
Published as a DeLTa Workshop Paper at ICLR 2025

REWARD-GUIDED DIFFUSION MODEL FOR DATA-
DRIVEN BLACK-BOX DESIGN OPTIMIZATION

Hadi Keramati ∗

University of British Columbia
Rajeev Jaiman
University of British Columbia

ABSTRACT

Black-box optimization (BBO) is an important method for design space explo-
ration in high-dimensional domains, including fields such as materials science and
robotic design. The diffusion models used for BBO either require a differentiable
proxy or lack direct guidance. In this paper, we propose a reward-guided approach
for training the Markov decision process (MDP) to increase the likelihood that
the posterior generates higher-reward samples. We use the Metropolis–Hastings
(MH) algorithm for Markov Chain Monte Carlo (MCMC) sampling to guide the
reverse process. We first pre-train the diffusion model to match the distribution
of the initial data, then fine-tune it so that the model acts as a policy that adapts
its parameters to generate high-reward samples. This is a policy gradient method
in which the policy is sampled from a pre-trained model to reduce the variance
in training. Our experiments demonstrate that the reward-guided diffusion model
achieves state-of-the-art performance across a variety of design problems, partic-
ularly in problems where the oracle is non-differentiable or an exact function.

1 INTRODUCTION

Design optimization in high-dimensional space is crucial in engineering and scientific problems.
In real-world scenarios (e.g. biology, materials science, robotics, and hardware design), a well-
defined function for the objective value is not always present Kumar & Levine (2020); Baque et al.
(2018). In some cases, an objective function exists, but its evaluation is computationally expensive.
Keramati et al. (2022). Therefore, utilizing precomputed objective function values for a given dataset
is of significant interest in optimization. As a result, data-driven, black-box optimization is gaining
increasing attention in both practical applications and scientific research. One way of optimizing a
function using a dataset is to train a proxy to predict the performance function (f(x)) and use that
proxy for online optimization. This forward approach requires the proxy to generalize outside the
offline dataset, which can cause out-of-distribution problems Trabucco et al. (2021).

To address this challenge, inversion networks are used for data-driven optimization to learn a map
from high-performance designs to the input and use this inverse mapping to generate the optimized
design Kumar & Levine (2020). This mapping lacks direct guidance from the objective function and
suffers from reaching the proximity of the optimized points Chen et al. (2024); Kumar & Levine
(2020); Krishnamoorthy et al. (2023). A proxy refinement method has recently been suggested
Chen et al. (2024) to provide robust guidance that optimizes sampling parameters as a trade-off
between exploration and conditional generation for BBO. Many existing diffusion-based generative
methods require a pre-trained, differentiable surrogate model (e.g., a neural network) to guide the
training process Krishnamoorthy et al. (2023). As a result, common ensemble approaches, such as
XGBoost or other tree-based methods, cannot be integrated as guiding proxies for diffusion models.
This restriction narrows the selection of proxy models, thus limiting accuracy and generalization
and ultimately increasing the likelihood of out-of-distribution errors. Consequently, it becomes
challenging to address practical optimization problems that might benefit from the strengths of non-
differentiable ensemble methods.

Fine-tuning denoising diffusion probabilistic models (DDPMs) using reinforcement learning (RL)
has been proposed to improve sampling Fan & Lee (2023). Instead of following the backward

∗E-mail: hadi.keramati@ubc.ca

1

Published as a DeLTa Workshop Paper at ICLR 2025

process, minimizing the integral probability metric (IPM) with a policy gradient has shown effective
fine-tuning results. Recently, a framework is suggested that uses RL to optimize text-to-image
diffusion models Black et al. (2023). They consider the pre-trained diffusion model as a policy,
similar to our method for conditional image generation.

In this paper, we formulate the fine-tuning as a policy learning of the Markov chain that draws
intermediate high-reward samples from a pretrained denoising diffusion model. We do not perform
any derivation from the objective function with respect to the design vector. Therefore, our method
does not require any proxy training and can be used for any real-world performance evaluation and
gradient-free simulation. We use Metropolis-Hastings (MH) for intermediate sampling along the
Markov chain to sample high-rewarded design vectors. We show that Markov Chain Monte Carlo
(MCMC) sampling from pre-trained diffusion models can serve as a low-variance policy training
mechanism, and we also show its effectiveness as a technique for black-box optimization tasks.

2 BACKGROUND

This section briefly explains the DDPM to build a foundation to explain the reward-guided fine-
tuning in the next section. DDPM is a latent variable generative model in which a forward diffusion
process gradually adds noise to the data with the same dimensionality Ho et al. (2020). A learned
reverse process, modeled as a Markov chain, iteratively removes the noise to reconstruct high-quality
samples.

2.1 FORWARD DIFFUSION PROCESS

In the DDPM forward process, at each timestep t ∈ {1, 2, . . . , T}, where T is the final timestep in
the forward process, Gaussian noise with variance schedule βt is added to the input data x0 at each
step of the fixed Markov chain. The transition distribution q from step t − 1 to step t is formulated
as:

q(xt | xt−1) = N (xt;αtxt−1, βtI) (1)

Where αt = 1− βt. The distribution at timestep t is defined as follows.

xt =
√
ᾱt x0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I) (2)

Where ᾱt =
∏t

s=1 αs, and I is the identity matrix Ho et al. (2020).

2.2 REVERSE DENOISING PROCESS

At timestep T , the latent xT is close to the isotropic Gaussian distribution. The reverse process chain
is designed to recover x0 from xT by estimating the noise added at each timestep. This estimation is
performed by a neural network, pθ, on the mean and variance assuming the noise is Gaussian similar
to the forward process.

pθ(xt−1 | xt) = N (xt−1 | µθ(xt, t), βtI), (3)

Where µθ(xt, t) is a learnable estimator for the mean of xt−1 that only depends on xt at timestep t.

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
+ σt z (4)

Here, z ∼ N (0, I) and ϵθ(xt, t) are the neural network estimation of the noise, and σt is the
variance of the added noise during sampling. By sampling from x0, new sets of data similar to the
initial data are generated Ho et al. (2020).

2.3 DDPM TRAINING OBJECTIVE

The DDPM model in simple terms is trained by minimizing the loss term which is defined by the
distance between the predicted noise and the true noise Ho et al. (2020):

LDDPM = Ex0,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥2

]
(5)

2

Published as a DeLTa Workshop Paper at ICLR 2025

2.4 MARKOV DECISION PROCESSES

A Markov decision process (MDP) is a stochastic decision-making process, M = (S,A, P,R) , in
which S is the state space, A is the action space, P is a transition kernel (P : S×A → P(S)), and R
is the reward function. At each time step t, the agent takes an action at ∈ A, based on the observation
of a state st ∈ S, receives a reward R(st, at), and transitions to a new state st+1 ∼ P

(
st+1 | st, at

)
.

Each action is drawn from a policy π(at | st). A trajectory, τ = (s0, a0, s1, a1, . . . , sT , aT),
is defined as the sequence of states and actions in MDP, where s0 is drawn from an initial state
distribution ρ0. The objective is for the agent to maximize the expected cumulative rewards J(π):

J(π) = Eτ∼p(τ |π)

[
T∑

t=0

R
(
τ
)]

.

3 METHODOLOGY

We first pre-train the DDPM using the data without any condition or guidance. Then we redefine
the fine-tuning as a policy optimization but with sampling from the pre-trained distribution instead
of direct policy optimization.

POLICY GRADIENT FOR REWARD GUIDANCE

We attempt to maximize the expected reward using a policy pθ(x) from which we sample x:

J(θ) = Ex∼pθ

[
r(x)

]
(6)

We also rely on vanilla policy gradient to conceptualize the objective function and update in the
Markov chain.

∇θJ(θ) = Ex∼pθ

[
r(x)∇θ log pθ(x)

]
(7)

In diffusion models, we define reverse transitions pθ(xt−1 |xt)

log pθ(x0) =

T∑
t=1

log pθ
(
xt−1 | xt

)
+ log p(xT) (8)

Where xT typically comes from timestep T (e.g. a Gaussian). Therefore:

∇θ log pθ(x0) =

T∑
t=1

∇θ log pθ(xt−1 | xt) (9)

We can express log pθ(xt−1 | xt) in a differentiable form similar to DDPM.

∇θ

[
− log pθ(xt−1 | xt)

]
∝ ∇θ ∥ϵ− ϵθ(xt, t)∥2 (10)

Thus, minimizing the MSE between the true noise ϵ and the predicted noise ϵθ(xt, t) corresponds
to maximizing log pθ(xt−1 | xt).

∇θ LossRLdiff ∝ − Ex0∼pθ

[
r(x0)∇θ log pθ(x0)

]
(11)

Equation 11 matches the standard policy gradient formula with the reverse process distribution pθ
in the diffusion model acting as the policy π(θ) in the standard RL problem. This is basically an RL
problem in which we consider the pre-trained pθ as a policy.

3.1 METROPOLIS-HASTINGS UPDATE

Inspired by neural simulated annealing Correia et al. (2023), we use MH Metropolis et al. (1953),
a popular choice for MCMC sampling. For each time step in the reverse process, t → t − 1, a
distribution determined by the diffusion model’s predicted noise is proposed. Figure 1 shows the

3

Published as a DeLTa Workshop Paper at ICLR 2025

graphical model of the proposal and transition from pre-trained to reward-guided model. We can
write the proposal density as:

q̃θ
(
x̃t−1 | xt

)
= N

(
x̃t−1

∣∣∣ µθ(xt), β̃t I
)
, (12)

where
µθ(xt) =

1
√
αt

(
xt − (1−αt)√

1−αt
ϵθ(xt, t)

)
(13)

The proposed new distribution acts as an action in multi-step MDP.

x̃t−1 ∼ q̃θ(x̃t−1 | xt) (14)

We then accept or reject the proposed x̃t−1 using Equation 15. We consider the MH step as a
stochastic transition kernel, governed by the temperature of the system in Equation 15.

PMH(x̃t−1,xt) = min
{
1, exp

[
(r(x̃t−1) − r(xt)) / Tt

]}
(15)

where Tt is a temperature parameter. To balance exploration in early timesteps with exploitation
in later timesteps, we implement annealed diffusion with a temperature parameter Tt that decreases
over time t. Higher temperatures in early steps promote exploration, while lower temperatures in
later steps encourage greedy exploitation of high-reward generations. We draw u ∼ Uniform[0, 1]
and perform a slightly modified version of MH. Instead of setting the distribution back to xt in case
of rejection, we set it to the pre-trained version at the same timestep xt−1. If u ≤ pMH(x̃t−1,xt),
the new step is set to x̃t−1 . Otherwise, the new step remains the same as previously trained version
xpre
t−1 .

xt−1 =

{
x̃t−1, if u ≤ pMH(x̃t−1,xt)

xpre
t−1, otherwise

(16)

By transitioning from t = T to t = 1 on the trajectory τ , we reach the final state, x0, where the
reward r(x0) is evaluated. When the temperature parameter Tt is high, the probability of accept-
ing new states increases, promoting the exploration of the state space. As Tt decreases, the chain
increasingly favors states with higher rewards, based on the principles of simulated annealing Kirk-
patrick et al. (1983). The distribution of accepted final states by training phase sampling using MH,
pSA
θ (x0), depends on the pre-trained model parameters, the current model parameters θ, the reward

function r(·), the schedule temperature Tt.

Figure 1: Graphical model of the vanilla DDPM and reward-guided diffusion model

4 EXPERIMENT

First, we perform low-dimensional optimizations for demonstration purposes on the Branin and
Rosenbrock task. The global maxima for x1 ∈ [−5, 10] and x2 ∈ [0, 15] are (−π, 12.275),
(π, 2.275), and (9.42478, 2.475), with a maximum value of –0.397887. More details about this

4

Published as a DeLTa Workshop Paper at ICLR 2025

task are available in the Appendix A. We use a dataset of 5000 randomly generated samples for
training. Sample reverse process of the model after training as well as the function value curve are
shown in Figure 2. The process of increase in reward in single episode is shown across the timesteps.
Because of the nature of the RL, only one of the optimal points from Branin functions are highly re-
warded. This process might be different from the denoising diffusion optimization models (DDOM)
Krishnamoorthy et al. (2023). The reverse sample process for Rosenbrock is shown in Figure 3.
Note how the distribution is different between Figure 3 and Figure 2 due to the difference in the
position of the optimal points.

Figure 2: Sample reverse diffusion trajectory for Branin task

Figure 3: Sample reverse diffusion trajectory for Rosenbrock task

We perform further studies on design-bench problems. The problems are 1) Superconductor Hami-
dieh (2018): the dataset consists of 21,263 rows and 82 columns: 81 columns corresponding to the
features extracted and 1 column of the observed critical temperature values. The goal is to optimize
and find a design with maximum critical temperature. 2) D’Kitty Morphology (D’Kitty) : 25,008
samples of the design of a quadrupedal D’Kitty robot with 56 dimensions related to the morpho-
logical structure. The goal is to maximize the crawling speed. 3) Rosenbrock (Rosen): The goal
is to maximize the Rosenbrock function. We used this function in 2 dimensions for demonstration
purposes and here in 60 dimensions for evaluation purposes. For this study, we focus on 50,000
vectors that produce lower function values Rosenbrock (1960). 4) Ant Morphology (Ant): Similarly
to D’Kitty Morphology, the Ant Morphology task consisted of 25008 samples of a quadrupedal ant
robot, with 60 continuous parts, and we want to optimize crawling velocity. We also study 4 prob-
lems in the discrete domain: 1)TF Bind 8 (TF8) Barrera et al. (2016): This dataset contains 32,898
8-unit DNA sequences, each evaluated for binding activity. The goal is to discover a sequence that
maximizes this activity. 2) TF Bind 10 (TF10) Barrera et al. (2016): Similar to TF8, but here each
design is a 10-unit DNA sequence, resulting in a larger pool of 50,000 samples. As before, the
objective is to maximize the binding activity. 3) Neural Architecture Search (NAS) Zoph (2016):
This task involves 1,771 candidate neural network architectures designed for the CIFAR-10 dataset.
The objective is to identify the architecture that achieves the highest test accuracy. 4) ChEMBL
Gaulton et al. (2012): a collection of 1093 drug data with 31 dimensions that the goal is to optimize
for particular chemical properties.

Table 1 and Table 2 show the results, which are reported based on ynormalized(y) = y−ymin

ymax−ymin
to

be consistent with previous work(Trabucco et al.). We used T = 1000 in all experiments. All
experiments were conducted on an NVIDIA GeForce RTX 3090.

The benchmark methods used in this table are CMA-ES: the CMA evolution strategy Hansen (2006),
REINFORCE: policy gradient method Sutton et al. (1999), GRAD: simple gradient ascent, COMs
Trabucco et al. (2021), MINs Kumar & Levine (2020), DDOM Krishnamoorthy et al. (2023).

5

Published as a DeLTa Workshop Paper at ICLR 2025

Table 1: Performance comparison of methods across four continuous tasks (maximum normalized
score, mean± std)

Method Superconductor Ant Morphology D’Kitty Morphology Rosenbrock
D(best) 0.399 0.565 0.884 0.483
CMA-ES 0.465 ± 0.024 1.11 ± 0.554 0.724 ± 0.001 0.443 ± 0.058
REINFORCE 0.481 ± 0.013 0.266 ± 0.032 0.562 ± 0.196 0.536 ± 0.033
Grad 0.490 ± 0.009 0.932 ± 0.015 0.932 ± 0.005 0.684 ± 0.070
COMs 0.504 ± 0.022 0.818 ± 0.017 0.905 ± 0.017 0.581 ± 0.075
MIN 0.499 ± 0.017 0.845 ± 0.080 0.892 ± 0.001 0.590 ± 0.010
DDOM 0.495 ± 0.012 0.959 ± 0.014 0.935 ± 0.001 0.709 ± 0.00
OURS 0.569 ± 0.003 0.977 ± 0.007 0.965 ± 0.004 0.783 ± 0.013

Table 2: Performance comparison of methods across four discrete tasks (maximum normalized
score, mean± std)

Method TF Bind 8 TF Bind 10 NAS ChEMBL
D(best) 0.439 0.467 0.436 0.605
CMA-ES 0.941 ± 0.014 0.681 ± 0.0166 0.982 ± 0.036 0.630 ± 0.009
REINFORCE 0.960 ± 0.02 0.649 ± 0.021 0.112 ± 0.006 0.635 ± 0.056
Grad 0..868 ± 0.011 0.662 ± 0.019 0.9654 ± 0.065 0.642 ± 0.099
COMs 0.951 ± 0.016 0.623 ± 0.009 0.765 ± 0.005 0.638 ± 0.083
MIN 0.913 ± 0.214 0.637 ± 0.014 0.732 ± 0.009 0.659 ± 0.014
DDOM 0.9655 ± 0.012 0.652 ± 0.006 0.735 ± 0.005 0.627 ± 0.008

OURS 0.960 ± 0.013 0.686 ± 0.020 0.798 ± 0.003 0.618 ± 0.003

The result in Table 1 and Table 2 highlights the superior performance of the reward-guided diffusion
model. The best performing models are bold for clear demonstration.

The results indicate that by pre-training the diffusion model, we can benefit from the distribution of
the reverse process which is close to an isotropic Gaussian. This enables us to use MH sampling to
accept or reject transitions based on this distribution, rather than relying on arbitrary policies that
often introduce high variance and complicate the training process.

5 SUMMARY

We proposed a reward-guided multi-step MDP method for fine-tuning the denoising diffusion model
for black-box optimization. Our method uses Metropolis-Hastings (MH), as a Markov Chain Monte
Carlo (MCMC) sampling to guide the policy towards higher rewards and optimal solution. This
sampling using MH along the multi-step MDP is stationary for policy update and is effective in
reward maximization. We showed the effectiveness of the method on different tasks and dataset
dimensions.

Limitation and Future Work. Our model has no termination point during multi-step MDP other
than reaching the final timestep, T , which can cause divergence from the pre-trained model particu-
larly in the early stage when temperature and exploration rate are higher.

REFERENCES

Pierre Baque, Edoardo Remelli, Francois Fleuret, and Pascal Fua. Geodesic convolutional shape
optimization. In International Conference on Machine Learning, pp. 472–481. PMLR, 2018.

Luis A Barrera, Anastasia Vedenko, Jesse V Kurland, Julia M Rogers, Stephen S Gisselbrecht,
Elizabeth J Rossin, Jaie Woodard, Luca Mariani, Kian Hong Kock, Sachi Inukai, et al. Survey
of variation in human transcription factors reveals prevalent dna binding changes. Science, 351
(6280):1450–1454, 2016.

6

Published as a DeLTa Workshop Paper at ICLR 2025

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
models with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

Can Chen, Christopher Beckham, Zixuan Liu, Xue Liu, and Christopher Pal. Robust guided diffu-
sion for offline black-box optimization. 2024.

Alvaro HC Correia, Daniel E Worrall, and Roberto Bondesan. Neural simulated annealing. In
International Conference on Artificial Intelligence and Statistics, pp. 4946–4962. PMLR, 2023.

Ying Fan and Kangwook Lee. Optimizing ddpm sampling with shortcut fine-tuning. arXiv preprint
arXiv:2301.13362, 2023.

Anna Gaulton, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne
Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, et al. Chembl: a large-scale
bioactivity database for drug discovery. Nucleic acids research, 40(D1):D1100–D1107, 2012.

Kam Hamidieh. A data-driven statistical model for predicting the critical temperature of a super-
conductor. Computational Materials Science, 154:346–354, 2018.

Nikolaus Hansen. The cma evolution strategy: a comparing review. Towards a new evolutionary
computation: Advances in the estimation of distribution algorithms, pp. 75–102, 2006.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Hadi Keramati, Feridun Hamdullahpur, and Mojtaba Barzegari. Deep reinforcement learning for
heat exchanger shape optimization. International Journal of Heat and Mass Transfer, 194:
123112, 2022.

Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing.
science, 220(4598):671–680, 1983.

Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Diffusion models for black-
box optimization. In International Conference on Machine Learning, pp. 17842–17857. PMLR,
2023.

Aviral Kumar and Sergey Levine. Model inversion networks for model-based optimization. Ad-
vances in neural information processing systems, 33:5126–5137, 2020.

P. Langley. Crafting papers on machine learning. In Pat Langley (ed.), Proceedings of the 17th
International Conference on Machine Learning (ICML 2000), pp. 1207–1216, Stanford, CA,
2000. Morgan Kaufmann.

Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and Edward
Teller. Equation of state calculations by fast computing machines. The journal of chemical
physics, 21(6):1087–1092, 1953.

HoHo Rosenbrock. An automatic method for finding the greatest or least value of a function. The
computer journal, 3(3):175–184, 1960.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Brandon Trabucco, Xinyang Geng, Aviral Kumar, and Sergey Levine. Design-bench:
Benchmarks for data-driven offline model-based optimization, 2021. URL https://github.
com/brandontrabucco/design-bench, 30:31–32.

Brandon Trabucco, Aviral Kumar, Xinyang Geng, and Sergey Levine. Conservative objective mod-
els for effective offline model-based optimization. In International Conference on Machine Learn-
ing, pp. 10358–10368. PMLR, 2021.

B Zoph. Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578,
2016.

7

Published as a DeLTa Workshop Paper at ICLR 2025

A OPTIMIZATION FUNCTIONS

A.1 BRANIN FUNCTION

Branin is a two-dimensional function with three global minima within a commonly used rectangular
domain. A common form of the Branin function f : R2 → R is given by f(x1, x2) = a

(
x2 −

b x2
1 + c x1 − r

)2
+ s (1 − t) cos(x1) + s, where the recommended parameter values are: a =

1, b = 5.1
4π2 , c = 5

π , r = 6, s = 10, t = 1
8π . A standard domain for benchmarking is

the rectangular region, x1 ∈ [−5, 10], x2 ∈ [0, 15]. The Branin function has three global minima,
(−π, 12.275), (π, 2.275), (3π, 2.475), within the rectangular domain. At each of these points,
the function value is approximately f(x∗

1, x
∗
2) ≈ 0.397887.

A.2 ROSENBROCK FUNCTION

The Rosenbrock function in two dimensions that we used for the demonstration is defined as
f(x1, x2) = 100

(
x2 − x2

1

)2
+ (1− x1)

2, and has a single global minimum at (1, 1), where the
value of the function is f(1, 1) = 0. We consider the domain to be x1 ∈ [−2, 2], x2 ∈ [−1, 3].

The generalized form of the Rosenbrock function in higher dimensions (we used a 60 dimension
vector) is written as:

f(x) =

59∑
i=1

[
100

(
xi+1 − x2

i

)2
+ (1− xi)

2
]
,

where each coordinate xi is restricted to [−2, 2] and the global minimum occurs at xopt =
(1, 1, 1...1) where f(xopt) = 0.

B METROPOLIS ACCEPTANCE

B.1 BOLTZMANN DISTRIBUTION

The probability distribution of each state x in statistical mechanics is expressed by the exponential
term:

p(x) ∝ exp
(
−E(x)

kB T

)
,

where E(x) is the energy of each state x, kB is the Boltzmann constant, and T is the temperature. If
we consider the energy of the system as the negative reward value, E(x) = − r(x), the probability
distribution is proportional to:

exp
(
−E(x)

kB T

)
= exp

(
r(x)
kB T

)
.

B.2 STANDARD METROPOLIS–HASTINGS

The Metropolis–Hastings (MH) algorithm constructs a Markov chain that samples from p(x). The
acceptance probability for a proposed state x̃ for the transition from the state x is:

pMH(x̃ | x) = min
{
1, exp

(
−E(x̃)−E(x)

kB T

)}
.

Substitute E(x) = − r(x) and absorb kB (considered to be 1) into the temperature:

exp
(
−E(x̃)−E(x)

T

)
= exp

(
r(x̃)−r(x)

T

)
.

Hence, with reward notation, the acceptance rule becomes:

pMH(x̃ | x) = min
{
1, exp

(
r(x̃)−r(x)

T

)}
.

8

Published as a DeLTa Workshop Paper at ICLR 2025

B.3 TIME-DEPENDENT COOLING

In order to induce early exploration and greedy exploitation at higher timesteps, we adopt the an-
nealed diffusion, and let the temperature decrease across steps labeled by t. The early steps have
higher Tt to allow more exploration, and later steps have smaller Tt, to greedily exploit high reward
generation.

B.4 MODIFIED ACCEPTANCE FORMULA

We simply replace the constant T with a time-varying Tt. Then, the acceptance probability for going
from xt to a proposed x̃t−1 is:

pMH(x̃t−1, xt) = min
{
1, exp

(
r(x̃t−1)−r(xt)

Tt

)}
.

We draw a uniform random u ∼ U(0, 1). If u ≤ pMH, we accept x̃t−1. Otherwise, we reject x̃t−1.

In standard MH, upon rejection, the chain remains at the old state xt.

xt−1 =

{
x̃t−1, if u ≤ pMH,

xt, otherwise.

In modified version:

xt−1 =

{
x̃t−1, if u ≤ pMH,

xpre
t−1, otherwise.

In other words, instead of reverting to xt, we return to a pre-trained version of xt−1.

C PARAMETERS OF THE REWARD GUIDED DIFFUSION

We used T = 1000 for all high-dimensional experiments in this study. We report the effect of the
number of timesteps on the three datasets. The score ratio is the performance of the model compared
to the performance at T = 1000.

Figure 4: Performance of the reward-guided model at different number of timesteps T compared to
T = 1000

D VISUALIZATION OF OPTIMIZED DESIGN IN THE DATASET

This section shows the t-SNE plots of the datasets and the optimized design points.

9

Published as a DeLTa Workshop Paper at ICLR 2025

Figure 5: t-SNE plots of the Superconductor dataset and optimized design

Figure 6: t-SNE plots of the D’Kitty Morphology dataset and optimized design

10

	Introduction
	Background
	Forward Diffusion Process
	Reverse Denoising Process
	DDPM Training Objective
	Markov Decision Processes

	Methodology
	Metropolis-Hastings Update

	Experiment
	Summary
	Optimization Functions
	Branin Function
	Rosenbrock Function

	Metropolis Acceptance
	Boltzmann Distribution
	Standard Metropolis–Hastings
	Time-Dependent Cooling
	Modified Acceptance Formula

	Parameters of the Reward Guided Diffusion
	Visualization of Optimized Design in the Dataset

