Under review as a conference paper at ICLR 2023

EFFICIENT DATA SUBSET SELECTION TO GENERALIZE
TRAINING ACROSS MODELS: TRANSDUCTIVE AND IN-
DUCTIVE NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Subset selection, in recent times, has emerged as a successful approach toward
efficient training of models by significantly reducing the amount of data and
computational resources required. However, existing methods employ discrete
combinatorial and model-specific approaches which lack generalizability— for
each new model, the algorithm has to be executed from the beginning. Therefore,
for data subset selection for an unseen architecture, one cannot use the subset
chosen for a different model. In this work, we propose SUBSELNET, a non-
adaptive subset selection framework, which tackles these problems with two main
components. First, we introduce an attention-based neural gadget that leverages
the graph structure of architectures and acts as a surrogate to trained deep neural
networks for quick model prediction. Then, we use these predictions to build
subset samplers. This leads us to develop two variants of SUBSELNET. The first
variant is transductive (called as Transductive-SUBSELNET) which computes the
subset separately for each model by solving a small optimization problem. Such
an optimization is still super fast, thanks to the replacement of explicit model
training by the model approximator. The second variant is inductive (called as
Inductive-SUBSELNET) which computes the subset using a trained subset selector,
without any optimization. Most state-of-the-art data subset selection approaches
are adaptive, in that the subset selection adapts as the training progresses, and as
a result, they require access to the entire data at training time. Our approach, in
contrast, is non-adaptive and does the subset selection only once in the beginning,
thereby achieving resource and memory efficiency along with compute-efficiency at
training time. Our experiments show that both the variants of our model outperform
several methods on the quality of the subset chosen and further demonstrate that our
method can be used for choosing the best architecture from a set of architectures.

1 INTRODUCTION

In the last decade, deep neural networks have enhanced the performance of the state-of-the-art ML
models dramatically. However, these neural networks often demand massive data to train, which
renders them heavily contingent on availability of high performance computing machinery, e.g.,
GPUs, CPUs, RAMs, storage disks, etc. However, such resources entail heavy energy consumption,
excessive CO, emission and maintenance cost.

Driven by this challenge, a recent body of work focus on suitably selecting a subset of instances, so
that the model can be quickly trained using lightweight computing infrastructure (Boutsidis et al.,
20135 |[Kirchhoff & Bilmes, [2014;|Wei et al.,|2014a; [Bairi et al., 2015; Liu et al., [2015; |Wei et al., 2015;
Lucic et al.| [2017; Mirzasoleiman et al., 2020bj Kaushal et al., 2019; Killamsetty et al., 2021azbc).
However, these existing data subset selection algorithm are discrete combinatorial algorithms, which
share three key limitations. (1) Scaling up the combinatorial algorithms is often difficult, which
imposes significant barrier against achieving efficiency gains as compared to training with entire data.
(2) Many of these approaches are adaptive in nature, i.e, the subset changes as the model training
progresses. As a result, they require access to the entire training dataset and while they provide
compute-efficiency, they do not address memory and resource efficiency challenges of deep model
training. (3) The subset selected by the algorithm is tailored to train only a given specific model and
it cannot be used to train another model. Therefore, the algorithm cannot be shared across different
models. We discuss the related work in detail in Appendix [A]

1

Under review as a conference paper at ICLR 2023

1.1 PRESENT WORK

Responding to the above limitations, we develop SUBSELNET, a trainable subset selection framework,
which— once trained on a set of model architectures and a dataset— can quickly select a small
training subset such that it can be used to train a new (test) model, without a significant drop in
accuracy. Our setup is non-adaptive in that it learns to select the subset before the training starts for a
new architecture, instead of adaptively selecting the subset during the training process. We initiate
our investigation by writing down an instance of combinatorial optimization problem that outputs a
subset specifically for one given model architecture. Then, we gradually develop SUBSELNET, by
building upon this setup. SUBSELNET comprises of the following novel components.

Neural model approximator. The key blocker in scaling up a model-specific combinatorial subset
selector across different architectures is the involvement of the model parameters as optimization
variables along with the candidate data subset. To circumvent this blocker, we design a neural
model approximator which aims to approximate the predictions of a trained model for any given
architecture. Thus, such a model approximator can provide per instance accuracy provided by a new
(test) model without explicitly training it. This model approximator works in two steps. First, it
translates a given model architecture into a set of embedding vectors using graph neural networks
(GNNS5). Similar to the proposal of [Yan et al.|(2020) it views a given model architecture as a directed
graph between different operations and, then outputs the node embeddings by learning a variational
graph autoencoder (VAE) in an unsupervised manner. Due to such nature of the training, these
node embeddings represent only the underlying architecture— they do not capture any signal from
the predictions of the trained model. Hence, in the next step, we build a neural model encoder
which uses these node embeddings and the given instance to approximate the prediction made by the
trained model. The model encoder is a transformer based neural network which combines the node
embedding using self-attention induced weights to obtain an intermediate graph representation. This
intermediate representation finally combines with the instance vector @ to provide the prediction of
the trained architecture.

Subset sampler. Having computed the prediction of a trained architecture, we aim to choose a subset
of instances that would minimize the predicted loss and at the same time, offers a good representation
of the data. Our subset sampler takes the approximate model output and an instance as input and
computes a selection score. Then it builds a logit vector using all these selection scores, feeds it into
a multinomial distribution and samples a subset from it. This naturally leads to two variants of the
model.

Transductive-SUBSELNET: The first variant is transductive in nature. Here, for each new architecture,
we utilize the predictions from the model approximator to build a continuous surrogate of the original
combinatorial problem and solve it to obtain the underlying selection scores. Thus, we still need
to solve a fresh optimization problem for every new architecture. However, the direct predictions
from the model approximator allow us to skip explicit model training. This makes this strategy
extremely fast both in terms of memory and time. We call this transductive subset selector as
Transductive-SUBSELNET.

Inductive-SUBSELNET: In contrast to Transductive-SUBSELNET, the second variant does not
require to solve any optimization problem. Consequently, it is extremely fast. Instead, it models the
scores using a neural network which is trained across different architectures to minimize the entropy
regularized sum of the prediction loss. We call this variant as Inductive-SUBSELNET.

We compare our method against six state-of-the-art methods on three real world datasets, which show
that Transductive-SUBSELNET (Inductive-SUBSELNET) provides the best (second best) trade off
between accuracy and inference time as well as accuracy and memory usage, among all the methods.
This is because (1) our subset selection method does not require any training at any stage of subset
selection for a new model; and, (2) our approach is non-adaptive and does the subset selection before
the training starts. In contrast, most state-of-the-art data subset selection approaches are adaptive, in
that the subset selection adapts as the training progresses, and as a result, they require access to the
entire data at training time. Finally, we design a hybrid version of the model, where given a budget,
we first select a larger set of instances using Inductive-SUBSELNET, and then extract the required
number of instances using Transductive-SUBSELNET. We observe that such a hybrid approach
allow us to make a smooth transition between the trade off curves from Inductive-SUBSELNET to
Transductive-SUBSELNET.

Under review as a conference paper at ICLR 2023

2 DEVELOPMENT OF PROPOSED MODEL: SUBSELNET

In this section, we setup the notations and write down the combinatorial subset selection problem for
efficient training. This leads us to develop a continuous optimization problem which would allow us
to generalize the combinatorial setup across different models.

2.1 NOTATIONS

We are given a set of training instances {(z;,¥:)};c p Where we use D to index the data. Here,
x; € R are features and y; € Y as the labels. In our experiments, we consider) as a set of
categorical labels. However, our framework can also be used for continuous labels. We use m to
denote a neural architecture and represent its parameterization as my. We also use M to denote
the set of neural architectures. Given an architecture m € M, G,,, = (V,,,, Ey,,) provides the
graph representation of m, where the nodes u € V,,, represent the operations and the € = (U, Vi)
indicates an edge, where the output given by the operation represented by the node u,, is fed to one
of the operands of the operation given by the node v,,. Finally, we use H(-) to denote the entropy of
a probability distribution and ¢(mg(x), y) as the cross entropy loss hereafter.

2.2 COMBINATORIAL SUBSET SELECTION FOR EFFICIENT LEARNING

We are given a dataset {(x;, ¥;)},c , and a model architecture m € M with its neural parameteri-
zation my. The goal of a subset selection algorithm is to select a small subset of instances S with
|S| = n << |D| such that, training my on the subset S gives nearly same accuracy as training on the
entire dataset D. Existing works (Killamsetty et al., 2021bj |Sivasubramanian et al., 2021} |[Killamsetty
et al., [2021a) adopt different strategies to achieve this goal, but all of them aim to simultaneously
optimize for the model parameters # as well as the candidate subset S. At the outset, we may consider
the following optimization problem.

afrsncnlljrzrllsﬂng 2 (mg(x;),y;) — ADIVERSITY(S), (D
where b is the budget, DIVERSITY (S) measures the representativeness of S with respect to the whole
dataset D and) is a regularizing coefficient. One can use submodular functions (Fujishige, 2005}
Iyer, 2015) like Facility Location, graph cut, or Log-Determinants to model DIVERSITY (.S). Here,
A trades off between training loss and diversity. Such an optimization problem indeed provides an
optimal subset S that results in high accuracy.

Bottlenecks of the combinatorial optimization. The optimization problem (I)) imposes the following
challenges. (1) It demands explicit training of mg which can be expensive in terms of both memory
and time. (2) The training of my every time for a new architecture m prevents the subset S from
being generalizable— one needs to solve the optimization (I)) again to find S for an unseen model
architecture. We address these challenges by designing a neural surrogate of the objective (I)), which
would lead to generalization of subset selection across efficient training of different models.

2.3 COMPONENTS OF SUBSELNET MODEL

Next, we sketch our proposed model SUBSELNET that leads to substituting the optimization (T]) with
its neural surrogate. It consists of two key components: (i) neural approximator of the trained model
and (ii) the subset sampler. Figure[d]in Appendix [B]illustrates our model.

Approximator of the trained model my-. First, we design a neural network F;, which would
approximate the predictions of the trained model mgy~ for different architectures m € M. Given the
dataset {(x;,y;)icp } and a model architecture m € M, we first feed the underlying DAG G,,, into a
graph neural network GNN,, with parameter o, which outputs the representations of the nodes of the
G, Le, Hy, = {h,} . Next, we feed H, and the instance «; into an encoder gg

Fy (G ;) = mg-(x;) form e M. 2)
Here, Fiy (G, x;) = 93(GNN (G), x5). 3)
Here, ¢ = {«, 3}, and 6* is the set of learned parameters of the model mg on the dataset D.

uEVm

Subset sampler. We design a subset sampler using a probabilistic model Pr, (o). Given a budget
|S| < b, it sequentially draws instances S = {s1, ..., sp } from a softmax distribution of the logit
vector 7 € RIP! where 7(x;, ;) indicates a score for the element (x;, ;). Having chosen the

Under review as a conference paper at ICLR 2023

first ¢ instances S; = {s1,..5;} from D, it draws the (¢ + 1)-th element (2, y) from the remaining
instances in D with a probability proportional to exp(w (i, y)) and then repeat it for b times. Thus,
the probability of selecting the ordered set of elements S = {sy, ..., s} is given by

eXp(ﬂ-(wstJrl) y5t+1))
t=0 ZTED\St exp(m (s, ,Ys,)

We would like to highlight that we use S as an ordered set of elements, selected in a sequential
manner. However, such an order does not affect the trained model which is inherently invariant of
permutations of the training data, it only affects the choice of S.

Pro(5) = “4)

Training objective. Using the Eqs. (2) and (d)), we replace the combinatorial optimization problem
in Eq. (T) with a continuous optimization problem, across different model architectures m € M. To
that goal, we define

A(S;m;m, Fy) =3 c g UFp(Gm, @), y:) — AH (Pr (o)) ®)
mir;i’mize ;\4 SEP]E(-) [A(S§ m;, Fy) + ;’YKL(Fzz&(Gm’ x;), me~(x;)) (6)

Here, we use entropy on the subset sampler H (Pr,(e)) to model the diversity of samples in the
selected subset. We call our neural pipeline, which consists of the model approximator Fi; and the
subset selector 7, as SUBSELNET. In the above, penalizes the difference between the output of
model approximator and the prediction made by the trained model, which allows us to generalize the
training of different models m € M through the model Fy (G, ;).

2.4 TRANSDUCTIVE-SUBSELNET AND INDUCTIVE-SUBSELNET MODELS

The optimization (6) suggests that once Fy, is trained, we can use it to compute the output of the
trained model myg-~ for an unseen architecture m’ and use it to compute 7. This already removes a
significant overhead of model training and facilitates fast computation of 7. This leads us to develop
two types of models based on how we can compute 7, as follows.

Transductive-SUBSELNET. The first variant of the model is transductive in terms of computation of
. Here, once we train the model approximator I, then we compute 7 by solving the optimization
problem explicitly with respect to 7, every time when we wish to select data subset for a new archi-
tecture. Given a trained model Fy, and a new model architecture m’ € M, we solve the optimization
problem: min; Egep; , (o)[A(S;m; 7, Fy)] to find the subset sampler Pr, during inference time for
a new architecture m’. Such an optimization still consumes time during inference. However, it is
still significantly faster than the combinatorial methods (Killamsetty et al.l 2021bza; [Mirzasoleiman
et al., [2020aj |Sivasubramanian et al.| 2021) thanks to sidestepping the explicit model training using a
model approximator.

Inductive-SUBSELNET. In contrast to the transductive model, the inductive model does not require
explicit optimization of 7 in the face of a new architecture. To that aim, we approximate 7 using a
neural network 7. This takes two signals as inputs - the dataset D and the outputs of the model
approximator for different instances {F4(G,y,, ;) |i € D}, and finally outputs a score for each
instance 7y (x;,y;). Under Inductive-SUBSELNET, the optimization (6) becomes:

minimize E A(S;m;my, Fy) + E YK L(Fy(Gm,x;), mo-(x;)) (7)
V¢ SePr,, (o) _
meM ¥ i€S
Such an inductive model can select an optimal distribution of the subset that should be used to

efficiently train any model my, without explicitly training € or searching for the underlying subset.

3 NEURAL PARAMETERIZATION OF SUBSELNET

In this section, we describe the neural parametrization of SUBSELNET. SUBSELNET consists of two
key components, I, and 7. Specifically, Transductive-SUBSELNET has only one neural component
which is Fs, whereas, Inductive-SUBSELNET has both I, and 7.

3.1 NEURAL PARAMETERIZATION OF [

The approximator F, consists of two components: (i) a graph neural network GNN, which maps G,
the DAG of an architecture, to the node representations H,,, = {hu}u v, and (ii) a model encoder

4

Under review as a conference paper at ICLR 2023

g which takes H,;, and the instance x; as input and approximates mg- (), i.e., the prediction made
by the trained model. Therefore, Fy, (G,) = gg(GNN,(G,,), ;). Here, ¢ = {a, 8}

Computation of architecture embedding using GNN,. Given a model m € M, we compute the
representations H,,, = {h,|u € V,,,} by using a graph neural network GNN, parameterized with «,
following the proposal of [Yan et al.|(2020). We first compute the feature vector f,, for each node
u € V,,, using the one-hot encoding of the associated operation (e.g., max, sum, efc.) and then feed
it into a neural network to compute an initial node representation, as given below.

h,[0] = INITNODE, (f.) ®)

Then, we use a message passing network, which collects signals from the neighborhood of different
nodes and recursively compute the node representations (Yan et al., 2020} |Xu et al.l 2018b; (Gilmer
et al.,2017). Given a maximum number of recursive layers /K and the node u, we compute the node
embeddings H,,, = {h,|u € V,,,} by gathering information from the k£ < K hops using K recursive
layers as follows.

R (u,v) [k — 1] = EDGEEMBED, (hy[k — 1], by [k — 1])
h,[k — 1] = SYMMAGGRq ({ h(y,)[k — 1] | v € Nbr(u)})
h,|k] = UPDATE, (hy[k — 1], k] [k — 1]). 9)

Here, Nbr(u) is the set of neighbors of u. We use SYMMAGGR as a simple sum aggregator and both
UPDATE and EDGEEMBED are injective mappings, as used in (Xu et al.,[2018b). Note that trainable
parameters from EDGEEMBED, SYMMAGGR and UPDATE are decoupled. They are represented as
the set of parameters «. Finally, we obtain our node representations as:

hy = [ha[0], ... ho[K — 1]]. (10)

Model encoder gg. Having computed the architecture representation {h,, |u € V;,, }, we next design
the model encoder which leverages these embeddings to predict the output of the trained model
mg- (x;). To this aim, we developed a model encoder gg parameterized by /5 that takes H.,, and x; as
input and attempts to predict mg- (x;), i.e., gg(Hp, ;) &~ mg=(x;). It consists of three steps. In the
first step, we generate a permutation invariant order on the nodes. Next, we feed the representations
{h.} in this order into a self-attention based transformer layer. Finally, we combine the output of the
transformer and the instance x; using a feedforward network to approximate the model output.

Node ordering using BFS order. We first sort the nodes using breadth-first-search (BFS) order p.
Similar to|You et al.|(2018)), this sorting method produces a permutation-invariant sequence of nodes
and captures subtleties like skip connections in the network structure G,

Attention layer. Given the BFS order p, we pass the representations H,,, = {h, |u € V,,} in the
sequence p through a self-attention based transformer network. Here, the Query, Key and Value
functions are realized by matrices Woyery, Wiey, Wane € RI™P)XF where £ is a tunable width.
Thus, for each node u € V,,,, we have:

Query(hy) = Weyha, Key(hy) = Wi hy, Value(h,) = W, h (11)

query value’ *u

Using these quantities, we compute an attention weighted vector ¢, given by:
Att, = WT Zau,v\/alue(hv) with, @, , = SOFTMAX, (Query(hu)TKey(hv)/\/E) (12)
v

Here k is the dimension of the latent space, the softmax operation is over the node v, and W, €
RFxdim(k) Subsequently, for each node u, we use a feedforward network, preceded and succeeded
by layer normalization operations, which are given by the following set of equations.

Cu1 = LN(Atty + hyiv1,72), Cuz = Wy RELUW, Cu1), Cus = LN(Cut + Cu2i V3, 74)

Here, LN is the layer normalization operation (Ba et al., 2016). Finally, we feed the vector ¢, 3 for the
last node w in the sequence p, i.e., u = p(|V,|) along with the feature vector x; into a feed-forward
network parameterized by W to model the prediction my- (x;). Thus, the final output of the model
encoder gg(H,,, x;) is given by

Om,x; = FFﬂQ (CP\Vngv ml) (13)

Here, W, and -, are trainable parameters and collectively form the set of parameters 3.

Under review as a conference paper at ICLR 2023

3.2 NEURAL ARCHITECTURE OF INDUCTIVE-SUBSELNET

We approximate 7 using a neural network my, using a neural network which takes three inputs —
(z;,y;). the corresponding output of the model approximator, i.e., Oy o, = Fy(Gm, ;) and the
node representation matrix H.,, and provides us a positive selection score (Hp,x 33 Yjs Om,z;). In
practice, my, is a three-layer feed-forward network, which contains Leaky-ReL U activation functions
for the first two layers and sigmoid activation at the last layer.

4 PARAMETER ESTIMATION AND INFERENCE

Given a dataset {(x;, ;)| ¢ € D} and the output of the trained models {mg-(x;)},. . our goal is to
estimate ¢ and 7 (resp. 1) for the transductive (inductive) model. We first illustrate the bottlenecks
that prevent us from end-to-end training for estimating these parameters. Then, we introduce a
multi-stage training method to overcome these limitations. Finally, we present the inference method.

4.1 BOTTLENECK FOR END TO END TRAINING

End to end optimization of the above problem is difficult for the following reasons. (i) Our architecture
representation H,,, only represents the architectures and thus should be independent of parameter of
the architecture 6 and the instances «. End to end training can make them sensitive to these quantities.
(ii) To enable the model approximator F, accurately fit the output of the trained model mg, we
need an explicit training for ¢ with the target my. Adding the corresponding loss as an additional
regularizer imposes an additional hyperparameter tuning.

4.2 MULTI-STAGE TRAINING

In our multi-stage training method, we first train the model approximator I, by minimizing the sum
of the KL divergence between the gold output probabilities, and then train our subset sampler Pr,
(resp. Pry,,) for the transductive (inductive) model as well as fine-tuning ¢.

Training the model approximator F;. We train Fy in two steps. In the first step, we perform
unsupervised training of GNN,, using graph variational autoencoder (GVAE). This ensures that the
architecture representations H,,, remain insensitive to the model parameters. We build the encoder
and decoder of our GVAE by following existing works on graph VAEs (Yan et al.| [2020) in the
context graph based modeling of neural architectures. Given a graph G,,, the encoder ¢(Z,, | G»,)
which takes the node embeddings {hu}uevm and maps it into the latent space Z,, = {Zu}uevm'
Specifically, we model the encoder q(Z,, | Gy,) as: q(zy | Gm) = N (p(hy), 2(hy,)). Here, both
pv and ¥ are neural networks. Given a latent representation Z,,, = {24}y, the decoder models
a generative distribution of the graph G,,, where the presence of an edge is modeled as Bernoulli
distribution BERNOULLI(0(2,] 2,)). Thus, we model the decoder as:

p(Gm | Z) = H(u,'U)EEm o(z, 20) - H(u,y)g};m [1—0(z, 20)] (14)

Here, o is a parameterized sigmoid function. Finally, we estimate «, p, > and ¢ by maximizing the
evidence lower bound (ELBO) as follows:

max Ez. g a) [P(Gm | 2)] — KL(q(® | G| |prior(e)) (15)

a, 3,0
Next, we train our model encoder gz by minimizing the KL-Divergence between the approximated
prediction gg(H,,, ;) and the ground truth prediction mg-(x;), where both these quantities are
probabilities across different classes. Hence, the training problem is as follows:

miniﬂmize ZiED,mEM KL(mg« (x:)||98(Hpm, x;)) (16)

Training of the subset sampler. Finally, we fine-tune gg and train = by solving (@) for the
Transductive-SUBSELNET (likewise train 7y, by solving for Inductive-SUBSELNET).

4.3 INFERENCE

During inference, our goal is to select a subset S with |S| = b for a new model m/, which would
facilitate efficient training of m/. As discussed in Section we compute 7 for Transductive-
SUBSELNET by explicitly solving the optimization problem: min, Egcp, . (o)[A(S; m; 7, Fy)] and
then draw S ~ Pr(e). For Inductive-SUBSELNET, we draw .S ~ Prm (e) where 1 is the learned
value of 1) during training.

Under review as a conference paper at ICLR 2023

4.4 OVERVIEW OF TRAINING AND INFERENCE ROUTINES

Algorithms [T and 2] summarize the algorithms for the training and inference procedure.

Training Subroutines. The training phase for
both, Transductive-SUBSELNET first utilizes
the TRAINAPPROX routine to train the model 1
approximator given the dataset, trained model 2
parameters, and the set of neural architectures.
Internally, the routine calls the TRAINGNN sub-)
routine to train the parameters (o) of the GNN ! et
network, BFSORDERING subroutine to reorder 3 OA < [gﬂ({Hm’ i})]i.m
the embeddings based on the BFS order and 4 Y <~ TRAINPI(0, {H .}, {z;})
the TRAINMODELENC subroutine to train the 1. function TRAINAPPROX (D, M, {6*})
2
3
4
5
6

Algorithm 1 Training procedure

: function TRAINTRANSDUCTIVE(D, M, {6*})
&, 3, H,y, < TRAINAPPROX(D, M, {6*})

: function TRAININDUCTIVE(D, M, {6*})
&, B, H,y, < TRAINAPPROX (D, M, {6*})

attention-based model encoder’s parameters (3). & < TRAINGNN(M)

The TRAININDUCTIVE routine further calls the for m € M"in do

TRAINPI subroutine to train the parameters of H,, « GNNg4(m)

the neural subset selector. POS < BFSORDERING(G,,)

Inference Subroutines. Given an unseen ar- B + TRAINMODELENC({z; }, POS, {0"})

chitecture and parameters of the trained neural
networks, the inference phase for both variants Algorithm 2 Inference procedure
of SUBSELNET first generates the model en- .
coder output for all the data points. Post this, ;
the INFERTRANSDUCTIVE routine solves the .
optimization problem on 7 explicitly for the un- > Fo (G 4 i) = 95(Hp, @) V/Z €D
seen architecture and selects the subset from 4: T 4= ming ESePrw(o)[A(S sm's s Fy)

5.

6

function INFERTRANSDUCTIVE(D, &, B, m')
: Hm/ «— GNN&(m’)

the dataset. On the other hand, INFERINDUC- S* ~ Pry«(e)

TIVE utilizes the trained parameters of the neural TRAINNEWMODEL (m'; S*)
subset selector. Finally, both routines call the
TRAINNEWMODEL to train and evaluate the
unseen architecture on selected subset.

. function INFERINDUCTIVE(D, &, (3, m/)
: Hm/ «— GNN&(m’)
Fd)(Gm/,(Iti) “— g@(Hm/,:ci) Vie D

1

2

3:
5 EXPERIMENTS 4: Compute 7 (i, y;) Vi € D
In thi . d hensi | 5: S* ~ Prm (o)
n this section, we provide comprehensive eval- g PR,
uation of SUBSELNET against several strong 6 TRAINNEWMODEL (m'; §*)
baselines on three real world datasets. In Ap-

pendix [D] we present additional results.

5.1 EXPERIMENTAL SETUP

Datasets. We use FMNIST (Xiao et al., [2017), CIFAR10 (Krizhevsky et al. 2014) and CI-
FAR100 (Krizhevsky et al.l [2009) datasets for our experiments. We transform an input image
X; to a vector x; of dimension 2048 by feeding it to a pre-trained ResNet50 v1.5 (?) model and
using the output from the penultimate layer as the image representation.

Model architectures and baselines. We use model architectures from NAS-Bench-101 (Ying et al.,
2019) for our experiments. We compare Transductive-SUBSELNET and Inductive-SUBSELNET
against two non-adaptive subset selection methods — (i) Facility location (Fujishigel 2005} [Tyer, [2015)
where we maximize FL(S) = ZjeD max;cs :c;racj to find S, (ii) Pruning (Sorscher et al., [2022),
and four adaptive subset selection methods — (iii) Glister (Killamsetty et al., 2021b)), (iv) Grad—
Match (Killamsetty et al., [2021al)), (v) EL2N (Paul et al., 2021), (vi) GraNd (Paul et al.| 2021); and;
(vii) Full selection where we use complete training data. The non-adaptive subset selectors select
the subset before the training begins and thus, never access the rest of the training set again during
the training iterations. On the other hand, the adaptive subset selectors refine the choice of subset
during training iterations and thus they need to access the full training set at each training iteration.
Appendix [C]contains additional details about the baselines.

Evaluation protocol. We split the model architectures M into 60% training (M), 20% validation
(Mya) and 20% test (Mg folds. Similarly, we split the dataset D into Dy, Dy, and Dy We

present M, My, Dy and Dy, to our method and estimate (}5 and {b\ (for Inductive-SUBSELNET

Under review as a conference paper at ICLR 2023

-@- Transductive-SubSelNet -dpu- FL GLISTER GralNd
—’- Inductive-SubSelNet Pruning Grad-Match —k- EL2N
1.00 . .
+ " 1 0.75 ® 1 0.3 Q full selection:
0.75] e ——mee A IS8 p 1.0,0.91
a 'ls._*’n-* "9 5 0.500%, S 5 0.2 :\‘\\ ()
I 0.50 + [+i*__~*======q I { U Y
) > > s T it P
= 0.25 full selection] T 025 ; full selection] & O-11% 4 *~t_; ______ :
& 0.00 (1.0,0.97) A 0.00 (1.0,0.96) | ™ 0.0
: 50 150 200 250 : 50 150 200 250 : 50 150 200 250
Speed up (Ty/T) — Speed up (T7/T) — Speed up (Ty/T) —
1.00
1 " 0.75 ¥ full selection: 0.3 5 J full selection:
~ 0.75 = oY (2.4x10%096) T o, (2.7x10%0.1)
S - 3 0.50(g - s02 P
/
g 0.50 . I ‘I(+_+,—-I- I o¥%
E 0.25 full selection: ‘S’ 0.25 # \? 0.1 _.|.-—“|'
0.00 (2.1 x 105,0.97) ™ = +
P25 50 75 100 000025 50 7 10 %% 25 50 75 100
fOT memory(t)dt (GB-min) — I memory(t)dt (GB-min) — I memory(t)dt (GB-min) —
(a) FMNIST (b) CIFAR10 (c) CIFAR100

Figure 1: Trade off between accuracy and speedup (top row) and accuracy and memory consumption
(bottom row) for all the methods — Facility location (Fujishigel 2005; Iyer, [2015)), Pruning (Sorscher
et al.}[2022), Glister (Killamsetty et al.l 2021b), Grad-Match (Killamsetty et al., 2021a), EL2N (Paul
et al., |2021); GraNd (Paul et al.,[2021)); and; Full selection on all three datasets - FMNIST, CIFAR10
and CIFAR100. In all cases, we vary |S| = b € (0.005|D|,0.05|D|) and measure accuracy on 20%
test architectures and 20% test instances.

model). None of the baseline methods supports any generalizable learning protocol across different
model architectures and thus cannot leverage the training architectures during test.

Given an architecture m’ € M.y, we select the subset S from Dy, using our subset sampler (Pr
for Transductive-SUBSELNET or Pr”a for Inductive-SUBSELNET). Similarly, all the non-adaptive
subset selectors select S C Dy, using their own algorithms. Once S is selected, we train the test
models m’ € M on S. We perform our experiments with different |.S| = b € (0.005|D], 0.05|D|)
and compare the performance between different methods using three quantities: (1) Accuracy
Pr(y = §) measured using 153" c p., mrem, 1(max; mp. (z:)[j] = y;). (2) Computational
efficiency, i.e., the speedup achieved with respect to training with full dataset. It is measured with
respect to T’y /T. Here, T is the time taken for training with full dataset; and, 1" is the time taken
for the entire inference task, which is the average time for selecting subsets across the test models
m' € M plus the average training time of these test models on the respective selected subsets.
(3) Resource efficiency in terms of the amount of memory consumed during the entire inference

task, described in item (2), which is measured as fOT memory(t) dt where memory(t) is amount of
memory consumed at timestamp ¢.

5.2 RESULTS

Comparison with baselines. Here, we compare different methods in terms of the trade off between
accuracy and computational efficiency as well as accuracy and resource efficiency. In Figure [T}
we probe the variation between these quantities by varying the size of the selected subset |S| =
b € (0.005| D], 0.05|D]). We make the following observations. (1) Our methods trade-off between
accuracy vs. computational efficiency as well as accuracy vs. resource efficiency more effectively
than all the methods. For FMNIST, both the variants of our method strikingly output 75% accuracy,
whereas they are 100 times faster than full selection. Transductive-SUBSELNET performs slightly
better than Inductive-SUBSELNET in terms of the overall trade-off between accuracy and efficiency
for FMNIST and CIFAR10 datasets. However, for CIFAR100, Transductive-SUBSELNET performs
significantly better than Inductive-SUBSELNET. The time taken for both Transductive-SUBSELNET
and Inductive-SUBSELNET seems comparable— this is because the subset selection time for both
of them are significantly less than the final training time on the selected subset. (2) EL2N is the
second best method. It provides the best trade-off between accuracy and time as well as accuracy and
GPU memory, among all the baselines. It aims at choosing difficult training instances having high
prediction error. As a result, once trained on them, the model can predict the labels of easy instances

Under review as a conference paper at ICLR 2023

too. However, it chooses instances after running the initial few epochs. (3) FL adopts a greedy
algorithm for subset selection and therefore, it consumes a large time and memory during subset
selection itself. Consequently, the overall efficiency significantly decreases although the complexity
of the training time on the selected subset remains the same as our models in terms of time and
memory. (4) In addition to EL2N, Glister, Grad-Match and GraNd are adaptive subset selection
methods that operate with moderately small (> 5%) subset sizes. In a region, where the subset size is
extremely small, i.e., 1% — 5%, they perform very poorly. Moreover, they maximize a monotone
function at each gradient update step, which results in significant overhead in terms of time. These
methods process the entire training data to refine the choice of the subset and consequently, they end
up consuming a lot of memory. (5) GraNd selects the instances having high uncertainty after running
each model for five epochs and often the model is not well trained by then.

Finer analysis of the inference time. Next, we demarcate the Table 2: Inference time in seconds

subset selection phase from the training phase of the test models Trans. Induct. FL
on the selected subset during the inference time analysis. Table Subset selection 023 0.067 22629
summarizes the results for top three non-adaptive subset selection Training 700 701 701

methods for b = 0.005|D| on CIFAR100. We observe that: (1)

the final training times of all three methods are roughly same; (2) the selection time for Transductive-
SUBSELNET is significantly more than Inductive-SUBSELNET, although it remains extremely small
as compared to the final training on the inferred subset; and, (3) the selection time of FL is large— as
close as 323% of the training time.

Hybrid-SUBSELNET. From Figure (1| we observe that Transductive-SUBSELNET performs sig-
nificantly better than Inductive-SUBSELNET. However, since Transductive-SUBSELNET solves a
fresh optimization problem for each new architecture, it performs better at the cost of time and GPU
memory. On the other hand, Inductive-

of onificant] - -#@- B =25000 -#- B =45000
SU_BSEIjNET pertorms significantly worse -<- B =30000 -®- Transductive (B = 50000)
as it relies on a trained neural network to B =35000 -4- Inductive (B = NA)
learn the same optimization problem. Here,

. .) T 08 T 03
we design a hybrid version of our model, 'l ~
. > 0.2] B =02
called as Hybrid-SUBSELNET. Here, I ‘*‘ Ay I
given the budget of the subset b, we first 3 01) 2 01
. . . ~
choose B > b instances using Inductive- & o0 oo s0 30 %% 10 20 30

SUBSELNET and the final b instances by Speed up (Ty/T) — | memory(t)dt (GB-min) —
running the explicit optimization routines in
Transductive-SUBSELNET. Figure [3] sum-
marizes the results for B = {25K,30K,35K,45K,50K } . We observe that the trade off curves
for the Hybrid-SUBSELNET lie in between Inductive-SUBSELNET and Transductive-SUBSELNET.
For low value of B, i.e., B = 25K, the trade off line of Hybrid-SUBSELNET remains close to
Inductive-SUBSELNET. As we increase B, the trade-off curve of accuracy vs speed up as well as the
accuracy vs GPU usage becomes better, which allows Hybrid-SUBSELNET to smoothly transition
from the trade off curve of Inductive-SUBSELNET to Transductive-SUBSELNET. At B = 45K, the
trade-off curve almost coincides with Transductive-SUBSELNET. Such properties allow a user to
choose an appropriate B that can accurately correspond to a target operating point in the form of
(Accuracy, Speed up) or (Accuracy, memory usage).

Figure 3: Hybrid-SUBSELNET

6 CONCLUSION

In this work, we develop SUBSELNET, a subset selection framework, which can be trained on a set
of model architectures, to be able to predict a suitable training subset before training a model, for
an unseen architecture. To do so, we first design a neural model approximator, which predicts the
output of a new candidate architecture without explicitly training it. We use that output to design
transductive and inductive variants of our model. The transductive model solves a small optimization
problem to compute the subset for a new architecture m every single time. In contrast, the inductive
model resorts to a neural subset sampler instead of an optimizer.

Our work does not incorporate the gradients of the trained model in model approximator and it would
be interesting to explore its impact on the subset selection. Further we can extend our setup to an
adaptive setting, where we can incorporate signals from different epochs with a sequence encoder to
train a subset selector.

Under review as a conference paper at ICLR 2023

7 ETHICS STATEMENT

We do not foresee any negative impact of our work from ethics viewpoint.

8 REPRODUCIBILITY STATEMENT

We uploaded the code in supplementary material. Details of implementation are given in Appendix [C]

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Ramakrishna Bairi, Rishabh Iyer, Ganesh Ramakrishnan, and Jeff Bilmes. Summarization of multi-
document topic hierarchies using submodular mixtures. In ACL, pp. 553-563, 2015.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architec-
tures using reinforcement learning. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017. URL https://openreview.net/forum?id=S1lc2cvgeel

Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Near-optimal coresets for least-squares
regression. IEEE transactions on information theory, 59(10):6880-6892, 2013.

Abir De, Paramita Koley, Niloy Ganguly, and Manuel Gomez-Rodriguez. Regression under human
assistance. AAAI, 2020.

Abir De, Nastaran Okati, Ali Zarezade, and Manuel Gomez-Rodriguez. Classification under human
assistance. AAAI 2021.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture
search, 2020. URL |https://arxiv.org/abs/2001.00326.

Dan Feldman. Core-sets: Updated survey. In Sampling Techniques for Supervised or Unsupervised
Tasks, pp. 23—44. Springer, 2020.

Satoru Fujishige. Submodular functions and optimization. Elsevier, 2005.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263-1272. PMLR, 2017.

Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pp. 291-300,
2004.

Rishabh Krishnan lyer. Submodular optimization and machine learning: Theoretical results, unifying
and scalable algorithms, and applications. PhD thesis, 2015.

Vishal Kaushal, Rishabh Iyer, Suraj Kothawade, Rohan Mahadev, Khoshrav Doctor, and Ganesh
Ramakrishnan. Learning from less data: A unified data subset selection and active learning
framework for computer vision. In 2019 IEEE Winter Conference on Applications of Computer
Vision (WACV), pp. 1289-1299. IEEE, 2019.

Krishnateja Killamsetty, Durga Sivasubramanian, Baharan Mirzasoleiman, Ganesh Ramakrishnan,
Abir De, and Rishabh Iyer. Grad-match: A gradient matching based data subset selection for
efficient learning. arXiv preprint arXiv:2103.00123, 2021a.

Krishnateja Killamsetty, Durga Subramanian, Ganesh Ramakrishnan, and Rishabh Iyer. Glister: A
generalization based data selection framework for efficient and robust learning. In AAAI, 2021b.

Krishnateja Killamsetty, Xujiang Zhao, Feng Chen, and Rishabh Iyer. Retrieve: Coreset selection for
efficient and robust semi-supervised learning. Advances in Neural Information Processing Systems,
34:14488-14501, 2021c.

10

https://openreview.net/forum?id=S1c2cvqee
https://arxiv.org/abs/2001.00326

Under review as a conference paper at ICLR 2023

Katrin Kirchhoff and Jeff Bilmes. Submodularity for data selection in machine translation. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 131-141, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset. In online:
https://www.cs.toronto.edu/~kriz/cifar.html, 2014.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search, 2017. URL
https://arxiv.org/abs/1712.00559.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search, 2018.
URLhttps://arxiv.org/abs/1806.09055.

Yuzong Liu, Rishabh Iyer, Katrin Kirchhoff, and Jeff Bilmes. Svitchboard ii and fisver i: High-quality
limited-complexity corpora of conversational english speech. In Sixteenth Annual Conference of
the International Speech Communication Association, 2015.

Mario Lucic, Matthew Faulkner, Andreas Krause, and Dan Feldman. Training gaussian mixture
models at scale via coresets. The Journal of Machine Learning Research, 18(1):5885-5909, 2017.

Jovita Lukasik, David Friede, Arber Zela, Frank Hutter, and Margret Keuper. Smooth variational
graph embeddings for efficient neural architecture search. In International Joint Conference on
Neural Networks, IICNN 2021, Shenzhen, China, July 18-22, 2021, 2021.

Rengian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimiza-
tion. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
933670f1ac8ba%69f32989c312faba’’5-Paper.pdf.

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
machine learning models. In International Conference on Machine Learning, pp. 6950-6960.
PMLR, 2020a.

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
machine learning models. In Proc. ICML, 2020b.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First
Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, AAAT 19/TAAT’ 19/EAAT’ 19. AAAI Press, 2019.
ISBN 978-1-57735-809-1. doi: 10.1609/aaai.v33i01.33014602. URL https://doi.org/10|
1609/aaai.v33101.33014602.

Xuefei Ning, Changcheng Tang, Wenshuo Li, Songyi Yang, Tianchen Zhao, Niansong Zhang, Tianyi
Lu, Shuang Liang, Huazhong Yang, and Yu Wang. Awnas: A modularized and extensible nas
framework, 2020.

Hoang NT and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters,
2019. URL https://arxiv.org/abs/1905.09550.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
important examples early in training. Advances in Neural Information Processing Systems, 34:
20596-20607, 2021.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture
search via parameters sharing. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the
35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 4095-4104. PMLR, 10-15 Jul 2018. URL https://proceedings|
mlr.press/v80/phaml8a.html.

11

https://arxiv.org/abs/1712.00559
https://arxiv.org/abs/1806.09055
https://proceedings.neurips.cc/paper/2018/file/933670f1ac8ba969f32989c312faba75-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/933670f1ac8ba969f32989c312faba75-Paper.pdf
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1609/aaai.v33i01.33014602
https://arxiv.org/abs/1905.09550
https://proceedings.mlr.press/v80/pham18a.html
https://proceedings.mlr.press/v80/pham18a.html

Under review as a conference paper at ICLR 2023

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,
Quoc Le, and Alex Kurakin. Large-scale evolution of image classifiers, 2017. URL https:
//arxiv.org/abs/1703.01041.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search, 2018. URL https://arxiv.org/abs/1802.01548.

Durga Sivasubramanian, Rishabh K. Iyer, Ganesh Ramakrishnan, and Abir De. Training data subset
selection for regression with controlled generalization error. In ICML, 2021.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari S Morcos. Beyond neural
scaling laws: beating power law scaling via data pruning. arXiv preprint arXiv:2206.14486, 2022.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V. Le. Mnasnet: Platform-aware neural architecture search for mobile. 2018. doi: 10.48550/
ARXIV.1807.11626. URL https://arxiv.org/abs/1807.11626.

Kai Wei, Rishabh Iyer, and Jeff Bilmes. Fast multi-stage submodular maximization. In International
conference on machine learning, pp. 1494-1502. PMLR, 2014a.

Kai Wei, Yuzong Liu, Katrin Kirchhoff, Chris Bartels, and Jeff Bilmes. Submodular subset selection
for large-scale speech training data. In 2014 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 3311-3315. IEEE, 2014b.

Kai Wei, Yuzong Liu, Katrin Kirchhoff, and Jeff Bilmes. Unsupervised submodular subset selec-
tion for speech data. In 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 4107-4111. IEEE, 2014c.

Kai Wei, Rishabh Iyer, and Jeff Bilmes. Submodularity in data subset selection and active learning.
In International Conference on Machine Learning, pp. 1954—1963, 2015.

Colin White, Willie Neiswanger, Sam Nolen, and Yash Savani. A study on encodings for neural
architecture search. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, volume 33, pp. 20309-20319. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
eadeb49329550caaald2044105223721-Paper.pdfl

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks?, 2018a. URL https://arxiv.org/abs/1810.00826.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018b.

Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, and Mi Zhang. Does unsupervised architecture representa-
tion learning help neural architecture search? In NeurlPS, 2020.

Shen Yan, Kaiqgiang Song, Fei Liu, and Mi Zhang. Cate: Computation-aware neural architecture
encoding with transformers. In ICML, 2021.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. NAS-
bench-101: Towards reproducible neural architecture search. In Kamalika Chaudhuri and Ruslan
Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pp. 7105-7114. PMLR, 09-15 Jun
2019. URL https://proceedings.mlr.press/v97/yingl9a.htmll

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. Graphrnn: A deep
generative model for graphs. CoRR, abs/1802.08773,2018. URL http://arxiv.org/abs/
1802.08773.

Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, and Yixin Chen. D-vae: A variational
autoencoder for directed acyclic graphs. pp. 15861598, 2019.

12

https://arxiv.org/abs/1703.01041
https://arxiv.org/abs/1703.01041
https://arxiv.org/abs/1802.01548
https://arxiv.org/abs/1807.11626
https://proceedings.neurips.cc/paper/2020/file/ea4eb49329550caaa1d2044105223721-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ea4eb49329550caaa1d2044105223721-Paper.pdf
https://arxiv.org/abs/1810.00826
https://proceedings.mlr.press/v97/ying19a.html
http://arxiv.org/abs/1802.08773
http://arxiv.org/abs/1802.08773

Under review as a conference paper at ICLR 2023

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning, 2016. URL
https://arxiv.org/abs/1611.01578.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures
for scalable image recognition, 2017. URL https://arxiv.org/abs/1707.07012,

13

https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1707.07012

Under review as a conference paper at ICLR 2023

Efficient Data Subset Selection to Generalize Training Across
Models: Transductive and Inductive Networks
(Appendix)

A RELATED WORK

Our work is closely related to representation learning for model architectures, network architecture
search, data subset selection.

Representation learning for model architectures. Recent work in network representation learning
use GNN based encoder-decoder to encapsulate the local structural information of a neural network
into a fixed-length latent space (Zhang et al.,[2019; Ning et al., [2020; |Yan et al., 2020; |Lukasik et al.,
2021). By employing an asynchronous message passing scheme over the directed acyclic graph
(DAG), GNN-based methods model the propagation of input data over the actual network structure.
Apart from encodings based solely on the structure of the network, White et al.|(2020); Yan et al.
(2021)) produce computation-aware encodings that map architectures with similar performance to the
same region in the latent space. Following the work of |Yan et al.| (2020), we use a graph isomorphism
network as an encoder but instead of producing a single graph embedding, our method produces a
collection of node embeddings, ordered by breadth-first-search (BFS) ordering of the nodes. Our
work also differs in that we do not employ network embeddings to perform downstream search
strategies. Instead, architecture embeddings are used in training a novel model approximator that
predicts the logits of a particular architecture, given an architecture embedding and a data embedding.

Network architecture search. There is an ever-increasing demand for the automatic search of
neural networks for various tasks. The networks discovered by NAS methods often come from an
underlying search space, usually designed to constrain the search space size. One such method is
to use cell-based search spaces (Luo et al., 2018} [Zoph et al.| 2017 [Liu et al., [2017; |Pham et al.,
2018} |Ying et al.l 2019; Dong & Yang| [2020). Although we utilize the NAS-Bench-101 search space
for architecture retrieval, our work is fundamentally different from NAS. In contrast to the NAS
methods, which search for the best possible architecture from the search space using either sampling
or gradient-descent based methods (Baker et al., [2017; Zoph & Le} [2016; Real et al.,|2017; 2018
Liu et al., [2018; |Tan et al., 2018)), our work focuses on efficient data subset selection given a dataset
and an architecture, which is sampled from a search space. Our work utilizes graph representation
learning on the architectures sampled from the mentioned search spaces to project an architecture
under consideration to a continuous latent space, utilize the model expression from the latent space as
proxies for the actual model and proceed with data subset selection using the generated embedding,
model proxy and given dataset.

Data subset selection. Data subset selection is widely used in literature for efficient learning, coreset
selection, human centric learning, efc. Several works cast the efficient data subset selection task
as instance of submodular or approximate-submodular optimization problem (Killamsetty et al.,
2021a};|Wei et al., 2014ajbic; Killamsetty et al., 2021b; Sivasubramanian et al.,[2021). Another line
of work focus on selecting coresets which are expressed as the weighted combination of subset
of data, approximating some characteristics, e.g., loss function, model prediction (Feldman, [2020;
Mirzasoleiman et al., 2020b; [Har-Peled & Mazumdar, 2004; Boutsidis et al., 2013} [Lucic et al.|
2017). Our work is closely connected to simultaneous model learning and subset selection (De et al.
20215 2020; |Sivasubramanian et al., [2021). These existing works focus on jointly optimizing the
training loss, with respect to the subset of instances and the parameters of the underlying model.
Among them (De et al., 2021} 2020) focus on distributing decisions between human and machines,
whereas (Sivasubramanian et al.| 2021)) aims for efficient learning. However, these methods adopt
a combinatorial approach for selecting subsets and consequently, they are not generalizable across
architectures. In contrast, our work focuses on differentiable subset selection mechanism, which can
generalize across architectures.

14

Under review as a conference paper at ICLR 2023

B ILLUSTRATION OF SUBSELNET
I ¥ meM

. BFS — |
D T 98 —T> mor my ; h1 pos[L
L 1 - §(:>'— ceonmn, | B pos(l] \W%_ posll] L_
L, GNN,, v {Attn,|u € Vi, }

| 2 Wy :
Fy:¢={a,8} INITNODE,, ! / |

SYMMAGGR,,

a) O i t Omz; LayerNorm
(&) veiew L- EDGEEMBED, 98 S— FFﬂz‘__ ReLU
GNNa L+ LayerNorm
ruinfe] 5 - (d) Neural model approximator Fy : ¢ = {a, B} {(@i,y:)} D
D T -
G | 0 g
Tor) o) gt .
(b)Transductive (c) Inductive ¢={a,8} ¢=A{a, B}, ¥
SUBSELNET SUBSELNET Transductive Inductive

Figure 4: Illustration of SUBSELNET. (a) Overview of SUBSELNET: Given a model architecture
m € M, SUBSELNET takes the graph structure of model architecture G, and a dataset D as input
to a neural model approximator F, which predicts the output of the trained model mg- (x). Then
this is fed as input to the subset sampler 7 (for transductive model) or my, (for inductive model) to
obtain the training subset S. Fy consists of a graph neural network GNN,, and a model encode gg.
(b) Transductive-SUBSELNET: Given the dataset D and the predictions {om,mj |7 € D} from the
model approximator Fi;, we compute the training subset S by solving an optimization problem for
each m € M. (c) Inductive-SUBSELNET: Here, we do not have to solve the optimization problem
each time for a new architecture m. Instead, we use a neural network 7, which learns to solve
the optimization problem of the transductive model during training and thus, directly provides the
training subset .S during test. (d) Architecture of the neural model approximator Fy, : It first feeds
G, into a graph neural network GNN,,, which outputs the node representations {h, }. Together
with a sequence of positional encoding obtained from a BFS ordering, {h,, } are fed into a attention
network followed by a feed forward network, which outputs {0y, o, } for an instance (z;,y;). ()
The output of training procedure for the two variants of our model.

15

Under review as a conference paper at ICLR 2023

C ADDITIONAL DETAILS ABOUT EXPERIMENTAL SETUP
C.1 DATASET
Datasets (D).

Table 5: A brief description of the datasets used along with the transformations applied during training

Dataset No. of Train-Test Shape Transformations
Classes Split Applied
CIFAR10 10 (50K, 10K) 32x32x3 RandomCrop,
Normalize

CIFAR100 100 (50K,10K) 32x32x3 RandomCrop,
Normalize

FMNIST 10 (60K, 10K) 28x28x1 Normalize

Architectures (M). Although our task is not Neural Architecture Search, we leverage the NASBench-
101 search space as an architecture pool. The cell-based search space was designed for the bench-
marking of various NAS methods. It consists of 423, 624 unique architectures with the following
constraints — (1) number of nodes in each cell is at most 7, (2) number of edges in each cell is at most
9, (3) barring the input and output, there are three unique operations, namely 1 x 1 convolution, 3 x 3
convolution and 3 x 3 max-pool. We utilize the architectures from the search space in generating the
sequence of embeddings along with sampling architectures for the training and testing of the encoder
and datasets for the subset selector.

C.2 IMPLEMENTATION DETAILS ABOUT BASELINES

Facility Location (FL). We implemented facility location on all the three datasets using the apricotm
library. The similarity matrix was computed using Euclidean distance between data points, and the
objective function was maximized using the naive greedy algorithm.

Pruning. It selects a subset from the entire dataset based on the uncertainty of the datapoints while
partial training. In our setup, we considered ResNet-18 as a master model, which is trained on each
dataset for 5 epochs. Post training, the uncertainty measure is calculated based on the probabilities of
each class, and the points with highest uncertainty are considered in the subset. We train the master
model at a learning rate of 0.025.

Glister and Grad-Match. We implemented GLISTER (Killamsetty et al., 2021b) and Grad-Match
(Killamsetty et al.,[2021a) using the CORDS library. We trained the models for 50 epochs, using batch
size of 20, and selected the subset after every 10 epochs. The loss was minimized using SGD with
learning rate of 0.01, momentum of 0.9 and weight decay with regularization constant of 5 x 104,
We used cosine annealing for scheduling the learning rate with 7, of 50 epochs, and used 10% of
the training data as the validation set. Details of specific hyperparameters for stated as follows.

Glister uses a greedy selection approach to minimize a bi-level objective function. In our implemen-
tation, we used stochastic greedy optimization with learning rate 0.01, applied on the data points of
each mini-batch. Online-Glister approximates the objective function with a Taylor series expansion
up to an arbitrary number of terms to speed up the process; we used 15 terms in our experiments.

Grad-Match applies the orthogonal matching (OMP) pursuit algorithm to the data points of each
mini-batch to match gradient of a subset to the entire training/validation set. Here, we set the learning
rate is set to 0.01. The regularization constant in OMP is 1.0 and the algorithm optimizes the objective
function within an error margin of 10™%.

GraNd. This is an adaptive subset selection strategy in which the norm of the gradient of the loss
function is used as a score to rank a data point. The gradient scores are computed after the model has
trained on the full dataset for the first few epochs. For the rest of epochs, the model is trained only on
the top-£ data points, selected using the gradient scores. In our implementation, we let the model
train on the full dataset for the first 5 epochs, and computed the gradient of the loss only with respect
to the last layer fully connected layer.

EL2N. When the loss function used to compute the GraNd scores is the cross entropy loss, the norm
of the gradient for a data point x can be approximated by E||p(x) — y||2, where p(x) is the discrete

'"https://github.com/Jjmschrei/apricot

16

https://github.com/jmschrei/apricot

Under review as a conference paper at ICLR 2023

probability distribution over the classes, computed by taking softmax of the logits, and y is the
one-hot encoded true label corresponding to the data point x. Similar to our implementation of GraNd,
we computed the EL2N scores after letting the models train on the full data for the first 5 epochs.

C.3 IMPLEMENTATION DETAILS ABOUT OUR MODEL

GNN,. As we utilize NASBench-101 space as the underlying set of neural architectures, each
computational node in the architecture can comprise of one of five operations and the one-hot-
encoded feature vector f,,. Since the set is cell-based, there is an injective mapping between the
neural architecture and the cell structure. We aim to produce a sequence of embeddings for the cell,
which in turn corresponds to that of the architecture. For each architecture, we use the initial feature
f, € R5 in (8) as a five dimensional one-hot encoding for each operation. This is fed into INITNODE
@ to obtain an 16 dimensional output. Here, INITNODE consists of a 5 x 16 linear, ReLU and
16 x 16 linear layers cascaded with each other. Each of EDGEEMBED and UPDATE consists of a
5 x 128 linear-BatchNorm-ReLU cascaded with a 128 x 16 linear layer. Moreover, the symmetric
aggregator is a sum aggregator.

We repeat this layer K times, and each iteration gathers information from £ < K hops. After all
the iterations, we generate an embedding for each node, and following (You et al., 2018)) we use the
BFS-tree based node-ordering scheme to generate the sequence of embeddings for each network.

The GVAE-based architecture was trained for 10 epochs with the number of recursive layers K set
to 5, and the Adam optimizer was used with learning rate of 10~2. The entire search space was
considered as the dataset, and a batch-size of 32 was used. Post training, we call the node embeddings
collectively as the architecture representation.

To train the latent space embeddings, the parameters « are trained in an encoder-decoder fashion
using a variational autoencoder. The mean p and variance o on the final node embeddings h,, are:

1 = FCN ([hu]uevm) and 0 = exp (FCN ([h’u]uGVm))

The decoder aims to reconstruct the original cell structure (i.e the nodes and the corresponding
operations), which are one-hot encoded. It is modeled using single-layer fully connected networks
followed by a sigmoid layer.

1 25 T 25
8 2.0 g 20
=} =]

& 1.5 g 1.5
- -

210 2 1.0
R os Qo5
§ 0.0 Q 0.0

0 20 40 60 80 0 20 40 60 80
Epochs — Epochs —
(a) FMNIST (b) CIFAR10

Figure 6: Kullback-Leibler divergence values (KL(mg« (x;) || 93(Hm, ®;))) computed during the
training of the model encoder gg over 80 epochs.

Model Encoder gg. The model encoder gg is essentially a single-head attention block that acts on a
sequence of node embeddings H,,, = {h,|u € V,,}. The Query, Key and Value matrices, Wery,
Wiey and Woge € RY6%8 and the matrix W € R¥¥16. The fully connected network acting on
Cu,1 consists of matrices W € R16%64 and W, € R64%16_ All the trainable matrices along with the
layer normalizations were implemented using the Linear and LayerNorm functions in Pytorch.
The last item of the output sequence (, 3 is concatenated with the data embedding x; and fed to
another 2-layer fully-connected network with hidden dimension 256 and dropout probability of 0.3.
The model encoder is trained by minimizing the KL-divergence between gz (H,,, x;) and mg- (;).
We used an AdamW optimizer with learning rate of 1073, ¢ = 1078, betas = (0.9,0.999) and
weight decay of 0.005. We also used Cosine Annealing to decay the learning rate, and used gradient
clipping with maximum norm set to 5. Figure[f]shows the convergence of the outputs of the model
encoder gg(H,,, x;) with the outputs of the model mg- (;).

17

Under review as a conference paper at ICLR 2023

Neural Network 7,. The inductive model is a three-layer fully-connected neural network with
two Leaky ReLU activations and a sigmoid activation after the last layer. The input to 7, is the
concatenation (H.,,; Om,i; ;5 Y;). The hidden dimensions of the two intermediary layers are 64 and
16, and the final layer is a single neuron that outputs the score corresponding to a data point x;.
While training 7, we add a regularization term ' (>, ., 7y (Hypy, O is 4, y3) — | S|) to ensure that
nearly |.S| samples have high scores out of the entire dataset D. Both the regularization constants A
(in equation[6) and \’ are set to 0.1. We train the model weights using an Adam optimizer with a
learning rate of 0.001. During training, at each iteration we draw instances using Pr, and use the
log-derivative trick to compute the gradient of the objective. During each computation step, we use
one instance of the ranked list to compute the unbiased estimate of the objective in (6] .

D ADDITIONAL EXPERIMENTS
D.1 ABLATION STUDY

We perform ablation study of SUBSELNET from three perspectives.

Impact of ablation of subset sampler. First, we attempt to understand the impact of the subset
sampler. To that aim, we compare the performance of SUBSELNET against two baselines, namely
- Bottom-b-loss and Bottom-b-loss+gumbel. In Bottom-b-loss, we sort the data instances based on
their predicted loss £(Fy (G,), y) and consider those points with the bottom b values. In Bottom-
b-loss+gumbel, we add noise sampled from the gumbel distribution with ¢ = 0 and 5 = 0.025, and
sort the instances based on these noisy loss values, i.e., £(Fy (G,), y) + Gumbel(0, 3 = 0.025).

We observe that Bottom-b-loss and Bottom-b-loss+gumbel do not perform that well in spite of
being efficient in terms of time and memory. Figure [7|compares the performance of the variants of
SUBSELNET, Bottom-b-loss and Bottom-b-loss+gumbel.

—@- Transductive-SubSelNet -d- Loss

—’- Inductive-SubSelNet Loss 4+ Gumbel
1.00 0.75 0.3
e
[to e T
507 e ® 5 050 ‘*:__ = 0.2 0\'\\
I 0.50 I TTE==@ o e
2 2 0.25(m, 2 0.1 R S
= 0.25"M-—.g [-eaes L R M £ Bg-____, “;
B €
0.00 50 150 200 250 0.00 50 150 200 250 0.0 50 150 200 250
Speed up (Ty/T) — Speed up (T§/T) — Speed up (T¢/T) —
1.00 0.75 P 0.3 ry
T ol o - b\ lluteinl /I W Zlides L g O
= 075 o ® S 0500 g . 502 .
!: 0.50 i ¢ I o ¥
2, | e-®---- g m 202 . -2 m | 2010y
E 02 g M & L - & [:w &
pE-
O'OGO 10 20 30 O'OGO 10 20 30 O'GO 10 20 30
fOT memory (t)dt (GB-min) — fOT memory (t)dt (GB-min) — fDT memory(t)dt (GB-min) —
(a) FMNIST (b) CIFAR10 (c) CIFAR100

Figure 7: Comparison of Transductive-SUBSELNET and Inductive-SUBSELNET with Bottom-b-loss
(Loss) and Bottom-b-loss+gumbel (Loss + Gumbel). In the former, we select top-b instances in
terms of their predicted loss £(F (G,), y) computed using the model approximator In Bottom-
b-loss+gumbel, we add gumbel noise Gumbel(0, 0.025) to the loss and sort the instances based on
these noisy loss values.

Exploring alternative architecture of the model encoder gg. We consider three alternative
architecture to our current model encoder gg.

* FEEDFORWARD: We consider a two-layer fully-connected network, in which we concatenate the
mean of H,,, with ;. We used ReLu activation between the layers and the hidden dimension was
set to 256. We used dropout for regularization with probability 0.3.

18

Under review as a conference paper at ICLR 2023

* DEEPSET: We consider permutation invariant networks of the form p(} ", . ; ¢(h); ;) where p
and ¢ are neural networks and H is the sequence under consideration. We p is a fully-connected
network with 4 layers, ReLU activation, and hidden dimension of 64, and ¢ is a two-layer fully-
connected network with ReLU activation and has output dimension 10.

* LSTM: We consider an LSTM-based encoder with hidden dimension of 16 and dropout probability
of 0.2. The output of the last LSTM block is concatenated with x; and fed to a linear layer with
hidden dimension 256, dropout probability of 0.3 and ReLU as the activation function.

Since the goal of the model encoder is to produce outputs which mimic the architectures, we measure
the KL divergence between the outputs of the gold models and of the encoder to denote the closeness
of the output distribution. Table. [§]summarizes performance of different model encoders. We make
the following observations: (1) Transformer-based model encoder outperforms every other method
by a significant margin across both the datasets. (2) The BFS sequential modeling of an architecture
with transformers leads to better representation that enables closer model approximation compared to
other sequential methods like LSTM. (3) Non-sequential model approximators like Feedforward and
DeepSets led to poor model approximation.

Table 8: Comparison of the performance of several model encoder architectures gg on the CIFAR-10
and FMNIST datasets, based on the Kullback—Leibler divergence values between the gold model
outputs and predicted model outputs.

Model approximator | CIFAR-10 | FMNIST
Feedforward 0.171 0.124
DeepSet 0.105 0.122
LSTM 0.102 0.113
Self-Attention Based 0.089 0.109

Performance of subset selectors using different model encoders. We consider three different
design choices of model approximator (our (Transformer), Feedforward, and LSTM) along with
three different subset selection strategies (Our subset sampler, top-b instances based on uncertainty,
and top-b based on loss) which result in nine different combinations of model approximation and
subset selection strategies. We measure uncertainty using the entropy of the predicted distribution
of the target classes and report the average test accuracy of the models when they are trained on the
underlying pre-selected subset in the following table -

Table 9: Test accuracy of the nine combinations of model approximators and selection strategies on
the pre-selected CIFAR10 subset of size 5%.

Design Accuracy
Feedforward + SUBSELNET 0.527
Feedforward + Uncertainty 0.329
Feedforward + Loss 0.296
LSTM + SUBSELNET 0.526
LSTM + Uncertainty 0.417
LSTM + Loss 0.283
Transformer + SUBSELNET 0.548
Transformer + Uncertainty 0.198
Transformer + Loss 0.210

We make the following observations -

1. The complete design of our method, i.e., Our model approximator (Transformer) + Our
subset sampler (SUBSELNET) performs best.

2. If we use simple unsupervised subset selection heuristics, e.g., loss or uncertainty based
subset selection, then our model approximator performs much worse than Feedforward or

19

Under review as a conference paper at ICLR 2023

LSTM, whereas this trend is opposite if we use our subset sampler for selecting the subset.
This may be due to overfitting of the transformer architecture in presence of uncertainty or
loss based selection, which is compensated by our subset sampler.

D.2 RECOMMENDING MODEL ARCHITECTURE

When dealing with a pool of architectures designed for the same task, choosing the correct architecture
for the task might be a daunting task - since it is impractical to train all the architectures from scratch.
In view of this problem, we show that training on smaller carefully chosen subsets might be beneficial
for a quicker alternative to choosing the correct architectures. We first extract the top 15 best
performing architectures .A* having highest accuracy, when trained on full data. We mark them as
"gold". Then, we gather top 15 architectures .A when trained on the subset provided by our models.
Then, we compare A and A* using the Kendall tau rank correlation coefficient (KTau) along with
Jaccard coefficent | A N A*|/| AU A*|.

Figure [I0] summarizes the results for top three non-adaptive subset selectors in terms of the accuracy,
namely - Transductive-SUBSELNET, Inductive-SUBSELNET and FL. We make the following ob-
servations: (1) One of our variant outperforms FL in most of the cases in CIFAR10 and CIFAR100.
(2) There is no consistent winner between Transductive-SUBSELNET and Inductive-SUBSELNET,
although Inductive-SUBSELNET outperforms both Transductive-SUBSELNET and FL consistently
in CIFAR100 in terms of the Jaccard coefficient.

Bl Transductive-SubSelNet HEM Inductive-SubSelNet NIl FL

e
&)
=
=)

1 1038 1
2 0.4 i K
= .8 B2 B2
=0 =0 =0
S€ 0.3 £ 00 £ 00
g8 g8 g8
e] o] o]
0.2 300 600 1800 3000 0.4 250 500 1500 2500 250 500 1500 2500
Subset Size — Subset Size — Subset Size —
0.8 0.7
0.6
T T 1 0.6
. 0.6 t 0.4 .
= < 0 % 0.5
0.4 0.2
300 600 1800 3000 “ 250 500 1500 2500 0.4 250 500 1500 2500
Subset Size — Subset Size — Subset Size —
(a) FMNIST (b) CIFARI10 (c) CIFAR100

Figure 10: Comparison of the top three non-adaptive subset selectors (Transductive-SUBSELNET,
Inductive-SUBSELNETand FL) on ranking and choosing of the top-15 architectures on the basis of
Jaccard Coefficient and Kendall tau rank correlation coefficient (K;).

D.3 AVOIDING UNDERFITTING AND OVERFITTING

Since the amount of training data is small, there is a possibility of overfitting. However, the coefficient
A of the entropy regularizer AH (Pr), can be increased to draw instances from the different regions
of the feature space, which in turn can reduce the overfitting. In practice, we tuned A on the validation
set to control such overfitting.

We present the accuracies on (training, validation, test) folds for both Transductive-SUBSELNET and
Inductive-SUBSELNET in Table [T1]

We make the following observations:

1. From training to test, in most cases, the decrease in accuracy is ~ 7%.
2. This small accuracy gap is further reduced from validation to test. Here, in most cases, the
decrease in accuracy is ~ 4%.

We perform early stopping using the validation set which acts as an additional regularizer and
therefore, the amount of overfitting is significantly low.

20

Under review as a conference paper at ICLR 2023

Table 11: Variation of accuracy with subset size of both the variants of SUBSELNET on training,
validation and test set of CIFAR10

. Training Validation Testing
Subset Size

Transductive Inductive | Transductive Inductive | Transductive Inductive

10% 0.728 0.660 0.702 0.632 0.678 0.606
20% 0.852 0.673 0.809 0.658 0.770 0.644
40% 0.890 0.691 0.856 0.678 0.825 0.666
70% 0.942 0.738 0912 0.717 0.884 0.698

D.4 PERFORMANCE OF SUBSET SELECTION STRATEGIES ON LARGER SUBSET SIZES

We conducted similar experiments as Section |5.1|{for CIFAR10 and FMNIST on larger subset sizes
(b) of 0.1|D|,0.2|D|,0.4|D| and 0.7|D|. For each dataset and the above mentioned subset sizes, we
evaluate the decrease in accuracy (ratio of the accuracy on the subset to accuracy on the full dataset),
speed-up (ratio of the time taken to train the full dataset to the sum of times taken for subset selection
and subset training), and GPU usage in GB-min. We report the variation of these metrics with respect
to the subset sizes in the following tables —

Table 12: Decrease in accuracy (Accuracy on selected subset/Accuracy on full data) for CIFAR10
and FMNIST for b € (0.1|D|,0.7|D)).

Subset Size ‘ Dataset ‘ Transductive ‘ Inductive ‘ FacLoc ‘ Pruning ‘ GLISTER | GradMatch ‘ GraNd ‘ EL2N

10% 0.70 0.69 0.56 0.40 0.78 0.72 0.28 0.70

20% 0.81 0.74 0.67 0.61 0.88 0.87 0.30 0.79
CIFAR10

40% 0.86 0.80 0.78 0.78 0.93 0.93 0.39 0.85

70% 0.93 0.87 0.85 0.88 0.96 0.96 0.71 0.91

10% 0.92 0.90 0.86 0.42 0.95 0.95 0.35 0.91

20% 0.94 0.91 0.90 0.62 0.96 0.96 0.40 0.93
FMNIST

40% 0.95 0.92 0.93 0.73 0.97 0.97 0.50 0.95

70% 0.96 0.93 0.95 0.88 0.97 0.97 0.79 0.96

Table 13: Speed-up (Time for full training/(Time taken for subset selection + Training on the selected
subset)) for CIFAR10 and FMNIST for b € (0.1|D],0.7|D]).

Subset Size ‘ Dataset ‘ Transductive ‘ Inductive ‘ FacLoc ‘ Pruning ‘ GLISTER | GradMatch ‘ GraNd ‘ EL2N

10% 24.13 24.13 5.89 16.81 6.15 7.23 17.76 | 17.76

20% 11.82 11.83 4.70 9.74 4.19 491 10.06 | 10.06
CIFAR10

40% 5.75 5.75 3.31 5.21 2.69 3.20 5.29 5.29

70% 3.43 3.43 2.38 3.23 1.72 2.07 3.26 3.26

10% 25.68 25.67 432 15.60 7.70 7.717 12.28 | 12.28

20% 10.57 10.57 3.48 8.35 5.42 5.47 7.29 7.29
FMNIST

40% 6.04 6.04 2.79 5.24 3.30 3.04 4.81 4.81

70% 3.38 3.38 2.05 3.12 1.96 2.30 2.96 2.96

21

Under review as a conference paper at ICLR 2023

Table 14: GPU memory (GB-min) for CIFAR10 and FMNIST for b € (0.1|D|,0.7|D|)

Subset Size ‘ Dataset ‘ Transductive ‘ Inductive ‘ FacLoc ‘ Pruning ‘ GLISTER ‘ GradMatch ‘ GraNd ‘ EL2N

10% 32.66 32.65 461.77 | 4141 370.08 314.87 67.80 | 107.70

20% 66.65 66.64 495.75 74.88 543.75 463.62 101.26 | 190.19
CIFAR10

40% 137.15 137.13 566.26 | 144.31 847.87 711.67 170.69 | 361.32

70% 229.97 229.95 659.07 | 235.73 1326.46 1101.66 262.11 | 586.65

10% 23.73 23.73 641.65 32.21 168.70 167.32 88.69 | 87.85

20% 57.64 57.64 675.56 66.12 239.84 237.38 122.60 | 121.76
FMNIST

40% 100.85 100.85 718.77 | 109.32 394.35 427.87 165.80 | 164.97

70% 180.03 180.04 79795 | 188.50 664.70 565.88 244.98 | 244.15

Note that in the case of CIFAR10, we denote the decrease factors of 0.91-0.96 in green, and the
decrease factors of 0.85 - 0.88 in purple. In case of FMNIST, we denote the decrease factors of
0.94-0.97 in green and the decrease factors of 0.90 - 0.93 in purple.

We make the following observations:

1.

2.

We show a better trade-off between accuracy and time and accuracy and memory than
almost all the baselines.
Observations in CIFAR10: When we tuned the subset sizes, we notice that SUBSELNET,
GLISTER, Grad-Match and EL2N can achieve a comparable decrease factor of 0.91-0.93.
In terms of speed-up and memory usage, we see that
(a) SUBSELNET achieves a 1.3x speed-up as compared to GLISTER and 1.1x speed-up as
compared to Grad-Match and EL2N
(b) GLISTER consumes 3.7x GPU memory, Grad-Match consumes 3.1x GPU memory
and EL2N consumes 2.5x GPU memory as compared to SUBSELNET
We notice that none of the other subset selection strategies achieve a high-enough accuracy,
and we beat them in terms of speed-up and memory usage. Moreover, for the case when the
subset selection methods achieve a decrease factor of 0.85 - 0.88, we see that
(a) SUBSELNET achieves a 2.4x speed-up as compared to FacLoc, 1.8x speed-up as
compared to Pruning, 1.4x speed-up as compared to GLISTER, 1.2x speed-up as
compared to Grad-Match and 1.1x speed-up as compared to EL2N
(b) FacLoc consumes 4.8x GPU memory, Pruning consumes 1.7x GPU memory, GLISTER
consumes 4x GPU memory, Grad-Match consumes 3.4x GPU memory and EL2N
consumes 2.6x GPU memory as compared to SUBSELNET.

. Observations in FMNIST: When we tuned the subset sizes, we notice that SUBSELNET,

Facloc, GLISTER, Grad-Match and EL2N can achieve a comparable decrease factor of
0.94-0.97. In terms of speed-up and memory usage, we see that
(a) SUBSELNET achieves a 3.8x speed-up as compared to FacLoc, 1.4x speed-up as
compared to GLISTER and Grad-Match, and 2.2x speed-up as compared to EL2N.
(b) FacLoc consumes 12.5x GPU Memory, and GLISTER, Grad-Match and EL2N con-
sume 2.9x GPU memory as compared to SUBSELNET.
We notice that none of the other subset selection strategies achieve a high-enough accuracy,
and we beat them in terms of speed-up and memory usage. Moreover, for the case when the
subset selection methods achieve a decrease factor of 0.90-0.93, we see that
(a) SUBSELNET achieves a 7.4x speed-up as compared to FacLoc, 2.1x speed-up as
compared to GLISTER, 2.9x speed-up as compared to Grad-Match and 2.1x speed-up
as compared to EL2N
(b) FacLoc consumes 28.5x GPU memory, GLISTER consumes 4.5x GPU memory, Grad-
Match consumes 6.1x GPU memory and EL2N consumes 3.7x GPU memory as
compared to SUBSELNET.

We present the trade-off between the accuracy and speed-up, and accuracy and memory consumption

in Figure[13]

22

Under review as a conference paper at ICLR 2023

-@- Transductive-SubSelNet -dpu- FL GLISTER GralNd
—’- Inductive-SubSelNet Pruning Grad-Match —k- EL2N
1.0 1.0 -
xr ¥ NS full selection:
T os " ’ 1 0.8 -i,:‘%gf’;_g_.o,o.gﬁ)
> 0.6 full selection: ‘i’ 0.6 + “*:==’
I 0. .
I (1.0, 0.97) S +*
E 0.4 E 0.4
02010 20 30 40 %% 10 20 30
Speed up (Ty/T) — Speed up (T¢/T) —
1.0 1.0
‘+ .
#‘I) >
T 0.8 T 0.8/@y-%" *!l'
> —_ x o
>
106 I 0.6 F
> 04 full selection: > full selecti
= 6 < 0.4 ull selection:
A (2.1 x10%,0.97) £ (2.4 x 10°,0.96)
0.2 24— : ; ‘ ‘
50 250 450 650 850 927100 400 700 10001300
fOT memory(t)dt (GB-min) — fOT memory(t)dt (GB-min) —
(a) EMNIST (b) CIFAR10

Figure 15: Trade off between accuracy and speedup (top row) and accuracy and memory consumption
(bottom row) for all the methods — Facility location (Fujishigel 2005; Iyer, [2015)), Pruning (Sorscher
et al.}[2022), Glister (Killamsetty et al.l 2021b), Grad-Match (Killamsetty et al., 2021a), EL2N (Paul
et al., 2021); GraNd (Paul et al., 2021); and; Full selection on FMNIST and CIFAR10. In all cases,
we vary |S| = b € (0.1|D|,0.7|DY)).

E PROS AND CONS OF USING GNNSs

We have used a GNN in our model encoder to encode the architecture representations into an
embedding. We chose a GNN for the task due to following reasons -

1. Message passing between the nodes (which may be the input, output, or any of the operations)
allows us to generate embeddings that capture the contextual structural information of the
node, i.e., the embedding of each node captures not only the operation for that node but also
the operations preceding that node to a large extent.

2. Ithas been shown by (Morris et al., 2019) and (Xu et al.| 2018a) that GNNs are as powerful as
the Weisfeiler-Lehman algorithm and thus give a powerful representation for the graph. Thus,
we obtain smooth embeddings of the nodes/edges that can effectively distill information
from its neighborhood without significant compression.

3. GNNs embed model architecture into representations independent of the underlying dataset
and the model parameters. This is because it operates on only the nodes and edges— the
structure of the architecture and does not use the parameter values or input data.

However, the GNN faces the following drawbacks -

1. GNN uses a symmetric aggregator for message passing over node neighbors to ensure that
the representation of any node should be invariant to a permutation of its neighbors. Such a
symmetric aggregator renders it a low-pass filter, as shown in (N'T & Maeharal 2019)), which
attenuates important high-frequency signals.

2. We are training one GNN using several architectures. This can lead to the insensitivity of the
embedding to change in the architecture. In the context of model architecture, if we change
the operation of one node in the architecture (either remove, add or change the operation),
then the model’s output can significantly change. However, the embedding of GNN may
become immune to such changes, since the GNN is being trained over many architectures.

23

Under review as a conference paper at ICLR 2023

F CHOICE OF SUBMODULAR FUNCTION FOR THE OPTIMIZATION PROBLEM

In ([T) we introduced the original combinatorial problem for subset selection where optimization
variable S— the subset of instances — makes the underlying problem combinatorial. Here, we can
use submodular functions like Graph-Cut, Facility-Location, and Log-Determinant as the diversity
functions, which would allow us to use greedy algorithms to maximize the objective in ([I). But,
as discussed in Section[4.1] this suffers from two bottlenecks — expensive computation issues and
lack of generalizability. Therefore, we do not follow these approaches and resort to our proposed
approach called SUBSELNET.

In contrast to the optimization problem in (T), which was a combinatorial set optimization problem,
the optimization problem in SUBSELNET() is a continuous optimization problem where the goal
is to estimate Pr,. In such a problem, where the probability distribution is the key optimization
variable, entropy is a more natural measure of diversity than the other submodular measures.

24

	Introduction
	Present work

	Development of proposed model: SubSelNet
	Notations
	Combinatorial subset selection for efficient learning
	Components of SubSelNet model
	Transductive-SubSelNet and Inductive-SubSelNet models

	Neural parameterization of SubSelNet
	Neural parameterization of F
	Neural architecture of Inductive-SubSelNet

	Parameter estimation and inference
	Bottleneck for end to end training
	Multi-stage training
	Inference
	blueOverview of training and inference routines

	Experiments
	Experimental setup
	Results

	Conclusion
	Ethics statement
	Reproducibility statement
	Related work
	Illustration of SubSelNet
	Additional details about experimental setup
	Dataset
	Implementation details about baselines
	Implementation details about our model

	Additional experiments
	Ablation study
	Recommending model architecture
	blue Avoiding underfitting and overfitting
	blue Performance of subset selection strategies on larger subset sizes

	blue Pros and cons of using GNNs
	blue Choice of submodular function for the optimization problem

