Under review as a conference paper at ICLR 2026

TRAINING TRANSFORMERS WITH
ENFORCED LIPSCHITZ BOUNDS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural networks are often highly sensitive to input and weight perturbations. This
sensitivity has been linked to pathologies such as vulnerability to adversarial exam-
ples, divergent training, and overfitting. To combat these problems, past research
has looked at building neural networks entirely from Lipschitz components. How-
ever, these techniques have not matured to the point where researchers have trained
a modern architecture such as a transformer with a Lipschitz certificate enforced
beyond initialization. To explore this gap, we begin by developing and bench-
marking novel, computationally-efficient tools for maintaining norm-constrained
weight matrices. Applying these tools, we are able to train transformer models with
Lipschitz bounds enforced throughout training. We find that optimizer dynamics
matter: switching from AdamW to Muon improves standard methods—weight
decay and spectral normalization—allowing models to reach equal performance
with a lower Lipschitz bound. Inspired by Muon’s update having a fixed spectral
norm, we co-design a weight constraint method that improves the Lipschitz vs.
performance tradeoff on MLPs and 2M parameter transformers. Our <2-Lipschitz
transformer on Shakespeare text reaches validation accuracy 60%. Scaling to 140M
parameters, our <10-Lipschitz transformer reaches 21% accuracy on internet text.
When matching the NanoGPT baseline accuracy of 37.4%, our Lipschitz-bounded
network achieves a maximum activation norm of 112, compared to about 1,872
for the unconstrained network. Our Lipschitz transformers train without stability
measures, such as layer norm, QK norm, and logit tanh softcapping.

1 INTRODUCTION

Lipschitz bounds for neural networks—bounds on the model sensitivity to input perturbations—are
of interest for their effect on generalization, robustness (Bartlett et al., 2017; Tsuzuku et al., 2018),
and applications such as differential privacy (Béthune et al., 2024). Seminal work (Arjovsky et al.,
2016; Cisse et al., 2017; Yoshida & Miyato, 2017; Anil et al., 2019) enforces Lipschitz bounds
beyond initialization for MLPs, RNNs, and GANSs, but for transformers, the closest work, LipsFormer
(Qi et al., 2023), does not constrain weight matrices during training. Without such constraints,
large-scale transformer training can become unstable due to attention and output logits growing too
large (Wortsman et al., 2024; Dehghani et al., 2023). Numerical instability is typically bandaged over
by methods such as QK norm (Henry et al., 2020; Dehghani et al., 2023) or the recent MuonClip
optimizer for 1T parameter scale training (Moonshot Al, 2025). We hypothesize that enforcing a
Lipschitz bound may directly prevent training instability. In this paper, we ask:

Can transformers with small, enforced Lipschitz bounds perform well?
How does the weight constraint method affect the Lipschitz versus performance tradeoff?

Enforcing a Lipschitz bound on a transformer is challenging because some components, such as
self-attention, are not globally Lipschitz (Kim et al., 2021). We build on Large et al. (2024), which,
similar to LipsFormer, enables Lipschitz continuity by reparameterizing residual connections and
modifying self-attention; however, the full story is elusive. LipsFormer goes further than Large et al.
(2024) by removing layer norm (Ba et al., 2016), but its implementation may make Lipschitz bounds
impossible by setting € = 0 in QK norm. In contrast, we remove activation normalization to explore
whether training can proceed with no stability measures. Most importantly, we constrain the weights
throughout training so that the model’s sensitivity remains within a specified Lipschitz bound.

https://github.com/IDEA-Research/LipsFormer/blob/main/models/lipsformer_swin.py#L205-L206

Under review as a conference paper at ICLR 2026

é)
gradient V dualized gradient vt updated weights W regulated weights W’
& &
E 5
E) E
£ £
& 5
§=| £
index i index i index i
a) Dualize the gradients b) Regulate the updated weights
e.g. orthogonalize e.g. spectral cap)
.

Figure 1: To train fast and stably, regulate the gradients and also the weights. Current research
considers efficient spectral regulation of gradients, e.g. Muon (Jordan et al., 2024b). A similar
opportunity exists for weights. While weight decay with parameter A\ contracts singular values by a
fixed factor UXV' T +— U(1 — A\)XV T, more general maps are possible: USV T +— U f(Z)V' T for
any nonnegative elementwise function f. In this paper, we introduce spectral cap to efficiently clip
singular values above a threshold oy,.x > 0.

To develop a toolkit for training transformers with an enforced Lipschitz bound, Section 3 compares
methods for constraining weight norms. Surprisingly, we find that optimizer choice matters: weight
decay (Krogh & Hertz, 1991) and spectral normalization (Yoshida & Miyato, 2017) achieve a
better Lipschitz versus performance tradeoff with Muon (Jordan et al., 2024b) than with AdamW
(Loshchilov & Hutter, 2019). We observe this effect in MLPs trained on CIFAR-10 (Krizhevsky,
2009) and corroborate it in 2M parameter transformers trained on Shakespeare text (Karpathy, 2022).

Beyond standard weight constraint methods, we are inspired by the Muon optimizer—whose weight
updates have small, known spectral norm—to design spectral soft cap. This method enforces a
desired maximum spectral norm op,x by approximating the map ¢ — min(omax, o) on all singular
values o in parallel by iterating odd polynomials on the weights. Theorem B.1 proves that spectrally
capping singular values bounds weight norms when training with Muon; we provide no guarantee for
AdamW because its update norm varies. For AdamW, we explore a second technique that may be
better suited to low stable rank updates. At every step, this technique finds the largest weight singular
value and sets it to omax. In analogy with a hammer that strikes the nail that sticks out the most, we
call it spectral hammer. Our experiments suggest that the best combination is Muon with spectral
normalization or spectral soft cap, while for Adam the only competitive technique is spectral hammer.

In Section 4, we begin by training a small transformer on Tiny Shakespeare (Karpathy, 2022); our <6-
Lipschitz model reaches validation loss 1.20. We are not aware of transformers in the literature that
have been trained with a Lipschitz bound as low as 6; moreover, we reach loss 1.20 in fewer steps than
a recent baseline (Godavarti, 2025). Scaling up to the NanoGPT speedrun benchmark (Jordan et al.,
2024a), we train 140M-parameter transformers to competitive performance without layer norm or QK
norm. We train a <10-Lipschitz transformer to 21.2% validation accuracy, compared to 37.4% for a
non-Lipschitz baseline. However, to reach a competitive accuracy of 37.4% requires an astronomical
global Lipschitz upper bound of 1022, While Fazlyab et al. (2019) propose tighter Lipschitz bound
estimates, inspecting the maximum activation norms reveals that the model operates far from the worst
case. On a batch of 393K tokens, the non-Lipschitz baseline has maximum activation entry 1,872
while the <10'22-Lipschitz model has maximum activation entry 112. Empirically small activations
might allow Lipschitz-constrained transformers to enable low-precision training and inference.

In summary, our contributions are as follows:

* We train transformers with enforced Lipschitz constraints up to 140M parameters, showing
the feasibility of full weight matrix constraints. A <10-Lipschitz transformer achieves 21%
accuracy on FineWeb10B, and a <2-Lipschitz transformer achieves 60% on Shakespeare.

* We present evidence that weight decay and spectral normalization are more effective with
Muon than AdamW, matching accuracy under smaller Lipschitz bounds. A standard robust-
ness experiment holds when using Muon.

Under review as a conference paper at ICLR 2026

* We introduce two weight norm constraint techniques: spectral capping and spectral hammer.
For AdamW, spectral hammer elicits the strongest Lipschitz-constrained performance. For
Muon, we prove spectral soft cap bounds weight norm and find it performs similarly or
slightly better than spectral normalization.

2 RELATED WORK

There is a large literature on the many potential and realized benefits of Lipschitz neural networks
(Béthune et al., 2022; Béthune, 2024; Rosca et al., 2020). Input—output Lipschitz certificates help
in deployment scenarios where there is a benefit to having strong robustness to input perturbations.
Examples include robotic control (O’Connell et al., 2022; Wang et al., 2020), classification in the
presence of adversarial input perturbations (Szegedy et al., 2014), and in protocols for Al safety
(Brown-Cohen et al., 2024). Input—output Lipschitz certificates are also used in certain generalization
guarantees for deep networks (Bartlett et al., 2017; Neyshabur et al., 2018; Dherin et al., 2022).

Similarly, weight—output Lipschitz certificates may be useful in situations where there is an interest
in perturbing the weights of a neural network without incurring unstable output behavior. A prime
example is stable (Qi et al., 2023; Flynn, 2017) and scalable (Large et al., 2024) training. The
recent MuonClip optimizer (Moonshot Al, 2025) similarly addresses exploding attention logits by
constraining query and key weights directly; weight norm constraints are the subject of Section 3. A
second example is for the design of differentially private training algorithms where there is a need to
add carefully calibrated noise to the network weights (Béthune, 2024; Béthune et al., 2024). And a
third example is to aid in weight quantization (Elthakeb et al., 2020; Weng et al., 2020).

In fact, there is a close theoretical link between input—output Lipschitzness and weight—output
Lipschitzness in deep learning (Large et al., 2024; Béthune, 2024). The reason is that when we
compose two subnetworks, Lipschitzness with respect to the weights of the first subnetwork depends
upon the degree of input—output Lipschitzness of the second subnetwork.

Various techniques have been proposed for producing neural networks amenable to Lipschitz certifi-
cation. These include techniques for modifying the architecture and training to improve the resulting
Lipschitz properties. For example, spectral normalization (Miyato et al., 2018; Gogianu et al., 2021)
has been proposed as a means to control the Lipschitz properties of individual weight matrices. New
nonlinearities (Anil et al., 2019) and normalization layers (Qi et al., 2023) have also been proposed.

Furthermore, given a trained model of a given architecture, various techniques have been proposed
for deriving Lipschitz certificates. Deriving the exact Lipschitz constant (i.e. the least upper bound)
is known to be computationally hard (Katz et al., 2017; Virmaux & Scaman, 2018; Weng et al.,
2018) so researchers settle for producing slacker upper bounds. One approach to producing upper
bounds—used in this paper for simplicity—is to obtain Lipschitz statements for each component in
the architecture and add or multiply them as appropriate to compose them (Szegedy et al., 2014).
However, tighter approaches have also been proposed: Weng et al. (2018; 2019) provide examples.

3 WEIGHT NORM CONSTRAINTS TO ENFORCE LIPSCHITZ CONSTRAINTS

A function f(x) has Lipschitz bound K under a norm ||-|| if || f(21) — f(x2)|| < K - ||z — a2]| for
all inputs x1, x2, with the Lipschitz constant being the smallest such K. For neural networks, the
most common operation is matrix multiplication, which has ¢, Lipschitz constant equal to the spectral
norm of the weight matrix. Prior work has constrained spectral norms through weight decay, spectral
normalization, and orthogonal constraints (Krogh & Hertz, 1991; Yoshida & Miyato, 2017; Miyato
et al., 2018; Gouk et al., 2021; Jianlin, 2024). These methods, tested with AdamW, have shown
benefits for generalization and adversarial robustness (Bartlett et al., 2017; Tsuzuku et al., 2018). The
Muon optimizer introduces new possibilities by ensuring small, fixed-norm updates. Inspired by this
property, we revisit existing methods and develop new ones for constraining weights. We ask:

What is the best way to enforce weight norm constraints throughout training?

We compare seven methods by their ability to 1) maintain high performance, 2) enforce weight norm
constraints, and 3) balance performance with a Lipschitz bound. Overall, we find that Muon achieves

Under review as a conference paper at ICLR 2026

lower Lipschitz bounds and better performance than AdamW. Among constraint methods, spectral
soft cap, spectral hard cap, and spectral normalization meet these criteria best.

Muon enables hard weight constraints. Unlike AdamW, Muon bounds the weight update norm
by the learning rate—if its orthogonalizing polynomial never exceeds 1. We follow (You, 2025)
to ensure this property in our experiments. Pethick et al. (2025) noted that bounding the update
spectral norm transforms weight decay with parameter X into a strict spectral norm constraint of
1/ because equilibrium occurs between the update step and weight decay when the weight norm w
satisfies w = w(1 — An) + n for learning rate 7 > 0 (see Section B). We hypothesize this property
may explain why Muon improves the Lipschitz vs. performance tradeoff over AdamW for standard
methods such as weight decay.

A spectral generalization of weight decay. Weight decay can be viewed as a special case of an odd
polynomial iteration applied to the weights. Odd polynomials are special because they act directly on
the singular values: p(UXV ") = Up(X)V T, where ULV T is a singular value decomposition. The
odd polynomial for weight decay is p(z) = (1 — nA)x, with learning rate n and decay . Cisse et al.
(2017) explored an orthogonalizing polynomial p(x) = (1 + B)x — B3, but Miyato et al. (2018)
note that pressuring all singular values toward one limits spectral information. Their method, spectral
normalization, enforces norm constraints while allowing singular values below 1 (Gouk et al., 2021),
but scales down the entire spectrum. This motivates a more targeted approach: penalizing only the
singular values that are too large, leaving smaller ones untouched. Ideally, this applies min(omax, o)
to each value for maximum norm opy,x > 0, but exact SVD is slow. Odd polynomial iterations offer a
fast and effective approximation. We contribute a family of such approximations, spectral soft cap,
which include weight decay as a special case (derivation in Section B).

3.1 METHODS FOR CONTROLLING WEIGHT NORM

The RMS norm is a dimension-independent rescaling of the Euclidean norm, ||z(|% ;s = 3|2 ||3 for
x € RY, that measures all-ones vectors like (£1,...,41) as norm 1. We are interested in controlling
the RMS — RMS operator norm, a rescaled spectral norm shown to be natural in deep learning
(Yang et al., 2024; Bernstein & Newhouse, 2025). For a matrix W € R%uexdin ypit RMS — RMS
norm corresponds to spectral norm of \/dout /din. While related work uses ¢ norms, here we report
input—output Lipschitz bounds under the RMS — RMS norm, which convert to /5 by multiplying
with +/doutput /dinput for a given network. We denote the principal singular vector subspace with
singular value o1 > 0 by oyu v, , computed via power iteration. We review existing weight norm
constraints and introduce two new methods: spectral capping and spectral hammer.

Weight decay, or Frobenius norm regularization, maps W — (1 — An)W where A > 0 is the decay
parameter and 1 > 0 is the learning rate, guaranteeing a norm bound in conjunction with Muon.

Spectral weight decay, or spectral norm regularization, targets only the top singular value, mapping
We=W —)\alulvlT where A > 0 is the decay parameter (Yoshida & Miyato, 2017; Jianlin, 2024).

Spectral normalization, introduced for GAN training (Miyato et al., 2018) and recently applied
to LLMs (Zhai et al., 2023; Jha & Reagen, 2024), rescales the weight by its spectral norm during
the forward pass. The original implementation leaves the weight unconstrained, so effective update
sizes decrease as the weight norm grows. In this work, we instead apply the mapping W
(0max/ max (o1, omax))W, ensuring weights have spectral norm at most oy,y, but possibly less.

Stiefel manifold projection pressures all singular values toward 1 using an odd polynomial iteration
W — p(W). We follow You (2025), whose polynomial converges faster than the polynomial from
(Cisse et al., 2017). Although Stiefel manifold projections are typically defined for rectangular
matrices, we use the term here for both square and rectangular matrices.

We extend these ideas with two new methods:

Spectral hammer is similar to spectral weight decay but sets the top singular value to o, by
mapping W — W + (0max — 01)u1 vlT, like a hammer striking the nail that sticks out most. It does
not guarantee the spectral norm stays below o,,x because multiple singular vectors may increase per
update. Spectral hammer is better suited to low stable rank updates, common in Adam (Zhao et al.,
2024), whereas Muon updates are always high stable rank.

Under review as a conference paper at ICLR 2026

MLP Transformer
2.4 2.4
o +
" 2.1 [% 219 v, Method: .
3 . = B Muon: weight decay
‘c 1.7+ e 174 * # Muon: spectral normalize
2 o7 = o * . - ® Muon: soft cap
© v . i
S 144 ¢ L.“.-Ihi 1444 & o mm - - B Adam: weight decay .
o v Fatli= e Ha " m - # Adam: spectral normalize
> DRAAFTS AR S TAL L e A
'(q...-i-"'-" SHTH Vv Adam: spectral hammer
|
11 T T T T T 1.1 T T T T T
10° 10t 102 103 104 10t 103 10° 107 10°

Lipschitz bound

Lipschitz bound

Figure 2: Muon improves the Lipschitz vs. performance tradeoff for standard weight regu-
larization. We train 3385 MLPs on CIFAR-10 (left) and 800 transformers on Shakespeare text
(right), varying the optimizer and weight constraints. Weight decay and spectral normalization reach
lower loss at smaller Lipschitz bounds with Muon. Our new methods—spectral soft cap and spectral
hammer—also show promise. See Section F for experimental details.

Spectral capping is designed for Muon’s high stable rank updates, approximating o +— min(omax, o)
for all singular values in parallel with odd polynomials instead of costly SVDs. Our main variant,
spectral soft cap, applies a loose approximation pz(p;(z)), where p;(z) = x — ax® and po(x) =
x + ax® with strength parameter o > 0, as discussed in Section B. Weight decay can be used as a
preliminary step by applying po(xz) = (1 — An)z. This composition is designed to decay a singular
value very little when 0 < op,x, but when o = oy, to decay it enough to counteract Muon’s
update norm, strictly enforcing the bound. With scheduled learning rates, finding the minimal o > 0
prevents error accumulation.

Theorem 3.1 (Spectral soft cap bounds spectral norm when training with Muon). Suppose we wish to
bound the spectral norm of a weight matrix W to never exceed o4 > 0. Let 1) > 0 be the learning
rate and X\ > 0 be the weight decay. If |W ||« < Oax, then there exists a minimal o, > 0 such that
performing the following three operations (“the training step”) preserves |W ||, < Ouax:

1. Weight decay: W — W - (1 — An).
2. Muon update: W — W + AW, where ||AW || < n.
3. Spectral soft cap: W + pa(p1(W)), where p1(x) = x — a2 and po(z) = x + a,.2?).

Calculating o, reduces to solving for the roots of a quartic polynomial.

Section B gives the proof. Training using the minimal strength parameter o, > 0 indefinitely bounds

weight matrix spectral norm. In practice, Muon scales the learning rate by +/dout/din, s0 the theorem
instead bounds the RMS — RMS operator norm of the weight matrix.

A second variant, spectral hard cap, uses the matrix sign function to approximate o — min(oyax, o)
on the singular values, as discussed in Section C. Because this approximation is fixed, errors can
compound late in training as the learning rate decays to 0. Since spectral soft cap and spectral hard
cap are designed for Muon, we did not test them with AdamW.

Together, these methods cover a range of trade-offs between strict norm enforcement, preserving
the spectrum, and computational efficiency. Other approaches may prove better, making this an
interesting direction for future work.

3.2 ADAMW AND MUON: COMPARING WEIGHT CONSTRAINT METHODS

In Figure 2, we show the tradeoff between validation loss and Lipschitz bound, calculated with respect
to the RMS — RMS operator norm (Section 3.1). For ReLU MLPs, the Lipschitz bound is the
product of the RMS — RMS weight norms. For a transformer, the Lipschitz bound is calculated as
described in Section 4.2. Muon consistently achieves both lower validation loss and lower Lipschitz
bounds than AdamW on CIFAR-10 MLPs and Shakespeare transformers, motivating our choice to
adopt Muon for larger-scale experiments. Spectral normalization and spectral soft cap make the most
efficient use of a Lipschitz budget. Spectral hammer, which is best for AdamW’s low stable rank
weight updates, performs competitively but does not enforce a bound, limiting its reliability where

Under review as a conference paper at ICLR 2026

Lipschitz bound 15.2 (Muon + soft cap) —e— Lipschitz bound 15.2 (Muon + soft cap)

£=0.000 £=1.600 £=3.200 £=4.800 === Lipschitz bound 7618.8 (Adam + weight decay)
ship (65.3%) ship (56.9%) ship (42.7%) auto (58.7%) 0.5

=
o 0.4
[e]
< 0.3
o
© 0.2
=3
g 0.14
<

Lipschitz bound 7618.8 (Adam + weight decay)

€=0.000 £=1.600 £=3.200 £=4.800
ship (96.9%) auto (56.4%) auto (99.8%) auto (100.0%)

Budget of adversarial perturbation (g)

o
=

Mean p(correct class)
o
N

o
o

Figure 3: Networks trained with Muon and spectral soft cap have lower Lipschitz bounds and
greater adversarial robustness. Lower Lipschitz bounds have been linked to robustness (Cisse et al.,
2017; Huang et al., 2021). We train a CIFAR-10 MLP with Lipschitz bound 15.2 (Muon + spectral
soft cap), matching the 45% clean accuracy of a baseline model (AdamW + weight decay) with a
much higher Lipschitz bound of 7618.8. Left: Adversarial attacks with varying /5 budget €. Top right:
Robustness across 2000 test images measured by top-1 accuracy against €. The Lipschitz-constrained
model maintains a higher accuracy for larger values of €. Bottom right: The mean correct class
probability in the Lipschitz-constrained network starts below the baseline model’s but degrades slowly
under increasing €. By contrast, the baseline model peaks at ¢ = 0 and drops off sharply.

constraint enforcement is critical. The sweep includes 4185 runs, reporting the best validation loss
per Lipschitz bin.

3.3 ADVERSARIAL ROBUSTNESS OF LIPSCHITZ NETWORKS

Prior work (Cisse et al., 2017; Huang et al., 2021) links adversarial robustness to a network’s Lipschitz
constant, suggesting Lipschitz control as a potential path to high certified accuracy. We confirm this
relationship holds for MLPs trained with Muon and spectral soft cap. Figure 3 compares two MLPs
with similar baseline validation accuracy (= 45%) but different Lipschitz bounds: 15.2 (Muon +
spectral soft cap) vs. 7618.8 (AdamW + weight decay).

Both models achieve similar clean accuracy, but the Lipschitz-constrained MLP shows a smoother
drop in accuracy and confidence on the first 2000 CIFAR-10 test images as adversarial {5 perturbations
increase. Larger € values are required to fool the constrained network (Figure 3, left).

3.4 COMPARING WEIGHT CONSTRAINT METHODS WITHIN MUON

In Figure 4, we use Muon alongside all seven weight constraint methods to test three goals: 1) defining
a Lipschitz bound before training, 2) enforcing that bound throughout training, and 3) matching or
exceeding standard weight decay performance. Each method is evaluated on a 3-layer, 256-hidden
dimension MLP trained with Muon on CIFAR-10. Full experimental details are in Section F.

In Figure 4 (left), spectral normalization, spectral soft cap, and spectral hard cap form the Lipschitz
vs. validation loss frontier. In Figure 4 (middle), we see the best hyperparameter settings of spectral
normalization, spectral soft cap, and spectral hard cap are the only methods to reach within 1%
accuracy of the baseline (Muon with weight decay); others fall within 4%.

Figure 4 (right) shows the evolution of hidden layer norms during training. All methods except
spectral hammer keep norms at or under their target values. Spectral hammer exceeds its target but
trends downward late in training, indicating it may work under Muon with longer runs and scheduled
learning rates. Within our 50-epoch window, however, it fails to reliably control the Lipschitz bound.
Spectral weight decay does not enforce predefined Lipschitz bounds and is omitted.

We select soft cap, hard cap, and spectral normalization for transformer experiments. To isolate their
effects, we do not combine them with weight decay, though such combinations may help.

Under review as a conference paper at ICLR 2026

> > Eg
2.2 % | 20604 + 58 20-
" % :. 5 =| Constraint method: 5
@ 2.0 % " % ee m Weight decay % € 154
€171 e - < 0.58- * Spectral weight decay 5 &
S * L] =] A + Spectral normalize So
© A n © . X v1.0
S 1.4 'Y | 2 Ao Stiefel manifold 2 %
K * !_.L'J T .56 Spectral hammer c}: é 05
L & = e Spectral soft cap c
1.2 0 s 9 Al
’ 2 0 * ¢ Spectral hard cap E 2 00
T T T T T 0. T T
10! 103 100 200 300 0 2000 4000

Lipschitz bound

Lipschitz bound

Training steps

Figure 4: Left: Weight constraint methods designed for Muon lie on the Lipschitz vs. loss
frontier. Each point shows the lowest validation loss achieved at a given bound for CIFAR-10
MLPs. In the low-loss regime, staying on the frontier (left half of the parabola) requires spectral
normalization or spectral capping. Middle: Spectral normalization and spectral capping match
baseline accuracy at lower bounds. Each method falls within 1% accuracy (shaded green region)
while reducing the bound. Right: RMS — RMS norms of hidden layers during training. Norms
are standardized to target 1. Spectral normalization and Stiefel manifold projection hit this target
exactly; weight decay, soft cap, and hard cap stay below the target; spectral hammer fails to constrain.

4 TRANSFORMERS WITH ENFORCED WEIGHT CONSTRAINTS

To develop a toolkit for training Lipschitz-constrained transformers, we first address residual con-
nections and self-attention (Section 4.1), then describe how to calculate a Lipschitz bound for a
transformer (Section 4.2). In Section 4.3, spectral normalization and spectral soft cap perform well on
2M-parameter Shakespeare transformers. In Section 4.4, we scale up to 140M-parameter transformers
trained on FineWeb10B (Penedo et al., 2024), starting from the competitive NanoGPT speedrun
benchmark (Jordan et al., 2024a) to avoid undertuned baselines.

4.1 BREAKING THE MULTIPLICATION BARRIER?

A major triumph of Large et al. (2024) is transformers with depth-independent Lipschitz bounds.
However, their approach assumes activations with unit RMS norm. Since we later relax this constraint,
our transformers will generally not have a depth-independent Lipschitz bound. Nonetheless, we use
their two architectural modifications.

Reparameterizing residual connections. The classic residual connection from He et al. (2016)

defines the update = + block(z), which can exponentially inflate the Lipschitz bound: even x +

identity(z) doubles it every layer. Large et al. (2024) avoid this by using the convex combination
N -1

N

where NN is the number of layers, which is 1-Lipschitz if the block is 1-Lipschitz (Proposition 4 of
Large et al. (2024)). We adopt this parameterization, but the bound fails when activation norms exceed
1. Since strict 1-Lipschitz constraints hurt performance, we do not fully break the multiplication
barrier: deeper networks can accrue astronomical Lipschitz bounds.

cx 4 % - block(z) (1)

Attention with 1/d scaling. Original multihead attention from Vaswani et al. (2017) has no global
Lipschitz bound (Kim et al., 2021). Vaswani et al. (2017) used 1/ Vid scaling because two random
vectors u, v with mean 0 and variance 1 will have a dot product u - v with mean 0 and variance the
dimension d. But key-query pairs may align more strongly. Perfect alignment suggests 1/d scaling.
Large et al. (2024) prove that
T
QK > V.
d

is 1-Lipschitz under unit input norms, with respect to ||-||sorMs, the max RMS norm of any token.
Multiplying by % makes attention composed with the 3-sensitive input tuple (g, k, v) unit sensitivity
(Proposition 7 of Large et al. (2024)). Unlike Large et al. (2024), we remove layer norm so that every
operation is Lipschitz continuous.

softmax < 2)

Under review as a conference paper at ICLR 2026

4.2 CALCULATING THE LIPSCHITZ BOUND OF A TRANSFORMER

To test whether small-Lipschitz transformers can perform well, we would need to know what
weight norm yields a desired Lipschitz bound. This section sketches an algorithm for bounding the
transformer’s Lipschitz constant given its weight norms; details are in Section D. Our bound tightens
Theorem 2 from LipsFormer (Qi et al., 2023) by using individual weight norms rather than the
maximum across residual blocks. Fazlyab et al. (2019) suggest ways to further tighten such bounds,
which we leave to future work. To bound self-attention, we extend Proposition 7 of (Large et al.,
2024) to inputs that are not unit norm, an essential concession to explore Lipschitz vs. performance
tradeoffs.

Our Lipschitz bounds are with respect to the max RMS norm over token positions, denoted ||-|| corMs-

Step 1: Bound activation norms. Our Lipschitz bound for rescaled dot-product attention relies on
the activation norms staying finite. We compute a per-layer bound on the max ||-||corMs activation
norm by combining residual connections with per-block max activation increases: for an MLP by
multiplying its two weight norms and for attention by multiplying its Wy, and Wo norms. Our MLPs
slightly decay activation norms by scaling GeLU by its maximum derivative, GeLU/1.1289.

Step 2: Bound the Lipschitz constant. Let L be the Lipschitz constant before a layer. After a residual
connection, it is at most (1 —)L+ o+ L - Lpjock- For MLPs we calculate Lyjock = ||Win||lRMS—RMS -
[[Wout||lRMs—RrMs /1.1289 from the rescaled GeLU. For attention, we use Theorem D.1.

4.3 SHAKESPEARE TRANSFORMER

Before scaling to NanoGPT, we explore the Lipschitz vs. performance tradeoff in smaller transformers,
aiming for models with small Lipschitz bounds at every layer. While Béthune et al. (2022) comment
that any L-Lipschitz classifier can be made 1-Lipschitz by dividing the logits by L, we do not rescale
logits, although adjusting scaling temperature during training could have beneficial effects (Agarwala
et al., 2023). Full experimental details are in Section F.

We can train a competitive <2-Lipschitz Shakespeare transformer. Our <2-Lipschitz transformer
reaches a validation loss of 1.29, compared to 1.47 for the Karpathy (2022) baseline, though the
baseline may be undertuned. Our model has dimension 256, depth 3, and was trained for 2000
steps with Muon; the baseline has dimension 384, depth 6, and was trained for 5000 steps with
AdamW. Our transformer does not use layer normalization. Achieving this performance requires
relaxing o, to around 2. The best validation loss in our sweep was 1.20 with a <6.02-Lipschitz
transformer, surpassing any baseline we are aware of, such as the 1.23 loss of Godavarti (2025) while
training on 300x fewer tokens. Some gains may reflect hyperparameters or optimizer choice, but this
demonstrates a performant transformer with a small enforced Lipschitz bound.

4.4 SCALING TO NANOGPT

We validate our methods by training a 140M-parameter transformer on top of the NanoGPT speedrun
benchmark (Jordan et al., 2024a). The baseline is tuned to reach validation loss 3.28 in the shortest
wallclock time. As of February 1, 2025, the record uses 0.7B tokens, or 3 minutes of training on an
8xH100, and achieves 39.4% accuracy. We implement our methods on top of the speedrun while keep-
ing all other training methods fixed. We compare against 1) the original speedrun, 2) the "NanoGPT"
baseline where we remove speedrun-specific architectural decisions such as skip connections and
learnable scale parameters, and 3) the "Modula" baseline with residual reparameterization and é

attention scaling from Section 4.1. We also replace ReLU? activations with GeLU /1.1289—making
the activation function Lipschitz continuous. We report validation loss and accuracy as well as the
max activation norm as primary comparison metrics.

To implement our method, we remove layer norms, logit tanh softcaps, and QK norms from the
Modula baseline and implement our weight constraints on top. At initialization, we project linear
weights to be semi-orthogonal and normalize the embeddings to RMS norm 1. Finally, unlike
LipsFormer (Qi et al., 2023), we enforce weight norm constraints throughout training: embeddings
are capped to norm 1, and all other weights are constrained after each step using the methods in
Section 3.1. Linear layers in the MLPs and attention use fp8 precision without the need for tensorwise
or blockwise scaling.

Under review as a conference paper at ICLR 2026

Transformer Lipschitz Tokens Weight Validation Validation Activation Activation
Architecture Bound Used Constraint Accuracy (1) Loss () MaxEntry Max RMS
Baseline (NanoGPT) %) 0.7B none 0.380 3.410 91648 24092
Baseline (Modula) 00 0.7B none 0.374 3.491 1872 110.3
Ours (0ax = 00) %) 0.7B none nan nan nan nan
LipsFormer 10130 0.7B none 0.301 4.130 61 -
Ours (Opmax = 8) 10134 0.7B spectral normalize 0.362 3.582 37.75 6.1
ours (Opmax = 8) 10122 1.4B spectral soft cap 0.374 3.481 112 28
Ours (Omax = 1) 10 0.7B spectral normalize 0.212 5.047 6.5 1
Baseline (Speedrun) o0 0.7B none 0.394 3.280 148480 12480
Oours (Opmax = 16) 10264 2.8B spectral normalize 0.395 3.280 49.3 7.1

Table 1: Transformers with enforced Lipschitz constraints can match NanoGPT performance.
The NanoGPT speedrun is a competitively tuned GPT-2 replication (Karpathy, 2022; Jordan et al.,
2024a). Using it as a baseline, we substitute Lipschitz transformer components and constrain weight
norms by om.x > 0. Unlike LipsFormer (Qi et al., 2023), our constraints enforce a bound chosen
prior to training. A <10-Lipschitz transformer trains stably to 21.2% accuracy without layer norm,
QK norm, or tanh on logits. The same model without weight constraints diverges. Matching baseline
accuracy, however, requires a Lipschitz bound of 1022, computed as in Section 4.2. Our Lipschitz
bounds may be loose, as suggested by the small maximum activation we observe across a batch of
393K tokens. Final loss variance is 0.0008.

Table 1 summarizes our 140M-parameter results. Unsurprisingly, training diverges without weight
constraints. Unlike LipsFormer, our method enforces a Lipschitz bound specified before training.
The key lever is the maximum RMS — RMS norm oy, for linear layers. Smaller oy,,x values
correspond to tighter Lipschitz bounds but may reduce performance. The attention and final logit
scale also affect the bound. With spectral normalization, o,,x = 1 and final logit scale 8, we train a
<10-Lipschitz transformer to validation loss 5.047 and accuracy 21.2%. No activation in this model
exceeds RMS norm 1, aiding stability during training. Raising opmax to 8 and using 2x training
data matches Modula baseline performance while keeping all activation entries comfortably within
the fp8 range. Further raising opmax to 16 and using 4 x training data matches speedrun validation
performance while achieving max activation entry 49.3, compared to about 148K. The NanoGPT
baseline has a max activation entry of about 92K, demonstrating higher sensitivity than our methods.

5 DISCUSSION

Despite large Lipschitz bounds, our NanoGPT transformers exhibit low maximum activation entries
(6.5-112) compared to the baseline (1,872). This may explain their stable training free from standard
measures including layer norm, QK norm, or tanh logit softcapping. Constrained network activation
entries never exceed the representable range of FP4 E3MO format. Future work can test whether
these low activations enable low-precision training and whether stability persists at larger scales.

For MLPs and small transformers, we find that using Muon improves the Lipschitz vs. performance
tradeoff. Out of the weight constraint methods we test, spectral normalization, spectral soft cap,
and spectral hard cap compare favorably to standard weight decay. Perhaps surprisingly, on both
CIFAR-10 and Shakespeare data, we achieve our best loss with Lipschitz-enforced models, potentially
representing a training speed benefit.

Our work has several limitations. We did not find a principled way to select weight norm, final logit
scale, and attention logit scale hyperparameters, instead relying on sweeps. Our Lipschitz bound
also increases rapidly as depth increases, unless we constrain weights to unit norm. A different
architecture, or insight beyond a global Lipschitz bound, could make progress on this problem.

In conclusion, this paper develops a method for training transformers with an enforced Lipschitz bound
throughout training, extending earlier efforts focused on different architectures or only constraining
at initialization. Lipschitz-certified transformers may be of particular interest for domains such
as privacy, control, adversarial robustness, low-precision training, and loss-spike-free, large-scale
pretraining. Although training speed benefits fade in our NanoGPT speedrun experiments, we wonder
whether at this scale Lipschitz-enforced training can also be made faster than standard training.

Under review as a conference paper at ICLR 2026

6 AUTHOR STATEMENTS

6.1 ETHICS STATEMENT

The authors have read the ICLR code of ethics and declare that we conform to them. We have not
identified any direct major ethical risks of this project.

6.2 REPRODUCIBILITY STATEMENT

We provide multiple resources to reproduce our experiments. In Section A, we provide a link to an
anonymized GitHub repository that includes code for reproducing all of our results. This includes files
for training Lipschitz-constrained MLPs and transformers using our methods and implementations,
as well as code for data loaders that we use to access the public datasets we used for experiments
in this paper. In Section F, we explain the hyperparameters that we used for our coordinate descent
hyperparameter search. We also cite our datasets and explain the compute resources we used for our
experiments. Our two main theoretical contributions have full proofs in Section B and Section C. We
describe our method for calculating Lipschitz bounds for transformers in Section D. All together, the
supplementary materials allow a reader to reproduce our results.

6.3 LLM USAGE STATEMENT

Our ideas, results, and writing are due to humans, not LLMs. We used LLMs to implement some
standard methods, such as power iteration. The majority of our code was authored by humans; the rest
was tested and verified. LLMs were used to assist in coding the figure generation scripts. After we
completed writing the paper, LLMs were sometimes used to make the writing more concise. These
suggestions were reviewed by humans and never copied into our document. Overall, our use of LLMs
was to automate standard procedures and was orthogonal to the originality and results of our paper.

REFERENCES

Atish Agarwala, Samuel Stern Schoenholz, Jeffrey Pennington, and Yann Dauphin. Temperature
check: Theory and practice for training models with softmax-cross-entropy losses. Transactions
on Machine Learning Research, 2023. Cited on page 8.

Cem Anil, James Lucas, and Roger B. Grosse. Sorting out Lipschitz function approximation. In
International Conference on Machine Learning, 2019. Cited on pages 1 and 3.

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In
International Conference on Machine Learning, 2016. Cited on page 1.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv:1607.06450,
2016. Cited on page 1.

Peter Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for neural
networks. In Neural Information Processing Systems, 2017. Cited on pages 1 and 3.

Jeremy Bernstein. The Modula docs, 2025. URL https://docs.modula.systems/. MIT
License. Cited on page 24.

Jeremy Bernstein and Laker Newhouse. Modular duality in deep learning. In International Conference
on Machine Learning, 2025. Cited on pages 4 and 24.

Louis Béthune. Deep Learning with Lipschitz Constraints. PhD thesis, Université de Toulouse, 2024.
Cited on page 3.

Louis Béthune, Thibaut Boissin, Mathieu Serrurier, Franck Mamalet, Corentin Friedrich, and Al-

berto Gonzalez Sanz. Pay attention to your loss: Understanding misconceptions about Lipschitz
neural networks. In Neural Information Processing Systems, 2022. Cited on pages 3 and 8.

10

https://docs.modula.systems/

Under review as a conference paper at ICLR 2026

Louis Béthune, Thomas Massena, Thibaut Boissin, Yannick Prudent, Corentin Friedrich, Franck
Mamalet, Aurelien Bellet, Mathieu Serrurier, and David Vigouroux. DP-SGD without clipping:
The Lipschitz neural network way. In International Conference on Learning Representations,

2024. Cited on pages 1 and 3.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: Composable transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax. Cited on page 24.

Jonah Brown-Cohen, Geoffrey Irving, and Georgios Piliouras. Scalable Al safety via doubly-efficient
debate. In International Conference on Machine Learning, 2024. Cited on page 3.

Franz Louis Cesista. Fast, numerically stable, and auto-differentiable Spectral Clipping via
Newton-Schulz iteration, June 2025. URL http://leloykun.github.io/ponder/
spectral-clipping/. Cited on page 18.

Franz Louis Cesista, Jiacheng You, and Keller Jordan. Squeezing 1-2% efficiency gains out of Muon
by optimizing the Newton-Schulz coefficients, 2025. URL http://leloykun.github.io/
ponder/muon-opt-coeffs/. Cited on page 26.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval
networks: Improving robustness to adversarial examples. In International Conference on Machine
Learning, 2017. Cited on pages 1, 4, and 6.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, Rodolphe Jenatton,
Lucas Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang, Carlos Riquelme, Matthias Minderer,
Joan Puigcerver, Utku Evci, Manoj Kumar, Sjoerd van Steenkiste, Gamaleldin F. Elsayed, Aravindh
Mahendran, Fisher Yu, Avital Oliver, Fantine Huot, Jasmijn Bastings, Mark Patrick Collier,
Alexey Gritsenko, Vighnesh Birodkar, Cristina Vasconcelos, Yi Tay, Thomas Mensink, Alexander
Kolesnikov, Filip Paveti¢, Dustin Tran, Thomas Kipf, Mario Lucié, Xiaohua Zhai, Daniel Keysers,
Jeremiah Harmsen, and Neil Houlsby. Scaling vision transformers to 22 billion parameters. In
International Conference on Machine Learning, 2023. Cited on page 1.

Benoit Dherin, Michael Munn, Mihaela Rosca, and David GT Barrett. Why neural networks
find simple solutions: The many regularizers of geometric complexity. In Neural Information
Processing Systems, 2022. Cited on page 3.

Ahmed Taha Elthakeb, Prannoy Pilligundla, Fatemeh Mireshghallah, Alexander Cloninger, and Hadi
Esmaeilzadeh. Divide and conquer: Leveraging intermediate feature representations for quantized
training of neural networks. In International Conference on Machine Learning, 2020. Cited on
page 3.

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George J. Pappas. Efficient
and accurate estimation of Lipschitz constants for deep neural networks. In Neural Information
Processing Systems, 2019. Cited on pages 2 and 8.

Thomas Flynn. The duality structure gradient descent algorithm: Analysis and applications to neural
networks. arXiv:1708.00523, 2017. Cited on page 3.

Mahesh Godavarti. Joformer (journey-based transformer): Theory and empirical analysis on the tiny
shakespeare dataset. arXiv:2506.08652v1, 2025. Cited on pages 2 and 8.

Florin Gogianu, Tudor Berariu, Mihaela Rosca, Claudia Clopath, Lucian Busoniu, and Razvan
Pascanu. Spectral normalisation for deep reinforcement learning: An optimisation perspective. In
International Conference on Machine Learning, 2021. Cited on page 3.

Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J. Cree. Regularisation of neural
networks by enforcing Lipschitz continuity. Machine Learning, 2021. Cited on pages 3 and 4.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Computer Vision and Pattern Recognition, 2016. Cited on page 7.

11

http://github.com/jax-ml/jax
http://leloykun.github.io/ponder/spectral-clipping/
http://leloykun.github.io/ponder/spectral-clipping/
http://leloykun.github.io/ponder/muon-opt-coeffs/
http://leloykun.github.io/ponder/muon-opt-coeffs/

Under review as a conference paper at ICLR 2026

Alex Henry, Prudhvi Raj Dachapally, Shubham Pawar, and Yuxuan Chen. Query-key normalization
for transformers. In Empirical Methods in Natural Language Processing, 2020. Cited on page 1.

Yujia Huang, Huan Zhang, Yuanyuan Shi, J. Zico Kolter, and Anima Anandkumar. Training certifiably
robust neural networks with efficient local Lipschitz bounds. In Neural Information Processing
Systems, 2021. Cited on page 6.

Nandan Kumar Jha and Brandon Reagen. Aero: Softmax-only llms for efficient private inference.
arxiv:2410.13060, 2024. Cited on page 4.

Su Jianlin. Thoughts from spectral norm gradient to new weight decay, Dec 2024. URL https:
//kexue.fm/archives/10648. Cited on pages 3 and 4.

Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, @fernbear.bsky.social, Boza Vlado, You
Jiacheng, Franz Cesista, Braden Koszarsky, and @Grad62304977. Modded-nanoGPT: Speedrun-
ning the nanoGPT baseline, 2024a. URL https://github.com/KellerJordan/
modded-nanogpt. MIT License. Cited on pages 2, 7, 8, 9, 24, and 25.

Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024b. URL https:
//kellerjordan.github.io/posts/muon/. Cited on pages 2 and 18.

Andrej Karpathy. nanoGPT. https://github.com/karpathy/nanoGPT, 2022. MIT Li-
cense. Cited on pages 2, 8, 9, and 24.

Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An
efficient SMT solver for verifying deep neural networks. In International Conference on Computer
Aided Verification, 2017. Cited on page 3.

Hyunjik Kim, George Papamakarios, and Andriy Mnih. The Lipschitz constant of self-attention. In
International Conference on Machine Learning, 2021. Cited on pages 1 and 7.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009. Cited on pages 2 and 24.

Anders Krogh and John A. Hertz. A simple weight decay can improve generalization. In Neural
Information Processing Systems, 1991. Cited on pages 2 and 3.

Tim Large, Yang Liu, Minyoung Huh, Hyojin Bahng, Phillip Isola, and Jeremy Bernstein. Scalable
optimization in the modular norm. In Neural Information Processing Systems, 2024. Cited on
pages 1, 3,7, 8, 21, and 24.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. Cited on page 2.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In International Conference on Learning Representations, 2018.
Cited on pages 3 and 4.

Moonshot AIl. Kimi k2: Open agentic intelligence, July 2025. URL https://moonshotai.
github.io/Kimi-K2/. Technical report on Kimi K2, a 1T parameter Mixture-of-Experts
model with 32B activated parameters. Cited on pages 1 and 3.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-bayesian approach to
spectrally-normalized margin bounds for neural networks. In International Conference on Learning
Representations, 2018. Cited on page 3.

Michael O’Connell, Guanya Shi, Xichen Shi, Kamyar Azizzadenesheli, Anima Anandkumar, Yisong
Yue, and Soon-Jo Chung. Neural-fly enables rapid learning for agile flight in strong winds. Science
Robotics, 2022. Cited on page 3.

Guilherme Penedo, Hynek Kydlicek, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The FineWeb datasets: Decanting the web for the
finest text data at scale. In Neural Information Processing Systems: Datasets and Benchmarks
Track, 2024. ODC-By 1.0 License. Cited on pages 7 and 24.

12

https://kexue.fm/archives/10648
https://kexue.fm/archives/10648
https://github.com/KellerJordan/modded-nanogpt
https://github.com/KellerJordan/modded-nanogpt
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://github.com/karpathy/nanoGPT
https://moonshotai.github.io/Kimi-K2/
https://moonshotai.github.io/Kimi-K2/

Under review as a conference paper at ICLR 2026

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
Volkan Cevher. Training deep learning models with norm-constrained LMOs. arXiv:2502.07529,
2025. Cited on page 4.

Xianbiao Qi, Jianan Wang, Yihao Chen, Yukai Shi, and Lei Zhang. LipsFormer: Introducing Lipschitz
continuity to vision transformers. In International Conference on Learning Representations, 2023.
Cited on pages 1, 3, 8, 9, and 23.

Mihaela Rosca, Theophane Weber, Arthur Gretton, and Shakir Mohamed. A case for new neural
network smoothness constraints. In NeurIPS Workshop on "I Can’t Believe It’s Not Better!", 2020.
Cited on page 3.

Jianlin Su. Computing singular value clipping mclip via msign (part 2), Jun 2025. URL https:
//kexue.fm/archives/11059. Cited on page 18.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In International Conference on Learning
Representations, 2014. Cited on page 3.

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin training: Scalable certification
of perturbation invariance for deep neural networks. In Neural Information Processing Systems,
2018. Cited on pages 1 and 3.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L.ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing Systems,
2017. Cited on page 7.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: Analysis and
efficient estimation. In Neural Information Processing Systems, 2018. Cited on page 3.

Yuh-Shyang Wang, Tsui-Wei Weng, and Luca Daniel. Verification of neural network control policy
under persistent adversarial perturbation. In International Conference on Machine Learning, 2020.
Cited on page 3.

Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Boning,
and Inderjit Dhillon. Towards fast computation of certified robustness for ReLU networks. In
International Conference on Machine Learning, 2018. Cited on page 3.

Lily Weng, Pin-Yu Chen, Lam Nguyen, Mark Squillante, Akhilan Boopathy, Ivan Oseledets, and
Luca Daniel. PROVEN: Verifying robustness of neural networks with a probabilistic approach. In
International Conference on Machine Learning, 2019. Cited on page 3.

Tsui-Wei Weng, Pu Zhao, Sijia Liu, Pin-Yu Chen, Xue Lin, and Luca Daniel. Towards certificated
model robustness against weight perturbations. In AAAI Conference on Artificial Intelligence,
2020. Cited on page 3.

Mitchell Wortsman, Peter J. Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D. Co-
Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, Jeffrey Pennington, Jascha Sohl-Dickstein,
Kelvin Xu, Jaehoon Lee, Justin Gilmer, and Simon Kornblith. Small-scale proxies for large-scale
transformer training instabilities. In International Conference on Learning Representations, 2024.
Cited on page 1.

Greg Yang, James B. Simon, and Jeremy Bernstein. A spectral condition for feature learning.
arXiv:2310.17813, 2024. Cited on page 4.

Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the generalizability
of deep learning. arXiv:1705.10941, 2017. Cited on pages 1, 2, 3, and 4.

Jiacheng You. Rapidly converging orthogonalizing Newton-Schulz iteration, 2025. URL https:
//x.com/YouJdiacheng/status/1893704552689303901. Cited on page 4.

Shuangfei Zhai, Tatiana Likhomanenko, Etai Littwin, Dan Busbridge, Jason Ramapuram, Yizhe
Zhang, Jiatao Gu, and Josh Susskind. Stabilizing transformer training by preventing attention
entropy collapse. In Proceedings of the 40th International Conference on Machine Learning, 2023.
Cited on page 4.

13

https://kexue.fm/archives/11059
https://kexue.fm/archives/11059
https://x.com/YouJiacheng/status/1893704552689303901
https://x.com/YouJiacheng/status/1893704552689303901

Under review as a conference paper at ICLR 2026

Pengxiang Zhao, Ping Li, Yingjie Gu, Yi Zheng, Stephan Ludger Kolker, Zhefeng Wang, and
Xiaoming Yuan. Adapprox: Adaptive approximation in Adam optimization via randomized
low-rank matrices. arXiv:2403.14958, 2024. Cited on page 4.

14

Under review as a conference paper at ICLR 2026

A ANONYMOUS CODE LINK

Our code is available on an anonymized GitHub repository: https://anonymous.4open.
science/r/lipschitz-transformers-A7B3.

15

https://anonymous.4open.science/r/lipschitz-transformers-A7B3
https://anonymous.4open.science/r/lipschitz-transformers-A7B3

Under review as a conference paper at ICLR 2026

B COUPLING SPECTRAL CAP TO LEARNING RATE

The intuition for the proof can be summarized, “There is a maximum amount the singular values of a
weight can grow after a weight update; as long as the minimum decrease of too-large singular values
exceeds their maximum growth, then the set of weight singular values stays bounded forever.”

Theorem B.1 (Spectral soft cap bounds spectral norm when training with Muon). Suppose we wish
to bound the spectral norm of a weight matrix W to never exceed oy > 0. Let 1) > 0 be the learning
rate and A > 0 be the weight decay. If |W ||« < Omax, then there exists a minimal o, > 0 such that
performing the following three operations (“the training step”) preserves |[W ||« < opax:

1. Weight decay: W — W - (1 — An).
2. Muon update: W — W + AW, where ||AW | < n.
3. Spectral soft cap: W + pa(p1(W)), where p1(x) = x — c,x® and pa(z) = x + a,.2?).

Calculating o, reduces to solving for the roots of a quartic polynomial.

Proof. Let o1 > --- > o, be the singular values of a weight matrix W € Rdnxdou wwhere W has
bounded spectral norm ||V ||, < oyax. Weyl’s inequality in linear algebra says that the singular values
of the updated weight W + ATV cannot change by more than the spectral norm of AT € R%n*dou
Specifically, the singular values of W + AW fall in the range o) € [0; — ||AW |4, 0 + ||AW].].

The weight update in Muon has bounded spectral norm ||[AW || < 1, because AW is an orthogonal
matrix (the “o” in Muon) scaled by the learning rate > 0. Therefore, every singular value of W
after adding AW cannot increase by more than 7 (“max increase”).

We seek a minimal spectral cap strength parameter a, > 0 such that performing the following three
operations (“the training step”), collectively referred to as W — ®(W,), preserves ||[W||« < omax:

1. Weight decay: W — W - (1 — A\n).
2. Muon update: W — W + AW, where ||AW]||. <.

3. Spectral soft cap: W + pa(p1(W)), where p1(z) = z — av.z® and pa(x) = = + a,23).

The remainder of the proof will show that the “minimum decrease” of singular values due to steps (1)
and (3) is a monotonically increasing function in the singular value o. In other words, larger singular
values are reduced more strongly. Then since step (2) cannot raise singular values by more than a
fixed amount 7, performing all three steps cannot raise singular values after a certain point. The
final observation will be that this point occurs at the threshold o« > 0 when we choose a minimal
strength parameter a.. > 0 accordingly. Thus the training step satisfies || ®(W, a.)|l« < Omax if
[IW |« < omax, Which will prove that the weight norm remains bounded after each training step.

To begin, we observe that p(o) = pa(p1(o)) has derivative bounded above like p’(c) < 1 for o > 0.
Furthermore it has non-positive second derivative p” (o) < 0 for ¢ > 0. These two facts together
prove that the decrease o — p(o) due to spectral soft cap is a monotonically increasing function of o.
Thus, after some threshold o, all singular values ¢ > o, will decrease after the training step.

All that is left is to calculate the minimal coupling strength o, that causes this threshold to be
0« = Omax. 10 do so, we solve for « in the polynomial equation

p(amax . (]- -)\77) + 77) = Omax-

The equation represents performing all three operations in the training step and finding that the
singular value does not change. Let us denote the largest that o, can become after steps (1) and (2)
by k = omax + (1 — An) + 1. Expanding, the polynomial equation becomes

—k%a* +3k7a% — 3k°a? + k — oy = 0.

This is a quartic polynomial in a. If oy, < 1/, then k < oy.x means we are done since weight
decay already causes the singular value oy, to decrease, and step (3) will only decrease it further.
Otherwise if oy, > 1/, the quartic polynomial will have a solution by the mean value theorem,

16

Under review as a conference paper at ICLR 2026

N

Figure 5: Spectral soft cap is a weight constraint method that applies the above odd polynomial to a
weight matrix, which applies it to all singular values in parallel. First it applies p; (v) = o — ax3,
then it applies po(z) = 2 + ax®. The composition is depicted for a = 0.2 (blue), a = 0.1 (red),

a = 0.05 (green), a = 0 (purple).

since it evaluates to a nonnegative number at o = 0 but its leading term is negative. Thus there exists
a minimal solution called «, that preserves ||W ||, < omay in every training step, as desired. O

One limitation of automatic coupling is that it may be stronger than necessary, because it assumes
updates align perfectly with the weights in the worst case. If the learning rate is scheduled to 0,
gradients may align less with the existing weights especially at the end, which can cause the weight
norm to contract slightly.

17

Under review as a conference paper at ICLR 2026

C SPECTRAL CLIPPING

Spectral clipping is a generalization of spectral cap that puts an upper and lower bound on the singular
values. It maps o — clip(c, Omin, Omax), Where 0 < oin < omax (Cesista, 2025; Su, 2025).

Definition C.1 (Spectral clipping). Let W € R™*™ and W = UXV7 be its singular value decom-
position, where ¥ = (01, ..., Omin(m,n)) are the singular values of W. Then we define spectral

clipping as the matrix function spectral_clipy, 4 : R™X™ — R™*"™ acting on the singular values of
W3

spectral_clipy, 5 (W) = Uclip;, 5(Z)V7, 3)

where « < f and «, 5 € RU {—00, 00} control the minimum and maximum attainable singular
values. The clip function clipy, g : R — R is applied element-wise on the singular values of W,

a 1f z<a
clipgg(z) =Sz if a<z<p. 4)
g 1if <z

We could compute spectral clipping via SVD. However, SVD does not take full advantage of GPU
tensor cores and typically requires casting the inputs to full precision, making it slow in practice.
Following Cesista (2025), we can instead spectrally clip via the matrix sign function used by Muon
(Jordan et al., 2024b) because of the following identity,

clipy g (2) = %[a + B+ (o — z)sign(a —) — (8 — x)sign(B — z)]. Q)
Thus,
spectral_clipy, g (W) = Uclip, 5 (3)V7"
_ U%[(a + B)T + (ol —)sign(al — %)
— (BI - S)sign(BI = £)|V7T
= %[(a + B)UVT 4 U(al — X)sign(al —X)VT
—U(BI -)sign(B] — £)V7]
= o+ pUVT
+ U(al =) (VIV)sign(ad — 2)(UTUWVT
—U(BI = %)(VTV)sign(B] —2)(UTU)VT]
= Lo+ pUVT
+ (@UVT —UzvT)(Vsign(al —) UT)(UVT)
— (BUVT —USVT)(Vsign(BI =) U)(UVT)]
= o+ pUVT
+ (aUVT — UV (Usign(al — 2)VHT(UVT)
— (BUVT —UsVT)(Usign(BI =)VI)T(UVT)]
spectral_clip(, 5(W) = %[(a +B8)I
+ (o - msign(W) — W)msign(a - msign(W) — W)™

— (B - msign(W) — W)msign(5 - msign(W) — W)T
Jmsign(W). (6)

18

Under review as a conference paper at ICLR 2026

C.1 SPECTRAL HARDCAPPING

Spectral hardcapping is a special case of spectral clipping where o < 0. And since singular values

are always nonnegative, setting & = — 3 simplifies Equation (5) to
. 1 .
clipi_g,g(z) = 5[5 +x — (B — z)sign(8 — z)]. 0

We can now construct a spectral hardcapping formula in terms of the well-known msign function:

spectral_hardcap,; (W) = Uclip_s 4(£)V"
= UL[BT +5 — (3T — D)sign(51 ~ D)V
:%WUVT+UEVT
—U(BI = 3)(VTV)sign(81 —) (UTU)VT]
:%WUVT+UEVT
—(U(BI =£)VT)(Usign(BI = 2)VT)T(UVT)]
i) +
— (Bmsign(W) — W)msign(Bmsign(W) — W) " msign(W)]
spectral_hardcap, (W) = %[ﬂmsign(W) W

— msign(BI — msign(W)WT)(Bmsign(W) — W)). (8)
The last equality follows from the transpose equivariance and unitary multiplication equivariance of

odd analytic matrix functions acting on singular values.

C.2 SPECTRALLY CLIPPED WEIGHT DECAY

As a further extension, we can use spectral hardcapping to construct a spectrally clipped weight decay.
Unlike standard weight decay, spectrally clipped weight decay only applies the decay term to singular
values larger than a threshold 3, chosen a priori:

. . > if ¥<8
lipped ht_d) = =
clipped_weight_decay, ;(X) {(1 AN 4+AE if N8 9)
Thus,
spec_clipped_weight_decay, 5(W) = Uclipped_weight_decay)\ﬁ(Z)VT (10)

= (1 =AW + X - spectral_hardcapg (W) (11)

Following the argument made in Section B, we can derive the equilibrium point of spectrally clipped
weight decay as follows.

Proposition C.0.1 (Equilibrium point of spectrally clipped weight decay). Let n € (0,00) be the
learning rate, A € (0, 1] be the decay term, and 8 € (0, 0) be the singular value threshold above
which we start applying the decay term. Additionally, suppose that the weight updates are constrained
to have norm ||AW || < n such as with the Muon optimizer. Then spectrally clipped weight decay
has an equilibrium point,

1—A
Ueq:6+T77a (12)

toward which it “pulls” the spectral norm of the weights.
Proof. An update step yields

Wit1 = spectral_clipped_weight_decay, 5(W; + AW}).

19

Under review as a conference paper at ICLR 2026

The subadditivity of norms tells us ||[W; + AWy|| < |[W]| + [|AW:|| < ||Wi|| + n. Thus, we can
bound the spectral norm of the weights after every update step as

Orax < clipped_weight_decay, 5(0max + 1)

o < {Umax+77 if Umax'i‘ﬁﬁﬁ

max = (1_)\)(O—max+{’7)+)‘6 if O—max+77>ﬁ
Equality is achieved at o¢q, where
{Ueq+77 if Ueq‘i‘ngﬁ
Oeq = .
(1_>‘)(aeq+77)+/\6 if Oeq+ 1M >
Oeqg = (1= AN)oeqg + (L =N+ A3
1—-A
Oeq = B8+ Tn
Note that singular values larger than o,y decrease after every update step,
update(ceq +€) = (1 — A)(0eq + 1+ €) + AS
= (1= A)(0eq+n) +AB+(1 = N)e

Oeq

update(0eq + €) < Teq + €,
since 1 — A < 1, while singular values smaller than o4 increase,
update(oeq —€) = (1 — X)(0eq + 1 —€) + A8
=0eq — (1 — N)e
update(oeq — €) > Teq — €.
Hence o is an equilibrium point. O
A potentially useful property of spectrally clipped weight decay is that its equilibrium point ap-

proaches (3 as learning rate is decayed to zero during training, independent of the chosen initial

learning rate and decay term:
. . 1—-A
Oeq = N B+ ——n =15

This property may enable tighter final norm bounds without requiring as aggressive of a decay.

20

Under review as a conference paper at ICLR 2026

D PROVING AN UPPER BOUND ON THE LIPSCHITZ CONSTANT OF A
TRANSFORMER

We elaborate on the algorithm sketched in Section 4.2 and prove a Lipschitz bound on attention. Our
Lipschitz bounds are with respect to the max RMS norm over token positions, denoted ||-||corMS-
Recall the two primary ways Lipschitz constants Ly and L, of two functions f and g interact:

* Adding: f 4+ g has Lipschitz constant at most Ly + L.
» Composing: f o g has Lipschitz constant at most Ly - L.

Step 1: Residual connections. Suppose that, before reaching a certain residual connection, a
transformer maps input data x to f(x) with Lipschitz constant L. Suppose the transformer has 2N

residual connections. Let a = ﬁ The residual connection acts on f(z) as
[(1 — «) - identity 4+ o - block] (f(x)). (13)
After the residual connection, the Lipschitz constant composes and adds to become at most
(1—a)-L+a-L- Lyock- (14)

Applying this formula sequentially upper bounds the Lipschitz constant of a transformer layer by
layer. We now determine Lok for an MLP and attention block in terms of their weight norms.

Step 2: MLP. Our MLP composes W, o (GeLU/1.1289) o W;,. The Lipschitz constants of the two
weight matrices are their norms | Wout||rms—rMs and ||Wiallrms—rums, while GeLU/1.1289 has
Lipschitz constant 1 because we divide by the maximum derivative of GeLU. Overall, the Lipschitz
bound for an MLP block is LMLP < HWout ”RMS—)RMS HVVm ||RMS—>RMS/1-1289'

Step 3: Attention. Let ¢ denote the token dimension. Let the queries, keys, and values be denoted by
(q,k,v) € R>da x Rf¥de x R¥*4v Qur attention block composes

W o F, (1s)

where function attention is denoted by F' = softmax (%qkT + M) v for some mask M. As a

consequence of the following theorem, if every attention input is unit norm, then functional attention

is 1-Lipschitz. This property is what motivates scaling functional attention by di rather than ——

inside the softmax. Composing functional attention with its input, the tuple (g, k, v), increases its
sensitivity to 3; we scale by % to make attention as a whole have unit sensitivity. However, functional
attention is no longer 1-Lipschitz if its inputs are not unit norm. Recall that the shorthand notation
l|z|| soras is the max RMS norm of a d-dimensional activation over [tokens, z € R**?.

Theorem D.1 (Lipschitz bound on functional attention). Let ¢ denote tensor contraction. Given any
perturbations Aq, Ak, Av to the queries, keys, and values, functional attention satisfies

IVE(q, k,v) o (Ag, Ak, Av)|| < max(1, [Jo]| max([lq], [|k])) | (Ag, Ak, Av) ||, (16)

where the norm is ||| corms : R4 — R, the max-over-tokens RMS norm of the embedding vector,
and ||(Aq, Ak, Av)| := || Aq|| + |AK| + ||Av]|. That is, functional attention has Lipschitz bound
max(L, [0 max({[g]], [[~[]))-

Proof. The argument mirrors the proof of Proposition 7 from the modular norm paper (Large

et al., 2024). We write the attention matrix as A = softmax (%qk—r + M) Its derivative is

AA =V (4 psoftmax (%qk—r + M) o (Ag, Ak). The derivative of F splits into two terms,
VF(q,k,v)o(Agq, Ak, Av) = A(Av) + (AA)v. (17)

We call the maximum ¢; norm of the rows of a matrix its L°° operator norm, which comes into play
by observing that || Az||corMs < || Alloc—opl|Z|lcorms. For the first term, note that || Af|so—op = 1
because softmax ensures the row-wise sum is always 1. For the second term, Large et al. (2024) in
Equation E.58 show that

|AA|so—op < [|AG]|ocrMs |||l corMs + [|]|ccrms | AK||oorMS - (18)

21

Under review as a conference paper at ICLR 2026

Thus, writing ||-|| as shorthand for ||-||corMms
IVE(g, k,v) o (Ag, Ak, Av)|| = [|A(Av)[| + [[(Ad)v]|
< JAls=opl|Av]| + [AA]lco—opllv]]
< [1Av]l + [lollllENAgl + llolllilll Ak
< [JAv[| + [loff max([lqll, [|k) (1 Aqll + [[AK])
< max(L, [[o[| max([lg[|, [£))([|Aql] + [|AK] + [Avl])

Hence, |V F(q, k,v) o (Aq, Ak, Av)|| < max(1, ||v|| max(||g|l, [|k]))]| (Aq, Ak, Av)]|| as claimed.
O

More generally for attention layers with attention scale s,y, not necessarily equal to %, we can
absorb the extra factor to the query weight W and key weight W, such that

. 1 -
F = softmax (sungk” + M) v = softmax (quT + M) v, (19)
Q
where ¢ = \/sumdgq and k=, /Sandgk. The Lipschitz bound then is,
max(1, ||o|| max(||q]], [|k]])) = /Sandq max(1, [[vo]| max(||gl, [|%]))- (20)

Step 4. Activation norm bounds. To apply the theorem, we now bound the input norm to attention.
To do so we will track the maximum RMS norm of activations everywhere in the network. We do
not use layer norm and therefore cannot reset activation norms to 1. Let g, . .., zoy denote all the
activations, from the initial embedding x(through to the N alternating attention and MLP blocks
acting via residual connections. Suppose the embedding layer maps tokens to have RMS norm at
most 1, or ||zo||corMs < 1. Attention and MLP increase the norm as follows:

* Attention computes Wyt o (V, A) for some attention matrix A, where (V, A) is shorthand
for functional attention. By definition V' cannot increase the RMS norm of the embedding
x; at any token by more than its RMS — RMS operator norm, meaning ||V z;||corms <
||V||RMS_>RMS || || corms- The same bound apphes to (V, A)x; by subadditivity of norms,
since entries of the attention matrix A sum to 1 in the token dimension. Therefore attention
can increase the activation norm by

|(Wout © (V, A)) ;|| corms < [|[Wout|lrMs—rMS ||V [RMs—RMS |24 || sorMS - 21

In words, multiply the weight norms of W,,; and V' to get the maximum increase.

» The MLP computes Wy 0 (GeLU/1.1289)0 Wi, . Therefore the MLP can increase activation
norm by ||Wout || rMs—rMs || Win||lRMs—rMs /1.1289, since |GeLU(z)| < |z| for all z € R.

¢ The residual connection acts like
(1 =) - z; + a- block(z;)||corMms < (1 — @)||i]|corms + ||block(z;)]|corms- (22)

Algorithm to compute Lipschitz bound. Therefore, given the weight norms of all matrices in a
transformer, we use the preceding results to compute its Lipschitz bound in two steps. First, we upper
bound the activation norm everywhere in the network using Step 4. Second, we upper bound the
Lipschitz constant using Steps 1-3. The Lipschitz bound after the final layer is what we refer to as the
transformer’s Lipschitz upper bound.

22

Under review as a conference paper at ICLR 2026

E IMPLEMENTING LIPSFORMER AND BOUNDING ITS LIPSCHITZ CONSTANT

To turn our enforced norm training into LipsFormer (Qi et al., 2023), we make the following changes:

1. Remove spectral soft cap and embed projections.

2. Use CenterNorm: mean subtraction with learnable entrywise scale and bias.

W

. Use scaled-head cosine attention with e = 1075, 7 = 12, v = 1. Notably, the official
implementation of LipsFormer uses € = 0. According to their Theorem 1, this choice may
make a finite Lipschitz bound impossible. We set € > 0 to fix the issue.

. Heuristically scale down attention output by 1/7peaqs to match their implementation.
. Insert residual connections with learnable strength v, initialized to 1 /7 esiqual_connections-

. Xavier normal initialize linear layers, then apply spectral normalization W +— W/||[W]|...

N N b

. Include drop path: every residual connection is skipped with p = 0.5 and, if taken, is scaled
up by 1/(1 — p), matching their official implementation which uses nn.Dropout.

8. Use weight decay 0.1, matching their implementation (not applied to scalar parameters).

9. Use the Muon optimizer to give LipsFormer the fairest comparison, copying hyperparameters
from our run. We tested training with AdamW for all parameters, an exact replication,
but found performance degraded sigificantly: after 1770 steps, validation loss was 4.86
(compared to 3.61) and validation accuracy was 0.227 (compared to 0.301).

10. For non-weight-matrix parameters, use Adam hyperparameters = 0.001, 3; = 0.9,
Bo = 0.999, € = 10~8 to match their implementation.

11. Use cosine learning rate schedule with decay to 0 to match their implementation.

Bounding the Lipschitz constant of LipsFormer. In Table 1, we report that our trained implementa-
tion of LipsFormer has a Lipschitz upper bound of 10*3°. To calculate this value, we use the final
weight norms of the MLP and attention blocks to bound the Lipschitz constant of each residual block,
relying on LipsFormer’s Theorem 1:

1 1 1
Lip(SCSA)y < 2N(N — Vvre 2 |[WE||y + 2(N — Dvre 2 |[W9||o + 2Nve 2 |[WV 2.

Using N = 128 (head dimension), 7 = 12, v = 1, and empirical weight norms, we calculate the
Lipschitz bound for every layer. We use the maximum entry of the learned residual strength o, which
is an entrywise multiplication, to convert the layerwise bounds into a final bound

S S
Lip(F) < [T T + csmbip(fom)),

which we take from their Equation 19. Alpha has typical maximum entries around 0.5 for attention
connections and 0.15 for MLP connections. With € = 10~%, we compute a final Lipschitz bound of
1.97 x 10%29,

23

https://github.com/IDEA-Research/LipsFormer/blob/main/models/lipsformer_swin.py#L205-L206
https://github.com/IDEA-Research/LipsFormer/blob/main/models/lipsformer_swin.py#L205-L206

Under review as a conference paper at ICLR 2026

F EXPERIMENTAL DETAILS

This section gives experimental details for all results in the paper. The three categories of experiments
we run are MLP training, Shakespeare transformer training, and NanoGPT speedrun training.

Datasets.

* For MLP training we use the CIFAR-10 dataset Krizhevsky (2009) with the standard train
and test splits and no data augmentation. We do not shuffle the order of batches.

* For Shakespeare transformer training we use Karpathy’s 1M character-level dataset with
standard training and validation splits (Karpathy, 2022). We shuffle the order of batches.

* For NanoGPT speedrun transformer training we use the FineWeb10B dataset (Penedo et al.,
2024) loaded in the standard order. We use the same validation split as the modded NanoGPT
speedrun benchmark (Jordan et al., 2024a).

Compute requirement. All our experiments can run on a V100, A100, or H100 GPU in less than 5
minutes, except the NanoGPT speedrun transformer which requires 8xH100 and runs in 5-10 minutes.

Modula library. For MLP and Shakespeare experiments, we use JAX (Bradbury et al., 2018) on
top of the Modula library (Large et al., 2024; Bernstein, 2025). We implement our own model
components. Our AdamW implementation does not include bias correction, although the discrepancy
decays rapidly after aronud 20 steps because we use 51 = 0.9, 82 = 0.95 in all experiments except
one, not reported, in which we determine that this is a good setting for the momentum EMAs.

MLP experiments. All MLPs we train are width 256 and depth 3 (i.e., one hidden layer) with ReLU
activations and no bias on data from CIFAR-10. We use batch size 512 and a linear learning rate
schedule that decays to O in all experiments. Modula’s mass calculation causes the effective learning
rate to be scaled by 1/3. We train for 50 epochs except in one case, when we train for 20 epochs for
the models in Figure 3. We zero-initialize the final layer. We train all models in float32 precision
and run the weight constrain methods in float32 precision. We experimented with lower precision
and found comparable metrics across the board for bfloatl6 training. We set seed 0 and store all
hyperparameters and log information to enhance reproducibility.

Shakespeare experiments. All transformers we train for Shakespeare are width 256 with 3 blocks
(attention + MLP), no bias, and four attention heads. The out projection in each attention and MLP
block is initialized to zero. We use sequence length 256 and batch size 64 to match the baseline
from (Karpathy, 2022), except we train for 2000 steps while Karpathy trains for 5000 steps. We set
Modula’s blocks mass parameter to 32 to cause 95% of the feature learning to occur in the transformer
blocks. We determined this ratio by sweeping the blocks mass, which controls the ratio of learning
rate between the two embedding layers and the transformer blocks. Training with Muon means
applying Muon to all linear layer weight matrices (including the final logit head) but normalizing the
columns of embedding gradient, as suggested by the ¢; — RMS duality map (Bernstein & Newhouse,
2025). We were concerned that rare tokens may cause the momentum buffer to dualize columns
to full strength updates for hundreds of steps until the column decays to exactly zero, so we tested
whether capping the maximum inflation factor for the embedding column normalization could help.
We tested maximum factors in the set {1,4, 16, ...,65536} across 8 seeds and found no significant
difference. We choose to maximally multiply each column by 16 during the dualization step. Finally,
we found that to train to the validation losses reported we had to use a trick: we decayed the learning
rate by a factor of 1/2 per residual layer, causing later layers to train more than earlier layers. This
change is implemented by setting the sensitivity of the Mul module in Modula to 1. We do not know
why this trick is necessary.

Figure 2 sweeps over the following hyperparameters, following a coordinate descent hyperparameter
search method:

* MLPs on CIFAR-10: we test the following combinations of optimizer and weight constraint
method: (AdamW, weight decay), (AdamW, spectral weight decay), (AdamW, spectral
normalization), (AdamW, Stiefel manifold projection), (AdamW, spectral hammer), (Muon,
weight decay), (Muon, spectral weight decay), (Muon, spectral normalization), (Muon,
stiefel manifold projection), (Muon, spectral hammer), (Muon, spectral soft cap), (Muon,
spectral hard cap). For AdamW, we vary the weight decay and spectral weight decay

24

Under review as a conference paper at ICLR 2026

224 = 2.2 ’»’&,&* * 2.2 224 s
8 2.0 2.0 ok 204 % 204 4
o * +
§1.74 1.7+ *ok 1.7 . 1.7 4
© A
3 1.4 . 1.4 o> 1.4 + 1.4 A
o = iy + A £
s " ¥ Y g s b
1.2 at 1.2 1.2 W 1.2+ i
T T T T T
10! 103 10t 103 10! 103 10! 103
- Lipschitz bound
2.2 2.2 o 2.2 - Constraint method:
3 2.0 2.0 2.0 = Weightd
o [* eight decay
o % i
S1.74 1.7 ° o 1.74 . * Spectral weight decay
2 '.. ° + Spectral normalize
% 1.4 1.4 ° 1.4 ” & A Stiefel manifold
> % 0 o & Spectral hammer
o s’
1.2+ 1.2 g 1.2+ « ® Spectral soft cap
T T T T T T 4 Spectral hard ca
10! 103 10t 103 10! 103 P P

Lipschitz bound

Lipschitz bound

Lipschitz bound

Figure 6: Lipschitz vs. loss tradeoff broken down by method. Each point shows the lowest
validation loss achieved at a given bound for CIFAR-10 MLPs, split among methods, rather than
aggregated as in Figure 4, left. We see clearly here that to remain on the frontier of Lipschitz vs. loss
tradeoff (left hand of the parabola), it is best to use spectral capping, spectral hammer, or spectral
normalization.

parameters with 10 points in log-space from 102 to 10°. For Muon we vary the weight
decay parameter with 10 points in log-space from 10~3 to 10° and the spectral weight
decay parameter with 10 points in log-space from 102 to 10°. For AdamW with spectral
normalization, Stiefel manifold projection, and spectral hammer, we vary the maximum
weight norm in the set o € {2,3,4,5,6,7,8}. For Muon with spectral normalization,
Stiefel manifold projection, spectral hammer, spectral soft cap, and spectral hard cap, we
vary the maximum weight norm in the set o € {1, 1.5, ...,9.5,10}. For AdamW with all
methods we sweep 16 learning rates in log-space between 10> and 10~%-5. For Muon we
sweep 16 learning rates in log-space between 102 and 10'. Overall, this results in 1,610
total combinations, 682 with AdamW and 2,703 with Muon.

* Transformers on Shakespeare: we test the following combinations of optimizer and weight
constraint method: (AdamW, weight decay), (AdamW, spectral normalize), (AdamW,
spectral hammer), (Muon, weight decay), (Muon, spectral normalize), (Muon, spectral
soft cap). For spectral normalize, spectral hammer, and spectral soft cap, we vary the
maximum weight norm in the set o € {1.0,1.2,...,2.8,3.0}. For the baseline, we vary
weight decay in the set A € {2/3,0.5,0.4,0.3,0.2,0.1,0.05,0.03,0.01,0}. For AdamW
we sweep 16 learning rates between 10~%-5 and 10~ 1°. For Muon, we sweep 12 learning
rates between 10~1° and 10*-5. We ran tests before to find ranges that cover the optimal
learning rate.

Figure 3 reports adversarial examples and dataset-wide statistics from two models trained for 20
epochs. The AdamW model is trained with learning rate 8.1 x 103 and weight decay A = 0.1. The
Muon model is trained with learning rate 2.3 x 10~! and weight decay A = 0, using the spectral soft
cap method with a weight constraint of o,x = 3.

The left panel of Figure 4 visualizes the same data from the experiment for Figure 2, but focuses
only on MLPs trained with Muon on CIFAR-10. We break down this panel by method in Figure 6.
The middle and right panels use the Muon optimizer, with the following tuples of (weight constraint
method, maximum singular value, weight decay, spectral weight decay, learning rate): (weight decay,
N/A, 0.1, 0, 1.585), (spectral weight decay, N/A, 0, 0.05, 0.157), (spectral normalization, 6, 0, 0, 1.0),
(Stiefel manifold projection, 5, 0, 0, 1.0), (spectral hammer, 4, 0, 0, 0.398), (spectral soft cap, 6, 0, 0,
0.398), (spectral hard cap, 5, 0, 0, 0.631).

NanoGPT experiments. Following the Modded-NanoGPT speedrun standard (Jordan et al., 2024a),
our training runs print log files with the full source code required to reproduce the results. We briefly

25

Under review as a conference paper at ICLR 2026

summarize the changes we made to convert the NanoGPT speedrun record (as of May 2025) into our

method:

Every step, RMS normalize the embedding columns.

Initialize all linear layer weight matrices to be orthogonal.
Reparameterize residual connections according to Equation (1): LZ Lyt %block(z) residual

connections, where L = 24 is the number of residual connections.

Reparameterize attention according to Equation (2): % overall scale on the attention output
and 1/dpeaq scale inside the softmax.

Every step, apply spectral soft cap (or spectral normalize) to every linear layer weight matrix
based on a prespecified maximum desired weight norm o .

Use different orthogonalization coefficients that at most inflate a singular value to 1.14502.
Therefore, the maximum update norm we pass to the strength parameter solver for learning
rate coupling in spectral soft cap is 77 - 1.14502 - 1.05 with an extra factor of 1.05 to be safe
around numerical precision errors. The iteration is derived by modifying the method in
(Cesista et al., 2025).

Remove U-net structure.

Use GelU/1.1289 instead of ReLU?.

Switch the dimension scaling in Muon to be \/m instead of
max(1, \/fan_out/fan_in).

Remove RMS normalization: the model is now Lipschitz continuous.

Add back the 7th attention layer (which was removed in the speedrun).

Weight projections are run in bfloat16 (which we found to slightly improve performance).
Spectral normalization uses 2 iterations, meaning that weight norms can exceed the specified
maximum oy, due to approximation error; in practice weights with norms enforced by
spectral normalization exceed the specified maximum by around 10%.

26

	Introduction
	Related work
	Weight norm constraints to enforce Lipschitz constraints
	Methods for controlling weight norm
	AdamW and Muon: comparing weight constraint methods
	Adversarial robustness of Lipschitz networks
	Comparing weight constraint methods within Muon

	Transformers with enforced weight constraints
	Breaking the multiplication barrier?
	Calculating the Lipschitz bound of a transformer
	Shakespeare Transformer
	Scaling to NanoGPT

	Discussion
	Author statements
	Ethics statement
	Reproducibility statement
	LLM usage statement

	Anonymous code link
	Coupling spectral cap to learning rate
	Spectral clipping
	Spectral hardcapping
	Spectrally clipped weight decay

	Proving an upper bound on the Lipschitz constant of a transformer
	Implementing LipsFormer and bounding its Lipschitz constant
	Experimental details

