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Abstract
Expert parallelism has emerged as a key strategy
for distributing the computational workload of
sparsely-gated mixture-of-experts (MoE) models
across multiple devices, enabling the processing
of increasingly large-scale models. However, the
All-to-All communication inherent to expert par-
allelism poses a significant bottleneck, limiting
the efficiency of MoE models. Although exist-
ing optimization methods partially mitigate this
issue, they remain constrained by the sequential
dependency between communication and compu-
tation operations. To address this challenge, we
propose ScMoE, a novel shortcut-connected MoE
architecture integrated with an overlapping paral-
lelization strategy. ScMoE decouples communi-
cation from its conventional sequential ordering,
enabling up to 100% overlap with computation.
Compared to the prevalent top-2 MoE baseline,
ScMoE achieves speedups of 1.49× in training
and 1.82× in inference. Moreover, our experi-
ments and analyses indicate that ScMoE not only
achieves comparable but in some instances sur-
passes the model quality of existing approaches.

1. Introduction
In recent years, Transformer-based large language models
(LLMs) have significantly propelled the fields of Natural
Language Processing (Vaswani et al., 2017; Brown et al.,
2020; Wei et al., 2022b; Ouyang et al., 2022; Wei et al.,
2022a; Chowdhery et al., 2023; Achiam et al., 2023), Com-
puter Vision (Dosovitskiy et al., 2021; Liu et al., 2021), and
Multimodality (Lu et al., 2019; Zhou et al., 2022; Zhang
et al., 2021; Zhu et al., 2023). The sparsely-gated mixture-
of-experts (MoE) approach has been integral in increas-
ing parameter counts and enhancing model performance
across various modalities (Shazeer et al., 2017; Riquelme
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et al., 2021; Mustafa et al., 2022; Jiang et al., 2024). Expert
parallelism (Lepikhin et al., 2021; Fedus et al., 2022) has
emerged as a viable strategy to efficiently distribute MoE
computations over multiple devices, synergizing with con-
ventional parallelism techniques (Hwang et al., 2023; Singh
et al., 2023) such as data parallelism (Rajbhandari et al.,
2020; 2021) and model parallelism (Narayanan et al., 2021;
Smith et al., 2022).

Nevertheless, expert parallelism incurs substantial All-to-
All communication overhead (Lepikhin et al., 2021; Fedus
et al., 2022), which can contribute to approximately 50%
of the total time in intra-node multi-GPUs or multi-nodes
distributed environments (see Figure 1), thus forming a crit-
ical bottleneck in scaling MoE models (Nie et al., 2022;
Hwang et al., 2023; Mayer & Jacobsen, 2020; Smith et al.,
2022). Despite existing optimizations such as hierarchical
All-to-All (He et al., 2022; Nie et al., 2022) and pipelin-
ing (Hwang et al., 2023; Zhang et al., 2023) strategies that
mitigate communication delays and partially overlap com-
munication with computation, the communication challenge
persists due to the inherent sequential dependencies between
these operations (Wang et al., 2023). To address this con-
straint, our intuitive idea is to reconstruct the inputs of MoE
layer by incorporating not only the current-layer but also
the preceding-layer representations through a shortcut con-
nection, thereby refining the communication-computation
dependencies and expanding the potential for their overlap-
ping optimization.

In this paper, we propose the shortcut-connected MoE (Sc-
MoE) architecture, which completely decouples communi-
cation processes from the sequence of conventional MoE
models. ScMoE architecture is initially built on the standard
top-2 MoE (see Figure 2 (a)), which typically substitutes the
multi-layer perceptron (MLP) module with a top-2 gating
MoE module in every second Transformer block (refer to the
Transformer block with the MoE module as “current layer”,
and the preceding one without the MoE module as “preced-
ing layer”). Diverging from the top-2 approach, ScMoE
utilizes a top-1 MoE module to process preceding-layer rep-
resentations via a shortcut connection, while employing a
shared expert (an MLP module) to process current-layer
representations. These two processes are independently
managed in parallel, with their results integrated into the
final output of the current layer. Furthermore, the ScMoE
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Figure 1. The overhead of MLP and top-2/top-1 MoE in a trans-
former block of SwinV2-MoE-S (Hwang et al., 2023) model, allo-
cating one expert per GPU with expert parallelism. The All-to-All
communication takes up 60% of total time on a single node with
8×A30 GPUs, but drops to 15% on 8×A800 due to the latter’s
6× higher bandwidth provided by GPU-to-GPU NVLink (Foley
& Danskin, 2017). Despite benefiting from NVLink, communica-
tion still approaches 50% due to the lower-bandwidth inter-node
Ethernet (Li et al., 2020) when scaling across multiple nodes.

architecture can be extended to accommodate MoE models
that employ various MoE placement frequencies, such as
integrating an MoE module into every Transformer block.

To efficiently overlap the decoupled communication and
computation within the ScMoE architecture, we implement
an adaptive overlapping parallel strategy that dynamically
schedules operators based on actual performance metrics.
Compared to existing optimization strategies such as pipelin-
ing (Huang et al., 2019; Hwang et al., 2023), our approach
not only doubles the overlap duration, but also realizes
complete overlapping of communication in scenarios where
communication time does not exceed the computation dura-
tion. Furthermore, our method essentially advances the MoE
architecture in algorithm aspect, which is device-agnostic
to improve the efficiency of MoE model, thus ensuring a
broad applicability across various hardware configurations
and maintaining compatibility with current optimizations.

The experimental results reveal that, compared to the stan-
dard top-2 MoE, our proposed ScMoE architecture opti-
mally accelerates training by 1.49× and 1.14× in 8×A30-
PCIe and 8×A800-NVLink scenarios characterized by high
and low communication overheads, respectively, and ac-
celerates inference by 1.82× and 1.21×. Moreover, we
perform experiments on different configurations of the Sc-
MoE architecture, including shortcut-connected position
and coefficient gating network. Considering the optimal ac-
curacy and the relatively longer overlap duration, we favor
selecting the intermediate representations between the At-
tention and MLP modules in the preceding layer as the input
for the gate-routed experts. In addition, ScMoE has been
demonstrated through experiments and theoretical analysis
to attain or exceed the model quality of existing methods

in both vision and language downstream tasks. We also
conduct an in-depth analysis and discussion of the ScMoE
architecture, investigating the proposed shortcut connection
and exploring opportunities for further development.

In summary, our contributions are as follows:

• We propose the shortcut-connected MoE (ScMoE) ar-
chitecture that breaks the conventional dependency be-
tween communication and computation in distributed
MoE models, bypassing the restrictions imposed on
current communication optimization techniques.

• We develop an adaptive overlapping strategy for ad-
vancing expert parallelism with the shortcut-connected
MoE, which significantly improves the efficiency of
MoE models and ensures broad compatibility.

• We conduct empirical evaluation and theoretical anal-
ysis on our methods, confirming that our methods ac-
celerate MoE models while achieving comparable or
even better model quality compared to existing meth-
ods, and offer in-depth analysis and discussion on the
effectiveness of the proposed shortcut connection.

2. Background & Related Work
2.1. Sparsely-Gated Mixture of Experts

The sparsely-gated mixture-of-experts (Shazeer et al., 2017)
(MoE) layer is composed of multiple multi-layer perceptron
(MLP) sub-networks, termed “experts,” and employs a train-
able gating network to selectively activate a subset of these
experts during each iteration. Given N expert networks
{Ei}N1 , gating network G and input representation x, the
output of MoE module can be written:

MoE(x) =

N∑
i=1

G(x)iEi(x). (1)

Following the prevailing approach in existing MoE research,
we use the noisy top-k softmax gating network to select k
experts for the computation, formalized by

G(x) = Softmax(TopK(H(x), k)), (2)

TopK(H(x), k)i =

{
H(x)i, if H(x)i ∈ TopK(H(x)).
−∞, otherwise.

(3)
H(x)i = (x ·Wgate)i + ϵi, (4)

ϵi = StandardNormal() · Softplus((x ·Wnoise)i),
(5)

where ϵ is tunable Gaussian noise, Wgate and Wnoise denote
two trainable weight matrices.

Leveraging sparse output of G(x), this approach signifi-
cantly increases the number of model parameters without
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Figure 2. Illustrations of the standard top-2 MoE architecture (a)
and the corresponding shared-expert MoE architecture (b). “SE”
in (b) denotes the shared expert.

causing a proportional increase in computational demand.
The value of k can be set to 1 or 2 or even higher values.
Opting for a larger k moves the model closer to the dense
architecture, which generally results in higher prediction
accuracy (Riquelme et al., 2021), but also leads to greater
computational overhead.

Figure 2 (a) illustrates the prevailing top-2 MoE architecture.
Each Transformer block with MoE module, denoted by a
light blue block and referred to as “Block-MoE,” replaces
the MLP with a set of experts (“E1, E2, E3, E4”) and a
gating network (“Gate”). Following prior work (Lepikhin
et al., 2021; Du et al., 2022; Shen et al., 2023; Hwang et al.,
2023; Lieber et al., 2025), the “Block-MoE” is interspersed
with the conventional Transformer block, depicted as a gray
block and referred to as “Block-MLP.” Additionally, various
options exist for the frequency of MoE module placement,
including placing an MoE module into every block (Jiang
et al., 2024; Dai et al., 2024; Qwen, 2024; Databricks, 2024)
or every four blocks (Zoph et al., 2022; Xue et al., 2024).

Shared Expert. In contrast to the standard top-2 MoE
architecture, the shared-expert MoE incorporates a fixed
dense MLP module to process all input tokens, combining
its output with the result from the top-1 gating expert for
each token, as illustrated in Figure 2 (b). Given the shared
expert SE, the output of the MoE module is formulated as:

MoE(x) = SE(x) +

N∑
i=1

G(x)iEi(x). (6)

This method, originally proposed by DeepSpeed-MoE (Ra-
jbhandari et al., 2022), activates the same number of experts
as the standard MoE for computation while reducing dy-
namic expert selection and communication volume. Exten-
sive empirical results from DeepSpeed-MoE and subsequent
studies (Dai et al., 2024; Qwen, 2024) demonstrate that the
shared expert architecture achieves model quality that is on
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Figure 3. Illustration of scaling MoE transformer layer across mul-
tiple devices with expert parallelism.

par with or even superior to existing approaches, leading
to its growing adoption (Xue et al., 2024; Wu et al., 2023;
Chen et al., 2024; Gou et al., 2023; Gao et al., 2024).

2.2. Expert Parallelism

To facilitate efficient distributed training and inference of
MoE models, expert parallelism is proposed to allocate
unique experts to each distributed computing device such
as GPU and TPU, and map tokens to their corresponding
experts through All-to-All communication across partici-
pating devices (Lepikhin et al., 2021; He et al., 2021; Nie
et al., 2022). As illustrated in Figure 3, the workflow of
MoE employing expert parallelism is segmented into the
following sequential operations: gate routing, input encode,
All-to-All dispatch, expert computation, All-to-All com-
bine, and output decode. To enhance the efficiency, input
encode is employed to aggregate the token data layout to
a contiguous format before All-to-All dispatch, and output
decode is the inverse process after All-to-All combine. Fur-
thermore, the integration of expert parallelism with other
parallelisms (Hwang et al., 2023; Singh et al., 2023; Fedus
et al., 2022; Zheng et al., 2022) has been explored to support
the scaling of larger MoE models on extensive distributed
systems. However, the All-to-All communication used for
token transfer has been a primary bottleneck limiting the
efficiency of distributed MoE models, as shown in Figure 1.

3. Shortcut-connected MoE Designs
In the prevailing Transformer-based model, the MoE mod-
ule substitutes MLP to sequentially manipulate intermediate
representations (Lepikhin et al., 2021; Du et al., 2022; Shen
et al., 2023), impeding the efficacy of existing optimization
strategies (He et al., 2022; Nie et al., 2022; Hwang et al.,
2023; Zhang et al., 2023) due to the limited interaction
within the MoE module. To address the aforementioned lim-
itations, we propose the shortcut-connected MoE (ScMoE)
architecture, which enables optimization opportunities for
computation-communication overlap for expert parallelism.
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Figure 4. Illustrations of various ScMoE architectures with shortcut connections to different positions of the preceding layer: (a) “Pos-1”
output, (b) “Pos-2” intermediate, and (c) “Pos-3” input. The red line indicates the transmission of the preceding-layer representations to
the MoE via a shortcut connection. Details regarding pre-layer normalization and dropout procedures have been excluded for simplicity.

3.1. Architectural Design

In this section, we introduce the shortcut-connected MoE
(ScMoE) architecture. Unlike the prevailing MoE archi-
tectures, illustrated in Figure 2, which focus on processing
intermediate representations within the current layer (the
Transformer block containing the MoE), the ScMoE pro-
cesses representations from both the current and preceding
layers. Specifically, ScMoE employs a top-1 MoE module
to handle representations from the preceding layer via a
shortcut connection, while a shared expert processes the
current-layer representations. These two operations are con-
ducted independently, with their outcomes integrated into
the final output of the current layer, facilitating communica-
tion and computation overlap between these two processes.

While the shared expert processes the same intermediate
representations in the current layer as the prevailing MoE ap-
proaches, we explore three distinct preceding-layer represen-
tations for ScMoE’s top-1 MoE process, as illustrated in Fig-
ure 4. The configurations “Pos-1” (a), “Pos-2” (b), and “Pos-
3” (c) represent shortcuts connecting different positions of
the preceding layer: output, intermediate, and input, respec-
tively. Given that TAtten, TSE , and TMLP represent the du-
rations of Attention, Shared Expert, and MLP, respectively,
the corresponding overlap durations are (a) TAtten + TSE ,
(b) TAtten + TSE + TMLP , (c) 2TAtten + TSE + TMLP .

Using the “Pos-2” configuration as an example, this ScMoE
architecture can be formulated as follows:

Block-MoE:

HScMoE
l+1 = HMH

l+1 + SE(l+1)(HMH
l+1 )

+

N∑
i=1

G(HMH
l )iEi(HMH

l ),
(7)

HMH
l+1 = HMLP

l + MultiHead(l+1)
MoE (H

MLP
l ), (8)

Block-MLP:

HMLP
l = HMH

l + MLP(l)(HMH
l ), (9)

HMH
l = Hl−1 + MultiHead(l)

MLP (Hl−1), (10)

where HScMoE
l+1 refers to the output from the MoE sub-layer,

HMH
l+1 signifies the output from the Multi-Head Attention

(MultiHead) sub-layer MultiHead(l+1)
MoE (·) in the (l + 1)-

th Transformer block (“Block-MoE”). SE(l+1)(·) denotes
the shared expert while E1, ..., EN represent the N gate-
routed experts. The gating network G(·) is referred to
as Equation 2. HMLP

l and HMH
l are the outputs of the

MLP sub-layer MLP(l)(·) and the MultiHead sub-layer
MultiHead(l)

MLP (·), respectively, in the l-th Transformer
block (“Block-MLP”). Note that we omit the pre-layer nor-
malization and dropout for simplicity.

In our experiments involving three shortcut-connected posi-
tions, models configured with “Pos-2” achieve the highest
accuracy in both vision and language cases, while also en-
suring substantial overlap duration. As a result, we favor
selecting “Pos-2” for practical development. Moreover ,the
“Pos-2” configuration is used to elucidate the overlapping
strategy in Section 3.2. The specifics of the other two con-
figurations can be inferred by analogy.

Additionally, our proposed ScMoE architecture can be
adapted to support MoE models with varying MoE place-
ment frequencies. As illustrated in Figure 5, the ScMoE
architecture can be integrated into MoE models that incor-
porate an MoE module into every Transformer block. With
more frequent MoE placement, the potential overlap dura-
tion for each MoE module is minimized, and the “Pos-1”
configuration has already fully utilized the computation
duration for the overlap. Conversely, less frequent MoE
placement extends the potential overlap duration for each
MoE module, which may lead to increased acceleration.
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Figure 5. Illustration showcasing the application of the ScMoE
(Pos-1) architecture to the MoE model, wherein the MoE module
is integrated into each Transformer block.

3.2. Overlapping Strategy for Expert Parallelism

As mentioned in the previous section, the MoE operations
in ScMoE architecture are completely decoupled from the
backbone network, enabling parallel execution across two
independent streams: one for the shared expert process and
the other for the MoE process. To enhance efficiency, we im-
plement asynchronous All-to-All communication operators
to enable the overlapping of communication and compu-
tation within these streams, while computation operators
are unable to execute concurrently due to the constraints on
computing resources.

Adaptive Operators Scheduling. We observe that operator
execution times are influenced by the specific model and
hardware configuration, necessitating the implementation
of adaptive scheduling for operators.

Following the execution order in the MoE stream, we can
directly schedule the gate routing and encode operators at
the earliest viable position while deferring the decode oper-
ator to the latest position, thereby maximizing the potential
duration for overlapping. Then, this challenge is distilled
into the selection of an optimal position for expert compu-
tation among four possible locations 1⃝ 2⃝ 3⃝ 4⃝ within the
shared expert stream, as depicted in Figure 6.

Formally, we define the communication costs associated
with “All-to-All Dispatch” and “All-to-All Combine” as
Tdisp and Tcomb, respectively. The variable K is des-
ignated to represent the specific location where expert
computation is applied. Prior to the expert computa-
tion, the computational costs are denoted as T pre

comp :=
{COMP1, ..., COMPK−1}, while the costs following
the expert computation are represented as T post

comp :=
{COMPK+1, ..., COMP4}. Consequently, the minimal
aggregate time cost for each pair consisting of one Block-
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proposed ScMoE architecture and overlapping strategy. The red
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of parallel CUDA streams. The standard MoE utilizes top-2 gating,
whereas the shared-expert MoE and ScMoE activate one shared
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MLP and one Block-MoE is

T block
overall = min

K
(|T pre

comp − Tdisp|+ |T post
comp − Tcomb|)

= min
K

(|
K−1∑
i=1

COMPi − Tdisp|+ |
4∑

i=K+1

COMPi − Tcomb|),

(11)
T block
overall ≥ |(T pre

comp + T post
comp)− (Tdisp + Tcomb)|, (12)

T block
overall ≤ (T pre

comp + T post
comp) + (Tdisp + Tcomb). (13)

To demonstrate the efficiency, we have illustrated the op-
erational timelines of various MoE architectures alongside
their respective parallel strategies in Figure 7, exemplified
by the selection of location 2⃝ for expert computation. Each
timeline’s operator length corresponds to its execution time,
and the presence of multiple rows signifies the utilization of
parallel CUDA streams.

The widely-used pipeline parallel strategy equally segments
input tokens into smaller fine-grained chunks, enabling con-
current computation and communication dispatched on dis-
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tinct GPU streams (Hwang et al., 2023; Zhang et al., 2023).
Contrary to standard MoE with pipelining (2nd timeline),
our proposed ScMoE with the overlapping strategy (4th
timeline) significantly reduces the total time. This reduction
is attributed to the decrease in absolute communication time,
similar to that in the shared-expert MoE (3rd timeline), and
the overlap of communication with the computation dura-
tion (T Atten+ T SE+ TMLP ), which extends beyond the
overlap duration achieved through pipelining.

Our strategy possesses the capability to fully overlap com-
munication if the communication can be accommodated
within the overlapping window. This advantage is not shared
by the pipeline strategy as it cannot overlap the initial and
terminal data transmissions (Huang et al., 2019; Narayanan
et al., 2019). In cases where communication durations ex-
ceed the available overlap duration, our strategy can be
augmented with pipelining (5th timeline), thus utilizing the
expert computation duration to further hide communication.

4. Experiments
4.1. Experimental Setup

To assess the effectiveness of our proposed overlapping
strategy for enhancing expert parallelism, we conduct ex-
periments on three hardware configurations: 8×A30-PCIe,
8×A800-NVLink, and 16×A800-NVLink (across 2 nodes).
These configurations cover scenarios with both high and
low communication-to-computation ratios. Furthermore, we
evaluated our methods using both vision models (SwinV2-
MoE) (Hwang et al., 2023) and language models (GPT2-
MoE, GPT3-MoE, LLaMA2-MoE) (Radford et al., 2019;
Brown et al., 2020; Touvron et al., 2023). Additional details
on the experimental setup are provided in Appendix A.8.

4.2. Analysis of Model Quality and Efficiency

In this section, we assess the quality of the models with our
proposed ScMoE architecture. Furthermore, we evaluate the
efficiency of ScMoE models in distributed scenarios, which
are accelerated through our proposed overlapping strategy
for enhancing expert parallelism. To maintain the same
computational volume as the standard top-2 MoE, both the
experimental shared-expert MoE and our ScMoE utilize one
shared expert and one gate-routed expert.

4.2.1. VISION MODEL

Table 1 shows that ScMoE (Pos-2) and the standard top-
2 MoE attain a comparable accuracy of 79.3%, while the
shared-expert MoE delivers the highest accuracy, with a
marginal increase of 0.2%. In 8×A30-PCIe where commu-
nication overhead accounts for 60% of the total MoE time,
ScMoE (Pos-2) exhibits 30% speed improvement in training
and 40% in inference compared to the standard top-2 MoE.

Table 1. Test top-1 accuracy and end-to-end speedup of train and
inference (one iteration) for SwinV2-MoE-S (Hwang et al., 2023)
models with various architectures pre-trained on ImageNet-1K for
90 epochs in the 8×A30-PCIe scenario, using standard MoE with
top-2 gating as the baseline.

Model ImageNet-1K Train Inference
(Acc@1↑) (Speedup↑) (Speedup↑)

Standard top-2 MoE 79.33% 1 1
Standard top-1 MoE 78.95% 1.27× 1.39×
Shared-Expert MoE 79.53% 1.24× 1.35×
Our ScMoE (Pos-1) 79.14% 1.36× 1.54×
Our ScMoE (Pos-2) 79.38% 1.43× 1.66×
Our ScMoE (Pos-3) 79.20% 1.49× 1.82×

In scenarios characterized by a high communication-to-
computation ratio, where communication is hard to be
completely overlapped by computation, ScMoE architec-
tures with extended overlap durations can achieve supe-
rior speedup. Specifically, ScMoE (Pos-3), which has the
longest overlap duration of TAtten+TSE+TMLP , achieves
the highest acceleration, with a 1.49× speedup in training
and a 1.82× speedup in inference. Furthermore, the three
different ScMoE architectures result in minimal variations
in accuracy, ranging from 79.14% to 79.38%. Additionally,
these methods, which utilize two activated experts, consis-
tently outperform the standard top-1 MoE in terms of model
quality, as the top-1 approach activates fewer parameters.

4.2.2. LANGUAGE MODEL

To demonstrate the effectiveness of our proposed ScMoE
architecture in models with two prevailing MoE placement
frequency designs, we perform experiments using the GPT2-
MoE-Medium and LLaMA2-MoE models, positioning the
MoE module in every second Transformer block for GPT2-
MoE and in every Transformer block for LLaMA2-MoE.
Specifically, we utilize the ScMoE architecture with the
configuration of “Pos-2” on the GPT2-MoE model, since
this setup yields the lowest final validation loss in our exper-
iments across various shortcut-connected positions, as dis-
cussed in Section 5.2. Furthermore, the ScMoE in LLaMA2-
MoE adopts the “Pos-1” configuration, as this setup has
already maximized the potential overlap duration in the
scenario of MoE placement in every block.

As shown in Table 2, our ScMoE models achieve the high-
est average scores, with 38.69 in GPT2-MoE and 38.96
in LLaMA2-MoE. Furthermore, when integrated with our
ScMoE, GPT2-MoE experienced an 11% improvement
in training speed and an 15% improvement in inference
speed compared to the standard top-2 MoE, in the 8×A800-
NVLink scenario where communication accounts for 15%
of the total MoE time. In LLaMA2-MoE, our ScMoE accel-
erated training by 1.14× and inference by 1.21×, demon-
strating superior efficiency compared to other methods.
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Table 2. Comparison of zero-shot evaluation and end-to-end speedup of training and inference (one iteration) for the pre-trained GPT2-MoE
and LLaMA2-MoE models with various architectures in the 8×A800-NVLink scenario, using standard top-2 MoE as the baseline.

Model Method Train Inference HellaSwag PIQA WinoGrande BoolQ ARC-E OBQA RACE MathQA AVG.(↑)

GPT2-MoE
Standard top-2 1 1 27.53 59.19 48.62 59.72 38.43 25.20 23.83 20.37 37.86
Shared-Expert 1.04× 1.06× 27.23 59.09 51.22 60.00 38.85 26.60 25.07 20.57 38.58
Our ScMoE 1.12× 1.17× 27.70 59.25 52.09 60.76 39.23 25.40 24.98 20.10 38.69

LLaMA2-MoE
Standard top-2 1 1 28.40 60.07 50.83 58.26 38.72 24.60 25.17 21.07 38.39
Shared-Expert 1.06× 1.11× 29.08 60.01 50.91 60.92 38.59 24.80 25.45 20.80 38.82
Our ScMoE 1.14× 1.21× 29.09 60.55 51.38 57.25 38.89 26.40 27.08 21.07 38.96
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Figure 8. Overhead analysis for each pair of Block-MLP and Block-MoE within SwinV2-MoE-S model, deployed across three different
distributed scenarios. “Topk” denotes the standard top-k MoE, while the one followed by the suffix “P” indicates using pipeline
optimization as implemented by Tutel (Hwang et al., 2023). “Top1+SE1” refers to the shared-expert MoE.

4.2.3. ANALYSIS OF OVERHEAD AND ACCELERATION

In addition to exhibiting the end-to-end speedup of ScMoE
in Tables 1 and 2, we delve into a detailed analysis of the
overhead and the acceleration effect with our overlapping
strategy, which can be generalized to other MoE models.

In the communication-intensive 8×A30-PCIe scenario (Fig-
ure 8(a)), our ScMoE overlaps 70% communication time,
resulting in a 27% speed improvement over shared-expert
MoE, a 42% improvement over the pipelined standard top-2
MoE, and a 15% improvement over the pipelined standard
top-1 MoE. In the 8×A800-NVLink scenario (Figure 8(b)),
which features almost minimal communication overhead,
our approach maintains its acceleration by fully overlapping.

In multi-node scenario (Figure 8(c)), with 16×A800-
NVLink across two nodes, communication incurs more sig-
nificant overhead than in the single-node 8×A800-NVLink
scenario due to the lower-bandwidth inter-node Ethernet
(Li et al., 2020). Here, our ScMoE achieves complete
overlap, resulting in a 24% speed improvement over the
shared-expert MoE, a 43% improvement over the pipelined
standard top-2.

In general, our ScMoE delivers a significant acceleration
over the standard top-2 MoE, and even outperforms the top-
1 MoE when communication exceeds approximately 20%
of the total MoE time. Additionally, our ScMoE can fully
overlap communication in scenarios where communication
does not exceed an estimated 50% of the total MoE time.

5. Discussion
The empirical results presented in Section 4.2 have demon-
strated that our proposed ScMoE architecture facilitates effi-
ciency optimizations without compromising model quality.
Subsequently, we delve into a more thorough examination
of the proposed shortcut connection, uncovering potential
underlying reasons for its algorithmic effectiveness, and
identifying opportunities for further development.

5.1. Delve into the Proposed Shortcut Connection

5.1.1. ANALYSIS OF GATING BEHAVIORS

Firstly, we investigate the use of the same MoE module
to select the top-1 expert twice for processing each input
token’s current-layer and preceding-layer representations,
respectively. As illustrated in Figure 9(a), we observe that
the same gating network typically selects the same expert
for the two representations of most tokens. As the training
progresses, the token percentage of repeating selection ini-
tially escalates, peaking at 98%, and then diminishes, with
a significant drop manifested in the last MoE sub-layer.

Next, we measure the L2 distance (similarity) between each
token’s preceding-layer and current-layer representations.
Figure 9(b) illustrates that, as training advances, the L2 dis-
tance initially decreases with network depth, then increases,
and ultimately reaches its maximum value in the final layer.
Since the gating network is used to classify the representa-
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(a) Repeated selection (b) L2-Distance (c) Preceding-layer score (d) Current-layer score
Figure 9. Results from the analysis of the proposed shortcut connection, during the 90-epoch training (including a 10-epoch warm-up)
of the SwinV2-MoE-S model (Hwang et al., 2023). Employing the same MoE module to select the top-1 expert twice for processing
each input token’s two representations from the current and preceding layers, respectively, (a) illustrates the percentage of tokens that
retain the same expert selection across the current layer and preceding layer, (b) shows the L2 distance between these two representations.
Using the DGMoE, which imposes a constraint against repeatedly selecting the same expert, (c) presents the average gating score for the
preceding-layer representations, (d) displays the average gating score for the current-layer representations.

tions, this similarity may lead to the repeated selection of
the same experts, as evidenced by the correlation between
the results in Figure 9(a) and 9(b).

Furthermore, we trained an experimental MoE model in-
corporating specialized MoE modules that select the top-1
expert twice for processing each input token’s current-layer
and preceding-layer representations. We observe that this
experimental architecture achieves a model quality equiva-
lent to the standard top-1 MoE, despite incurring the same
computational cost as the top-2 MoE. Interestingly, this
architecture can achieve model quality comparable to the
standard top-2 MoE by imposing a constraint on the MoE
module that ensures the selection of a different expert for the
current layer than for the preceding layer. We refer to this
enhanced experimental architecture as DoubleGating MoE
(DGMoE), with further details provided in Appendix A.2.
With this constraint, we observe gating score behaviors are
similar to those of the standard top-2 MoE (Riquelme et al.,
2021), as illustrated in Figure 9(c) and 9(d).

5.1.2. ANALYSIS OF SIMILARITY IN REPRESENTATIONS

Based on the observations mentioned above, we believe
that the similarity between each token’s preceding-layer
and current-layer representations is crucial to understand-
ing these outcomes and validating the effectiveness of our
proposed ScMoE model. Assuming that the representations
of the preceding layer and the current layer are identical,
utilizing the same expert to process these two representa-
tions is equivalent to employing a single expert to process
only the current-layer representations, thereby resulting in
model quality comparable to that of the standard top-1 MoE.
On the other hand, assigning distinct experts to the two rep-
resentations of each token is equivalent to activating two
experts to process the current-layer representations, thereby
achieving model quality similar to that of the standard top-2.
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(b) GPT2-MoE-Medium
Figure 10. Analysis of cosine similarity in intermediate represen-
tations. The representations include the input to the first layer
(denoted as ’In’) and the outputs of the Attention (e.g., ’1A’) and
MLP/MoE (e.g., ’1M’) sublayers within each Transformer block.

Moreover, we analyze the similarities in the intermediate
representations of the Swin-MoE-Small and GPT2-MoE-
Medium models, which use the standard top-2 MoE, as
illustrated in Figure 10(a) and 10(b). It is evident that the
representations from adjacent Transformer blocks exhibit a
cosine similarity close to 1.0, highlighting their high degree
of similarity. Consequently, our proposed ScMoE archi-
tecture assigns distinct experts to the two representations
of each token (a shared expert for current-layer representa-
tions and routed experts for preceding-layer representations),
thereby preserving behavior akin to the standard top-2 and
shared-expert MoE architectures and ensuring comparable
model quality. Similar observations in LLaMA2-MoE and
OLMoE (Muennighoff et al., 2024), as demonstrated in
Appendix A.9, further confirm the generalizability of our
ScMoE to other models.

In addition, we provide a theoretical analysis of our pro-
posed ScMoE architecture in Appendix A.1, elucidating the
propagation of gradients to guarantee consistent training
and preserve model quality.
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5.2. Configuration of ScMoE Architecture

Coefficient Gating Network. In contrast to the gate-routed
expert, the shared expert is fixed to process all representa-
tions without computing a gating score through the gating
network. Therefore, some work (Qwen, 2024; Rajbhan-
dari et al., 2022) employs a coefficient gating network CG
to generate the coefficient for combining the outputs of
gate-routed and shared experts. Specifically, the coefficient
gating network is a linear layer that uses the MoE module’s
input representation as its input to generate the coefficient.

We conduct experiments on ScMoE using three distinct
methods for combining the outputs of gate-routed experts
and shared experts: (1) Direct Add, (2) CG-1, and (3) CG-2.
The Direct Add method, indicated by Equation 6, involves
directly summing the outputs from both the shared expert
and the gate-routed expert. For each input token x ∈ Rn,
the MoE outputs using CG-1 and CG-2, which generate co-
efficients for the combination, can be expressed as follows:
CG-1:

coef = Sigmoid(WCG · x), WCG ∈ R1×n, (14)

MoE(x) = coef · SE(x) +

N∑
i=1

G(x)iEi(x), (15)

CG-2:
coef = softmax(WCG · x), WCG ∈ R2×n, (16)

MoE(x) = coef[0] · SE(x) + coef[1] ·
N∑
i=1

G(x)iEi(x).

(17)
As shown in Table 3, the configuration of CG-1 achieves
the lowest final validation loss among the three combination
methods, all of which are set to Pos-2. Moreover, ScMoE
models with three configurations consistently outperform
both the standard top-2 and the shared-expert MoE (config-
ured with CG-2 according to (Rajbhandari et al., 2022)).

Shortcut-connected Position. While the Pos-1 configura-
tion can maximize the potential overlap duration when MoE
is placed in every block, using different configurations of
shortcut-connected positions (Pos-1, Pos-2 or Pos-3) when
placing MoE in every second block will result in variations
in overlap duration and model quality. Therefore, we con-
duct experiments to identify its optimal configuration.

As shown in Table 3, ScMoE (Pos-2) achieves the lowest
final validation loss among the configurations tested, all of
which utilize the CG-1 setup. This outcome mirrors the
findings from the vision experiments detailed in Table 1,
where Pos-2 also delivers the highest accuracy.

As illustrated in Figure 10(b), the input and intermediate
representations of the first layer differ significantly from
those of subsequent layers, with the MLP/MoE altering the
representations more substantially than Attention. There-
fore, we explore modifying the first MoE module to utilize

Table 3. Comparison of the final validation loss of GPT-2 MoE
pre-training across various MoE methods and configurations.

MoE Method Configuration Final Validation loss (↓)

Standard top-2 MoE - 3.270405

Shared-Expert MoE - 3.240592

Our ScMoE
(Pos-2)

Direct Add 3.236811
CG-1 3.224763
CG-2 3.232943

Our ScMoE
(CG-1)

Pos-1 3.237530
Pos-2 3.224763
Pos-3 3.241349

Pos-2 (L0 Pos-1) 3.225626

Pos-1 while the remaining modules employ Pos-2, a config-
uration referred to as Pos-2 (L0 Pos-1). This setup results
in a slightly higher loss compared to Pos-2 alone. Observa-
tions of varying shortcut-connected positions reveal that the
superior performance of Pos-2 suggests the model quality
of ScMoE is not necessarily improved by connecting more
similar or dissimilar intermediate representations.

Consequently, we select the ScMoE configuration of CG-1
and Pos-2 for the experimental GPT2-MoE model, with its
evaluations presented in Table 2.

5.3. Optimization for Memory-Limited Inference

Existing studies (Hwang et al., 2024; Yi et al., 2023) offload
expert parameters to CPU memory in memory-limited infer-
ence scenarios where GPU cannot store the full MoE model.
These studies utilize information in preceding layers to pre-
dict expert selection for the current MoE layer, enabling
early expert migration from CPU to GPU and overlapping it
with model computation. In contrast to existing speculative
expert migration methods, we implement an expert offload-
ing strategy with overlapping determinate migration, built
upon our ScMoE that inherently advances expert selection
to the preceding layer. The experimental results demon-
strate that our expert offloading strategy reduces peak GPU
memory usage by up to 60% and decreases expert migration
costs by up to 75% through overlapping with computation.
More details are shown in Appendix A.3.

6. Conclusion
The inherent dependency between communication and com-
putation in conventional distributed MoE models hinders
parallel optimization techniques to improve execution effi-
ciency. To address this, we propose a shortcut-connected
MoE (ScMoE) architecture, and develop a communication
overlapping parallel strategy. Through empirical evaluation
and theoretical analysis, our approaches demonstrate bet-
ter execution efficiency while maintaining or exceeding the
model quality of existing methods. In addition, we provide
an insightful analysis and discussion of ScMoE.
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A. Appendix
A.1. Theoretical Analysis

In this section, we delve deeper into the understanding of
our proposed shortcut-connected MoE (ScMoE) architec-
ture, presenting a theoretical foundation focused on the
propagation of gradients to guarantee consistent training
and preserve model quality. Our analysis is confined to
the ScMoE (Pos-2) architecture as depicted in Figure 4(b);
however, the same principles and derivations can be eas-
ily extended to other shortcut-connected MoE architectures.
Building upon Equations 7 to 10, we can derive

Hl+1 = HMH
l +

(
MLP(l)(HMH

l )

+ MultiHead(l+1)(HMH
l + MLP(l)(HMH

l ))

+ SE(l+1)(HMH
l + MLP(l)(HMH

l )

+ MultiHead(l+1)(HMH
l + MLP(l)(HMH

l )))

+

N∑
i=1

G(HMH
l )iEi(HMH

l )
)
,

(18)

HMH
l = Hl−1 + MultiHead(l)(Hl−1). (19)

It is observable that Equations 18 and 19 share an identical
structural expression. Consequently, we consider each pair
of Block-MoE and Block-MLP layers as a single entity,
and every sub-layer, denoted as F , with its corresponding
parameters Wl, conforms to the equation

xl+1 = xl + FWl
(xl). (20)

Here, xl represents the input, and xl+1 represents the output
of the l-th sub-layer. By applying this relationship recur-
sively, the output of the uppermost L-th sub-layer, xL, can
be deduced as follows

xL = xl +

L−1∑
i=l

FWl
(xl). (21)

Let’s consider the loss function as E . Using the chain rule,
we can calculate the derivative of the loss with respect to xl,
and we have

∂E
∂xl

=
∂E
∂xL

∂xL

∂xl
=

∂E
∂xL

(
1 +

∂

∂xl

L−1∑
i=1

FWi
(xi)

)
.

(22)
It’s clear that the additive component of the error gradient
∂E
∂xL

ensures direct information propagation back to any
sub-layer xl. Additionally, its advantage is that the number
of product elements on the right side is independent of the
network’s depth. Therefore, as L increases, it is less likely
to encounter the gradient vanishing or exploding problem,
ensuring stable training and sustained performance levels in
our proposed MoE architectures.
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Figure 11. Illustration of the experimental DoubleGating MoE
(DGMoE) architecture.

A.2. Analysis of the DoubleGating MoE (DGMoE)

To delve deeper into our architecture with shortcut con-
nection, we introduce the DoubleGating MoE (DGMoE)
architecture, which employs dual top-1 gating mechanisms
to independently process the representations from the pre-
ceding and current layers, as illustrated in Figure 11. Build-
ing upon Equations 7 to 10, and contrasting with ScMoE,
DGMoE can be formulated as

HDGMoE
l+1 = HMH

l+1 +

N∑
i=1

(G(HMH
l+1 )iEi(HMH

l+1 )

+G(HMH
l )iEi(HMH

l )),

(23)

where HDGMoE
l+1 refers to the output from the MoE module.

However, as delineated in Equation 23, a potential issue
arises when a token at the current layer selects the same
top-1 expert as the preceding layer, inadvertently collapsing
the intended top-2 gating mechanism into a de facto top-1
gating mechanism. To mitigate this, we introduce a con-
straint that ensures the activation of two distinct experts. In
practice, this is achieved by first documenting the indices
of experts triggered by the preceding-layer representations.
Subsequently, if the preceding-layer representation coinci-
dentally targets the same expert as the current layer, that is, if
TopK(H(HMH

l ), 1) = TopK(H(HMH
l+1 ), 1), we activate

the second-highest-ranking expert from the top-2 selection
for the current layer, i.e., TopK(H(HMH

l+1 ), 2)2.

As illustrated in Table 6 and Table 7, our DGMoE achieves
comparable accuracy to the standard top-2 MoE across both
vision and language tasks. Meanwhile, our ScMoE demon-
strates performance more akin to the shared-expert MoE.
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A.3. Shortcut-connected MoE for Optimizing
Memory-Limited Inference

While MoE effectively enhances LLMs in terms of model
quality, it faces significant deployment challenges during
on-device inference due to high memory demand. A com-
mon approach is to offload expert parameters to CPU mem-
ory (Shen et al., 2022) in scenarios where GPU memory
is insufficient to store the entire MoE model. Moreover,
decoder-only models use an autoregressive process for nat-
ural language generation (NLG) inference tasks, allowing
for per-token processing of MoE. Specifically, only the two
activated experts (top-2 gating) for each token need to be
transferred from CPU to GPU memory for computation,
thereby reducing peak GPU memory usage.

Since the migration of activated expert parameters from
CPU to GPU, which occurs after expert selection, blocks ex-
pert computation until the transfer is complete, existing stud-
ies (Hwang et al., 2024; Yi et al., 2023; Du et al., 2024) have
explored prefetching the experts. For instance, Pre-gated
MoE (Hwang et al., 2024) uses information from preceding
layers to predict expert selection, allowing for preloading
of expert parameters into GPU memory, as shown in Fig-
ure 12 (a). This method enables overlapping the expert
migration duration with the computation of preceding mod-
ules. Moreover, speculative expert migration methods adjust
only the expert selection process, while expert computation
continues along the same data flow of representations as in
standard MoE.

However, speculative expert migrations can suffer from
estimation inaccuracies, as they deviate from the original
logic of pre-trained models, potentially reducing inference
accuracy. In contrast, our proposed ScMoE architecture uti-
lizes the gate-routed expert to compute the preceding-layer
representations, inherently facilitating early expert migra-
tion well before the expert computation in the current layer.
This allows us to implement an expert offloading strategy
with overlapping determinate migration, maintaining the
pre-trained logic.

Additionally, existing expert migration methods cannot be
adapted to overlap communication in expert parallelism.
This is because they do not decouple dependencies in the
data flow of expert processing representations, and there-
fore cannot adjust the All-to-All communication of these
representations

A.3.1. EXPERT OFFLOADING STRATEGY

We implement an expert offloading strategy that keeps non-
expert and shared expert modules in GPU memory while
offloading other gate-routed experts to CPU memory. Af-
ter the Attention module in the preceding layer generates
intermediate representations, the gate determines expert se-
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Figure 12. Illustrations of various expert migration methods to
improve the efficiency of expert offloading: (a) speculative expert
migration, exemplified by Pre-gated MoE (Hwang et al., 2024),
and (b) our ScMoE’s determinate expert migration. The red dashed
line indicates expert selection and the transfer of expert parameters
from CPU memory to GPU memory, while the black or red solid
lines represent the data flow of representations processed by the
Attention, MLP, and expert modules.
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Figure 13. Peak GPU memory usage (a) and MoE block latency
(b) for various memory-limited inference methods applied to the
GPT2-MoE-Medium (8 experts per MoE module) and GPT3-MoE-
XL models using ScMoE. “GPU-only” indicates that the entire
model is stored in GPU memory. “Offload” refers to our strategy
of offloading expert parameters to CPU with blocking expert mi-
gration. “Offload-Async” denotes the use of asynchronous expert
migration to overlap its duration.

lection and issues asynchronous migration of the activated
expert, as illustrated in Figure 12(b). This approach allows
expert migration to overlap with the computation duration.
Importantly, expert selection in our method adheres to the
logic of the pre-trained ScMoE model, without speculation.

A.3.2. EVALUATION

We evaluate our proposed expert offloading strategy on
models with our ScMoE (Pos-2) architecture, using a plat-
form with a single A30-PCIe GPU. As demonstrated in
Figure 13(a), our expert offloading strategy reduces peak
GPU memory usage by 50% for the GPT2-MoE-Medium
model and by 60% for the GPT3-MoE-XL model when
deployed in the inference scenario using a single A30-PCIe
GPU. Furthermore, it is anticipated that models with more
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Table 4. Comparison of validation perplexity and end-to-end
speedup analysis of train and inference (one iteration) for our
pre-trained GPT3-MoE-XL (Brown et al., 2020) models with var-
ious architectures in 8×A800-NVLink scenario, using standard
MoE with top-2 gating as the baseline. “ScMoE-2” refers to the
activation of one shared expert and two gate-routed experts.

Model Validation Train Inference
(Perplexity↓) (Speedup↑) (Speedup↑)

Standard top-2 17.52 1 1
Our ScMoE 16.46 1.12× 1.18×
Standard top-3 17.26 0.94× 0.92×
Our ScMoE-2 16.27 1.05× 1.08×

gate-routed experts in each MoE module will experience a
larger percentage reduction in GPU memory usage.

Since the offloaded expert parameters must be loaded into
the GPU memory for expert computation, the blocking ex-
ecution of this expert migration results in significant over-
head. As shown in Figure 13(b), the blocking expert mi-
gration introduces an additional overhead of 80% in GPT2-
MoE-Medium and 240% in GPT3-MoE-XL, substantially
increasing the MoE block latency. To mitigate this issue,
our strategy of asynchronously executing the determinate
expert migration effectively reduces the additional costs by
75% in GPT2-MoE-Medium and 25% in GPT3-MoE-XL.

Furthermore, it is evident that expanding the model size
from Medium to XL significantly raises the cost proportion
related to expert migration. This is because the per-token
decoding process during inference is memory-bound (Patel
et al., 2024; Wu et al., 2024). The larger model size leads to
a proportional increase in the duration of memory transfer,
without a corresponding increase in computation time.

A.4. Analysis of More Activated Experts

As increasing the number of activated experts within stan-
dard MoE is correlated with enhancements in model qual-
ity, we implement this augmentation in our ScMoE by in-
creasing the count of gate-routed experts that process the
preceding-layer representations, while maintaining the pro-
cess of current-layer representations. To investigate the ben-
efits of more activated experts, we implement the ScMoE-2,
which employs top-2 experts for the preceding layer and
one shared expert for the current layer.

Comparative analyses with the standard top-3 MoE, which
has the same computational volumes as our ScMoE-2, re-
veal that our ScMoE architectures maintain superiority in
both model quality and efficiency, as evidenced in Table 4.
Furthermore, akin to the standard MoE, our ScMoE consis-
tently improves with additional expert activation, shown by
a decrease in validation perplexity from 16.46 with ScMoE
to 16.27 with ScMoE-2.

Table 5. Comparison of top-1 accuracy on the ImageNet-1K test
set for SwinV2-MoE-S models, using Direct Add and CG-1.

Model CG-1 Direct Add

Shared-Expert MoE 79.53% 79.02%
Our ScMoE (Pos-1) 79.14% 78.78%
Our ScMoE (Pos-2) 79.38% 78.98%
Our ScMoE (Pos-3) 79.20% 78.29%

Table 6. Comparison of top-1 accuracy on the ImageNet-1K test
set for SwinV2-MoE-S and SwinV2-MoE-B models with various
architectures: top-2/top-1 gating standard MoE, shared-expert
MoE, our DGMoE, and ScMoE, each pre-trained for 90 epochs on
the ImageNet-1K classification dataset.

Model SwinV2-MoE-S SwinV2-MoE-B
(Acc@1↑) (Acc@1↑)

Standard top-2 MoE 79.33% 80.48%
Standard top-1 MoE 78.95% 80.05%
Shared-Expert MoE 79.53% 80.62%
Our DGMoE (Pos-2) 79.35% 80.51%
Our ScMoE (Pos-2) 79.38% 80.56%

Although activating more experts incurs higher time costs,
the efficiency improvements of our overlapping strategy
remain significant. For instance, our ScMoE-2 requires
merely 95% and 93% of the time cost necessary for the
standard top-2 MoE respectively in training and inference,
despite processing increased computational loads.

A.5. Coefficient Gating Network in Vision Task

As shown in Table 5, the incorporation of the coefficient
gating network significantly enhances model performance
in our experimental vision tasks. In the absence of the
coefficient gating network, the quality of MoE architectures
with shared experts declines from that of a standard top-2
MoE to that of a standard top-1 MoE, despite maintaining
the same computational volume as the standard top-2 MoE.

A.6. Evaluation Across Different Model Sizes

Table 6 and Table 7 illustrate that our experimental MoE
architectures consistently achieve analogous model quality
across different model sizes, as expounded in the detailed
analysis within the main body of this paper.

A.7. Share MoE Across Multiple Layers via Shortcut
Connections

From a certain point of view, our shortcut-connected MoE
architectures can be conceptualized as the sharing of one
MoE module across multiple transformer layers. Parame-
ter sharing across different layers has been validated as a
method to enhance parameter efficiency and improve model
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Table 7. Comparison of zero-shot perplexity on WikiText-103 for
our pre-trained GPT2-MoE-Small and GPT2-MoE-Medium (8
experts per MoE module) models with various architectures.

Model GPT2-MoE-Small GPT2-MoE-Medium
(Perplexity↓) (Perplexity↓)

Standard top-2 MoE 31.60 19.18
Shared-Expert MoE 29.15 17.94
Our DGMoE (Pos-2) 31.52 18.91
Our ScMoE (Pos-2) 29.10 17.62

quality, as evidenced in existing research (Lan et al., 2019;
Dehghani et al., 2018; Xue et al., 2022; Huang et al., 2017).

The empirical analysis of our novel MoE architectures sug-
gests that the MoE modules shared across multiple layers
via shortcuts could offer a more parameter-efficient solu-
tion. We conduct experiments on a preliminary architecture
DGMoE-Share which shares a single MoE for two pairs of
transformer blocks. It reduces the parameter count from
157M to 124M, while maintaining the same volume of ex-
pert computation as the standard top-1 MoE. The DGMoE-
Share achieves a 78.45% accuracy on the vision task, incur-
ring a minimal accuracy decrement of 0.5% relative to the
standard top-1 MoE. We anticipate the discovery of more
efficient architectures through future explorations. Addition-
ally, the optimization of training hyperparameters for the
shortcut-connected MoE requires more investigation.

A.8. Experimental Details

Hardware Configurations. To assess the effectiveness
of our proposed overlapping strategy for enhancing ex-
pert parallelism, we conducted experiments on three hard-
ware configurations: 8×A30-PCIe, 8×A800-NVLink and
16×A800-NVLink (across 2 nodes). These configurations
cover scenarios with both high and low communication-to-
computation ratios. Additionally, we evaluate our proposed
expert offloading strategy on a configuration with a single
A30-PCIe GPU.

Experiments on Vision Model. To evaluate the efficacy of
our MoE architectures on vision tasks, we conduct experi-
ments on SwinV2-MoE model, which is a state-of-the-art
vision transformer model built upon the Tutel MoE frame-
work (Hwang et al., 2023; Liu et al., 2021). Specifically,
we pre-train the SwinV2-MoE models with various MoE
architectures on ImageNet-1K image classification dataset,
and subsequently evaluate their accuracy on the correspond-
ing test set. It is noteworthy that the integration of the MoE
module within SwinV2 is confined to stages 3 and 4, with
our architectural enhancements being selectively applied to
the MoE modules in stage 3—the deepest submodel. Given
our hardware constraints, we configure each MoE mod-
ule with 8 experts, assigning one expert per GPU device.

Table 9 summarizes the hyperparameters for training the
Swin-MoE models including SwinV2-MoE-S and SwinV2-
MoE-B. Specifically, the experiments related to overhead
and acceleration analysis in a 2-node (16×A800-NVLink)
scenario utilize 16 experts per MoE module, while other
cases use 8 experts. To maintain the comparability of our
experiments, we limit our modifications solely to the MoE
architectures and keep the hyperparameters and random
seeds consistent. In addition, the experimental results re-
lated to efficiency are the averages of multiple samples over
different periods.

Experiments on Language Model. For natural language
generation (NLG) tasks, we utilize the standard implemen-
tations of GPT-2 (Radford et al., 2019), GPT-3 (Brown
et al., 2020) and LLaMA-2 (Touvron et al., 2023) from
Fairseq (Ott et al., 2019), augmented with Tutel MoE to con-
struct GPT2-MoE, GPT3-MoE and LLaMA2-MoE models.
Specifically, we implement GPT2-MoE and GPT3-MoE
by substituting the MLP with MoE in the second Trans-
former block of every consecutive pair, while implement
LLaMA2-MoE by by substituting the MLP with MoE in
every Transformer block. For models undergoing zero-shot
evaluation on downstream tasks such as HellaSwag (Zellers
et al., 2019), PIQA (Bisk et al., 2020), WinoGrande (Sak-
aguchi et al., 2021), BoolQ (Clark et al., 2019), ARC-Easy
(Clark et al., 2018), OpenBookQA (Mihaylov et al., 2018),
RACE (Lai et al., 2017), and MathQA (Amini et al., 2019),
we pre-train the models using various architectures on a
1B token subset of the SlimPajama-627B dataset (Sobol-
eva et al., 2023). For models evaluated on WikiText-103
(Merity et al., 2017), we conduct pre-training with differ-
ent architectures on the OpenWebtext dataset (Gokaslan &
Cohen, 2019). Table 8 summarizes the hyperparameters
for training the GPT2-MoE-Small, GPT2-MoE-Medium,
GPT3-MoE-XL and LLaMA-MoE models.
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Table 8. Hyperparameters for GPT-MoE and LLaMA2-MoE models.
Parameter GPT2-MoE-Small GPT2-MoE-Medium GPT3-MoE-XL LLaMA2-MoE

Num. layers 12 24 24 24
Embedding dim 768 1024 2048 2048
Num. attention heads 12 16 32 16
Num. KV heads 12 16 32 4
Num. experts per layer 8 16 8 8
MoE frequency 1/2 1/2 1/2 1
Num. parameters 323M 1.7B 4.1B 6.7B
Context/sequence length 1K 2K 2K 2K
Capacity factor 2.00 2.00 2.00 2.00
MoE loss coefficient 0.01 0.01 0.01 0.01

Table 9. Hyperparameters for SwinV2-MoE models.

Parameter SwinV2-MoE-S SwinV2-MoE-B

Image size 192×192 192×192
Window size 12×12 12×12
Embedding dim 96 128
Num. layers [ 2, 2, 18, 2 ] [ 2, 2, 18, 2 ]
Num. attention heads [ 3, 6, 12, 24 ] [ 4, 8, 16, 32 ]
Num. experts per layer 8/16 8
Batch size 1024 1024
Epochs 90 90
Warmup epochs 10 10
Base LR 1.25e-4 1.25e-4
Warmup LR 1.25e-7 1.25e-7
Min LR 1.25e-6 1.25e-6
Capacity factor 1.25 1.25
MoE loss coefficient 0.01 0.01

A.9. Additional Examples of Intermediate
Representations Similarities
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Figure 14. Intermediate representation similarities in LLaMA2-
MoE.
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Figure 15. Intermediate representation similarities in OLMoE
(Muennighoff et al., 2024).
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