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Abstract— Early defect detection is essential to ensure 

product quality and reduce waste in industrial manufacturing. 

However, traditional defect detection methods rely on large 

labelled datasets to train models or manual inspection, both of 

which can be time-consuming and prone to errors. The 

challenge lies in developing an automated system for early 

anomaly detection that requires minimal labelled data, making 

it adaptable to various industrial environments. To address this 

challenge, a Siamese network, a few-shot learning technique, 

was utilised. The network was designed to detect defects in 

images of products with only a few labelled examples. A custom 

lightweight Convolutional Neural Network (CNN) was 

developed for the embedding phase of the Siamese network to 

reduce inference time while maintaining model performance. 

This architecture, coupled with Explainable AI (XAI), enabled 

the model to provide transparent and explainable results, which 

is crucial for industrial applications where quick decision-

making and understanding of model behaviour are vital. 

Keywords— Anomaly Detection, Siamese Network, Few-shot 

Learning, Explainable AI (XAI). 

I. INTRODUCTION 

Industrial manufacturing has long been the backbone of 
global economic development, evolving from steam power in 
the 18th century [1] to today’s advanced automated systems. 
It spans sectors like textiles, pharmaceuticals, construction, 
and electronics, driven by the need for high-volume, high-
quality, and cost-effective production. Maintaining product 
quality in such fast-paced environments is critical. Quality 
inspection ensures that products meet standards before 
reaching the market, preventing defects that could lead to 
recalls, waste, or safety risks. This is especially crucial in 
industries like pharmaceuticals and electronics, where a single 
defect can have serious consequences. 

In recent years, machine learning (ML) has transformed 
quality control by automating defect detection. Anomaly 
detection models can identify subtle deviations from known-
good samples, improving accuracy and consistency. However, 
most existing models require large, labelled datasets and 
struggle to adapt when presented with new or rare defects, 
making them less practical for real-time production lines 
where conditions constantly change [2]. 

Few-shot learning offers a promising alternative. It 
enables models to learn from very few labelled examples, 
addressing the issue of limited data. But despite its strengths, 
the current few-shot anomaly detection approaches often lack 
transparency. In high-stakes manufacturing, explainability is 
just as important as accuracy. Trust and adoption remain low 
without clear reasoning behind a model’s decision. 

This paper explores a solution that combines few-shot 
learning with explainable Siamese networks to detect defects 
early in production, using minimal data while remaining 
explainable and adaptable to changing environments. 

II. ANOMALY DETECTION 

Anomaly detection in industrial settings has been widely 
studied to enhance and automate defect identification 
processes. With the growing integration of artificial 
intelligence, particularly deep learning, the ability to detect 
subtle irregularities in manufacturing has significantly 
improved. This section provides an overview of current 
approaches in image-based anomaly detection, focusing on 
the roles of computer vision, and explores different learning 
paradigms, including supervised, unsupervised, and few-shot 
learning. 

A. Computer Vision and Feature Extraction 

The use of computer vision in anomaly detection has 
rapidly advanced due to deep learning (DL) techniques, 
especially Convolutional Neural Networks (CNNs), which 
have proven effective at extracting relevant features from 
image data. CNNs can learn hierarchical representations 
directly from raw pixel inputs, making them well-suited for 
tasks like defect identification in industrial images [3].  

A key advancement in this area is transfer learning, where 
pre-trained CNN models such as ResNet50, InceptionV3, 
DenseNet121, and Xception, originally trained on large 
datasets like ImageNet, are repurposed for new tasks by 
removing the top classification layers and using the lower 
layers for feature extraction [4]. This removes the need for 
handcrafted feature methods like edge detection, Gabor filters, 
or statistical texture features (e.g., Gray-Level Co-occurrence 
Matrix), allowing the model to focus on learning from the data 
itself. 

B. Supervised Anomaly Detection 

In supervised anomaly detection, models are trained with 
fully labelled datasets where both normal and defective 
samples are known. According to surveys by Cui, Liu, and 
Lian (2023)[5] and Wang et al. (2021)[6], this approach has 
traditionally been effective in controlled environments, where 
each defect class is well-documented. 

However, the main limitation is data dependency. The 
requirement for large, labelled datasets covering all possible 
defect types. This is not always feasible in real-world 
manufacturing, where collecting and labelling data is time-
consuming and expensive. Furthermore, supervised models 
often struggle with generalisation, meaning they may fail to 
detect novel defects not seen during training. A common 
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algorithm used in this category is Support Vector Machines 
(SVM), but due to the challenges mentioned, research has 
gradually shifted toward unsupervised approaches for better 
scalability. 

C. Unsupervised Anomaly Detection. 

Unsupervised anomaly detection methods are typically 
trained using only normal data, without requiring examples of 
defective or anomalous samples. These models assume that 
anomalies will deviate significantly from the learned 
distribution. While this approach eliminates the need for 
labelled anomalies, it introduces several limitations, including 
the challenge of selecting an appropriate detection threshold 
and the inability to introduce or learn from specific anomalous 
examples. 

1) Autoencoder (AE) 
Autoencoder is one of the most widely used unsupervised 

methods [7]. It works by compressing input images through 
an encoder and reconstructing them through a decoder. The 
reconstruction error, calculated as the difference between 
input and output, is used to detect anomalies. A high 
reconstruction error suggests that the input image deviates 
from normal patterns. However, this method relies heavily on 
setting a proper error threshold, which typically requires 
extensive experimentation and manual tuning. Additionally, it 
cannot adapt to new anomaly types because it only learns from 
normal data. 

2) Variational Autoencoder (VAE) 
Variational Autoencoder enhance standard AEs by 

encoding the input into a distribution (mean and variance) 
rather than a single point. This probabilistic encoding helps 
handle more diverse inputs and provides better generalisation 
to unseen samples [8][9]. Despite this, VAEs are more 
complex to train and suffer from similar thresholding issues as 
AEs. 

3) Generative Adversarial Network (GAN) 
GAN go a step further by training two competing networks 

- a generator that tries to create realistic images, and a 
discriminator that learns to distinguish between real and 
generated images [10]. Anomalies are flagged when the 
generator fails to replicate input data convincingly. While 
GANs can be powerful, they are computationally intensive 
and harder to train effectively, especially for smaller datasets. 

III. FEW-SHOT LEARNING 

Few-shot learning is a technique designed to overcome the 
challenge of limited labelled data by allowing models to 
generalise from only a few examples per class. This makes it 
especially useful in situations where obtaining large annotated 
datasets is impractical. In anomaly detection, few-shot 
approaches aim to identify anomalies by learning key patterns 
from a small set of normal and, occasionally, anomalous 
samples. Although Siamese Networks were originally 
introduced for tasks like signature verification and face 
recognition [11], they have been increasingly adapted for 
anomaly detection despite not being initially designed for it. 
This research builds upon that adaptation, applying the 
Siamese approach to industrial defect detection. 

A. Siamese Networks 

Siamese Networks are a popular few-shot architecture that 
works by comparing input image pairs. The model consists of 
two identical subnetworks that extract feature embeddings 

from each image [11]. The distance (e.g., Euclidean or 
absolute) between these embeddings is then calculated to 
determine similarity. A small distance implies the images are 
similar (likely normal), while a large distance suggests a 
discrepancy. Siamese networks are well-suited for few-shot 
tasks due to their ability to learn a similarity metric instead of 
classifying explicitly. 

B. FewSOME 

FewSOME is a one-class anomaly detection method built 
on a Siamese-based structure [12]. It was trained using 60 
normal samples from the MVTec industrial anomaly detection 
dataset [10], enabling the model to learn what constitutes 
normality in an industrial setting. However, while effective, 
this approach still requires a relatively large number of normal 
samples for a few-shot scenario. Moreover, because it is 
trained only on normal samples, it has no built-in mechanism 
to introduce or learn directly from anomalous examples, 
limiting its adaptability when new types of defects emerge. 

IV. EXPLAINABLE AI (XAI) 

XAI techniques help make deep learning models more 
transparent and explainable by highlighting the areas the 
model focuses on when making decisions. This is particularly 
important in fields like anomaly detection, where 
understanding the cause of a prediction is as crucial as the 
prediction itself. Several XAI techniques have been developed 
to explain convolutional neural networks (CNNs) and their 
decision-making process. 

A. Saliency Maps (Pixel Attribution Maps) 

Saliency Map compute the gradient of the model’s output 
with respect to each input pixel. This results in a heatmap that 
reveals which pixels contributed most to the model’s decision. 
Because of their fine-grained sensitivity to image structure, 
saliency maps help visualise subtle pixel-level cues that 
influence prediction [13]. 

B. Grad-CAM (Gradient-weighted Class Activation 

Mapping) 

Grad-CAM works by computing the gradients of a target 
output (typically the class score or feature map) with respect 
to the activations in the final convolutional layer. These 
gradients are averaged and multiplied with the activation maps 
to generate a weighted heatmap. This highlights spatial 
regions that contribute most to the prediction. In anomaly 
detection, especially when using CNN-based classifiers 
trained to detect defects, Grad-CAM can show which image 
regions led to a high anomaly score [14]. 

C. LIME (Local Interpretable Model-agnostic 

Explanations) 

LIME works by perturbing parts of the input image (such 
as turning patches off) and observing how the model’s output 
changes. It then trains a simple, interpretable model (like 
linear regression) on these perturbed samples to approximate 
the local behaviour of the complex model. In anomaly 
detection, LIME can help highlight which image regions are 
most responsible for increasing the anomaly score. For 
example, if removing a small region significantly drops the 
anomaly score, that region is likely part of the defect [15]. 

 However, these explainability methods are primarily 
designed for traditional classification models that produce 
class-specific outputs or anomaly scores based on a single 
input image. In contrast, Siamese networks operate 
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differently, they compare two input images and generate a 
similarity score based on the distance between their learned 
feature embeddings. Since there is no direct class score or 
heatmap tied to a single image, methods like LIME cannot be 
effectively applied. Recent work has explored adapting Grad-
CAM to Siamese networks by applying it to the backbone 
network to highlight features influencing similarity scores. 
These approaches generally focus on higher-level feature 
activations within deep models [16][17]. In this work, we 
focus instead on a lightweight approach that directly computes 
pixel-level saliency by measuring the gradient of the similarity 
score with respect to input pixels. This allows for fine-grained, 
interpretable visualisations that reveal the most influential 
regions in the input image, offering intuitive insights into the 
model’s decision process without relying on class-based 
outputs. 

V. PROPOSED METHOD 

This method is structured around four key components: 
image pairing, embedding extraction, distance measurement 
and the XAI module. Together, these components form a 
complete pipeline tailored for anomaly detection using a 
Siamese network. The process begins with preparing and 
augmenting the dataset to form image pairs suitable for 
training. These pairs are then passed through a feature 
extractor to generate embeddings, which are compared using 
a distance metric to evaluate similarity. Based on these 
comparisons, the model is trained to distinguish between 
normal and anomalous image pairs. Finally, an explainability 
module is integrated to produce saliency maps that highlight 
regions of interest, making the model’s predictions more 
transparent. Each component is described in detail in the 
following sections. 

A. Data preparation for 

The first step in the proposed method involves preparing 
the dataset for training the Siamese network. A total of 24 
images are initially used, consisting of 8 anomalous images 
and 16 non-anomalous images. These images are categorised 
into three specific groups: 8 anchor images selected from the 
non-anomalous set, 8 non-anomalous images that differ from 
the anchors, and 8 anomalous images representing defective 
or irregular instances. 

To enhance the diversity and volume of the training data, 
each image undergoes an augmentation process. Seven 
augmentation techniques are applied to each image, including 
rotation by 90 degrees clockwise, rotation by 180 degrees, 
rotation by 90 degrees counterclockwise, horizontal flipping, 
vertical flipping, adjustment to high brightness, and 
adjustment to low brightness. These transformations simulate 
various realistic conditions and viewpoints, thereby helping 
the model generalise better during training. As a result, the 
number of images in each class increases to 64, significantly 
enriching the dataset. 

Once augmentation is complete, the next step involves 
constructing image pairs, which is a critical requirement for 
training Siamese networks. Unlike conventional deep learning 
models that operate on single images, a Siamese network 
learns to differentiate between pairs of images by comparing 
their feature embeddings. Therefore, pairs of images are 
created with associated similarity labels. Each non-anomalous 
image is paired with an anchor image and assigned a label of 
1, indicating that the two images are similar. Conversely, each 
anomalous image is paired with an anchor image and assigned 
a label of 0, reflecting that the two images are dissimilar. 

Fig. 1. Architecture of the proposed lightweight CNN model for feature embedding within the Siamese network. The network consists of 1 input layer, 4 

convolutional 2d layers, 3 max pooling 2d layers, 1 flatten layer, and 1 dense (fully connected) layer. This design is optimised to extract essential 
discriminative features while maintaining low model complexity and fast inference times. 
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This pairing mechanism ensures that the Siamese network 
is trained to learn meaningful representations of visual 
similarity and dissimilarity, which is essential for effective 
anomaly detection. The specific architecture of the Siamese 
network and the underlying training process are discussed in 
the next section. 

B. Siamese network 

1) Embedding Model 
. In the Siamese network architecture, the extraction of 

embeddings from input images plays a pivotal role in the 
overall performance of the model. These embeddings, which 
serve as condensed feature representations, are subsequently 
compared through a distance metric to assess the similarity 
between image pairs. Hence, the quality and efficiency of the 
feature extraction process directly impact the Siamese 
network's ability to discriminate between similar and 
dissimilar images. 

Conventional approaches to feature embedding often 
leverage transfer learning with pre-trained convolutional 
neural networks (CNNs) such as VGG19, ResNet50, or 
InceptionV3 [4]. These models, while highly effective in 
capturing complex feature hierarchies, are typically 
computationally intensive, leading to increased inference 
times and elevated resource requirements. For applications 
where low-latency and resource efficiency are critical, such 
overhead becomes a significant limitation. 

To overcome these challenges, this research proposes a 
lightweight custom CNN specifically optimised for 
embedding extraction within the Siamese framework. The 
developed network comprises only 8 layers, a substantial 
reduction compared to the 19 layers of VGG19 [18], the 50 
layers of ResNet50 [19], and the approximately 48 layers of 
InceptionV3 [20]. Despite its relatively shallow depth, the 
proposed CNN architecture is meticulously designed to retain 
essential discriminative features necessary for accurate 
similarity learning. By minimising network complexity 
without compromising feature quality, the custom CNN 
achieves a favourable balance between inference speed and 
embedding effectiveness. The detailed structure of the 
proposed CNN is depicted in Fig. 1. 

2) DistanceLayer 
After obtaining the feature embeddings of the anchor and 

validation images through the embedding model, the 
DistanceLayer computes their absolute element-wise 
difference. This operation highlights the magnitude of 
difference between corresponding features in the two 
embeddings, without considering the direction of change. 
Using the absolute value ensures that the comparison captures 
only how much two features differ, simplifying the 
information fed to the classifier. 

There are several ways to measure distance between 
embeddings in Siamese networks, such as Euclidean distance 
(L2 norm), cosine similarity, or even learnable distance 
functions. Each method captures different aspects of 
similarity: Euclidean distance measures overall geometric 
distance, while cosine similarity measures the angle between 
vectors, focusing on direction rather than magnitude [21][22]. 
However, in this case, absolute difference is used for its 
simplicity and computational efficiency and because it 
provides a straightforward, explainable representation of 
feature-wise dissimilarity. 

The output from the DistanceLayer is then passed into a 
dense layer with a sigmoid activation, producing a similarity 
score between 0 and 1. By explicitly computing the distance, 
the model reduces the burden on the classifier to infer 
relational patterns directly from embeddings, leading to 
improved explainability and more efficient training 
convergence. 

C. XAI Module 

Considering the limitations of conventional explainability 
techniques in Siamese models, a custom saliency-based 
method was developed to provide explainability for the 
proposed Siamese network. This module enables the 
visualisation of the most influential regions within the 
validation images that affect the model's similarity 
predictions. 

The method operates by calculating the gradient of the 
similarity score with respect to the input pixels of the 
validation image. When a validation image is compared with 
an anchor image, the model produces a similarity output based 
on the distance between their feature embeddings. To 
determine the contribution of each pixel to this similarity 
score, the partial derivatives of the output are computed with 
respect to each input pixel. The magnitude of these gradients 
reflects the sensitivity of the output to changes in the 
corresponding pixels. To construct the saliency map, the 
absolute values of these gradients are taken to capture the 
overall strength of influence regardless of direction. These 
values are then averaged across the colour channels to produce 
a single-channel intensity map. Finally, a smoothing operation 
is applied to the map to improve its visual explainability by 
reducing noise while preserving critical structures. 

The resulting saliency maps highlight the regions within 
the validation image that have the greatest impact on the 
model's assessment of similarity or dissimilarity. Higher 
intensity areas in the map correspond to regions that the 
network relies upon more heavily during the comparison 
process. By adapting the gradient-based saliency technique to 
a Siamese framework, this method provides a practical and 
effective way to interpret model decisions in architectures 
where conventional class-based explanations are not 
applicable. 

VI. TESTING 

The performance of the proposed custom-built CNN was 
evaluated against several widely used pre-trained CNNs, 
including VGG19, ResNet50, and InceptionV3. The 
evaluation was conducted using the leather class from the 
MVTec Anomaly Detection dataset, with precision, recall, F1-
score, accuracy, and area under the receiver operating 
characteristic curve (AUROC) used as the primary 
performance metrics. Results are presented in TABLE I.  

Fig. 2. Siamese model architecture 
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TABLE I.  PERFORMANCE COMPARISON OF THE SIAMESE MODEL 

USING DIFFERENT CNN FEATURE EXTRACTORS ON THE MVTEC LEATHER 

DATASET 

Embedding 

model 
Precision Recall 

F1-

score 
Accuracy AUROC 

Custom 

CNN 
93.59% 100% 0.97 96.58% 0.985 

VGG19 98.63% 60% 0.75 66.44% 0.623 

RestNet50 94.52% 56.56% 0.70 60.96% 0.66 

InceptionV3 100% 52.21% 0.69 54.79% 0.147 

The results show that the custom CNN outperformed the 
pre-trained models in terms of overall balance across metrics. 
While InceptionV3 and VGG19 showed high precision, they 
suffered from significantly lower recall, which is critical in 
anomaly detection contexts where missing a true anomaly has 
a high cost. The custom model achieved perfect recall, high 
precision, and the highest F1-score, indicating strong 
performance in both detecting and correctly classifying 
anomalies. Additionally, it demonstrated superior AUROC, 
suggesting robust discriminative ability across different 
thresholds. 

Given that early anomaly detection is a key focus of this 
research, further evaluation was conducted to assess 
computational efficiency. The models were compared in terms 
of inference time, training time, and model size, as shown in 
TABLE II.  

These results reinforce the practical advantages of the 
proposed model. The custom CNN significantly reduced 
inference and training time while maintaining a competitive 
model size. Compared to the larger and more complex pre-
trained alternatives, it offers a more efficient solution suitable 
for real-time or resource-constrained deployment 
environments. 

To evaluate the model’s generalisation capability beyond the 
MVTec dataset, it was further tested on the Marble Surface 
AD 2 dataset [23]. TABLE III. presents the accuracy and 
efficiency metrics on both datasets with the custom CNN as 
the embedding model. 

TABLE II.  INFERENCE TIME, TRAINING TIME, AND MODEL SIZE OF THE 

CUSTOM CNN COMPARED TO PRE-TRAINED CNN MODELS 

Embedding model 
Inference 

time 

Training 

time 
Model size 

Custom CNN ~ 0.03s ~ 55s 467 MB 

VGG19 ~ 0.069s ~ 6m 1.47 GB 

RestNet50 ~ 0.085s ~ 12m 5.03 GB 

InceptionV3 ~ 0.072s ~ 16m 363 MB 

 

TABLE III.  EVALUATION RESULTS OF THE CUSTOM SIAMESE MODEL 

ON MVTEC AND MARBLE SURFACE AD 2 DATASETS 
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MVTec 96.58 100 93.59 0.97 0.985 ~ 30ms 467 

Marble 92.18 94.4 90.32 0.92 0.936 ~ 30ms 467 

 

The model maintained high accuracy, precision, and recall 
on the external Marble dataset, confirming its ability to 
generalise across domains. The inference time and model size 
remained consistent, indicating stable efficiency regardless of 
the dataset. 

To complement the quantitative evaluation, visual 
explainability was assessed using the custom saliency-based 
XAI module described earlier. The generated saliency maps 
highlight the most influential regions within anomalous 
samples that guided the model’s similarity judgments. Fig. 3 
presents example outputs from the MVTec leather dataset, 
while Fig. 4 illustrates results from the Marble Surface AD 2 
dataset. In both cases, the highlighted regions align well with 
actual defect areas, confirming the model’s ability not only to 
detect anomalies accurately but also to provide meaningful 
visual explanations of its decisions.  

VII. CONCLUSION 

This study presented a custom-designed Siamese network 
for anomaly detection, focusing on the performance and 
efficiency of the model. The custom CNN used as the 
embedding model in the Siamese architecture demonstrated 
superior performance compared to the same Siamese network 
using pre-trained CNNs, including VGG19, ResNet50, and 
InceptionV3, as embedding models. On the leather class of the 
MVTec Anomaly Detection dataset, the Siamese model with 
the custom CNN achieved a precision of 93.59%, a recall of 
100%, an F1-score of 0.97, and an AUROC of 0.985, 

Fig. 3. Saliency map visualizations of anomalous samples from the MVTec

leather dataset, showing regions that contributed most to the similarity 
judgment. 

Fig. 4. Saliency map outputs for samples from the Marble Surface AD 2 

dataset, highlighting key areas influencing the anomaly detection 

outcome. 
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highlighting the effectiveness of the custom CNN with the 
Siamese model in anomaly detection tasks. 

A key contribution of this work was the development of a 
pixel-level explainable AI (XAI) module designed for the 
Siamese network. The XAI module generates saliency maps 
to visualise which parts of the input images influenced the 
model's anomaly detection decisions. This approach is 
essential for improving model explainability, especially in 
non-conventional architectures like Siamese networks, where 
traditional XAI techniques do not directly apply. 

The performance of the custom Siamese network was also 
evaluated in terms of computational efficiency. Testing on a 
MacBook Pro with an M3 Pro chip demonstrated an 
impressive inference time of 30ms. To assess real-world 
applicability, future work could explore the model's 
performance in throttled, controlled environments and test its 
feasibility for real-time anomaly detection. Additionally, the 
model's performance with higher-resolution images could be 
evaluated to detect more subtle anomalies and expand its 
capabilities. 

In conclusion, the custom Siamese network with an 
integrated XAI module offers a robust, efficient, and 
explainable solution for anomaly detection. The strong 
performance of the Siamese model using the custom CNN as 
its embedding model, combined with its computational 
efficiency and explainability, makes it a promising approach 
for industrial anomaly detection tasks. Future work could 
focus on optimising the model architecture, evaluating its 
generalisability across a broader range of datasets, and further 
refining the XAI module for application in other detection 
scenarios. 
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