similar tokens. Token pooling methods
can reduce the duplicative redundancy, but they do not take into account that not all tokens contribute
equally to the final prediction.

3 METHODOLOGY

3.1 OVERVIEW

Compared to existing works, our method comprehensively takes into account two types of redundancy
present in images, i.e., inattentive redundancy and duplicative redundancy. To address these issues,
we heuristically integrate both token pruning and token pooling techniques, resulting in favorable
trade-offs between the accuracy and FLOPs of ViTs.

As shown in Figure 2, our approach can adaptively select either token pruning or token pooling
policy based on the current token distribution, which is reflected across different inputs and layers.
Furthermore, our method does not involve any trainable parameters, which makes it suitable with
or without training. It can achieve impressive results even in off-the-shelf scenarios, where no
customization or fine-tuning is required. In this section, we first introduce the token pruning and
token pooling techniques utilized in our method (Section 3.2 and Section 3.3), and then describe how
we integrate them to achieve adaptive token compression in detail (Section 3.4).
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3.2 TOKEN PRUNING FOR INATTENTIVE REDUNDANCY

In general, the token pruning paradigm consists two steps, token scoring and token selecting. Token
scoring assigns a score to each token based on its importance for the task, and then token selecting
determines which tokens to keep and which to discard.

Token Scoring. There are quite a few non-parametric scoring mechanisms for tokens in prior work,
e.g., the attention scores Acls between the classification token and image tokens (Liang et al., 2022;
Xu et al., 2022). Furthermore, ATS (Fayyaz et al., 2022) takes the values matrix V into consideration
and proposes a more comprehensive token scoring metric:

A = Softmax(
Q ·KT

√
d

), Scorei =
A1,i+1 × ∥Vi+1∥∑N

j=1 A1,j+1 × ∥Vj+1∥
. (1)

Token Selecting. For token selection, we return to the traditional Top-K selection policy for more
controllable compression ratio, i.e., preserve the Top-K important tokens while remove the other
inattentive tokens, which is widely used in many works (Liang et al., 2022; Rao et al., 2021).

3.3 TOKEN POOLING FOR DUPLICATIVE REDUNDANCY

The token pooling techniques aims to merge similar image tokens together and can decrease the
duplicative redundancy in the model. Recently, the Bipartite Soft Matching algorithm (BSM)
algorithm (Bolya et al., 2023) shows superior performance in token merging. BSM first partitions the
tokens into two sets of roughly equal size. It then draws an edge from each token in one set to the
token in the other set with the highest cosine similarity score. The top-K-similar edges are selected,
and tokens that are still connected are merged by averaging their features. In addition, it is necessary
to maintain a variable s that tracks the size of the tokens in order to minimize information loss. s is a
row vector that reflects the number of tokens represented and are combined with tokens any time. In
addition, it is also used as a weight to reflect its importance in the calculation of attention matrix:

A = Softmax(
Q ·KT

√
d

+ log s). (2)

We also explore another clustering-based token pooling method in Section C of appendix and
demonstrate the BSM performer better in our framework.

3.4 TOKEN PRUNING & POOLING TRANSFORMER

It is a nontrivial idea to combine token pruning for inattentive tokens and token pooling for attentive
tokens. For example, an intuitive approach is to utilize both techniques within the same block.
However, we find that this simple strategy does not obtain satisfactory performance, as shown in
Section 4.2. To dig deeper into the possible reason behind, we first perform a comprehensive analysis
of token pruning and token pooling techniques and find out an interesting observation for the token
redundancy of different layers. To this end, we propose an adaptive token compression method to
automatically discover the best policies to deal with the two types of redundancy in different layers.

A Closer Look at Token Pruning and Token Pooling. We first conduct some analysis of the
importance scores in different layers. Our research reveals an intriguing phenomenon: the variance
of significance scores assigned to image tokens for each sample increases as the number of layers in
the model increases, as depicted in Figure 3 (deeper analysis are shown in Section B of the appendix).
This suggests that the importance of image tokens becomes more distinct as the layer deepens.
As a result, token pruning techniques may be preferred at deeper layers, where certain tokens
exhibit significantly lower importance scores and are therefore more likely to be pruned. Meanwhile,
premature token pruning at shallow layers may result in irreversible information loss and negatively
impact model performance.

In contrast, we find the token pooling techniques are preferably applied in shallow layers through our
analysis. Since we use a pyramid compression approach for tokens, there are plenty of tokens in the
shallow layers that exhibit relatively high similarity. This makes it less concerning to merge dissimilar
tokens during token pooling under the Top-K strategy, as it is unlikely to affect the performance
of the model. Moreover, since we maintain the vector s that reflects the size of each token, the
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Figure 3: The scatter and the histogram of the variance of the significance scores assigned to image tokens at
each layer of the DeiT-S model on the ImageNet validation set. The y-axis corresponds to the variance value and
the x-axis to the index of samples in the dataset. We display the average variance of each layer at the top of each
graph in red to track the trend of variance changes as the layers go deeper.

information loss and impact on model performance caused by merging highly similar tokens can be
almost negligible. Additionally, due to the decreasing number of similar tokens, the utilization of
token pooling techniques in deeper layers is not applicable.

Adaptive Token Pruning & Pooling Strategy. Based on the above discussion, we propose an adap-
tive token compression method to automatically discover the best policies for removing duplicative
and inattentive redundancy. In this way, our method can adaptively select either token pruning or
token pooling to tackle corresponding redundancy based on the current significance scores of tokens.
In addition, as shown in Figure 3, we can observe that the variance of the significance scores assigned
to image tokens varies among different samples within the same layer. This implies that defining
token compression rules solely based on the layer is not sufficient. Therefore, we propose an adaptive
strategy that takes into account both the instances and layers, as follows:

Sopi = var(Scorei), Policyi =

{
Token Pruning, if Sopi > τ

Token Pooling, otherwise
, (3)

where the Scorei is calculated in formula 1 and the τ is a hyperparameter, i.e., decision threshold,
that regulates the model’s preference for either of the two strategies. The impact of τ on model
performance is thoroughly explored in Section 4.2. Taking a holistic view of our approach, we
find that no additional learnable parameter is introduced, which indicates that our method can be
seamlessly integrated with pre-trained ViTs and yields competitive performance, as demonstrated by
our experiment results.

4 EXPERIMENTS

In this section, we empirically investigate the superiority of the proposed PPT through extensive
experiments on ImageNet-1K (ILSVRC2012) (Deng et al., 2009), which contains approximately
1.28M training images and 50K validation images. We compare our proposed model with state-of-the-
art models and conduct thorough ablation studies to gain a better understanding of its effectiveness.

Implementation details. We conduct experiments on the standard ViTs (Dosovitskiy et al., 2021)
(including DeiT-Ti, DeiT-S, DeiT-B (Touvron et al., 2021)) and the different variants of ViTs
(such as LV-ViT-S (Jiang et al., 2021), T2T-ViT(Yuan et al., 2021), and PS-ViT(Yue et al., 2021)).
Following Liang et al. (2022), we specifically introduce our method into the 4th, 7th, and 10th
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Table 1: Comparison of the accelerated vision transformers with different methods applied to multiple vanilla
ViTs on ImageNet. The model with ’†’ is trained from scratch (300 epochs).

Model Method Top-1 Params FLOPs Throughput
Acc. (%) (M) (G) (image / s)

DeiT-Ti

Baseline (Touvron et al., 2021) 72.2 5.6 1.3 2675
DynamicViT (Rao et al., 2021) 71.4 (↓ 0.8) 5.9 0.8 (↓ 38.5%) 3765 (↑ 40.7%)
Evo-ViT† (Xu et al., 2022) 72.0 (↓ 0.2) 5.9 0.8 (↓ 38.5%) 3781 (↑ 41.3%)
EViT (Liang et al., 2022) 71.9 (↓ 0.3) 5.6 0.8 (↓ 38.5%) 3387 (↑ 26.6%)
ToMe† (Bolya et al., 2023) 71.4 (↓ 0.8) 5.6 0.8 (↓ 38.5%) 3685 (↑ 37.7%)
PPT (off-the-shelf) (Ours) 71.6 (↓ 0.6) 5.6 0.8 (↓ 38.5%) 3572 (↑ 33.5%)
PPT (Ours) 72.1 (↓ 0.1) 5.6 0.8 (↓ 38.5%) 3572 (↑ 33.5%)

DeiT-S

Baseline (Touvron et al., 2021) 79.8 22.1 4.6 993
DynamicViT (Rao et al., 2021) 79.3 (↓ 0.5) 22.8 3.0 (↓ 34.8%) 1440 (↑ 45.0%)
IA-RED2 (Pan et al., 2021) 79.1 (↓ 0.7) - 3.2 (↓ 30.4%) 1362 (↑ 37.2%)
PS-ViT (Tang et al., 2022) 79.4 (↓ 0.4) - 2.6 (↓ 43.5%) 1321 (↑ 33.0%)
Evo-ViT† (Xu et al., 2022) 79.4 (↓ 0.4) 22.4 3.0 (↓ 34.8%) 1414 (↑ 42.4%)
EViT (Liang et al., 2022) 79.5 (↓ 0.3) 22.1 3.0 (↓ 34.8%) 1378 (↑ 38.8%)
ATS (Fayyaz et al., 2022) 79.7 (↓ 0.1) 22.1 2.9 (↓ 37.0%) 1382(↑ 39.2%)
ToMe† (Bolya et al., 2023) 79.4 (↓ 0.4) 22.1 2.7 (↓ 41.3%) 1552 (↑ 56.3%)
PPT (off-the-shelf) (Ours) 79.5 (↓ 0.3) 22.1 2.9 (↓ 37.0%) 1448 (↑ 45.8%)
PPT (Ours) 79.8 (↓ 0.0) 22.1 2.9 (↓ 37.0%) 1448 (↑ 45.8%)

DeiT-B

Baseline (Touvron et al., 2021) 81.8 86.6 17.6 295
DynamicViT (Rao et al., 2021) 81.3 (↓ 0.4) 89.4 11.5 (↓ 34.6%) 454 (↑ 53.8%)
IA-RED2 (Pan et al., 2021) 80.3 (↓ 1.5) - 11.8 (↓ 33.0%) 453 (↑ 53.6%)
Evo-ViT† (Xu et al., 2022) 81.3 (↓ 0.5) 87.3 11.7 (↓ 33.5%) 429 (↑ 45.4%)
EViT (Liang et al., 2022) 81.3 (↓ 0.5) 86.6 11.6 (↓ 34.1%) 440 (↑ 49.2%)
PPT (off-the-shelf) (Ours) 80.3 (↓ 1.5) 86.6 11.6 (↓ 34.1%) 445 (↑ 50.8%)
PPT (Ours) 81.4 (↓ 0.4) 86.6 11.6 (↓ 34.1%) 445 (↑ 50.8%)

layers of DeiT models and into the 5th, 9th, and 13th layers of LV-ViT models. For all comparative
experiments, we report the performance of our method in terms of both off-the-shelf and fine-tuned.
Following the approach in Rao et al. (2021), we initialize the backbone models with official pre-
trained ViTs. If fine-tuning is applied, we jointly train the entire models for 30 epochs, similar to
other works (Fayyaz et al., 2022; Liang et al., 2022; Rao et al., 2021). Regarding training strategies
and optimization methods, we follow the setup described in the original papers of DeiT (Touvron
et al., 2021) and LV-ViT (Jiang et al., 2021), except that the basic learning rates are set to be
batchsize

128 × 10−5. The image resolution used for both training and testing is 224 × 224. The decision
threshold τ we introduced in our framework is 7 × 10−5 and 5 × 10−4 in DeiT and LV-ViT-S,
respectively. All the experiments are conducted using PyTorch on NVIDIA GPUs. We report the
top-1 classification accuracy and floating-point operations (FLOPs) to evaluate model efficiency.
Additionally, we measure the throughput of the models on a single NVIDIA V100 GPU with batch
size fixed to 256 same as Tang et al. (2022); Xu et al. (2022).

4.1 MAIN RESULTS

Comparisons with existing token compression methods. Even though we do not add extra
parameters as Rao et al. (2021), or apply complicated token reorganization tricks as Liang et al.
(2022); Xu et al. (2022), the experimental results, as presented in Table 1 and Figure 4, demonstrate
that our method achieves higher accuracy with comparable computation cost. Specifically, PPT
reduces FLOPs by over 37% and improves throughput by over 45% without any accuracy drop
on the classic DeiT-S model as shown in Table 1. Furthermore, the superiority of PPT is evident
across various FLOPs when compared with other token compression methods, as shown in Figure 4.
Specifically, our method excels in the following three aspects: Firstly, at lower FLOPs (below 2.5G),
our method showcases a noteworthy performance improvement of 0.7%-3.8% compared to other
methods. Secondly, at higher FLOPs (3.0G above), our method outperforms the baseline model and
surpasses the capabilities of the comparison methods. Lastly, when used in an off-the-shelf setting,
PPT demonstrates significant improvement of 0.1%-2.3% across various FLOPs compared to other
methods, achieving competitive results with those obtained by fine-tuned models.
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Figure 4: Comparison between our method and other methods under different FLOPs. We conducted a
comprehensive comparison of the performance of various methods after fine-tuning (left) and off-the-shelf
(right), which highlights the superior performance of our method.

Table 2: Comparisons with different variants of ViTs
on ImageNet. We compress the LV-ViT-S (Jiang
et al., 2021) as the base model and achieve promising
accuracy-FLOPs trade-off.

Model Params FLOPs Top-1
(M) (G) Acc. (%)

DeiT-S 22.1 4.6 79.8
DeiT-B 86.6 17.6 81.8
PVT-Small 24.5 3.8 79.8
PVT-Medium 44.2 6.7 81.2
CoaT-Lite Small 20.0 4.0 81.9
CrossViT-S 26.7 5.6 81.0
Swin-T 29.0 4.5 81.3
Swin-S 50.0 8.7 83.0
T2T-ViT-14 22.0 4.8 81.5
T2T-ViT-24 64.1 14.1 82.3
RegNetY-8G 39.0 8.0 81.7
RegNetY-16G 84.0 16.0 82.9
PS-ViT-B/14 21.3 5.4 81.5
PS-ViT-B/18 21.3 8.8 82.3
PiT-S 23.5 2.9 80.9
PiT-B 73.8 12.5 82.0
CvT-13 20.0 4.5 81.6
TNT-S 23.8 5.2 81.5
TNT-B 66.0 14.1 82.9
LV-ViT-S 26.2 6.6 83.3

DynamicViT-LV-S 26.9 4.6 83.0
PS-LV-ViT-S 26.2 4.7 82.4
EViT-LV-S 26.2 4.7 83.0
PPT-LV-S (Ours)
(off-the-shelf) 25.8 4.6 82.8

PPT-LV-S (Ours) 25.8 4.6 83.1
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Figure 5: Comparison of different models with
various accuracy-FLOPs trade-off. Our PPT-LV-S
achieves a quite competitive trade-off than other ViTs.
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Figure 6: The performance of applying our method
to more ViTs (without fine-tuning).

Application on different variants of ViTs. Apart from the standard ViTs (Dosovitskiy et al., 2021;
Touvron et al., 2021), subsequent studies (Chen et al., 2021; Han et al., 2021; Heo et al., 2021; Jiang
et al., 2021; Liu et al., 2021; Radosavovic et al., 2020; Wang et al., 2021; Wu et al., 2021; Xu et al.,
2021; Yuan et al., 2021; Yue et al., 2021) further improve the performance of ViTs by varying the
initial architecture or optimization strategies. To further showcase the potential and superiority of our
approach, we extend the integration of PPT with the LV-ViT-S. As shown in Table 2 and Figure 5, our
PPT-LV-S can achieve a highly competitive performance among numerous vision transformers from
the perspective of accuracy-computation trade-off, and further demonstrate superiority over other
token compression methods on LV-ViT-S. To further demonstrate the generality and superiority of
our approach, we also apply PPT on more variants of ViTs, such as T2T-ViT and PS-ViT, as shown
in Figure 6. More detailed results are shown in Section B of the appendix.
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Figure 7: Visualizations of token compression results on DeiT-S. The masked regions represent the inattentive
redundancy and are pruned, while the patches with the same inner and border color means the duplicative
redundancy and are pooled. The redundancy in the image is pyramid reduced, and our method can adaptively
execute different strategies at different stages based on the input. We demonstrate the generalization of the model
to images of varying complexity. More results are visualized in the Section D of the appendix.

Visualizations of token compression results. To gain further insight into the interpretability of
PPT, we conducted a visualization analysis of the intermediate process of our token compression in
Figure 7. As expected, we observe that PPT tends to implement token pooling in shallow layers and
token pruning in deep layers, and leverage incompletely consistent compression strategies for different
images. As the network deepens, the duplicative redundancy and inattentive redundancy gradually
removed, while the most informative tokens are reserved. From the final output, we observed that
PPT can assist ViTs in focusing on patches specific to the target class, and we also demonstrated
that background patches can be meaningful for recognition. The visualizations corroborate that our
approach is effective in processing images irrespective of whether the backgrounds are simple or
complex. And the results demonstrate that the model is more cautious when processing complex and
information-rich images, preferring token pooling strategies with lower information loss. Conversely,
for simpler images, the model is more decisive and tends to use token pruning strategies. These
observations underscore the importance of our adaptive token compression strategy intuitively.

4.2 ABLATION STUDY

We conduct extensive ablation studies to explore the effectiveness of each component in our method.
The DeiT-S is used as the default model.

Effectiveness of techniques integration. First, we analyze the effectiveness of our proposed
framework by exploring the performance of using token pruning or token pooling separately, and a
comparatively trivial integration approach, i.e., naively combining token pruning and pooling within
a block, under different FLOPs settings. As illustrated in Figure 8, when only using one technique,
token pooling performed better than token pruning in our framework. Combining the two techniques
within a block demonstrates the advantage of techniques integration at lower FLOPs, but it may
reduce the performance of token pooling at higher FLOPs. In contrast, our framework achieves
optimal performance under different Flops, demonstrating its effectiveness.

Different policy selection mechanisms. We believe that different images possess varying levels of
complexity and exhibit different types of redundancy. Therefore, dynamically selecting strategies
based on the input can enhance the model’s flexibility, as demonstrated in Figure 3 and Figure 7.
To further demonstrate the necessity of this strategy, we conduct additional experiments (under
an off-the-shelf scenario) to compare our adaptive selection strategy with the random policy and
the rule-based policy. The rule-based policy involved utilizing token pooling for the initial half of
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Figure 8: Comparison of the PPT framework with
the individual modules and an alternative combination
method under different FLOPs.
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Figure 9: Impact of the decision threshold τ on the
performance with or without training, using the value
range referenced in the statistical data from Figure 3.

Table 3: Effectiveness of different policy selection mechanism.

FLOPs (G) Top-1 Acc(%) of various mechanisms
Random Rule-Based Adaptive (Ours) Policy Inversion

2.5 77.5 78.4 78.8 76.5
2.7 78.2 78.8 79.1 77.6
2.9 79.0 79.2 79.5 78.6

blocks and transitioning to token pruning for the remaining ones. Additionally, we explored the
inversion of our policy decision, wherein pruning was performed instead of pooling, and vice versa.
This exploration aimed to reinforce our claims that token pooling techniques are typically applied
in shallow layers, while token pruning techniques are preferably employed in deeper layers. The
detailed experimental results are presented in Table 3.

Impact of the decision threshold. As a key hyperparameter in PPT, the decision threshold τ controls
the model’s preference for token pruning and token pooling techniques. When the τ is a smaller
value, the model is more likely to use the token pruning policy, and vice versa. It is important to set
a optimal τ to balance the two strategies. Motivated by the statistical data in Figure 3, we explore
the τ range from the average variance of first layer (5× 10−6) to the last layer (1× 10−4) and show
the results in Figure 9. We observe the optimal τ is 6× 10−5 with fine-tuning and 7× 10−5 under
off-the-shelf, respectively.

We also explore the impact of different pruning and pooling policy and different metrics for
redundancy discrimination applied in our framework, we show the results in Section C due to the
space limitations.

5 CONCLUSION

In this work, we bring a new perspective for obtaining efficient vision transformers by integrating
both token pruning and token pooling techniques. Our proposed framework, named token Pruning
& Pooling Transformers (PPT), adaptively decides different token compression policies for various
layers and instances. The proposed method is simple yet effective and can be easily incorporated
into the standard transformer block without additional trainable parameters. Extensive experiments
demonstrate the effectiveness of our method. Specifically, our PPT can reduce over 37% FLOPs and
improve the throughput by over 45% for DeiT-S without any accuracy drop on ImageNet. Despite the
promising results, there are still some limitations to our proposed method that should be acknowledged.
Specifically, PPT can not be directly applied to dense prediction tasks and self-supervised learning,
because the classification token plays an important role in our framework.

Overall, our work offers a valuable contribution to the development of efficient vision transformers,
highlighting the importance of adaptive token compression and providing new insights into the
integration of token pruning and token pooling techniques. We hope that our method inspires new
research and leads to further improvements in the field of efficient transformer-based models.
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A DEEPER ANALYSIS

Distributions of significance scores. In Figure 10, we further investigate the impact of our method on
the distribution of significance scores across different layers. Specifically, we introduce our method
into the 4th, 7th, and 10th layers of the DeiT-S model. As shown in comparison to the original model
(Figure 3 in the main text), the first four layers remain unaffected, while the introduction of PPT in
the fourth layer leads to a significant increase in variance for the subsequent layers. This phenomenon
indicates that our method makes the importance of image tokens more distinct, which may be the
underlying reason for the performance improvement achieved by our method.

Layer 1 ( ) Layer 2 ( ) Layer 3 ( )

Layer 6 ( )Layer 5 ( )

Layer 4* ( )

Layer 7* (4.11 ) Layer 8 ( )

Layer 9 ( ) Layer 10* (2.43 ) Layer 11 ( ) Layer 12 ( )

Figure 10: The scatter and the histogram of the variance of the significance scores assigned to image tokens at
each layer of the compressed DeiT-S model on the ImageNet validation set, the layer with ’*’ indicate the
PPT block is inserted. The y-axis corresponds to the variance value and the x-axis to the index of samples in
the dataset. We display the average variance of each layer at the top of each graph.

（a） （b）

（c） （d）

Figure 11: The average variance of the significance scores at each layer of different ViTs on the ImageNet
validation set. Figure (a) and Figure (c) are generated based on the original models, while Figure (b) and Figure
(d) are generated based on the compressed models with our method.
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In Figure 11, we further refine our analysis by computing the average variance of significance scores
across layers for different ViTs. We can observe a similar phenomenon across different ViTs, where
the variance increases with layer depth, and compressed ViTs exhibit greater variance. This
phenomenon to some extent validates the effectiveness and generality of our method.

B FULL RESULTS

We provide more detailed performance results of PPT on DeiT and LV-ViT-S in Table 4. Again, the
superiority of PPT is evident under different FLOPs. Specifically, PPT maintains remarkably high
accuracy even at higher compression rates, and interestingly, it even outperforms the original model
at lower compression rates.

Table 4: Results of PPT on different ViTs under various FLOPs, ACC∗ indicates that the ACC is evaluated
under off-the-shelf (without fine-tuning).

Model Removed tokens FLOPs Top-1 Top-1
per stage (G) Acc. (%) Acc∗. (%)

ViT (DeiT)-Ti

0 1.3 72.2 72.2
10 1.16 72.32 72.09
20 1.07 72.26 72.05
30 0.97 72.25 72.06
40 0.89 72.10 71.74
45 0.84 71.99 71.61
50 0.80 71.90 71.28
60 0.74 71.58 70.54

ViT (DeiT)-S

0 4.6 79.8 79.8
10 4.26 79.99 79.79
20 3.92 80.00 79.81
30 3.59 79.94 79.72
40 3.26 79.89 79.65
50 2.94 79.76 79.49
60 2.72 79.58 79.13

ViT (DeiT)-B

0 17.6 81.8 81.8
40 12.48 81.47 80.88
47 11.60 81.37 80.30
50 11.27 81.19 80.04

LV-ViT-S

0 6.6 83.3 83.3
40 4.94 83.25 83.03
50 4.60 83.09 82.82
60 4.33 82.82 82.57

In addition, we provide the detailed data for plots in Figure 4 in Table 5 and Table 6.

Table 5: The corresponding data for Figure. 4 (a)

FLOPs (G) Top-1 Acc(%) of Models (Fine-tunned)
DynamicViT EViT ATS ToMe PPT (Ours)

2.0 - - 75.1 - 78.9
2.3 - 78.5 - - 79.2
2.5 - - 78.0 - 79.4
2.6 - 78.9 - 79.2 79.5
2.7 - - - 79.4 79.6
2.9 79.3 - - 79.5 79.8
3.0 - 79.5 79.7 - 79.8
3.4 79.6 - - 79.7 79.9
3.5 - 79.8 - - 79.9
4.0 79.8 79.8 - 79.7 80.0

14



Under review as a conference paper at ICLR 2024

Table 6: The corresponding data for Figure. 4 (b)

FLOPs (G) Top-1 Acc(%) of Models (Off-the-shelf)
EViT ATS ToMe PPT(Ours)

2.0 - 72.7 - 75.0
2.5 76.5 77.6 - 78.8
2.7 77.4 - 78.8 79.1
3.0 78.5 79.2 79.1 79.5
3.5 79.3 - 79.4 79.7
4.0 79.7 - 79.7 79.8

C EXTEND EXPERIMENTS

Different token pruning policy. As described in Section 3.2, whether to take values matrix V
into consideration influences the performance of the model. We furthermore explore the impact of
different token scoring mechanisms comprehensively. As illustrated in Figure 12, we observe that the
performance of the two methods is closely comparable under off-the-shelf while scoring with the
norm of V achieves slightly better results after fine-tuning.

Different token pooling policy. Here we discuss different design choices for token pooling. For
example, we could also utilize the efficient density peak clustering algorithm (DPC) (Rodriguez &
Laio, 2014) for token merging. It identifies density peaks based on the local density and distance
between image tokens, and assigns each token to the nearest density peak and forms clusters by
merging nearby tokens that belong to the same peak. Figure 13 presents the effects of different
token pooling policies. Our experiments demonstrate that BSM can improve the results of DPC by
approximately 0.1% with fine-tuning, and the advantage gap is even larger without training.
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Figure 12: Impact of different score assignment meth-
ods when token pruning applied in our framework.
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Figure 13: BSM V.S. DPC when token pooling ap-
plied in our framework.

Different metrics for redundancy discrimination. The reason we use the variance of the significant
score as our policy score in our approach is because the variance reflects the dispersion of the values.
A larger variance indicates a clearer distinction between important and unimportant image tokens,
which is beneficial for token pruning. Conversely, when the variance is smaller, token pooling is more
suitable. Additionally, we have explored another metric, the average of token similarity, which also
reflects the redundancy level of tokens in different layers. However, through ablation study (without
fine-tuning), we have observed that its performance is inferior to our chosen metric.

Table 7: The performance of different metrics.

Metrics GFLOPs Top-1 ACC (%)
average of token similarity

2.9
79.2

variance of the significant score 79.5
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D MORE VISUALIZATION

Input image Stage 1 Stage 2 Stage 3 Input image Stage 1 Stage 2 Stage 3

Figure 14: Extended visualizations of our token compression results on DeiT-S with 12 layers. The input
image is sampled from the validation of ImageNet. The masked regions represent the inattentive redundancy
and are pruned, while the patches with the same inner and border color means the duplicative redundancy and
are pooled. The redundancy in the image is pyramid reduced, and our method can adaptively execute different
strategies at different stages based on the input. We demonstrate our method works well for different images
from various categories with various complexity.
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