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Abstract— Early defect detection is essential to ensure
product quality and reduce waste in industrial manufacturing.
However, traditional defect detection methods rely on large
labelled datasets to train models or manual inspection, both of
which can be time-consuming and prone to errors. The
challenge lies in developing an automated system for early
anomaly detection that requires minimal labelled data, making
it adaptable to various industrial environments. To address this
challenge, a Siamese network, a few-shot learning technique,
was utilised. The network was designed to detect defects in
images of products with only a few labelled examples. A custom
lightweight Convolutional Neural Network (CNN) was
developed for the embedding phase of the Siamese network to
reduce inference time while maintaining model performance.
This architecture, coupled with Explainable AI (XAI), enabled
the model to provide transparent and explainable results, which
is crucial for industrial applications where quick decision-
making and understanding of model behaviour are vital.

Keywords— Anomaly Detection, Siamese Network, Few-shot
Learning, Explainable AI (XAl).

I. INTRODUCTION

Industrial manufacturing has long been the backbone of
global economic development, evolving from steam power in
the 18th century [1] to today’s advanced automated systems.
It spans sectors like textiles, pharmaceuticals, construction,
and electronics, driven by the need for high-volume, high-
quality, and cost-effective production. Maintaining product
quality in such fast-paced environments is critical. Quality
inspection ensures that products meet standards before
reaching the market, preventing defects that could lead to
recalls, waste, or safety risks. This is especially crucial in
industries like pharmaceuticals and electronics, where a single
defect can have serious consequences.

In recent years, machine learning (ML) has transformed
quality control by automating defect detection. Anomaly
detection models can identify subtle deviations from known-
good samples, improving accuracy and consistency. However,
most existing models require large, labelled datasets and
struggle to adapt when presented with new or rare defects,
making them less practical for real-time production lines
where conditions constantly change [2].

Few-shot learning offers a promising alternative. It
enables models to learn from very few labelled examples,
addressing the issue of limited data. But despite its strengths,
the current few-shot anomaly detection approaches often lack
transparency. In high-stakes manufacturing, explainability is
just as important as accuracy. Trust and adoption remain low
without clear reasoning behind a model’s decision.
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This paper explores a solution that combines few-shot
learning with explainable Siamese networks to detect defects
early in production, using minimal data while remaining
explainable and adaptable to changing environments.

II. ANOMALY DETECTION

Anomaly detection in industrial settings has been widely
studied to enhance and automate defect identification
processes. With the growing integration of artificial
intelligence, particularly deep learning, the ability to detect
subtle irregularities in manufacturing has significantly
improved. This section provides an overview of current
approaches in image-based anomaly detection, focusing on
the roles of computer vision, and explores different learning
paradigms, including supervised, unsupervised, and few-shot
learning.

A. Computer Vision and Feature Extraction

The use of computer vision in anomaly detection has
rapidly advanced due to deep learning (DL) techniques,
especially Convolutional Neural Networks (CNNs), which
have proven effective at extracting relevant features from
image data. CNNs can learn hierarchical representations
directly from raw pixel inputs, making them well-suited for
tasks like defect identification in industrial images [3].

A key advancement in this area is transfer learning, where
pre-trained CNN models such as ResNet50, InceptionV3,
DenseNet121, and Xception, originally trained on large
datasets like ImageNet, are repurposed for new tasks by
removing the top classification layers and using the lower
layers for feature extraction [4]. This removes the need for
handcrafted feature methods like edge detection, Gabor filters,
or statistical texture features (e.g., Gray-Level Co-occurrence
Matrix), allowing the model to focus on learning from the data
itself.

B. Supervised Anomaly Detection

In supervised anomaly detection, models are trained with
fully labelled datasets where both normal and defective
samples are known. According to surveys by Cui, Liu, and
Lian (2023)[5] and Wang et al. (2021)[6], this approach has
traditionally been effective in controlled environments, where
each defect class is well-documented.

However, the main limitation is data dependency. The
requirement for large, labelled datasets covering all possible
defect types. This is not always feasible in real-world
manufacturing, where collecting and labelling data is time-
consuming and expensive. Furthermore, supervised models
often struggle with generalisation, meaning they may fail to
detect novel defects not seen during training. A common
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algorithm used in this category is Support Vector Machines
(SVM), but due to the challenges mentioned, research has
gradually shifted toward unsupervised approaches for better
scalability.

C. Unsupervised Anomaly Detection.

Unsupervised anomaly detection methods are typically
trained using only normal data, without requiring examples of
defective or anomalous samples. These models assume that
anomalies will deviate significantly from the learned
distribution. While this approach eliminates the need for
labelled anomalies, it introduces several limitations, including
the challenge of selecting an appropriate detection threshold
and the inability to introduce or learn from specific anomalous
examples.

1) Autoencoder (AE)

Autoencoder is one of the most widely used unsupervised
methods [7]. It works by compressing input images through
an encoder and reconstructing them through a decoder. The
reconstruction error, calculated as the difference between
input and output, is used to detect anomalies. A high
reconstruction error suggests that the input image deviates
from normal patterns. However, this method relies heavily on
setting a proper error threshold, which typically requires
extensive experimentation and manual tuning. Additionally, it
cannot adapt to new anomaly types because it only learns from
normal data.

2) Variational Autoencoder (VAE)

Variational Autoencoder enhance standard AEs by
encoding the input into a distribution (mean and variance)
rather than a single point. This probabilistic encoding helps
handle more diverse inputs and provides better generalisation
to unseen samples [8][9]. Despite this, VAEs are more
complex to train and suffer from similar thresholding issues as
AEs.

3) Generative Adversarial Network (GAN)

GAN go a step further by training two competing networks
- a generator that tries to create realistic images, and a
discriminator that learns to distinguish between real and
generated images [10]. Anomalies are flagged when the
generator fails to replicate input data convincingly. While
GANSs can be powerful, they are computationally intensive
and harder to train effectively, especially for smaller datasets.

III. FEW-SHOT LEARNING

Few-shot learning is a technique designed to overcome the
challenge of limited labelled data by allowing models to
generalise from only a few examples per class. This makes it
especially useful in situations where obtaining large annotated
datasets is impractical. In anomaly detection, few-shot
approaches aim to identify anomalies by learning key patterns
from a small set of normal and, occasionally, anomalous
samples. Although Siamese Networks were originally
introduced for tasks like signature verification and face
recognition [11], they have been increasingly adapted for
anomaly detection despite not being initially designed for it.
This research builds upon that adaptation, applying the
Siamese approach to industrial defect detection.

A. Siamese Networks

Siamese Networks are a popular few-shot architecture that
works by comparing input image pairs. The model consists of
two identical subnetworks that extract feature embeddings

from each image [11]. The distance (e.g., Euclidean or
absolute) between these embeddings is then calculated to
determine similarity. A small distance implies the images are
similar (likely normal), while a large distance suggests a
discrepancy. Siamese networks are well-suited for few-shot
tasks due to their ability to learn a similarity metric instead of
classifying explicitly.

B. FewSOME

FewSOME is a one-class anomaly detection method built
on a Siamese-based structure [12]. It was trained using 60
normal samples from the MV Tec industrial anomaly detection
dataset [10], enabling the model to learn what constitutes
normality in an industrial setting. However, while effective,
this approach still requires a relatively large number of normal
samples for a few-shot scenario. Moreover, because it is
trained only on normal samples, it has no built-in mechanism
to introduce or learn directly from anomalous examples,
limiting its adaptability when new types of defects emerge.

IV. EXPLAINABLE Al (XAI)

XAI techniques help make deep learning models more
transparent and explainable by highlighting the areas the
model focuses on when making decisions. This is particularly
important in fields like anomaly detection, where
understanding the cause of a prediction is as crucial as the
prediction itself. Several XAl techniques have been developed
to explain convolutional neural networks (CNNs) and their
decision-making process.

A. Saliency Maps (Pixel Attribution Maps)

Saliency Map compute the gradient of the model’s output
with respect to each input pixel. This results in a heatmap that
reveals which pixels contributed most to the model’s decision.
Because of their fine-grained sensitivity to image structure,
saliency maps help visualise subtle pixel-level cues that
influence prediction [13].

B. Grad-CAM (Gradient-weighted Class Activation

Mapping)

Grad-CAM works by computing the gradients of a target
output (typically the class score or feature map) with respect
to the activations in the final convolutional layer. These
gradients are averaged and multiplied with the activation maps
to generate a weighted heatmap. This highlights spatial
regions that contribute most to the prediction. In anomaly
detection, especially when using CNN-based -classifiers
trained to detect defects, Grad-CAM can show which image
regions led to a high anomaly score [14].

C. LIME (Local Interpretable Model-agnostic
Explanations)

LIME works by perturbing parts of the input image (such
as turning patches off) and observing how the model’s output
changes. It then trains a simple, interpretable model (like
linear regression) on these perturbed samples to approximate
the local behaviour of the complex model. In anomaly
detection, LIME can help highlight which image regions are
most responsible for increasing the anomaly score. For
example, if removing a small region significantly drops the
anomaly score, that region is likely part of the defect [15].

However, these explainability methods are primarily
designed for traditional classification models that produce
class-specific outputs or anomaly scores based on a single
input image. In contrast, Siamese networks operate
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differently, they compare two input images and generate a
similarity score based on the distance between their learned
feature embeddings. Since there is no direct class score or
heatmap tied to a single image, methods like LIME cannot be
effectively applied. Recent work has explored adapting Grad-
CAM to Siamese networks by applying it to the backbone
network to highlight features influencing similarity scores.
These approaches generally focus on higher-level feature
activations within deep models [16][17]. In this work, we
focus instead on a lightweight approach that directly computes
pixel-level saliency by measuring the gradient of the similarity
score with respect to input pixels. This allows for fine-grained,
interpretable visualisations that reveal the most influential
regions in the input image, offering intuitive insights into the
model’s decision process without relying on class-based
outputs.

V. PROPOSED METHOD

This method is structured around four key components:
image pairing, embedding extraction, distance measurement
and the XAI module. Together, these components form a
complete pipeline tailored for anomaly detection using a
Siamese network. The process begins with preparing and
augmenting the dataset to form image pairs suitable for
training. These pairs are then passed through a feature
extractor to generate embeddings, which are compared using
a distance metric to evaluate similarity. Based on these
comparisons, the model is trained to distinguish between
normal and anomalous image pairs. Finally, an explainability
module is integrated to produce saliency maps that highlight
regions of interest, making the model’s predictions more
transparent. Each component is described in detail in the
following sections.
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A. Data preparation for

The first step in the proposed method involves preparing
the dataset for training the Siamese network. A total of 24
images are initially used, consisting of 8 anomalous images
and 16 non-anomalous images. These images are categorised
into three specific groups: 8 anchor images selected from the
non-anomalous set, 8§ non-anomalous images that differ from
the anchors, and 8 anomalous images representing defective
or irregular instances.

To enhance the diversity and volume of the training data,
each image undergoes an augmentation process. Seven
augmentation techniques are applied to each image, including
rotation by 90 degrees clockwise, rotation by 180 degrees,
rotation by 90 degrees counterclockwise, horizontal flipping,
vertical flipping, adjustment to high brightness, and
adjustment to low brightness. These transformations simulate
various realistic conditions and viewpoints, thereby helping
the model generalise better during training. As a result, the
number of images in each class increases to 64, significantly
enriching the dataset.

Once augmentation is complete, the next step involves
constructing image pairs, which is a critical requirement for
training Siamese networks. Unlike conventional deep learning
models that operate on single images, a Siamese network
learns to differentiate between pairs of images by comparing
their feature embeddings. Therefore, pairs of images are
created with associated similarity labels. Each non-anomalous
image is paired with an anchor image and assigned a label of
1, indicating that the two images are similar. Conversely, each
anomalous image is paired with an anchor image and assigned
a label of 0, reflecting that the two images are dissimilar.

Dense (4096)

Fig. 1. Architecture of the proposed lightweight CNN model for feature embedding within the Siamese network. The network consists of 1 input layer, 4
convolutional 2d layers, 3 max pooling 2d layers, 1 flatten layer, and 1 dense (fully connected) layer. This design is optimised to extract essential
discriminative features while maintaining low model complexity and fast inference times.
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This pairing mechanism ensures that the Siamese network
is trained to learn meaningful representations of visual
similarity and dissimilarity, which is essential for effective
anomaly detection. The specific architecture of the Siamese
network and the underlying training process are discussed in
the next section.

B. Siamese network

1) Embedding Model

. In the Siamese network architecture, the extraction of
embeddings from input images plays a pivotal role in the
overall performance of the model. These embeddings, which
serve as condensed feature representations, are subsequently
compared through a distance metric to assess the similarity
between image pairs. Hence, the quality and efficiency of the
feature extraction process directly impact the Siamese
network's ability to discriminate between similar and
dissimilar images.

Conventional approaches to feature embedding often
leverage transfer learning with pre-trained convolutional
neural networks (CNNs) such as VGG19, ResNet50, or
InceptionV3 [4]. These models, while highly effective in
capturing complex feature hierarchies, are typically
computationally intensive, leading to increased inference
times and elevated resource requirements. For applications
where low-latency and resource efficiency are critical, such
overhead becomes a significant limitation.

To overcome these challenges, this research proposes a
lightweight custom CNN specifically optimised for
embedding extraction within the Siamese framework. The
developed network comprises only 8 layers, a substantial
reduction compared to the 19 layers of VGG19 [18], the 50
layers of ResNet50 [19], and the approximately 48 layers of
InceptionV3 [20]. Despite its relatively shallow depth, the
proposed CNN architecture is meticulously designed to retain
essential discriminative features necessary for accurate
similarity learning. By minimising network complexity
without compromising feature quality, the custom CNN
achieves a favourable balance between inference speed and
embedding effectiveness. The detailed structure of the
proposed CNN is depicted in Fig. 1.

2) DistanceLayer

After obtaining the feature embeddings of the anchor and
validation images through the embedding model, the
DistanceLayer computes their absolute element-wise
difference. This operation highlights the magnitude of
difference between corresponding features in the two
embeddings, without considering the direction of change.
Using the absolute value ensures that the comparison captures
only how much two features differ, simplifying the
information fed to the classifier.
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[ — — — g

&
Ed
Z

|
P}
g

Z

Fig. 2. Siamese model architecture

There are several ways to measure distance between
embeddings in Siamese networks, such as Euclidean distance
(L2 norm), cosine similarity, or even learnable distance
functions. Each method captures different aspects of
similarity: Euclidean distance measures overall geometric
distance, while cosine similarity measures the angle between
vectors, focusing on direction rather than magnitude [21][22].
However, in this case, absolute difference is used for its
simplicity and computational efficiency and because it
provides a straightforward, explainable representation of
feature-wise dissimilarity.

The output from the DistanceLayer is then passed into a
dense layer with a sigmoid activation, producing a similarity
score between 0 and 1. By explicitly computing the distance,
the model reduces the burden on the classifier to infer
relational patterns directly from embeddings, leading to
improved explainability and more efficient training
convergence.

C. XAI Module

Considering the limitations of conventional explainability
techniques in Siamese models, a custom saliency-based
method was developed to provide explainability for the
proposed Siamese network. This module enables the
visualisation of the most influential regions within the
validation images that affect the model's similarity
predictions.

The method operates by calculating the gradient of the
similarity score with respect to the input pixels of the
validation image. When a validation image is compared with
an anchor image, the model produces a similarity output based
on the distance between their feature embeddings. To
determine the contribution of each pixel to this similarity
score, the partial derivatives of the output are computed with
respect to each input pixel. The magnitude of these gradients
reflects the sensitivity of the output to changes in the
corresponding pixels. To construct the saliency map, the
absolute values of these gradients are taken to capture the
overall strength of influence regardless of direction. These
values are then averaged across the colour channels to produce
a single-channel intensity map. Finally, a smoothing operation
is applied to the map to improve its visual explainability by
reducing noise while preserving critical structures.

The resulting saliency maps highlight the regions within
the validation image that have the greatest impact on the
model's assessment of similarity or dissimilarity. Higher
intensity areas in the map correspond to regions that the
network relies upon more heavily during the comparison
process. By adapting the gradient-based saliency technique to
a Siamese framework, this method provides a practical and
effective way to interpret model decisions in architectures
where conventional class-based explanations are not
applicable.

VI. TESTING

The performance of the proposed custom-built CNN was
evaluated against several widely used pre-trained CNNS,
including VGG19, ResNet50, and InceptionV3. The
evaluation was conducted using the leather class from the
MVTec Anomaly Detection dataset, with precision, recall, F1-
score, accuracy, and area under the receiver operating
characteristic curve (AUROC) wused as the primary
performance metrics. Results are presented in TABLE .
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TABLE L PERFORMANCE COMPARISON OF THE SIAMESE MODEL
USING DIFFERENT CNN FEATURE EXTRACTORS ON THE MVTEC LEATHER

DATASET
Embedding Precision | Recall Fl- Accuracy AUROC
model score
g;s;]om 93.59% | 100% | 0.97 96.58% 0.985
VGG19 98.63% 60% 0.75 66.44% 0.623
RestNet50 94.52% 56.56% | 0.70 60.96% 0.66
InceptionV3 100% 5221% | 0.69 54.79% 0.147

The results show that the custom CNN outperformed the
pre-trained models in terms of overall balance across metrics.
While InceptionV3 and VGG19 showed high precision, they
suffered from significantly lower recall, which is critical in
anomaly detection contexts where missing a true anomaly has
a high cost. The custom model achieved perfect recall, high
precision, and the highest Fl-score, indicating strong
performance in both detecting and correctly classifying
anomalies. Additionally, it demonstrated superior AUROC,
suggesting robust discriminative ability across different
thresholds.

Given that early anomaly detection is a key focus of this
research, further evaluation was conducted to assess
computational efficiency. The models were compared in terms
of inference time, training time, and model size, as shown in
TABLE II.

These results reinforce the practical advantages of the
proposed model. The custom CNN significantly reduced
inference and training time while maintaining a competitive
model size. Compared to the larger and more complex pre-
trained alternatives, it offers a more efficient solution suitable
for real-time or resource-constrained  deployment
environments.

To evaluate the model’s generalisation capability beyond the
MVTec dataset, it was further tested on the Marble Surface
AD 2 dataset [23]. TABLE III. presents the accuracy and
efficiency metrics on both datasets with the custom CNN as
the embedding model.

TABLE II. INFERENCE TIME, TRAINING TIME, AND MODEL SIZE OF THE
CUSTOM CNN COMPARED TO PRE-TRAINED CNN MODELS
. Inference Training .
Embedding model . . Model size
time time
Custom CNN ~0.03s ~55s 467 MB
VGG19 ~0.069s ~6m 1.47 GB
RestNet50 ~0.085s ~12m 5.03 GB
InceptionV3 ~0.072s ~16m 363 MB
TABLE III. EVALUATION RESULTS OF THE CUSTOM SIAMESE MODEL

ON MVTEC AND MARBLE SURFACE AD 2 DATASETS

= > -] 5] -
S 2| E| F| 7| E&| §2|=%
g £ g g, 2 Zl 25 |ZTs
<3 g = 2| s 4 5 iy
< S = © 3 §
S S
MVTec | 9658 | 100 | 93.59 | 0.97 | 0.985 |~30ms| 467
Marble | 92.18 | 944 | 9032 | 0.92 | 0.936 |~30ms| 467
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Fig. 3. Saliency map visualizations of anomalous samples from the MVTec
leather dataset, showing regions that contributed most to the similarity

judgment.
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Fig. 4. Saliency map outputs for samples from the Marble Surface AD 2
dataset, highlighting key areas influencing the anomaly detection
outcome.

The model maintained high accuracy, precision, and recall
on the external Marble dataset, confirming its ability to
generalise across domains. The inference time and model size
remained consistent, indicating stable efficiency regardless of
the dataset.

To complement the quantitative evaluation, visual
explainability was assessed using the custom saliency-based
XAI module described earlier. The generated saliency maps
highlight the most influential regions within anomalous
samples that guided the model’s similarity judgments. Fig. 3
presents example outputs from the MVTec leather dataset,
while Fig. 4 illustrates results from the Marble Surface AD 2
dataset. In both cases, the highlighted regions align well with
actual defect areas, confirming the model’s ability not only to
detect anomalies accurately but also to provide meaningful
visual explanations of its decisions.

VII. CONCLUSION

This study presented a custom-designed Siamese network
for anomaly detection, focusing on the performance and
efficiency of the model. The custom CNN used as the
embedding model in the Siamese architecture demonstrated
superior performance compared to the same Siamese network
using pre-trained CNNs, including VGG19, ResNet50, and
InceptionV3, as embedding models. On the leather class of the
MVTec Anomaly Detection dataset, the Siamese model with
the custom CNN achieved a precision of 93.59%, a recall of
100%, an Fl-score of 0.97, and an AUROC of 0.985,
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highlighting the effectiveness of the custom CNN with the
Siamese model in anomaly detection tasks.

A key contribution of this work was the development of a
pixel-level explainable Al (XAI) module designed for the
Siamese network. The XAI module generates saliency maps
to visualise which parts of the input images influenced the
model's anomaly detection decisions. This approach is
essential for improving model explainability, especially in
non-conventional architectures like Siamese networks, where
traditional XAI techniques do not directly apply.

The performance of the custom Siamese network was also
evaluated in terms of computational efficiency. Testing on a
MacBook Pro with an M3 Pro chip demonstrated an
impressive inference time of 30ms. To assess real-world
applicability, future work could explore the model's
performance in throttled, controlled environments and test its
feasibility for real-time anomaly detection. Additionally, the
model's performance with higher-resolution images could be
evaluated to detect more subtle anomalies and expand its
capabilities.

In conclusion, the custom Siamese network with an
integrated XAI module offers a robust, efficient, and
explainable solution for anomaly detection. The strong
performance of the Siamese model using the custom CNN as
its embedding model, combined with its computational
efficiency and explainability, makes it a promising approach
for industrial anomaly detection tasks. Future work could
focus on optimising the model architecture, evaluating its
generalisability across a broader range of datasets, and further
refining the XAl module for application in other detection
scenarios.
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