
Improving Consistency Models with Generator-Augmented Flows

Thibaut Issenhuth 1 Sangchul Lee 2 Ludovic Dos Santos 1 Jean-Yves Franceschi 1 Chansoo Kim 2 3

Alain Rakotomamonjy 1 4

Abstract

Consistency models imitate the multi-step sam-
pling of score-based diffusion in a single forward
pass of a neural network. They can be learned in
two ways: consistency distillation and consistency
training. The former relies on the true velocity
field of the corresponding differential equation,
approximated by a pre-trained neural network. In
contrast, the latter uses a single-sample Monte
Carlo estimate of this velocity field. The related
estimation error induces a discrepancy between
consistency distillation and training that, we show,
still holds in the continuous-time limit. To allevi-
ate this issue, we propose a novel flow that trans-
ports noisy data towards their corresponding out-
puts derived from a consistency model. We prove
that this flow reduces the previously identified dis-
crepancy and the noise-data transport cost. Con-
sequently, our method not only accelerates con-
sistency training convergence but also enhances
its overall performance. The code is available at:
github.com/thibautissenhuth/consistency GC.

1. Introduction
A large family of diffusion (Ho et al., 2020), score-based
(Song et al., 2021; Karras et al., 2022), and flow models
(Liu et al., 2023; Lipman et al., 2023) have emerged as state-
of-the-art generative models for image generation. Since
they are costly to use at inference time – requiring several
neural function evaluations –, many distillation techniques
have been explored (Salimans and Ho, 2022; Meng et al.,
2023; Sauer et al., 2023). One of the most remarkable ap-
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proach is consistency models (Song et al., 2023; Song and
Dhariwal, 2024). Consistency models lead to high-quality
one-step generators, that can be trained either by distilla-
tion of a pre-trained velocity field (consistency distillation),
or as standalone generative models (consistency training)
by approximating the velocity field through a one-sample
Monte Carlo estimate.

The corresponding estimation error naturally induces a
discrepancy between consistency distillation and training.
While Song et al. (2023) hinted that it would resolve in the
continuous-time limit, we show that this discrepancy per-
sists in both the gradients and values of the loss functions.
Interestingly, this discrepancy vanishes when the difference
between the target velocity field and its Monte-Carlo ap-
proximation approaches zero. However, this is not the case
with the independent coupling (IC) between data and noise
used to construct the standard estimate. It is unclear how to
improve this one-sample estimate without access to the true
underlying diffusion model.

The approach we adopt in this paper to alleviate this issue
involves altering the velocity field – thereby changing the
target flow – to reduce the variance of its one-sample es-
timator. One possible solution to this problem is to resort
to optimal transport (OT) to learn on a deterministic cou-
pling. OT has been succesfully adopted in diffusion (Li
et al., 2024), consistency (Dou et al., 2024), and flow match-
ing (Pooladian et al., 2023) models. However, due to the
prohibitive cubic complexity of OT solvers (e.g. Hungarian
matching algorithm), such methods need to be applied at the
minibatch level. This incurs an OT approximation error (Fa-
tras et al., 2021; Sommerfeld et al., 2019) and stochasticity
of the data-noise coupling, thus not solving the consistency
training issue.

In our approach, we propose to use the consistency model,
assumed to be an approximation of the target diffusion flow,
to construct additional trajectories. The consistency model
serves as a proxy to reduce the expected deviation between
the velocity field and its estimator. More precisely, from an
intermediate point computed from an IC, we let the consis-
tency model predict the corresponding endpoint, supposedly
close to the data distribution. This predicted endpoint is cou-
pled to the same original noise vector, defining a generator-
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(a) PF-ODE (IC). (b) Generator-Augmented Flows (GC).

Figure 1. Comparison of the probability flow ODE (PF-ODE) and generator-augmented flows (GC): target data is a mixture of two Dirac
delta functions, and GC is computed with a closed-form generator. In the background, we observe the density of probability paths. White
arrows are ODE trajectories associated to the velocity field. Blue lines are sample paths from IC in (a) and from GC in (b). Trajectories
start from random intermediate points ★. On this example, GC sample paths appear more aligned to the velocity field.

augmented coupling (GC). We show empirically that the
resulting generator-augmented flow presents compelling
properties for training consistency models, in particular a re-
duced deviation between the velocity field and its estimator,
and decreased transport costs – as supported by theoretical
and empirical evidence. This can be observed in Figure 1.
From this, we derive practical algorithms to train consis-
tency models with generator-augmented flows, leading to
improved performance and faster convergence compared to
standard and OT-based consistency models.

Let us summarize our contributions below.

• We prove that in the continuous-time limit consistency
training and consistency distillation loss function con-
verge to different values and we provide a closed-form
expression of this discrepancy.

• We propose a novel type of flows that we denote
generator-augmented flows. It relies on generator-
augmented coupling (GC) that can be used to train
a consistency model.

• We provide theoretical and empirical insights into the
advantages of GC. We show that generator-augmented
flows have smaller discrepancy to consistency distilla-
tion than IC consistency training, and that they reduce
data-noise transport costs.

• We derive practical ways to train consistency models
with GC. Our approach based on a joint learning strat-
egy leads to faster convergence and improves the per-
formance compared to the base model and OT-based
approaches on image generation benchmarks.

Notation. We consider an empirical data distribution p⋆
and a noise distribution pz (e.g. Gaussian), both defined on
Rd. We denote by q a joint distribution of samples from p⋆
and pz . We equip Rd with the dot product ⟨x,y⟩ = x⊤y
and write ∥x∥ = ⟨x,x⟩1/2 for the Euclidean norm of x. We
use a distance function D : Rd ×Rd → [0,∞) to measure
the distance between two points from Rd. sg denotes the
stop-gradient operator.

In consistency models, we consider diffusion processes of
the form xt = x⋆ + σtz, where x⋆ ∼ p⋆, z ∼ pz , and σt

is monotonically increasing for t ∈ [0, T ], where T ∈ R+.
We denote the distribution of xt by p(xt), or simply pt.
Conditional distributions or finite-dimensional joint distri-
butions of xt’s are denoted similarly. When considering
a discrete formulation with N intermediate timesteps, we
denote the intermediate points as xti = x⋆ + σtiz, where
ti is strictly increasing for i ∈ {0, . . . , N}, with t0 = 0
and tN = T . The values of σ0 and σT are chosen to be
sufficiently small and large, respectively, so that p0 ≈ p⋆
and pT ≈ N (0, σ2

T I).

2. Consistency Distillation Versus Training
In this section, we provide the required background on dif-
fusion and consistency models (Sections 2.1 and 2.2), then
discuss the discrepancy between consistency distillation and
consistency training (Section 2.3) which we theoretically
characterize in continuous-time.
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2.1. Flow and Score-Based Diffusion Models

Score-based diffusion models (Ho et al., 2020; Song et al.,
2021) can generate data from noise via a multi-step process
consisting in numerically solving either a stochastic differen-
tial equation (SDE), or equivalently an ordinary differential
equation (ODE). Although SDE solvers generally exhibit
superior sampling quality, ODEs have desirable properties.
Most notably, they define a deterministic mapping from
noise to data. Recently, Liu et al. (2023) and Lipman et al.
(2023) generalize diffusion to flow models, which are de-
fined by the following probability flow ODE (PF-ODE):

dx = vt(x) dt, (1)

where vt(x) = E[ẋt|xt = x] is the velocity field. Note that
ẋt is defined as the random variable ẋt =

d(x⋆+σtz)
dt = σ̇tz,

and is not to be confused with the time-derivative of the
ODE, vt.

In the context of consistency models (Song et al., 2023;
Song and Dhariwal, 2024), the most common choice is
vt(x) = −σ̇tσt∇x log pt(x) dt, in particular the EDM
formulation (Karras et al., 2022) where σt = t and thus
vt(x) = −t∇x log pt(x). Here, ∇x log pt, a.k.a. the
score function, can be approximated with a neural network
sϕ(x, t) (Vincent, 2011; Song and Ermon, 2019).

2.2. Consistency Models

Numerically solving an ODE is costly because it requires
multiple expensive evaluations of the velocity function. To
alleviate this issue, Song et al. (2023) propose training a
consistency model fθ, which learns the output map of the
PF-ODE, i.e. its flow, such that:

fθ(xt, σt) = x0, (2)

for all (xt, σt) ∈ Rd× [σ0, σT ] that belong to the trajectory
of the PF-ODE ending at (x0, σ0).

Equation (2) is equivalent to (i) enforcing the boundary
condition fθ(x0, σ0) = x0, and (ii) ensuring that fθ has
the same output for any two samples of a single PF-ODE
trajectory – the consistency property. (i) is naturally satisfied
by the following model parametrization:

fθ(xti , σti) = cskip(σti)xti + cout(σti)Fθ(xti , σti), (3)

where cskip(σ) =
σ2
d

σ2
d+(σ−σ0)2

, cout(σ) =
σd·(σ−σ0)√

σ2
d+σ2

, σ2
d the

variance of data, and Fθ is a neural network. This ensures
cskip(0) = 1, cout(0) = 0. (ii) is achieved by minimizing
the distance between the outputs of two same-trajectory
consecutive samples using the consistency loss:

LCD(θ) = EqI(x⋆,z),p(xti+1
|x⋆,z)[

λ(σti)D
(
sg
(
fθ(x

Φ
ti , σti)

)
,fθ(xti+1 , σti+1)

)]
, (4)

where (x⋆, z) is sampled from the independent coupling
qI(x⋆, z) = p⋆(x⋆)pz(z), i is an index sampled uniformly
at random from {0, 1, . . . , N − 1}, xti+1 = x⋆ + σti+1z,
and xΦ

ti is computed by discretizing the PF-ODE with the
Euler scheme as follows:

xΦ
ti = Φ(xti+1

, ti+1) = xti+1
+ (ti − ti+1)vti+1

(xti+1
).
(5)

This loss can be used to distill a score model into fθ.

In the case of consistency training, Song et al. (2023)
circumvent the lack of a score function by noting that
vti+1(x) = E[ẋti+1 |xti+1 = x]. In light of this, its single-
sample Monte Carlo estimate ẋti+1

is used instead in Equa-
tion (5) to replace the intractable xΦ

ti by xti = x⋆ + σtiz in
the consistency loss:

LCT(θ) = EqI(x⋆,z),p(xti
,xti+1

|x⋆,z)[
λ(σti)D

(
sg
(
fθ(xti , σti)

)
,fθ(xti+1

, σti+1
)
)]

. (6)

2.3. Discrepancy Between Consistency Training and
Distillation and Velocity Field Estimation

Naturally, replacing vt by its single-sample estimate ẋt

makes consistency training deviate from consistency dis-
tillation in discrete time. Still, Song et al. (2023, Theo-
rems 2 and 6) suggest that this discrepancy disappears in
continuous-time since LCT(θ) = LCD(θ) + o(1/N) and the
corresponding gradients are equal in some cases. This equal-
ity is then used in work of Lu and Song (2024), concurrent
to ours, to train continuous-time consistency models at the
cost of an elaborate architectural design. Without disproving
these results, we find that scaling issues and lack of gener-
ality soften the claim of a closed gap between consistency
training and distillation.

Indeed, we provide in the following theorem a thorough
theoretical comparison of LCT and LCD. We first prove that
they converge to different values in the continuous-time
limit. The difference is captured by a regularization term
that depends on the discrepancy between the velocity field
and its estimate. Moreover, we show that the limits of the
scaled gradients do not coincide in the general case, except
when the (asymptotic) quadratic loss is used. The proof, and
further discussion on why this discrepancy did not appear
in Song et al. (2023), can be found in Appendix A.1.

Theorem 1 (Discrepancy between consistency distillation
and consistency training objectives). Assume that the
distance function is given by D(x,y) = φ(∥x − y∥) for
a continuous convex function φ : [0,∞) → [0,∞) with
φ(x) ∼ Cxα as x → 0+ for some C > 0 and α ≥ 1,
and that the timesteps are equally spaced, i.e., ti = iT

N .
Furthermore, assume that the Jacobian ∂fθ

∂x does not vanish
identically. Then the following assertions hold:
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(i) The scaled consistency losses NαLCD(θ) and
NαLCT(θ) converge as N → ∞. Moreover, the mini-
mization objectives corresponding to these limiting scaled
consistency losses are not equivalent, and their difference is
given by:

lim
N→∞

Nα
[
LCT(θ)− LCD(θ)

]
= CTα−1R(θ), (7)

whereR(θ) is defined by

R(θ) =
∫ T

0

λ(σt)E
[
∥∂CTfθ∥α − ∥∂CDfθ∥α

]
dt (8)

and satisfiesR(θ) > 0, with

∂CTfθ =
∂fθ

∂σ
(xt, σt)σ̇t +

∂fθ

∂x
(xt, σt) · ẋt, (9)

∂CDfθ =
∂fθ

∂σ
(xt, σt)σ̇t +

∂fθ

∂x
(xt, σt) · vt(xt). (10)

In particular, if α = 2,

R(θ) =
∫ T

0

λ(σt)E
[ ∥∥∥∥∂fθ

∂x
(xt, σt)

(
ẋt − vt(xt)

)∥∥∥∥2 ] dt.
(11)

(ii) The scaled gradient Nα−1∇θLCD(θ) and
Nα−1∇θLCT(θ) converge as N → ∞. Moreover,
if α ̸= 2, then their respective limits are not identical as
functions of θ:

lim
N→∞

Nα−1∇θLCT(θ) ̸= lim
N→∞

Nα−1∇θLCD(θ). (12)

This theorem reveals that the optimization problems of
consistency training and distillation differ not only in dis-
crete time but also in continuous-time. It even highlights
a discrepancy between, firstly, the limiting gradients in
continuous-time – although they are equal for α = 2 – and,
secondly, the gradients of the limiting losses, which differ
because ofR(θ), even when α = 2.

This analysis shows the importance of employing probabil-
ity paths whose sample path derivatives ẋt are aligned with
the velocity field vt(xt). In particular, if a diffusion process
xt satisfies ẋt = vt(xt), we have R(θ) = 0 and equal
gradients for all α ≥ 1. Hence, for such xt, consistency
training and consistency distillation would be reconciled
both in discrete time and in the continuous-time limit.

However, it is unclear how to directly improve the single-
sample estimation ẋt of vt(xt). In particular, increasing the
number of samples per point xt to reduce its variance is not
tractable, as it requires sampling from the inverse diffusion
process p(x⋆|xt). Therefore, we adopt an alternative ap-
proach to alleviate the discrepancy identified in this section,
which involves altering the velocity field – thereby changing

the target flow – to reduce the variance of its one-sample
estimator. This approach is reminiscent of recent work tack-
ling the data-noise coupling that we discuss in the following
section.

3. Reducing the Discrepancy with Data-Noise
Coupling

Beyond independent coupling (IC). From Section 2.2, it
appears that ẋt is computed through an IC qI = p⋆(x⋆)pz(z)
of data and noise, in a similar fashion to flow matching
(Lipman et al., 2023; Kingma and Gao, 2024). Making
correlated choices of data and noise beyond IC could then
help align ẋt and vt(xt), thereby resolving the discrepancy
from the previous section.

The reliance on IC in consistency and flow models is increas-
ingly recognized as a limiting factor. Recent advancements
suggest that improved coupling mechanisms could enhance
both training efficiency and the quality of generated sam-
ples in flow matching (Liu et al., 2023; Pooladian et al.,
2023) and diffusion models (Li et al., 2024). By reducing
the variance in gradient estimation, enhanced coupling can
accelerate training. Additionally, improved coupling could
decrease transport costs and straighten trajectories, yield-
ing better-quality samples. In a different context, ReFlow
(Liu et al., 2023) leverages couplings provided by the ODE
solver in a flow framework, and demonstrates that it reduced
transport costs. Moreover, Lee et al. (2023) propose to learn
an encoder from data to noise, and use this encoder as a way
to construct a coupling when training a flow model.

Couplings based on optimal transport (OT) solvers.
OT is a particularly appealing solution for our alignment
problem. Indeed, if we consider a quadratic cost and distri-
butions with bounded supports, OT is a no-collision trans-
port map (Nurbekyan et al., 2020), i.e. xt can be sampled
by a unique pair of points (x⋆, z). Thus ẋt = vt(xt), im-
plying R(θ) = 0 in Theorem 1. Several approaches have
precisely targeted the reduction of transport cost in flow and
consistency models.

Pooladian et al. (2023) have more directly explored OT
coupling within the framework of flow matching models.
They show that deterministic and non-crossing paths en-
abled by OT with infinite batch size lowers the variance of
gradient estimators. Experimentally, they assess the efficacy
of OT solvers, such as Hungarian matching and Sinkhorn
algorithms, in coupling batches of noise and data points.
Dou et al. (2024) have successfully adopted this approach
in consistency models, while Li et al. (2024) applied OT
to diffusion models. However, due to the prohibitive cubic
complexity of OT solvers, OT has to be applied by minibatch
for matching samples (x⋆, z). Besides an OT approxima-
tion error, this incurs the loss of the no-collision property,
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making R(θ) non-zero in real use-cases. Another line of
works using OT tools with score-based models relies on the
Schrödinger Bridge formulation (De Bortoli et al., 2021; Shi
et al., 2023; Korotin et al., 2024; Tong et al., 2024), which
has mostly proven benefits on transfer tasks.

Our approach. In this paper, we use a consistency model
as a proxy of the flow of a diffusion process to reduce
transport costs. While not fully solving the alignment issue,
we will show that our method present reduced transport costs
and better alignment than dedicated OT-based methods.

4. Consistency Models with
Generator-Augmented Flows

Here, we introduce our method, denoted as generator-
augmented flows, which relies on a generator-augmented
coupling (GC). We capitalize on the true diffusion flow f̊
(i.e. an ideal consistency model) to map noisy points to-
wards the PF-ODE solution. We present theoretical and
empirical evidences that GC not only reduces the data-noise
transport cost but also narrows the gap between consistency
distillation and consistency training. We will discuss how
to train GC consistency models jointly with f̊ in Section 5.

4.1. Generator-Augmented Coupling (GC): Definition
and Training Loss

The solution proposed in this work involves harnessing the
diffusion flow, computed from a consistency model, to cre-
ate a novel form of coupling. The idea is to leverage the
properties and accumulated knowledge within an ideal con-
sistency model, f̊ , to construct pairs of points. To achieve
this, we first sample an intermediate point, which is done
as usual by sampling x⋆ ∼ p⋆ and z ∼ pz using the IC be-
tween the two distributions, and then predict the data point
x̂ti via the consistency model:

(x⋆, z) ∼ qI; xti = x⋆ + σtiz; x̂ti = sg(f̊(xti , σti)).
(13)

Although x̂ti depends on the timestep ti, it is important
to note that it (supposedly) follows the distribution p0.
This x̂ti is coupled with z, thereby defining our generator-
augmented coupling (GC) q, which we use to construct the
pair of points (x̃ti , x̃ti+1):

(x̂ti , z) ∼ q; x̃ti = x̂ti + σtiz; x̃ti+1
= x̂ti + σti+1

z.
(14)

These intermediate points can serve to define a new consis-
tency training loss:

LGC(θ) = Eq(x̂ti
,z),p(x̃ti

,x̃ti+1
|x̂ti

,z)[
λ(σti)D

(
sg(fθ(x̃ti , σti)),fθ(x̃ti+1

, σti+1
)
)]

. (15)

1e−02 1e−01 1 10 100

Timesteps σ

1e−02

1e−01

1

10

100

1000

R̃
t(
θ)

IC

Batch-OT (b=512)

GC

Figure 2. Comparison of R̃IC, R̃batch-OT, and R̃GC on CIFAR-10.
GC exhibits lower values of this quantity for all σt.

Generator-augmented trajectories satisfy the boundary
conditions of diffusion processes. We note the two fol-
lowing important properties of the distribution of x̃t:

p(x̃0) = p(x0) ≈ p⋆, p(x̃T ) ≈ p(xT ) ≈ p(σT z). (16)

The first property is achieved thanks to the boundary condi-
tion of the consistency model (c.f. Section 2.1) , and the sec-
ond property by construction of the diffusion process which
ensures that the noise magnitude is significantly larger than
x̂ti for large t. However, for the timesteps t ∈ (0, T ) the
marginal distributions p(xt) and p(x̃t) do not necessarily
coincide.

4.2. Properties of Generator-Augmented Flows

Here, we present some properties of generator-augmented
flows that motivate them for training consistency models.

4.2.1. REDUCING R(θ) WITH GC

In Theorem 1, we proved that the continuous-time consis-
tency training objective decomposes into the sum of the
consistency distillation objective and a regularizer term:
LCT(θ) = LCD(θ)+R(θ). Here, we study a proxy term for
R(θ) that is easier to calculate:

R̃t = E
[∥∥ẋt − vt(xt)

∥∥2] . (17)

This quantity measures the expected distance between the
true velocity field and its one-sample Monte Carlo estimate.
We study R̃t,IC, R̃batch-OT, and R̃t,GC. They are the respec-
tive proxy regularizer term for each type of probability path.
Note that R̃t,GC depends on the endpoint predictor, a con-
sistency model, which impacts both probability paths and
velocity fields. Our goal is to compare those proxy regular-
izer terms, in order to demonstrate that GC does lead to a
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Figure 3. Comparison of transport costs between IC, batch-OT,
and GC on CIFAR-10.

smaller discrepancy than IC. We further motivate the use of
this proxy, in regards with Theorem 1, in Appendix A.4.

In the following theorem, proved in Appendix A.2, we show
that R̃t decays faster for GC than for IC.

Theorem 2. Assume that the data distribution contains
more than a single point. Also, assume that the generator-
augmented coupling between the predicted data point x̂t

and noise z is computed via an ideal consistency model f̊ ,
i.e., the flow of the PF-ODE. Then, as t→∞,

R̃t,GC ≪ R̃t,IC. (18)

Empirical validation. Evaluating R̃t requires computing
the difference between the sample path derivative ẋt and the
velocity field vt(xt). In the EDM setting, this difference
can be approximated using a denoiser. Indeed, ẋt = z
and vt(xt) = E[ẋt|xt] = E[z|xt] = E[xt−x⋆

t |xt] =
1
t (xt −D⋆(xt, t)) with an optimal denoiser D⋆. The opti-
mal denoiser can be approximated by a denoiser network
Dϕ. Finally, we have: ẋt−vt(xt) ≈ z− 1

t (xt−Dϕ(xt, t)).
Since IC, batch-OT, and GC define different pt’s and vt’s,
we train a different denoiser Dϕ for each coupling. In
Figure 2, we report the results from the comparison of
the three proxy terms on CIFAR-10. We observe that
R̃t,GC < R̃t,batch-OT < R̃t,IC and that the gap increases
with t, corroborating our theoretical findings (Theorem 2).

4.2.2. REDUCING TRANSPORT COST WITH GC

Here, we investigate the average transport cost between
the noise z ∼ pz and the predicted data point x̂ ∼ p⋆
as a measure of the efficiency of the data-noise coupling.
Recall that the diffusion process is given by xt = x⋆ + σtz.
Then, knowing that the consistency model f̊ satisfying the
boundary condition f̊(x0, σ0) = x0, we define the function

c(t) as:

c(t) = EqI(x⋆,z)

[∥∥∥f̊(xt, σt)− z
∥∥∥2] . (19)

c(0) = EqI(x⋆,z)[∥x0−z∥2] and c(t) represent the transport
costs of, respectively, IC and GC. We show below, with
proofs in Appendix A.3, that c(t) is decreasing for σt close
to zero and for large σt.

Lemma 1 (Transport cost of GC coupling). Assume that
f̊ is a continuously differentiable function representing the
ground-truth consistency model, i.e. the flow of the PF-
ODE induced by the diffusion process xt. Define wt =
z− E[z|xt] =

1
σ̇t
(ẋt − E[ẋt | xt]). Then:

c′(t) = −2σ̇tE

〈∂f̊

∂x
(xt, σt) ·wt,wt

〉 . (20)

Corollary 1 (Decreasing transport cost of GC coupling
in t → 0+). There exists a t∗ > 0 such that for all t ∈
[0, t∗], the derivative of c(t) takes the form c′(t) = −2σ̇tat
with at > 0. Hence for σ̇t positive, the cost is decreasing.
In particular, in the EDM setting where σt = t, c(t) is
decreasing for small t.

The proof of this corollary proceeds by noting that for t = 0,
the consistency model f̊(x, t) is an identity function, its
Jacobian is an identity matrix, and thus at = E[∥wt∥2].
Using the continuity of Jacobian elements and invoking
intermediate value theorem on at concludes the proof.

Corollary 2 (Decreasing transport cost of GC coupling
in t ≈ tmax). Assume that the consistency model f̊(x, σ)
is a scaling function f̊(x, σt) = σ0

σt
x. Then, we have

c′(t) = − 2σ̇tσ0

σt
E[∥wt∥2]. In particular, c(t) is decreas-

ing whenever σt is increasing.

We note that, while the assumption of the consistency model
being a scaling function is strong, it nonetheless bears some
degree of truth for t ≈ tmax, see Lemma 3 of Appendix A.

Experimental validation. As stressed in Section 3, a line
of work has brought evidence that reducing the transport
cost between noise and data distributions could fasten the
training and help produce better samples. We compare the
quadratic transport costs involved in IC, batch-OT (Poola-
dian et al., 2023; Dou et al., 2024), and GC (resp. c(0),
cOT(0), and c(t)). Results are presented in Figure 3. Inter-
estingly, GC reduces transport cost more than batch-OT on
CIFAR-10 because batch-OT is tied to the batch data points
xt whereas our computed x̂t are not.
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Figure 4. Performance of GC w.r.t. the performance of the predic-
tor on CIFAR-10.

5. Training With Generator-Augmented Flows
for Image Generation

In this section, we present a methodology to train con-
sistency models with GC on unconditional image gener-
ation. To construct points drawn from GC trajectories (x̃ti ),
our theory requires an optimal predictor f̊ on intermediate
points drawn from IC (xti ). Thus, this lets us two potential
training strategies: (i) pre-train an IC generator, and lever-
age it to construct GC trajectories that train a GC model; (ii)
a joint learning strategy: train a single consistency model
from scratch with both types of trajectories. Note that in
this second setting, the model is unique: f̊ = fθ. The sec-
ond option is more appealing, since it is a simple one-stage
training. We demonstrate that the joint learning approach
improves performance and accelerates convergence com-
pared to standard consistency models.

Our experiments are done on the following datasets: CIFAR-
10 (Krizhevsky, 2009), ImageNet (Deng et al., 2009),
CelebA (Liu et al., 2015) and LSUN Church (Yu et al.,
2015). For the evaluation metrics, we report the Fréchet
Inception Distance (FID, Heusel et al. (2017)), Kernel Incep-
tion Distance (KID, Bińkowski et al. (2018)), and Inception
Score (IS, Salimans et al. (2016)). Most of our experiments
are based on the improved training techniques for consis-
tency models from Song and Dhariwal (2024), denoted
iCT-IC. Moreover, we present some results in the setting of
Easy Consistency Tuning (ECT, Geng et al. (2024)). De-
tails are provided in Appendix D. The code is shared in
the supplementary material and will be open-sourced upon
publication for reproducibility.

5.1. GC with Pre-Trained Endpoint Predictor

Our theoretical results assume having access to an ideal
generator on IC trajectories, meaning that the generator ap-

Figure 5. Consistency models trained with GC with joint learning
converges faster and outperforms consistency models trained with
IC or minibatch-OT on CIFAR-10.

proximates the diffusion flow output. To train a consistency
model on GC, we can thus rely on a separate endpoint pre-
dictor pre-trained on IC (iCT-IC): f̊ ≡ gϕ (cf. Section 4.1).
This network predicts the endpoint: x̂ti = gϕ(xti , σti).
During the training of the consistency model on GC, gϕ is
kept frozen and considered a proxy of the true flow, as in our
theoretical results. In Figure 4, we report the performance
of consistency models on CIFAR-10 trained with GC using
two different gϕ: (i) a gϕ fully trained as standard iCT-IC
with 100k training steps; (ii) a weak gϕ partially trained as
iCT-IC with 20k training steps.

Finding 1. Using a partially pre-trained and frozen end-
point predictor, trained on IC trajectories, allows to train
a consistency model with GC and which converges faster.
However, the performance of the GC model depends on the
quality of the endpoint predictor on IC trajectories.

It is important to note that this setup is not practical, as it
requires pre-training a standard consistency model. We aim
for a training methodology that accelerates convergence and
improves performance when training from scratch, without
doubling the number of required training iterations.

5.2. GC from Scratch with Joint Learning

In this section, we propose to learn simultaneously a single
model on IC and GC trajectories from the start of the train-
ing, i.e. f̊ ≡ sg(fθ) (cf. Section 4.1). Thereby, we combine
the training of the ideal IC predictor with the training of GC
model based on this predictor. We introduce a joint learning
factor µ: at each training step, training pairs are drawn from
GC with probability µ, while the remaining pairs are drawn
from standard IC. The loss can be written on average as:

LGC-µ(θ) = µLGC(θ) + (1− µ)LCT(θ) (21)

7
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Table 1. iCT-IC is the standard improved consistency model with independent coupling (Song and Dhariwal, 2024); iCT-OT is iCT with
minibatch optimal transport coupling (Pooladian et al., 2023; Dou et al., 2024); iCT-GC (µ = 0.5) is our proposed GC with joint learning.

Dataset Model FID ↓ KID (×102) ↓ IS ↑

CIFAR-10
iCT-IC 7.42 ± 0.04 0.44 ± 0.03 8.76 ± 0.06
iCT-OT 6.75 ± 0.04 0.36 ± 0.04 8.86 ± 0.09
iCT-GC (µ = 0.5) 5.95 ± 0.05 0.26 ± 0.02 9.10 ± 0.05

ImageNet (32× 32)
iCT-IC 14.89 ± 0.17 1.23 ± 0.05 9.46 ± 0.06
iCT-OT 14.13 ± 0.17 1.18 ± 0.05 9.62 ± 0.06
iCT-GC (µ = 0.5) 13.99 ± 0.28 1.13 ± 0.03 9.77 ± 0.07

CelebA (64× 64)
iCT-IC 15.82 ± 0.13 1.31 ± 0.04 2.33 ± 0.00
iCT-OT 13.63 ± 0.13 1.09 ± 0.03 2.40 ± 0.01
iCT-GC (µ = 0.5) 11.74 ± 0.08 0.91 ± 0.04 2.45 ± 0.01

LSUN Church (64× 64)
iCT-IC 10.58 ± 0.11 0.73 ± 0.03 1.99 ± 0.01
iCT-OT 9.71 ± 0.13 0.64 ± 0.03 2.00 ± 0.01
iCT-GC (µ = 0.5) 9.88 ± 0.07 0.66 ± 0.04 2.14 ± 0.01

We denote this joint learning procedure as GC (µ = ·).
Hence, GC (µ = 0) corresponds to the standard IC proce-
dure, while GC (µ = 1) corresponds to training only with
GC points.Note that GC (µ = 1) is not expected to work,
since our theoretical guarantees assume an optimal IC pre-
dictor. The detailed algorithm is presented in Algorithm 1
in Appendix. We apply this joint learning to four image
datasets, and include comparisons to iCT with batch-OT
(Dou et al., 2024) as an additional baseline. Results across
multiple datasets and metrics are presented in Table 1, and
visual examples are shown in Figure 8 in Appendix.

Finding 2. Joint learning of IC and GC trajectories consis-
tently improves results compared to the base IC model and
outperforms batch-OT in most cases.

As shown in Figure 5, we observe an interesting interpola-
tion phenomenon between µ = 0 and µ = 1. For µ = 0, we
recover the steady FID improvement typical of IC training.
As µ increases, the convergence of the generative model
accelerates. For 0.3 ≤ µ ≤ 0.7, on CIFAR-10, conver-
gence speed and final FID are improved compared to IC and
batch-OT models. For µ = 1, the FID score decreases faster
than other configurations early in the training process, but it
soons increases as training progresses further. It is explained
by the poor performance of the predictions on IC yielding a
deviation from the ideal IC predictor from Section 4. For the
other datasets, we simply chose µ = 0.5 and report those
results. We provide further detail on the sensitivity of our
results to the choice of µ in Appendices C.1 and D.

5.3. GC in the ECT Setting

As an additional experiment, we explore the recent ECT
setting (Geng et al., 2024) on CIFAR-10, where consis-

Table 2. Performance of IC and GC consistency models trained in
the ECT setting (Geng et al., 2024). Short training: 4k iterations.
Long training: 100k iterations.

Model FID ↓
CIFAR-10 (Short Training)

ECT-IC 7.37 ± 0.05
ECT-GC (µ = 0.3) 6.41 ± 0.05

CIFAR-10 (Long Training)
ECT-IC 4.11 ± 0.03
ECT-GC (µ = 0.3) 3.74 ± 0.04

FFHQ 64× 64 (Short Training)
ECT-IC 13.29 ± 0.10
ECT-GC (µ = 0.3) 11.73 ± 0.09

FFHQ 64× 64 (Long Training)
ECT-IC 9.68 ± 0.06
ECT-GC (µ = 0.3) 8.51 ± 0.09

ImageNet 64× 64 Cond. (Short Training)
ECT-IC 10.82 ± 0.18
ECT-GC (µ = 0.3) 10.31 ± 0.22

ImageNet 64× 64 Cond. (Long Training)
ECT-IC 5.84 ± 0.21
ECT-GC (µ = 0.3) 6.39 ± 0.20
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tency models are fine-tuned from a pre-trained diffusion
model. This approach enables training high-quality consis-
tency models in one GPU-hour, though it requires an already
trained diffusion model.

We compare IC and GC trajectories in this setting, with both
short (approximately one GPU-hour) and long (100k steps,
1 GPU-day) training times. Using the referenced hyper-
parameters selected by Geng et al. (2024), we observe a
consistent advantage for GC, with an optimal µ value of 0.3.
These preliminary results, summarized in Table 2, align with
our previous findings on the iCT setting, further supporting
the effectiveness of GC.

6. Conclusion
In this paper, we identify a discrepancy between consis-
tency training and consistency distillation. Building on
this theoretical analysis, we introduce generator-augmented
flows and show that they reduce a proxy term measuring
this discrepancy. Additionally, generator-augmented flows
decrease the data-to-noise transport cost, as demonstrated
by theory and experiments. Finally, we derive practical
algorithms for training consistency models using generator-
augmented flows and demonstrate improved empirical per-
formance.

Impact Statement
If used in large-scale generative models, notably in text-to-
image models, this work may increase potential negative
impacts of deep generative models such as deepfakes (Fallis,
2021).
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A. Proofs
A.1. Continuous-Time Consistency Objectives

Theorem 1 (Discrepancy between consistency distillation and consistency training objectives). Assume that the distance
function is given by D(x,y) = φ(∥x− y∥) for a continuous convex function φ : [0,∞)→ [0,∞) with φ(x) ∼ Cxα as
x→ 0+ for some C > 0 and α ≥ 1, and that the timesteps are equally spaced, i.e., ti = iT

N . Furthermore, assume that the
Jacobian ∂fθ

∂x does not vanish identically. Then the following assertions hold:

(i) The scaled consistency losses NαLCD(θ) and NαLCT(θ) converge as N →∞. Moreover, the minimization objectives
corresponding to these limiting scaled consistency losses are not equivalent, and their difference is given by:

lim
N→∞

Nα
[
LCT(θ)− LCD(θ)

]
= CTα−1R(θ), (22)

whereR(θ) is defined by

R(θ) =
∫ T

0

λ(σt)E
[
∥∂CTfθ∥α − ∥∂CDfθ∥α

]
dt (23)

and satisfiesR(θ) > 0, with

∂CTfθ =
∂fθ

∂σ
(xt, σt)σ̇t +

∂fθ

∂x
(xt, σt) · ẋt, (24)

∂CDfθ =
∂fθ

∂σ
(xt, σt)σ̇t +

∂fθ

∂x
(xt, σt) · vt(xt). (25)

In particular, if α = 2,

R(θ) =
∫ T

0

λ(σt)E

[∥∥∥∥∂fθ

∂x
(xt, σt) ·

(
ẋt − vt(xt)

)∥∥∥∥2
]
dt. (26)

(ii) The scaled gradient Nα−1∇θLCD(θ) and Nα−1∇θLCT(θ) converge as N → ∞. Moreover, if α ̸= 2, then their
respective limits are not identical as functions of θ:

lim
N→∞

Nα−1∇θLCT(θ) ̸= lim
N→∞

Nα−1∇θLCD(θ). (27)

Proof. (i) Note that ∂CDfθ and ∂CTfθ satisfy:

∂CTfθ(xt, σt) =
∂

∂t
fθ(xt, σt), ∂CDfθ(xt, σt) = E

[
∂

∂t
fθ(xt, σt)

∣∣∣∣xt

]
. (28)

Here, the second equality follows by noting that vt(xt) = E[ẋt|xt] and all the other terms in the expansion of ∂
∂tfθ(xt, σt)

are completely determined once the value of xt is known.

Now, we use Taylor’s theorem to expand the difference between fθ(xti+1
, σti+1

) and fθ(x
Φ
ti , σti) in the consistency

distillation loss, Equation (4). Together with the definition of xΦ
ti , Equation (5), this yields:

fθ(xti+1
, σti+1

)− fθ(x
Φ
ti , σti)

=
∂fθ

∂σ
(xti+1

, σti+1
) · (σti+1

− σti) +
∂fθ

∂x
(xti+1

, σti+1
) · (xti+1

− xΦ
ti) + o(ti+1 − ti) (29)

= ∂CDfθ(xti+1
, σti+1

) · (ti+1 − ti) + o(ti+1 − ti). (30)

Similarly, by expanding the difference between fθ(xti+1 , σti+1) and fθ(xti , σti) in Equation (6),

fθ(xti+1 , σti+1)− fθ(xti , σti)

=
∂fθ

∂σ
(xti+1 , σti+1) · (σti+1 − σti) +

∂fθ

∂x
(xti+1 , σti+1) · (xti+1 − xti) + o(ti+1 − ti) (31)

= ∂CTfθ(xti+1
, σti+1

) · (ti+1 − ti) + o(ti+1 − ti). (32)
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Therefore, for each • ∈ {CD,CT},

NαL•(θ) = Nα · 1
N

N−1∑
i=0

λ(σti)E
[
C
∥∥∂•fθ(xti+1

, σti+1
)
∥∥α (1 + o(1))

]
· (ti+1 − ti)

α (33)

= CTα−1
N−1∑
i=0

λ(σti)E
[∥∥∂•fθ(xti+1

, σti+1
)
∥∥α (1 + o(1))

]
· (ti+1 − ti) (34)

→ CTα−1

∫ T

0

λ(σt)E
[∥∥∂•fθ(xt, σt)

∥∥α] dt (35)

in the continuous-time limit as N →∞.

For simplicity of notation, we write

L∞
• (θ) = lim

N→∞
NαL•(θ) (36)

for each • ∈ {CD,CT}. Then, from the formula for the limiting losses L∞
• (θ), Equation (35), we immediately obtain

L∞
CT(θ)− L∞

CD(θ) = CTα−1

∫ T

0

λ(σt)E
[∥∥∂CTfθ(xt, σt)

∥∥α − ∥∥∂CDfθ(xt, σt)
∥∥α] dt. (37)

Now, we specialize in the case α = 2 and invoke the general observation that, for any random vectors x and y, the following
identity holds:

E
[
∥x∥2 − ∥E[x|y]∥2

]
= E

[
∥x− E[x|y]∥2

]
. (38)

This can be easily proved by expanding the squared Euclidean norm as the inner product and applying the law of iterated
expectations. Plugging in x ← ∂

∂tfθ(xt, σt) and y ← xt, and noting that ∂CDfθ(xt, σt) = E
[
∂CTfθ(xt, σt) | xt

]
by

Equation (28), it follows that

L∞
CT(θ)− L∞

CD(θ) = CT

∫ T

0

λ(σt)E
[∥∥∂CTfθ(xt, σt)− ∂CDfθ(xt, σt)

∥∥2] dt (39)

= CT

∫ T

0

λ(σt)E

[∥∥∥∥∂fθ

∂x
(xt, σt) ·

(
ẋt − vt(xt)

)∥∥∥∥2
]
dt. (40)

Next, we establish the positivity of R(θ). To this end, note that ∥ · ∥α is a convex function for α ≥ 1. By invoking
the conditional Jensen’s inequality, we find that the expectation inside the limiting scaled consistency training losses,
Equation (35) satisfy:

E
[∥∥∂CTfθ(xt, σt)

∥∥α] = E

[∥∥∥∥ ∂

∂t
fθ(xt, σt)

∥∥∥∥α
]
= E

[
E
[∥∥∥∥ ∂

∂t
fθ(xt, σt)

∥∥∥∥α ∣∣∣∣ xt

]]
(41)

≥ E

[∥∥∥∥E[ ∂

∂t
fθ(xt, σt)

∣∣∣∣ xt

]∥∥∥∥α
]
= E

[∥∥∂CDfθ(xt, σt)
∥∥α]. (42)

Integrating both sides with respect to λ(σt) dt, we obtain the desired inequality. The Jensen’s inequality also tells that the
equality holds precisely when ∂

∂tfθ(xt, σt) = E[ ∂∂tfθ(xt, σt)|xt] holds, or equivalently, ∂fθ

∂x (xt, σt) · (ẋt − E[ẋt|xt]) = 0.
However, given the value of xt, the quantity ẋt can assume an arbitrary value in Rd because the conditional density of
ẋt = σ̇tz given xt is strictly positive everywhere. Consequently, the equality condition implies ∂fθ

∂x = 0. Since this
contradicts the assumption of the theorem, the strict inequality between the two limiting losses must hold.

Finally, recall that the continuous-time consistency distillation loss, L∞
CD(θ), is given by

L∞
CD(θ) = CTα−1

∫ T

0

λ(σt)E

[∥∥∥∥∂fθ

∂σ
(xt, σt)σ̇t +

∂fθ

∂x
(xt, σt) · vt(xt)

∥∥∥∥α
]
dt. (43)
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Similarly, the continuous-time consistency training loss, L∞
CT(θ), is given by

L∞
CT(θ) = CTα−1

∫ T

0

λ(σt)E

[∥∥∥∥∂fθ

∂σ
(xt, σt)σ̇t +

∂fθ

∂x
(xt, σt) · ẋt

∥∥∥∥α
]
dt. (44)

Since vt(xt) = E[ẋt|xt] and E[∥ẋt−E[ẋt]∥2] > E[∥vt(xt)−E[ẋt]∥2], it follows that L∞
CT(θ) penalizes the Jacobian ∂fθ

∂x
more strongly than L∞

CD(θ) does. Therefore, the two limiting consistency losses do not define equivalent objectives.

(ii) Using the convexity of φ, we can show that φ′(x) ∼ Cαxα−1 as x → 0+. Combining this with the vector calculus
formula ∇y∥y∥ = y

∥y∥ , we get ∇yφ(∥y∥) ≈ Cα∥y∥α−2y for small y. From this, we can estimate the gradient of the
distance between sg

(
fθ(x

Φ
ti , σti)

)
and fθ(xti+1 , σti+1) with respect to the model parameter θ as:

∇θD
(
sg
(
fθ(x

Φ
ti , σti)

)
,fθ(xti+1 , σti+1)

)
= (1 + o(1))Cα

[
∥∂CDfθ∥α−2(∂CDfθ)

⊤ ∂fθ

∂θ

]
· (ti+1 − ti)

α−1 (45)

Here, the expression ∥∂CDfθ∥α−2(∂CDfθ)
⊤ ∂fθ

∂θ in the square bracket is evaluated at (xti+1
, σti+1

). Similarly, the gradient
of the distance between fθ(xti , σti) and fθ(xti+1

, σti+1
) is estimated as:

∇θD
(
sg
(
fθ(xti , σti)

)
,fθ(xti+1

, σti+1
)
)

= (1 + o(1))Cα

[
∥∂CTfθ∥α−2(∂CTfθ)

⊤ ∂fθ

∂θ

]
· (ti+1 − ti)

α−1
(46)

Combining these two estimates, we can now compute the limit of the scaled gradient Nα−1∇θL•(θ) for each • ∈ {CD,CT}
as:

Nα−1∇θL•(θ)

= CαTα−2
N−1∑
i=0

λ(σti)E
[
(1 + o(1))

[
∥∂•fθ∥α−2

(∂•fθ)
⊤ ∂fθ

∂θ

]]
· (ti+1 − ti) (47)

→ CαTα−2

∫ T

0

λ(σt)E
[∥∥∂•fθ(xt, σt)

∥∥α−2 (
∂•fθ(xt, σt)

)⊤ ∂fθ

∂θ
(xt, σt)

]
dt (48)

as N →∞. Finally, if α ̸= 2, then the term ∥∂•fθ∥α−2
∂•f

⊤
θ is a nonlinear transformation of ∂•fθ. This nonlinearity tells

that, in general,

E
[
∥∂CTfθ∥α−2

(∂CTfθ)
⊤
∣∣∣xt

]
̸= ∥∂CDfθ∥α−2

(∂CDfθ)
⊤
. (49)

Therefore, the scaled gradient limits are not identical as functions of θ, and in particular, their zero sets do not coincide.

Differences with Song et al. (2023)’s results. The previous theorem states a discrepancy between CT and CD objectives.
However, Song et al. (2023) provide equivalence results between consistency training and consistency distillation. The
differences come from the following reasons.

• In Song et al. (2023, Theorem 2), it is stated that LCT = LCD + o(∆T ). However, in this theorem, the o(∆T ) is
actually too large compared to the other term, and consequently the result is uninformative. Indeed it has two the two
following problems: (i) if the distance function decays faster than the norm does, i.e., D(x, y) = o(∥x − y∥), then
the o(∆T ) term is actually too large compared to the magnitude of the two losses as N →∞; (ii) The C2-regularity
assumption on the distance function D is too restrictive, excluding many cases such as the distance function given by a
norm. For example, such a breakdown happens when D(x, y) is a metric induced by the norm, i.e., D(x, y) = ∥x− y∥.
In this case, its partial derivatives, such as ∂2D(x, y) = ∂

∂yD(x, y) appearing in the proof, are undefined along x = y.

• In Song et al. (2023, Theorem 6), the theorem about limiting gradient equality is stated with a general distance function
D. However, the requirements on the Hessian of the distance function restrict the theorem’s validity where the distance
function is an (asymptotic) quadratic loss. Indeed, in their proof, it turns out that the Hessian can define a non-zero
value only when D is an (asymptotic) quadratic loss. This coincides with our results in the case α = 2.
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A.2. Proxy of the Regularizer

In this subsection, we establish a theoretical result about the decay rate of the proxy of the regularizer. As preparation for
the main result and for future use, we introduce a simple lemma that decomposes the forward flow generated by a vector
field into the sum of a scaling term and a correction term that is well-behaved.

Lemma 2. Assume that ϕ is the forward flow generated by the vector field vt, meaning that it solves the characteristic
equation:

∂

∂t
ϕ(x, σt) = vt(ϕ(x, σt)), ϕ(x, σ0) = x. (50)

Also, assume that vt is defined as

vt(x) =
σ̇t

σt
(x−D(x, σt)) (51)

for some function D, which we call a “denoiser”. Then ϕ satisfies the following integral equation:

x =
σ0

σt
ϕ(x, σt) + σ0

∫ t

0

σ̇s

σ2
s

D(ϕ(x, σs), σs) ds. (52)

Proof. We first compute the derivative of ϕ/σt:

∂

∂t

(
ϕ(x, σt)

σt

)
= − σ̇t

σ2
t

ϕ(x, σt) +
1

σt
· σ̇t

σt
(ϕ(x, σt)−D(ϕ(x, σt), σt)) (53)

= − σ̇t

σ2
t

D(ϕ(x, σt), σt). (54)

Integrating both sides with respect to t, it follows that

ϕ(x, σt)

σt
− ϕ(x, σ0)

σ0
= −

∫ t

0

σ̇s

σ2
s

D(ϕ(x, σs), σs) ds. (55)

Rearranging and applying the initial condition ϕ(x, σ0) = x, we obtain the desired equation.

As an immediate consequence of this lemma, we obtain the following result about the asymptotic structure of a trained
consistency model:

Lemma 3. Assume that f̊ is the consistency model generated by a bounded denoiser D, in the sense that f̊ solves the
transport equation

∂f̊

∂σ
(x, σt)σ̇t +

∂f̊

∂x
(x, σt) · vt(x) = 0 (56)

for a vector field v̊t defined as in Equation (51) with the denoiser D. Then

f̊(x, σt) =
σ0

σt
x+O(1) (57)

uniformly in x and σt. The implicit bound of the error term can be chosen to be the bound of D.

Proof. Let ϕ be the forward flow generated by v̊t as in Lemma 2. This ϕ is precisely the inverse of the consistency model
f̊ , in the sense that ϕ(f̊(x, σ), σ) = x holds. Then, replacing x in the equation of Lemma 2 with f̊(x, σt), we get

f̊(x, σt) =
σ0

σt
x+ σ0

∫ t

0

σ̇s

σ2
s

D(ϕ(f̊(x, σt), σs), σs) ds. (58)

Now let R be such that ∥D(x, σ)∥ ≤ R for any x ∈ Rd and noise level σ. Then, the integral term in Equation (58) is
bounded as: ∥∥∥∥∥σ0

∫ t

0

σ̇s

σ2
s

D(ϕ(f̊(x, σt), σs), σs) ds

∥∥∥∥∥ ≤ σ0

∫ t

0

σ̇s

σ2
s

R ds = σ0R

(
1

σ0
− 1

σt

)
≤ R. (59)

This proves the desired claim.
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Now we turn to the main result, which analyzes the asymptotic behavior of R̃t,IC and R̃t,GC, as t→∞:

Theorem 2. Assume that the data distribution contains more than a single point. Also, assume that the generator-augmented
coupling between the predicted data point x̂t and noise z is computed via an ideal consistency model f̊ , i.e., the flow of the
PF-ODE. Then, as t→∞,

R̃t,GC ≪ R̃t,IC. (60)

Proof. We first investigate the asymptotic behavior of R̃t,IC in the limit of t→∞. Recall that the diffusion process xt is
given by xt = x⋆ + σtz for (x⋆, z) ∼ qI, and note that

ẋt − vt(xt) = σ̇tz− E[σ̇tz|xt] = −
σ̇t

σt
(x⋆ −D(xt, σt)), (61)

where D(xt, σt) = E[x⋆|xt] is the denoiser. Plugging this into the definition of R̃t,IC, we get

R̃t,IC =

(
σ̇t

σt

)2

E
[∥∥x⋆ −D(xt, σt)

∥∥2] . (62)

Now, we claim that D(xt, σt) = E[x⋆|xt]→ E[x⋆] as t→∞. Intuitively, this is because xt ≈ σtz for large t, and σtz is
independent of x⋆. More formally, note that the conditional distribution of xt given x⋆ is p(xt|x⋆) = N (xt;x⋆, σ

2
t I). By

Bayes’ theorem, the conditional distribution of x⋆ given xt is

p(x⋆|xt) =
p(xt|x⋆)p(x⋆)∫

Rd p(xt|x′
⋆)p(x

′
⋆) dx

′
⋆

=
exp

(
− 1

2σ2
t
|xt − x⋆|2

)
p(x⋆)∫

Rd exp
(
− 1

2σ2
t
|xt − x′

⋆|2
)
p(x′

⋆) dx
′
⋆

. (63)

As t → ∞, we have σt → ∞, so the exponential terms converge to 1. Consequently, p(x⋆|xt) → p(x⋆) and hence
E[x⋆|xt]→ E[x⋆] as claimed. Thus,

R̃t,IC ∼
(
σ̇t

σt

)2

E
[∥∥x⋆ − E[x⋆]

∥∥2] . (64)

Since the data distribution p⋆ is assumed to have more than one point, the variance E[∥x⋆ − E[x⋆]∥2] is strictly positive.
Therefore, R̃t,IC decays at a rate asymptotically proportional to ( σ̇t

σt
)2.

Next, we investigate the asymptotic behavior of R̃t,GC. Recall the consistency training loss for GC, Equation (15). Under
the assumptions in Theorem 1, the scaled loss NαLGC(θ) converges to

L∞
GC(θ) = CTα−1

∫ T

0

λ(σt)E

[∥∥∥∥∂fθ

∂σ
(x̃t, σt)σ̇t +

∂fθ

∂x
(x̃t, σt) · σ̇tz

∥∥∥∥α
]
dt. (65)

Here, x̃t = x̂t + σtz and x̂t = f̊(xt, σt), where f̊ is the ideal consistency model for the flow associated with the diffusion
process xt. The proof of this claim is similar to that of Theorem 1, so we only highlight the necessary changes. Most
importantly, the velocity term is not ˙̃xt but σ̇tz. This is due to how the discrete-time samples are constructed. Indeed,
from Equation (14), we find that x̃ti+1 − x̃ti = (σti+1 − σti)z, which manifests as the velocity term σ̇tz in Equation (65).
Consequently, the associated (average) velocity field ṽt is given by

ṽt(x̃t) = E[σ̇tz|x̃t] =
σ̇t

σt
(x̃t − E[x̂t|x̃t]). (66)

Therefore, R̃t,GC reduces to

R̃t,GC =

(
σ̇t

σt

)2

E
[∥∥x̂t − E[x̂t|x̃t]

∥∥2] . (67)

Now, unlike in the IC case, we claim that E[x̂t|x̃t] ≈ x̂t as t→∞. Heuristically, this is because both x̂t and x̃t are almost
deterministic functions of z; hence, the conditioning has negligible effect in the limit.
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More precisely, let ϕ be the forward flow generated by the PF-ODE vector field vt. As in the proof of Lemma 2, integrating
both sides of Equation (54) from t to u yields

ϕ(x, σu)

σu
=

ϕ(x, σt)

σt
−

∫ u

t

σ̇s

σ2
s

D(ϕ(x, σs), σs) ds. (68)

Letting u→∞, we claim that the right-hand side converges. Indeed, the empirical data distribution p⋆ has compact support,
meaning all the data points are confined in a bounded region of Rd. Since the values of D are weighted averages of the data
points, it follows that D is also bounded. Then the integrand σ̇s

σ2
s
D(ϕ(x, σs), σs) is absolutely integrable on [t,∞), hence

the convergence follows. Moreover, the limit does not depend on t. Denote this limit by ρ(x):

ρ(x) =
ϕ(x, σt)

σt
−

∫ ∞

t

σ̇s

σ2
s

D(ϕ(x, σs), σs) ds. (69)

As shown in the previous part, we know that D(x, t) = c+ o(1) as t→∞ with c = E[x⋆]. Then, multiplying both sides of
Equation (69) by σt and rearranging, we have, for large t,

ϕ(x, σt) = σtρ(x) + σt

∫ ∞

t

σ̇s

σ2
s

D(ϕ(x, σs), σs) ds (70)

= σtρ(x) + (c+ o(1))σt

∫ ∞

t

σ̇s

σ2
s

ds (71)

= σtρ(x) + c+ o(1). (72)

Since ϕ is a bijection, the above relation tells that ρ(x) is also a bijection. Next, we replace x← x̂t in the equation defining
ρ(x), Equation (69), to obtain:

ρ(x̂t) = z+
x⋆

σt
−

∫ ∞

t

σ̇s

σ2
s

D(ϕ(x̂t, σs), σs) ds. (73)

Since ρ is invertible, applying ρ−1 to both sides yields

x̂t = ρ−1

(
z+

x⋆

σt
−

∫ ∞

t

σ̇s

σ2
s

D(ϕ(x̂t, σs), σs) ds

)
(74)

= ρ−1

(
x̃t

σt
+

x⋆ − x̂t

σt
−
∫ ∞

t

σ̇s

σ2
s

D(ϕ(x̂t, σs), σs) ds

)
(75)

Since all of x⋆, x̂t, and D are bounded by the largest norm of the data point, they are all finite. Hence, the last line shows
that x̂t = ρ−1

(
x̃t

σt
+O( 1

σt
)
)
, demonstrating that x̂t is almost a deterministic function of x̃t. Therefore, E[x̂t|x̃t] ≈ x̂t as

required. Consequently, R̃t,GC satisfies

R̃t,GC ≪
(
σ̇t

σt

)2

. (76)

This proves that R̃t,GC ≪ R̃t,IC as required.

A.3. Transport Cost

As a base for the two corollaries presented in the paper, we will first derive a useful representation of the derivative of the
transport cost.

The main purpose of the lemma is to provide a more tractable representation of c′(t), the time derivative of the expected
transport cost. We expect c(t) to decrease with t because the predicted data point f̊(xt, σt) becomes more dependent on the
noise z as t increases. However, directly analyzing f̊(xt, σt)− z is challenging because the dependence of f̊(xt, σt) on z
is not explicit. Therefore, the lemma aims to:

• identify a quantity that better captures the dependence between z and xt;

• relate c(t) to this quantity.
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The proof proceeds by deriving a key property of the ground-truth consistency map f̊ : it satisfies the transport equation,

∂f̊

∂σ
(x, σt) σ̇t +

∂f̊

∂x
(x, σt) · vt(x) = 0. (77)

This equation is equivalent to saying that the conditional expectation of the time derivative of f̊(xt, σt) given xt is zero:

E
[
∂

∂t
f̊(xt, σt)

∣∣∣∣xt

]
= 0. (78)

By leveraging this property, we can simplify c′(t) into an expression involving wt = z− E[z | xt], the residual between the
true noise z and its prediction given xt. This residual captures the uncertainty in predicting z based on xt, allowing us to
relate c′(t) directly to the prediction accuracy of f̊ .

Lemma 1 (Transport cost of GC coupling). Assume that f̊ is a continuously differentiable function representing the
ground-truth consistency model, i.e. the flow of the PF-ODE induced by the diffusion process xt. Define wt = z−E[z|xt] =
1
σ̇t
(ẋt − E[ẋt | xt]). Then:

c′(t) = −2σ̇tE

〈∂f̊

∂x
(xt, σt) ·wt,wt

〉 . (79)

Proof. Note that the inverse flow f̊−1(y, σt) transports the initial point y at time t = 0 along the vector field vt up to time
t. Consequently, f̊−1 is a flow with the corresponding vector field vt:

∂

∂t
[f̊−1(y, σt)] = vt(f̊

−1(y, σt)). (80)

By differentiating both sides of the identity y = f̊(f̊−1(y, σt), σt) with respect to t and applying the above observation, we
get:

0 =
∂

∂t

[
f̊(f̊−1(y, σt), σt)

]
(81)

=
∂f̊

∂σ
(f̊−1(y, σt), σt)σ̇t +

∂f̊

∂x
(f̊−1(y, σt), σt) ·

∂

∂t
[f̊−1(y, σt)] (82)

=
∂f̊

∂σ
(x, σt)σ̇t +

∂f̊

∂x
(x, σt) · vt(x), (83)

where the substitution x = f̊−1(y, σt) is used in the last step. Consequently,

c′(t) = 2E

[〈
∂

∂t
[f̊(xt, σt)], f̊(xt, σt)− z

〉]
(84)

= 2E

〈∂f̊

∂σ
(xt, σt)σ̇t +

∂f̊

∂x
(xt, σt) · ẋt, f̊(xt, σt)− z

〉 (85)

= 2E

〈∂f̊

∂x
(xt, σt) · (ẋt − vt(x)), f̊(xt, σt)− z

〉 (86)

= 2σ̇tE

〈∂f̊

∂x
(xt, σt) · (z− E[z|xt]), f̊(xt, σt)− z

〉 , (87)
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where we used the relations xt = x⋆ + σtz and vt(x) = E[ẋt|xt]. Now, let wt = z − E[z | xt]. Then E[wt | xt] = 0,
hence by an application of the law of iterated expectations, E[⟨wt, g(xt)⟩] = 0 for essentially any function g : Rd → Rd.
Using this, we can further simplify the last line as:

c′(t) = −2σ̇tE

〈∂f̊

∂x
(xt, σt) ·wt, z

〉 = −2σ̇tE

〈∂f̊

∂x
(xt, σt) ·wt,wt

〉 , (88)

proving the desired equality.

An immediate consequence of this lemma is that c(t) decreases for small t:

Corollary 1 (Decreasing transport cost of GC coupling in t→ 0+). There exists a t∗ > 0 such that for all t ∈ [0, t∗], the
derivative of c(t) takes the form c′(t) = −2σ̇tat with at > 0. Hence for σ̇t positive, the cost is decreasing. In particular, in
the EDM setting where σt = t, c(t) is decreasing for small t.

Proof. The proof of this corollary proceeds by noting that for t = 0, the consistency model f̊(x, t) is an identity function,
its Jacobian is an identity matrix leading to at = E[∥wt∥2] > 0 and by assumption, all the elements of the Jacobian are
continuous. By continuity of at, t∗ exists and invoking intermediate value theorem on at concludes the proof.

The next result is the statement about the asymptotic behavior of the transport cost c(t) in the large-t regime.

Corollary 2 (Decreasing transport cost of GC coupling in t ≈ tmax). Assume that the consistency model f̊(x, σ) is a
scaling function f̊(x, σt) =

σ0

σt
x. Then, we have c′(t) = − 2σ̇tσ0

σt
E[∥wt∥2]. In particular, c(t) is decreasing whenever σt is

increasing.

Proof. Under the assumption, we have ∂f̊
∂x = σ0

σt
I. Thus, by Lemma 1,

c′(t) = −2σ̇tE

[〈
σ0

σt
Iwt,wt

〉]
= −2σ̇tσ0

σt
E[∥wt∥2]. (89)

This proves that c′(t) < 0 whenever σ̇t > 0.

Toy example. Let us consider a one-dimensional toy example where x⋆ ∼ N (0, σ2
⋆) with σ⋆ ≥ 0 and z ∼ N (0, 1) are

independent. Also, we assume σ0 = 0 for the sake of simplicity. In this case, the marginal law of xt is also Gaussian with
pt = N (0, σ2

⋆+σ2
t ), so the vector field for the diffusion process xt is calculated as vt(x) = −σ̇tσt∇x log pt(x) =

σ̇tσt

σ2
⋆+σ2

t
x.

Then, the corresponding target diffusion flow and the transport cost function are:

f̊(x, σt) =
σ⋆√

σ2
⋆ + σ2

t

x and c(t) = σ2
⋆ + 1− 2σ⋆σt√

σ2
⋆ + σ2

t

. (90)

We note that f̊(x, σt) is indeed a scaling function which is asymptotically proportional to x
σt

for large t, and c(t) is
decreasing in t for t > 0.

Experimental validation. We validation the transport cost decrease in Figure 6, on a toy dataset composed of two
2D-Diracs, and on CIFAR-10. Interestingly, we observe that when computing OT transport plans between batches instead of
on the full data, GC allows to reduce transport cost more than batch-OT.

A.4. Proxy Term

In this part, we clarify the connection between the proxy term and the in the case of the quadratic loss (α = 2). Indeed, we
can bound the regularization term with the proxy term thanks to the Jacobian’s maximum singular value smax(

∂fθ
∂x ), which is

bounded as typical networks are Lipschitz:

∥∥∥∥∂fθ

∂x
(xt, σt)

(
ẋt − vt(xt)

)∥∥∥∥2 ≤ ∥∥∥∥∂fθ

∂x

∥∥∥∥2 ∥ẋt − vt(xt)∥2 ≤ s2max(
∂fθ

∂x
)∥ẋt − vt(xt)∥2 (91)
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Figure 6. Comparison of transport costs between IC, batch-OT, and GC on two 2D-Diracs (left) and CIFAR-10 (right).

Algorithm 1 Training of consistency models with generator-augmented trajectories
Input: Randomly initialized consistency model fθ, number of timesteps N , noise schedule σti , loss weighting λ(·),
learning rate η, distance function D, noise distribution pz , joint learning parameter µ.
Output: Trained consistency model fθ.
while not converged do
x⋆ ∼ p⋆, z ∼ pz {batch of real data and noise vectors}
i ∼ multinomial

(
p(σt0), . . . , p(σtN )

)
{sampling timesteps}

m ∼ binomial(µ, size=batch size) {mask of dimension (batch size) with each mj ∼ binomial(µ)}
xti ← x⋆ + σtiz {IC intermediate points}
x̂ti ← sg

(
fθ(xti , σti)

)
{endpoint prediction from the model}

x̂ti ← m · x̂ti + (1−m) · x⋆ {mixing IC and GC trajectories}
x̃ti ← x̂ti + σtiz, x̃ti+1 ← x̂ti + σti+1z {GC intermediate points}
L(θ) = λ(σti)D

(
sg(fθ(x̃ti , σti)),fθ(x̃ti+1 , σti+1)

)
{consistency loss}

θ ← θ − η∇θL(θ) {update model’s weights}
end while

We could also use some assumptions on f , e.g. the fact that it is close to a scaling function for large t (see Corrolary 2). If
f(x, σt) =

σ0

σt
x, then we would have:

∥∥∥∥∂fθ

∂x
(xt, σt)

(
ẋt − vt(xt)

)∥∥∥∥2 = (
σ0

σt
)2∥ẋt − vt(xt)∥2. (92)

B. Algorithm
We present the detailed algorithm for GC (µ = ·) in Algorithm 1.

C. Additional Results
C.1. Ablation Studies

Understanding why GC(µ = 1) fails. This experiment involves training a consistency model with GC(µ = 1). As
shown in Figure 7(a), we observe that these models converge quickly but reach saturation early in the training process.
When applying the timestep scheduling method with an increasing number of timesteps from Song and Dhariwal (2024),
the FID of the models worsens. Using a fixed number of timesteps prevents divergence of the FID, but it still plateaus at a
higher FID than iCT-IC.

In Figure 7(b), we plot the FID per timestep for three model / trajectory pairs: GC(µ = 1)-model on IC trajectories,
GC(µ = 1)-model on GC trajectories, and IC-model on IC trajectories. Notably, we observe a distribution shift between IC
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(a) FID of IC vs GC models during training.
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Figure 7. Analysis of consistency models trained only with GC on CIFAR-10. (a) When trained with only GC trajectories, consistency
models does not reach the performance of the base model (iCT-IC). In (b), we show that is linked to a distribution shift problem: GC
models are weak on IC trajectoires, thus are sub-optimal for predicting x̂ti required in their own training (Equation (13)).

Table 3. Analysis of performance with regards to some hyper-parameters of iCT-GC (µ = 0.5) on CIFAR-10.

Model FID

iCT-IC 7.42 ± 0.04
iCT-GC (µ = 0.5) iso-time 6.38 ± 0.03

iCT-GC (µ = 0.5) 5.95 ± 0.05
iCT-GC(µ = 0.5) + dropout 7.77 ± 0.04
iCT-GC (µ = 0.5) - EMA 6.73 ± 0.05

and GC trajectories: the FID of the GC-model on IC trajectories degrades at the intermediate timesteps of the diffusion
process. This highlights why deviating from the theory and training a model exclusively on GC trajectories is insufficient: to
build xti in Equation (13), the model is inferred on IC but trained on GC trajectories. If IC and GC differ too much, the
model cannot improve on IC.

Iso wall-clock training time. As illustrated above, consistency models trained with GC converge faster than IC. However,
each training step is more time-consuming, as it necessitates a forward evaluation of the consistency model without gradient
computation. Regarding wall-clock training time, the computational overhead of iCT-GC is approximately 20% of the
iCT-IC. In top part of Table 3, we report under “iCT-GC (µ = 0.5) iso-time” the results of iCT-GC (µ = 0.5) trained with
the same wall-clock duration as iCT-IC. Even when considering wall-clock training time, iCT-GC (µ = 0.5) is still superior
to iCT-IC.

Hyper-parameters. We evaluate the influence of two important hyper-parameters. First, the dropout in the learned model.
Second, whether to use or not the EMA to compute GC endpoints x̂. The results are presented in the bottom part of Table 3.
Interestingly, the results on dropout are opposite to those found by Song and Dhariwal (2024), since using dropout lowers
the performance of iCT-GC (µ = 0.5).

Analysis of µ on ImageNet. We present further results of the joint learning procedure with varying µ ({0.3, 0.5, 0.7, 1.})
on ImageNet-32 in Figure 9. For µ = {0.3, 0.5}, iCT-GC outperforms the base model iCT-IC.

C.2. Visual Results

We include in Figure 8 examples of generated images for considered baselines.
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(a) Trained with IC. (b) Trained with OT. (c) Trained with GC (µ = 0.5).

Figure 8. Uncurated samples from consistency models trained on CelebA 64× 64 for fixed noise vectors. Note that models trained with
generator-augmented trajectories tend to generate sharper images.
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Figure 9. Results of varying µ for iCT-GC on ImageNet-32.
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D. Experimental Details
The code is based on the PyTorch library (Paszke et al., 2019).

Scheduling functions and hyperparameters from Song and Dhariwal (2024). The training of consistency models
heavily rely on several scheduling functions. First, there is a noise schedule {σi}Ni=0 which is chosen as in Karras et al.
(2022). Precisely, σi =

(
σ0

1
ρ + i

N (σN
1
ρ − σ0

1
ρ )
)ρ

with ρ = 7. Second, there is a weighting function that affects the training
loss, chosen as λ(σi) =

1
σi+1−σi

. Combined with the choice of noise schedule, it emphasizes to be consistent on timesteps
with low noise. Then, Song et al. (2023) propose to progressively increase the number of timesteps N during training. Song
and Dhariwal (2024) argue that a good choice of dicretization schedule is an exponential one: N(k) = min(s02⌊

k
K′ ⌋, s1)+1

where K ′ = ⌊ K
log2[s1/s0]+1⌋, K is the total number of training steps, k is the current training step, s0 (respectively s1)

the initial (respectively final) number of timesteps. Finally, Song and Dhariwal (2024) propose a discrete probability
distribution on the timesteps which mimics the continuous probability distribution recommended in the continuous training
of score-based models by Karras et al. (2022). It is defined as p(σi) ∝ erf( log(σi+1)−Pmean√

2Pstd
)− erf( log(σi)−Pmean√

2Pstd
). In practice,

Song and Dhariwal (2024) recommend using: s0 = 10, s1 = 1280, ρ = 7, Pmean = −1.1, Pstd = 2.0.

We use the lion optimizer (Chen et al., 2023) implemented from https://github.com/lucidrains/lion-pytorch.

Selection of hyper-parameter µ. We have selected µ based on the results from Figure 5, which presents a grid search for µ
on CIFAR-10. Given the bell-shaped relationship observed between µ and FID, we opted to retain the best performing value
identified on CIFAR-10, µ = 0.5, for all subsequent experiments (Table 1), including those on other datasets, without further
tuning. Importantly, even without an exhaustive hyperparameter search, our method consistently outperforms baseline
approaches. This choice is validated by the ablation study presented in Appendix C.1 showing similar trend for another
dataset, showing that the hyper-parameter µ is easy to tune.

In the ECT setting, we found that µ < 0.5 leads to improved performance, while µ > 0.5 can degrade final performance.
Overall, we recommend setting µ to small values (around 0.3) since it leads to improved performance in all our experiments.

Details on neural networks architectures. We use the NCSN++ architecture (Song et al., 2021) and follow the implemen-
tation from https://github.com/NVlabs/edm.

Evaluation metrics. We report the FID, KID and IS. For the three different metrics, we rely on the implementation from
TorchMetrics (Skafte Detlefsen et al., 2022). For the three different metrics, we use the standard practice (e.g. (Song and
Dhariwal, 2024)) of FID which is to compare sets of 50 000 generated versus training images. Confidence intervals reported
in Table 1 are averaged on five runs by sampling new sets of training images, and new sets of generated images from the
same model.

Datasets. CIFAR-10 is a dataset introduced in Krizhevsky (2009). ImageNet (Deng et al., 2009), CelebA (Liu et al., 2015),
and LSUN Church (Yu et al., 2015) are used respectively at 32× 32, 64× 64 and 64× 64 resolutions. We preprocess these
images by resizing smaller side to the desired value, center cropping, and linearly scaling pixel values to [−1, 1].
Details on computational ressources As mentioned in the paper, the image dataset experiments have been conducted on
NVIDIA A100 40GB GPUs.
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Table 4. Hyperparameters for CIFAR-10. Arrays indicate quantities per resolution of the UNet model. {} indicate an hyper-parameter
search performed for each type of model (iCT, iCT-OT, iCT-GC (µ = 0.5)).

Hyperparameter Value

batch size 512
image resolution 32
training steps 100 000
learning rate {0.0001, 0.00003}
optimizer lion
s0 10
s1 1280
ρ 7
σ0 0.002
σ1 80
network architecture SongUNet

(from (Karras et al., 2022) implementation)
model channels 128
dropout {0., 0.3}
num blocks 3
embedding type positional
channel multiplicative factor [1, 2, 2]
attn resolutions ∅

Table 5. Hyperparameters for CelebA and LSUN Church. Arrays indicate quantities per resolution of the UNet model. {} indicate an
hyper-parameter search performed for each type of model (iCT, iCT-OT, iCT-GC (µ = 0.5)).

Hyperparameter Value

batch size 128
image resolution 64
training steps 150 000
learning rate 0.00008
optimizer lion
s0 10
s1 1280
ρ 7
σ0 0.002
σ1 80
network architecture SongUNet

(from (Karras et al., 2022) implementation)
model channels 128
dropout {0., [0., 0., 0.2, 0.2]}
num blocks [3, 3, 4, 5]
embedding type positional
channel multiplicative factor [1, 2, 2, 2]
attn resolutions ∅
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Table 6. Hyperparameters for ImageNet-1k. Arrays indicate quantities per resolution of the UNet model. {} indicate an hyper-parameter
search performed for each type of model (iCT, iCT-OT, iCT-GC (µ = 0.5)).

Hyperparameter Value

batch size 512
image resolution 32
training steps 150 000
learning rate 0.00008
optimizer lion
s0 10
s1 1280
ρ 7
σ0 0.002
σ1 80
network architecture SongUNet

(from (Karras et al., 2022) implementation)
model channels 128
dropout {0., [0., 0., 0.2, 0.2]}
num blocks [3, 5, 7]
embedding type positional
channel mult [1, 1, 2]
attn resolutions [16]
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