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Abstract

We consider source-seeking tasks, where the goal is to locate a source using a mobile
agent that gathers potentially noisy measurements from the emitted signal. Such tasks are
prevalent, for example, when searching radioactive or chemical sources using mobile sensors
that track wind-carried particles. In this work, we propose an iterative Bayesian algorithm
for source seeking, especially well-suited for challenging environments characterized by
multimodal signal intensity and noisy observations. At each step, this algorithm computes
a Bayesian posterior distribution characterizing the source’s location using prior physical
knowledge of the observation process and the accumulated data. Subsequently, it decides
where the agent should move and observe next by following a search strategy that implicitly
considers paths to the source’s most likely location under the posterior. We show that the
trajectory of an agent executing the proposed algorithm converges to the source’s location
asymptotically with probability one. We validate the algorithm’s convergence through
simulated experiments of an agent seeking a chemical plume in a turbulent environment.

Keywords: Source Seeking, Target Localization, Sensor Data Acquisition, Mobile Robots

1. Introduction

Source-seeking tasks involve locating a source using a mobile agent that collects poten-
tially noisy measurements of the emitted signal. Such scenarios arise, for example, when
identifying radioactive or chemical sources with sensors that trace wind-borne particles.
Autonomous source-seeking robots become indispensable in hazardous environmental con-
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ditions or when communication is limited. Their effective deployment can bolster search
and rescue operations, localize chemical or nuclear threats, and enhance surveillance.

While existing source-seeking methods perform well under unimodal signal intensities
and non-zero measurements —often leveraging stochastic gradient ascent (Zhang et al.,
2007; Cochran and Krstic, 2009; Liu and Krstic, 2010; Atanasov et al., 2012; Ramı́rez-Llanos
and Mart́ınez, 2016; Azuma et al., 2012; Oliveira et al., 2014) or strategies quantifying local
intensity fluctuations to adjust the agent’s trajectory (Matveev et al., 2011; Mellucci et al.,
2016; Ranó et al., 2017; Gillespie et al., 2017)—they struggle when these conditions are
not met. Multimodal signal intensities and zero measurements can occur, for instance,
when detecting a radioactive or chemical source masked by background signals or when the
source particles traverse turbulent mediums, like wind or ocean currents. Although there
are algorithms tailored for turbulent fields (see, e.g., Chang et al. 2013; Tian et al. 2015;
Charrow et al. 2014), most are dependent on non-zero measurements for path determination.
This becomes problematic, particularly in scenarios where maintaining the agent’s position
over extended durations is challenging. Additional related work is discussed in Appendix A.

In this study, we introduce a novel source-seeking algorithm, termed the max probability
algorithm. This algorithm is especially well-suited for stochastic observations (including
zero measurements) of signals whose mean intensity field may be multimodal. Our algo-
rithm is developed under a Bayesian framework, similar to the one pursued by Mishra and
Zhang (2016). In our empirical evaluation, we show that our algorithm outperforms the
expected rate algorithm proposed by Mishra and Zhang (2016). Moreover, in contrast with
this prior work, we prove that our algorithm is asymptotically consistent under sufficient
conditions. Our main assumption can be stated roughly as follows: Given an infinite set of
observations at a specific location, the presence or absence of the source at said location can
be determined. This condition is met in our applications of interest (detecting a radioactive
or chemical source) when the observation intensity at the source’s location is above a known
threshold, while observation intensities at other locations are below this threshold.

Our algorithm operates in an iterative manner. At each iteration, it builds a Bayesian
posterior distribution characterizing the source’s location using prior physical knowledge of
the observation process and the data collected so far. Subsequently, this posterior distribu-
tion informs a search strategy that selects the agent’s next intended location.

Similar iterative strategies have been proposed in the literature (Vergassola et al., 2007b;
Hajieghrary et al., 2015; Mishra and Zhang, 2016). However, to our knowledge, convergence
guarantees for any of these algorithms have not been reported. In contrast, we show that the
trajectory of an agent guided by our algorithm converges to the source’s location with prob-
ability one. Given that our search strategy does not explicitly rely on the field’s gradients
and operates within potentially multimodal intensity fields, establishing this convergence is
non-trivial. Our proof relies on a martingale argument and a mechanism guaranteeing that
the agent will not change its direction too often.

Our contributions can be summarized as follows:

• We propose a novel Bayesian source-seeking algorithm that is especially well-suited
for stochastic observations of a potentially multimodal mean intensity field.

• We prove that the trajectory of an agent guided by our algorithm converges to the
desired source’s location asymptotically with probability one.
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• We conduct numerical experiments demonstrating the superior performance of our
algorithm over standard benchmarks from the literature.

The rest of the paper is organized as follows. In Section 2, we provide a mathematical
formulation of the source-seeking problem. The max probability algorithm is presented in
Section 3. We provide simulation results in Section 4. Finally, we conclude while offering
directions for future research in Section 5.

2. Problem formulation

Consider a search space represented by a finite set X ⊂ Rd. While in real-world scenarios
the search space might be continuous, our algorithm can be applied by adopting a suitable
discretization. At each step, an agent records a noisy measurement y ∈ Rl. The distribution
of this measurement is characterized by the agent’s present location x ∈ X and an environ-
mental state θ ∈ Θ, where Θ denotes all potential states. More specifically, the likelihood
of observing y at a location x is y | x, θ ∼ L ( · ;R(x; θ)), wherein {L( · ;λ)}λ∈Λ is a known
family of densities or probability mass functions parameterized by λ ∈ Λ and {R( · ; θ)}θ∈Θ
is a known family of functions parameterized by θ ∈ Θ. We assume that each observation is
conditionally independent of past observations given x and θ. Finally, we adopt a Bayesian
framework and assume that θ is drawn from a prior distribution p with support Θ.

The goal is to find a location x ∈ X such that R(x; θ) ∈ S∗ for some fixed known
set S∗ ⊂ Λ. As we discuss below, this choice is motivated by chemical plume search
applications, where the source-seeking task can be considered solved whenever we find a
location whose signal intensity is above a known threshold ν, in which case S∗ = [ν,∞).
Let X∗(θ) = {x ∈ X : R(x; θ) ∈ S∗}. We refer to X∗(θ) as the target set. Thus, our goal
is to find a point in the target set. Formally, if xn is the agent’s location at iteration n, we
wish to develop a search strategy such that P(limn→∞ xn ∈ X∗(θ)) = 1, where P denotes
the probability operator.

3. The max probability algorithm

Our algorithm has two main components: (1) the posterior distribution over θ induced by
the prior and the measurements collected so far, and (2) the search strategy, which depends
on the posterior distribution and dictates the next location for the agent to visit. Let
x1, . . . , xn ∈ X be the locations visited by the agent up to time n, and let y1, . . . , yn ∈ Rl be
the corresponding measurements at these locations. We denote the posterior distribution of
θ given the measurements collected up to time n by pn. The computation of the posterior
distribution is standard, so we defer its derivation to Appendix C.

To support the description of our algorithm, we introduce the following notation. For
any given x ∈ X, we denote the set of locations that are accessible from x in a single
time step by I(x). In addition, for any given x, x′ ∈ X, we let ρ(x, x′) be the length of the
shortest path between x and x′, accounting for barriers. We assume that ρ(x, x′) < ∞ for all
x, x′ ∈ X, i.e., that each location is reachable from each other location. Finally, we denote by
qn(x) to the posterior probability of x being in the target set, i.e., qn(x) = Pn(x ∈ X∗(θ)),
where Pn denotes the conditional probability given the measurements collected up to time
n. We note that qn can be computed from pn.
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We are now in a position to formally describe our algorithm, which we term the “max
probability algorithm”. This algorithm has a single hyperparameter, α ∈ (0, 1). Impor-
tantly, any value of α within this range ensures convergence. Let x̂0 ∈ argmaxx∈X q0(x) and
k0 = 0. We define the sequences {x̂n}∞n=1 and {kn}∞n=1 recursively by x̂n ∈ argmaxx∈X qn(x)
and kn = n, if qn(x̂n−1) < αqkn−1(x̂n−1), and x̂n = x̂n−1 and kn = kn−1, otherwise. Let x0
be the agent’s initial location. At every time step, our algorithm chooses the next location
to visit as xn+1 ∈ argminx∈I(xn) ρ(x, x̂n). In general problems, xn+1 can be computed using
Dijkstra’s algorithm. Algorithm 1 summarizes this description. In Appendix D, we prove
that this algorithm is asymptotically consistent, i.e., it finds the source with probability one
as the number of iterations goes to infinity.

Algorithm 1 Max probability algorithm

Require: Prior p0, and agent’s initial location x0.
Compute q0 from p0
Set k = 0 and x̂ ∈ argmaxx∈X q0(x).
for n = 0, 1, . . . do

if qn(x̂) < α qk(x̂) then
Set k = n and x̂ ∈ argmaxx∈X qn(x)

end if
Send agent to xn+1 ∈ argminx∈I(xn) ρ(x, x̂)
Observe measurement yn+1 at location xn+1

Compute posterior distribution pn+1

Compute qn+1 from pn+1

end for

4. Simulation results

We present simulation results for two instances of the 2-dimensional chemical plume search
problem described in Appendix B. An experiment with a single source is discussed in Sec-
tion 4.1. An additional experiment with two sources is discussed in Appendix E. In both
cases, we compare the performance of the max probability, expected rate (Mishra and
Zhang, 2016), and infotaxis (Vergassola et al., 2007b) algorithms.

Let θi be the location of i-th source and ri(x; θi) be the rate at which plume particles
from this source are detected when the agent is at location x. Based on Vergassola et al.
(2007a), we model ri(x; θi) using the advection-diffusion differential equation, i.e., ri(x; θi) =
fi(x− θi), where

fi(z) =
si

log λi
a

e−
⟨z,V ⟩
2D K0

(
max{b, ||z||2}

λi

)
,

si is the rate at which the plume source releases the plume particles in the environment, a
is the size of the sensor detecting plume particles, V is the average wind velocity, D is the
diffusivity of the plume particles, K0 is the modified Bessel function of order zero, and λi

is the average distance traveled by particle in its lifetime τi, which satisfies

λi =

√
τiD

1 +
τi||V ||22
4D

.
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Figure 1: Sample paths of the max probability (black), expected rate (red), and infotaxis
(yellow) algorithms for the unimodal source-seeking problem described in Section 4.1. The
source’s location and the agent’s initial location are the same for the three algorithms.

The model presented in Vergassola et al. (2007a) assumes that b = 0, though this creates
the possibility of an infinite rate when the x = θi. To avoid this, we set b = 10−308 in our
simulations, which guarantees a finite rate of detection in our MATLAB implementation.

4.1 Unimodal case - single source in the search area

In this problem, we consider a single source in a 4m × 4m 2-dimensional search space
discretized into a 200 × 200 uniform grid. Since there is a single source, θ = θ1 and
R(x; θ) = r1(x; θ1). The parameters of f1 are as follows. The plume source is emitting
plumes at a rate of s1 = 1 plumes/s. The plume particles have a diffusivity of D = 1m2/s,
and the average travel distance of plume particles is λ1 = 1.9 m. To focus on settings
where the search is the most challenging, we choose a low magnitude for the velocity V =
[−1, 0]⊤ m/s. A robot of size 0.1 m2 is deployed in the search space to find the source of
the plume particles. We take S∗ = [ν,∞), where ν = f1(0) is the intensity at the source,
which ensures that X∗(θ) = {θ}. Figure 1 depicts the paths of three agents executing the
max probability, expected rate, and infotaxis algorithms to localize a plume source. The
max probability algorithm uses the lowest number of steps to find the source compared to
the expected rate and infotaxis algorithms.

To understand the behavior of the algorithms under different configurations of the
source’s location and agent’s initial location, we perform 3000 simulation runs, each with a
configuration chosen uniformly at random over the search space. For each run, the number
of steps to find the source taken by each algorithm is normalized by the length of the short-
est path between the initial location of the agent and the source’s location. The results are
shown in Figure 2. As shown, the max probability algorithm outperforms its competitors.

Finally, we investigate the robustness of the max probability algorithm with respect to
its only hyperparameter α ∈ (0, 1). To do so, we perform 3000 simulation runs using each
of the values α ∈ {0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99}. The results are depicted in Figure
3, which shows that α has very little effect on the number of steps taken.
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Figure 2: Box plot depicting the normalized number of steps taken by the search algorithms
to find the source in the unimodal source-seeking problem described in Section 4.1 across
3000 simulation runs. The red line at the center of each box represents the median. The
lower and upper horizontal edges of the box represent the 25th and 75th percentiles, respec-
tively. Finally, the black horizontal lines at the lower and upper ends of the whiskers of
each box represent the minimum and the maximum values, respectively.

Figure 3: Box plot depicting the normalized number of steps taken by the max probability
algorithm under different values of α.

5. Conclusion

This work introduced the max probability source-seeking algorithm. This algorithm main-
tains a posterior distribution characterizing the source’s location, which is used iteratively
to decide the location the agent should visit next. Our algorithm and two baselines from
the literature were evaluated in two simulated chemical plume source-seeking tasks, show-
ing that the former converges faster and more reliably to the source. Finally, we showed
that our algorithm is asymptotically consistent. A promising direction for future research
is to extend our algorithm and analysis to more complex settings, such as problems with
multiple agents and moving sources.
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Appendix A. Additional related work

The task of identifying an item with distinct attributes within a collection has been exten-
sively studied across various disciplines, each operating under its own assumptions. Conse-
quently, our study intersects with several existing lines of work from the literature.

Our problem setting is closest to that considered by the robotics (Zhang et al., 2007;
Liu and Krstic, 2010; Atanasov et al., 2012; Ramı́rez-Llanos and Mart́ınez, 2016; Mishra
and Zhang, 2016; Ranó et al., 2017; Gillespie et al., 2017; Zhang et al., 2021), control
(Cochran and Krstic, 2009; Matveev et al., 2011; Azuma et al., 2012; Oliveira et al., 2014;
Mellucci et al., 2016), and physics communities (Bénichou et al., 2005; Vergassola et al.,
2007b), where a mobile agent equipped with a sensor searches for a source emitting a signal.
Consistent with our work, these studies emphasize the need for the robot to move across
the search space efficiently using a real-time search strategy. However, the majority of
these strategies are guided by gradients, which, as discussed above, can be problematic
for turbulent fields. Two exceptions areVergassola et al. (2007b) and Mishra and Zhang
(2016), whose proposed algorithms we evaluate in our experiments. Finally, the algorithms
proposed by these communities either lack convergence guarantees or rely on assumptions,
such as the unimodality of the underlying field (Zhang et al., 2007, 2021), which are often
violated in practice.

Emerging from the seminal work of Bernard Koopman (Koopman, 1956; koo, 1956;
Koopman, 1957), the operations research community has developed the field of optimal
search. The objective, akin to ours, remains the localization of a target within a search
space. This community’s pursuits primarily revolve around understanding how much effort
(e.g., number of samples or time) should be spent at each location of the search space to
maximize the probability of finding the target within a budget, or to minimize the expected
effort required to find the target. However, unlike the work discussed in the previous
paragraph, most of this work does not consider the cost of moving from one location to
another through the search space. One exception is Wang et al. (2013), which proves that
computing the optimal path is NP-hard even in simple settings. Like ours, work in this area
uses probabilistic models of the target location. The uncertainty provided by such models
is used to determine the effort that should be allocated at each region of the search space.
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Unlike our work, however, work in this area has focused on binary response models and also
often assumes there are no false positives.

The machine learning and statistics communities have also studied problems where
the goal is to allocate search or sampling effort to find a specific item as efficiently as
possible. Within this literature, our work is particularly close to Bayesian optimization, a
framework for global optimization of functions with time-consuming evaluations (Kushner,
1964; Zhilinskas, 1975; Močkus, 1975; Frazier, 2018). In source-seeking tasks, the source
corresponds to the location where the signal’s mean field achieves its maximum value.
Thus, Bayesian optimization could, in principle, be repurposed for such tasks. However,
most Bayesian optimization algorithms do not take into account the cost of moving from the
current point to the next one. Moreover, most work in Bayesian optimization uses Gaussian
processes as probabilistic models. In contrast, we use a probabilistic model specifically
designed for source-seeking tasks, which leverages physical knowledge of the observation
process.

Within research pursued by the machine learning community, our work is also closely
related to informative path planning (Krause and Guestrin, 2007; Singh et al., 2009), which
focuses on finding paths that maximize the amount of information gathered by a mobile
robot. In contrast, our algorithm is specifically tailored to guide the robot to find the source.

Appendix B. An example in chemical plume search

To illustrate our framework, we discuss an example focused on locating a chemical plume
that emits particles within an environment with turbulent flows.

Let I denote the number of sources (i.e., chemical plumes) in the search space. For each
source i = 1, . . . , I, we denote its location by θi and the rate at which particles from this
source are detected when the agent is at location x by ri(x; θi). The rate at which plume
particles from all sources are detected when the robot is at location x is given by the sum
of the rates of all sources, i.e., R(x; θ) =

∑I
i=1 ri(x; θi), where θ = (θ1, . . . , θI).

To complete our model description, we must define the likelihood of measurements
recorded by the agent. We assume that observations follow a Poisson distribution with rate
λ. Hence, the likelihood is given by L(y;λ) = (λye−λ)/y! for y ∈ N0. This Poisson likelihood
aligns well with the behavior observed in turbulent fields Vergassola et al. (2007a).

Suppose we wish to find an area of the search space where the intensity is above a
dangerous level ν. We can model this by setting S∗ = [ν,∞), in which case X∗(θ) = {x :
R(x; θ) ≥ ν}. In addition, consider a situation where the environment has a dominant
“major” source accompanied by several weaker “background” sources. The major source’s
intensity is known to exceed ν close to its origin and decreases rapidly with increasing
distance. In contrast, the combined intensity from background sources is well below ν at all
locations in the search space. Under these conditions, X∗(θ) will be constituted by a small
region in the neighborhood of the major source. In practice, finding a location x ∈ X∗(θ), as
guaranteed by our algorithm, typically implies successful identification of the major source.
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Appendix C. Posterior distribution

Let x1, . . . , xn ∈ X denote the locations visited by the agent up to time n, and let y1, . . . , yn ∈
Rl denote the corresponding measurements at these locations. We use the compact notation
x1:n = (x1, . . . , xn) and y1:n = (y1, . . . , yn). Let pn(θ) = p(θ | x1:n, y1:n) denote the posterior
distribution of θ given the measurements collected up to time n. By Bayes rule we have

pn(θ) =
p(θ | x1:n, y1:n−1)p(yn|θ, x1:n, y1:n−1)

p(yn|x1:n, y1:n−1)
.

The first term in the numerator of the above equation is equivalent to p(θ|x1:n−1, y1:n−1)
because moving to a new location does not provide information about the source’s loca-
tion until a measurement is observed. Moreover, since measurements are assumed to be
conditionally independent given the source’s location,

p(yn|θ, y1:n−1, x1:n) = p(yn|xn; θ)
= L(yn;R(xn; θ)).

Finally, the denominator p(yn|x1:n, y1:n−1) is equal to∫
θ′
p(θ′|x1:n−1, y1:n−1)L(yn;R(xn; θ

′)) dθ′.

Thus, the posterior distribution of θ at time n can be rewritten as

pn(θ) =
p(θ|x1:n−1, y1:n−1)L(yn;R(xn; θ))∫

θ′ p(θ
′|x1:n−1, y1:n−1)L(yn;R(xn; θ′)) dθ′

.

The above equation also gives rise to a recursive expression to compute pn in terms of pn−1

as follows

pn(θ) =
pn−1(θ)L (yn;R(xn; θ))∫

θ′ pn−1(θ′)L(yn;R(xn; θ′)) dθ′
.

Appendix D. Convergence analysis

In this section, we prove that the location of an agent following the max probability algo-
rithm converges almost surely to a location in X∗(θ). Our analysis relies on the following
two assumptions.

Assumption 1. X∗(θ) is non-empty almost surely.

Assumption 2. There is a sequence of functions {En}∞n=1 such that, for any λ ∈ Λ, if
{yn}∞n=1 is a sequence of i.i.d. random variables with common distribution L( · ;λ), then
{En(y1, . . . , yn)}∞n=1 converges almost surely to λ.

Assumption 1 simply guarantees that the source-seeking task is feasible almost surely.
We now explain how Assumption 2 is used at an intuitive level. Let x be a location visited
infinitely often by the agent. Observations at x are conditionally i.i.d. given θ with common
conditional distribution L ( · ;R(x; θ)). Then, asymptotically as the number of observations
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at x goes to infinity, we can estimate R(x; θ) with arbitrarily high precision by Assumption 2.
Since, by definition, x ∈ X∗(θ) if and only if R(x; θ) ∈ S∗, we can then determine if x is in
the target set.

Our main result is stated in Theorem 1. We prove this result through a series of lemmas.
Before proving these lemmas, we establish the following notation. We denote the σ-algebra
generated by the measurements collected up to time n by Fn. We also let F∞ denote the
minimal σ-algebra generated by {Fn}∞n=1.

Lemma 1. For each x ∈ X, limn→∞ qn(x) = E[1{x ∈ X∗(θ)}|F∞] almost surely.

Proof Fix any x ∈ X and observe that 1{x ∈ X∗(θ)} is an integrable random vari-
able. Thus, by Theorem 4.7 in Çinlar, {E[1{x ∈ X∗(θ)}|Fn]}∞n=1 is a uniformly integrable
martingale converging to E[1{x ∈ X∗(θ)}|F∞] almost surely. This ends the proof since
qn(x) = E[1{x ∈ X∗(θ)}|Fn] by definition.

Let Nn(x) =
∑n

n′=1 1{xn′ = x} be the number of times a location x has been visited by
the agent by time n. We also define N∞(x) = limn→∞Nn(x). The following lemma shows
that if N∞(x) = ∞, i.e., if a location x is visited by the agent infinitely often, then we can
determine if the location is in the target set almost surely.

Lemma 2. For each x ∈ X, there exists an event Ax such that P(Ax) = 1 and limn→∞ qn(x) =
1{x ∈ X∗(θ)} on the event {N∞(x) = ∞} ∩Ax.

Proof Fix x ∈ X and let {y′n}∞n=1 be a sequence of random variables independent of
each other and independent of {yn}∞n=1, whose common conditional distribution given θ is
L( · ;R(x; θ)). Define the sequence {mn}∞n=1 recursively by m1 = inf{m : xm = x} and
mn = inf{m > mn−1 : xm = x} for n > 1. For each n, we define zn = ymn if mn < ∞ and
zn = y′n otherwise. Observe that, conditioned on θ, {zn}∞n=1 is a sequence of i.i.d. random
variables with common distribution L( · ;R(x; θ)). By Assumption 2, there exists an event
Ax such that P(Ax) = 1 and limn→∞En(z1, . . . , zn) = R(x; θ) on Ax.

Let E∞ be defined by E∞ = limn→∞En(z1, . . . , zn) ifN∞ = ∞ and limn→∞En(z1, . . . , zn)
exists, and E∞ = 0 otherwise. Observe that E∞ is F∞-measurable and E∞ = R(x; θ) on
the event {N∞(x) = ∞} ∩ Ax. Consequently, the statements below hold on the event
{N∞(x) = ∞} ∩Ax.

We have 1{E∞ ∈ S∗} = 1{R(x; θ) ∈ S∗}. Moreover, 1{R(x; θ) ∈ S∗} = 1{x ∈
X∗(θ)} by definition. Hence, 1{E∞ ∈ S∗} = 1{x ∈ X∗(θ)}, which in turn implies that
E[1{E∞ ∈ S∗} | F∞] = E[1{x ∈ X∗(θ)} | F∞]. In addition, since 1{E∞ ∈ S∗} is F∞-
measurable, E[1{E∞ ∈ S∗} | F∞] = 1{E∞ ∈ S∗}. From the last two equations we get
E[1{x ∈ X∗(θ)} | F∞] = 1{x ∈ X∗(θ)}, which concludes the proof by virtue of Lemma 1.

Lemma 3. If qn(x) <
1
c , where c = |X|, then x /∈ argmaxx′∈X qn(x

′).

Proof Observe that
∑

x′∈X qn(x
′) ≥ 1 by Assumption 1. Thus, there exists x̃ ∈ X such

that 1
c ≤ qn(x̃). Since, qn(x) <

1
c ≤ qn(x̃), it follows that x /∈ argmaxx′∈X qn(x

′).
Let T∞ = {x : x̂n = x for infinitely many n}. The following lemma shows that a

location whose probability of being in the target set vanishes as the number of iterations
goes to infinity cannot be in T∞.

Lemma 4. If limn→∞ qn(x) = 0, then x /∈ T∞.
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Proof We prove this by contradiction. Suppose limn→∞ qn(x) = 0 for some x ∈ T∞.
Since limn→∞ qn(x) = 0, there exists N1 large enough such that qn(x) <

1
c for all n > N1.

From Lemma 3 we know that x /∈ argmaxx′∈X qn(x
′) for all n > N1. Since x ∈ T∞,

it follows from this that there exists N2 such that x̂N2 = x ∈ argmaxx′∈X qN2(x
′) and

qn(x) ≥ αqN2(x) for all n > N2. Moreover, since x ∈ argmaxx′∈X qN2(x
′), it follows from

Lemma 3 that qN2(x) > 0. Thus, lim infn→∞ qn(x) ≥ αqN2(x) > 0, which contradicts that
limn→∞ qn(x) = 0.

Lemma 5. Almost surely, there exists N large enough such that x̂n = x and qn(x) ≥
αqkn−1(x) for all n > N , where x is the only element of T∞. In particular, T∞ has cardi-
nality 1 almost surely.

Proof T∞ is non-empty by the pigeonhole principle. Fix x ∈ T∞. From Lemmas 1 and 4, we
deduce limn→∞ qn(x) exists and is strictly positive almost surely. Let q∞(x) = limn→∞ qn(x)
and define ϵ = 1−α

1+αq∞(x). There existsN1 large enough such that qn(x) ∈ [q∞(x)−ϵ, q∞(x)+
ϵ] for all n > N1. We now consider two cases. In the first case, there is no n > N1 such
that x̂n = x and qn(x̂n−1) < αqn(x̂n−1). Since x ∈ T∞, this necessarily implies there is a
N2 ≤ N1 such that x̂N2 = x ∈ argmaxx′∈X qN2(x

′) and qn(x) ≥ αqN2(x) for all n > N2. In
the second case, there exists n > N1 such that x̂n = x and qn(x̂n−1) < αqn(x̂n−1). Let N2

denote such a n. Since N2 > N1, we have

qn(x) ≥ q∞(x)− ϵ

= q∞(x)− 1− α

1 + α
q∞(x)

=
2α

1 + α
q∞(x)

= α(q∞(x) + ϵ)

≥ αqN2(x).

for any n > N2. If we let N = N2, we obtain, in any of the two cases described above, that
x̂n = x and qn(x) ≥ αqkn−1(x) for all n > N . It follows that T∞ = {x}, which concludes
the proof.

We are now ready to prove our main result.

Theorem 1. limn→∞ xn = x for some x ∈ X∗(θ) almost surely.

Proof Fix x ∈ X and consider the event where the random variable N from Lemma 5 is
finite and T∞ = {x}. Call this event Bx. On this event, using Lemma 5, x̂n = x for all
n > N . Thus, xn+1 ∈ argminx′∈I(xn) ρ(x

′, x) for all n > N . Since each location is reachable
from each other location in X, it must be the case that xn = x for all n large enough. By
Lemma 2, limn→∞ qn(x) = 1{x ∈ X∗(θ)} on the event {N∞(x) = ∞}∩Ax∩Bx. Moreover,
since x ∈ T∞, limn→∞ qn(x) > 0 by Lemma 4. Hence, 1{x ∈ X∗(θ)} > 0, i.e., x ∈ X∗(θ).
Observe that this analysis also implies that Bx ⊂ {N∞(x) = ∞}. Thus, we have shown
that xn = x for all n large enough and x ∈ X∗(θ) on the event Ax ∩Bx. Finally, recall that
∪x∈XBx is an almost sure event by Lemma 5. Moreover, Ax is an almost sure event for each
x ∈ X. Hence, ∪x∈XAx ∩Bx is an almost sure event. We conclude that limn→∞ xn = x for
some x ∈ X∗(θ) almost surely.
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Appendix E. Additional numerical experiment

Here, we present simulation results for a problem with two sources in a 4m × 4m 2-
dimensional search space, discretized into a 80 × 80 uniform grid. We set the problem
up so that the emission rate of the first source is significantly larger than the emission rate
of the second source by taking s1 = 1 plumes/s and s2 = 0.25 plumes/s. We also make the
lifetime of particles generated by the first source larger than that of the second source by
setting τ1 = 2500 s and τ2 = 1000 s. The remainder of the parameters of f1 and f2, which
are common for both sources, are taken like in the unimodal case. The goal is to find the
major source, i.e., θ1. The value of the intensity at this location is f1(0) + f2(||θ1 − θ2||2).
Because of the way in which problem parameters were chosen, this is the unique location
whose intensity is larger than f1(0). This occurs because the first source is much stronger
than the second, they are well-separated when generating instances, and because intensity
falls off quickly with distance from a source. Thus, it is sufficient to take S∗ = [f1(0),∞),
which ensures that X∗(θ) = {θ1}.

To evaluate the performance of the three algorithms, we performed 300 simulation runs.
The locations of the sources were chosen uniformly at random for each run with the con-
straint that the distance between the two sources was at least 25 cells. Out of 300 simulation
runs, 100 were chosen such that the agent’s initial location was closer to the highest inten-
sity source, 100 were chosen such that the agent’s initial location was closer to the lowest
intensity source, and 100 were chosen agent’s initial location was approximately the same
distance to both sources. In all cases, it was also guaranteed that the agent’s initial location
was at least 20 cells away from both sources. Unlike in the experiment in Section 4.1, here
we cap the maximum number of steps taken by the agent to 300 to reduce the computational
cost of the simulations. In the next two subsections, we present the statistical analysis of
consistency and rate of convergence of the three algorithms.

E.1 Consistency of convergence

Here, the agent is considered to have found the source if it is within one cell from the source.
Figure 4a depicts the percentage of trajectories that converge to the highest intensity source
within 300 steps for each algorithm. These percentages are 98%, 88%, and 84% for the max
probability, expected rate, and infotaxis algorithms, respectively. Thus, the max probability
algorithm converges more consistently than the other two algorithms.

We also analyze how often the algorithms converge to the highest intensity source, in line
with the goal of the search, and how often they fail to do this and instead converge to the
lowest intensity source. Figure 4b shows the percentage of trajectories that converged to the
lowest intensity source for each algorithm. None of the trajectories of the max probability
algorithm converged to the lowest intensity source. A manual inspection shows that the 2%
of the trajectories of the max probability algorithm that did not converge to the highest
intensity source were closer to it than to the lowest intensity source. On the other hand,
9.3% and 6.7% of the trajectories of the expected rate and infotaxis algorithms converged
to the lowest intensity source, respectively. These trajectories were typically such that
the agent’s initial location was closer to the low-intensity source than to the high-intensity
source. Thus, these results suggest that the expected rate and infotaxis algorithms are more
prone to converging to the low-intensity source.
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(a) Percentage of trajectories converging to the
global maxima for each algorithm in the problem
described in Section E.

(b) Percentage of trajectories stuck in the local
maxima for each algorithm in the problem de-
scribed in Section E.

Figure 4

E.2 Rate of convergence

Figure 5a shows the median of the normalized distance between the agent and the high-
intensity source after a given number of iterations. While the three algorithms eventually
reach a median normalized distance of zero, the max probability and expected rate algo-
rithms do so faster than the infotaxis algorithm. Figure 5b depicts the 95th percentile of
the normalized distance between the agent’s location and the highest intensity source after
a given number of iterations. This value is consistently lower for the max probability al-
gorithm than the expected rate algorithm, which is, in turn, lower than the corresponding
value of the infotaxis algorithm. Moreover, only the value corresponding to the max prob-
ability algorithm goes to zero within 300 iterations. From these results, we conclude that
the max probability algorithm converges faster and more reliably than the expected rate
and infotaxis algorithms.

(a) Median of the normalized distance between
the agent and the high-intensity source for the
max probability (red), expected rate (blue), and
infotaxis (green) algorithms.

(b) 95th percentile of the normalized distance
between the agent and the high-intensity source
for the max probability (red), expected rate
(blue), and infotaxis (green) algorithms.

Figure 5
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