
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRAINING TRANSFORMERS WITH
ENFORCED LIPSCHITZ BOUNDS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural networks are often highly sensitive to input and weight perturbations. This
sensitivity has been linked to pathologies such as vulnerability to adversarial exam-
ples, divergent training, and overfitting. To combat these problems, past research
has looked at building neural networks entirely from Lipschitz components. How-
ever, these techniques have not matured to the point where researchers have trained
a modern architecture such as a transformer with a Lipschitz certificate enforced
beyond initialization. To explore this gap, we begin by developing and bench-
marking novel, computationally-efficient tools for maintaining norm-constrained
weight matrices. Applying these tools, we are able to train transformer models with
Lipschitz bounds enforced throughout training. We find that optimizer dynamics
matter: switching from AdamW to Muon improves standard methods—weight
decay and spectral normalization—allowing models to reach equal performance
with a lower Lipschitz bound. Inspired by Muon’s update having a fixed spectral
norm, we co-design a weight constraint method that improves the Lipschitz vs.
performance tradeoff on MLPs and 2M parameter transformers. Our ≤2-Lipschitz
transformer on Shakespeare text reaches validation accuracy 60%. Scaling to 140M
parameters, our ≤10-Lipschitz transformer reaches 21% accuracy on internet text.
When matching the NanoGPT baseline accuracy of 37.4%, our Lipschitz-bounded
network achieves a maximum activation norm of 112, compared to about 1,872
for the unconstrained network. Our Lipschitz transformers train without stability
measures, such as layer norm, QK norm, and logit tanh softcapping.

1 INTRODUCTION

Lipschitz bounds for neural networks—bounds on the model sensitivity to input perturbations—are
of interest for their effect on generalization, robustness (Bartlett et al., 2017; Tsuzuku et al., 2018),
and applications such as differential privacy (Béthune et al., 2024). Seminal work (Arjovsky et al.,
2016; Cisse et al., 2017; Yoshida & Miyato, 2017; Anil et al., 2019) enforces Lipschitz bounds
beyond initialization for MLPs, RNNs, and GANs, but for transformers, the closest work, LipsFormer
(Qi et al., 2023), does not constrain weight matrices during training. Without such constraints,
large-scale transformer training can become unstable due to attention and output logits growing too
large (Wortsman et al., 2024; Dehghani et al., 2023). Numerical instability is typically bandaged over
by methods such as QK norm (Henry et al., 2020; Dehghani et al., 2023) or the recent MuonClip
optimizer for 1T parameter scale training (Moonshot AI, 2025). We hypothesize that enforcing a
Lipschitz bound may directly prevent training instability. In this paper, we ask:

Can transformers with small, enforced Lipschitz bounds perform well?
How does the weight constraint method affect the Lipschitz versus performance tradeoff?

Enforcing a Lipschitz bound on a transformer is challenging because some components, such as
self-attention, are not globally Lipschitz (Kim et al., 2021). We build on Large et al. (2024), which,
similar to LipsFormer, enables Lipschitz continuity by reparameterizing residual connections and
modifying self-attention; however, the full story is elusive. LipsFormer goes further than Large et al.
(2024) by removing layer norm (Ba et al., 2016), but its implementation may make Lipschitz bounds
impossible by setting ϵ = 0 in QK norm. In contrast, we remove activation normalization to explore
whether training can proceed with no stability measures. Most importantly, we constrain the weights
throughout training so that the model’s sensitivity remains within a specified Lipschitz bound.

1

https://github.com/IDEA-Research/LipsFormer/blob/main/models/lipsformer_swin.py#L205-L206

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

a) Dualize the gradients
e.g. orthogonalize

gradient ∇ℒ dualized gradient ∇ℒ♯

index i index i

si
ng

ul
ar

 v
al

ue
 σ

i

updated weights W regulated weights W′￼

index i index i

si
ng

ul
ar

 v
al

ue
 σ

i

b) Regulate the updated weights
e.g. spectral cap

Figure 1: To train fast and stably, regulate the gradients and also the weights. Current research
considers efficient spectral regulation of gradients, e.g. Muon (Jordan et al., 2024b). A similar
opportunity exists for weights. While weight decay with parameter λ contracts singular values by a
fixed factor UΣV ⊤ 7→ U(1− λ)ΣV ⊤, more general maps are possible: UΣV ⊤ 7→ Uf(Σ)V ⊤ for
any nonnegative elementwise function f . In this paper, we introduce spectral cap to efficiently clip
singular values above a threshold σmax > 0.

To develop a toolkit for training transformers with an enforced Lipschitz bound, Section 3 compares
methods for constraining weight norms. Surprisingly, we find that optimizer choice matters: weight
decay (Krogh & Hertz, 1991) and spectral normalization (Yoshida & Miyato, 2017) achieve a
better Lipschitz versus performance tradeoff with Muon (Jordan et al., 2024b) than with AdamW
(Loshchilov & Hutter, 2019). We observe this effect in MLPs trained on CIFAR-10 (Krizhevsky,
2009) and corroborate it in 2M parameter transformers trained on Shakespeare text (Karpathy, 2022).

Beyond standard weight constraint methods, we are inspired by the Muon optimizer—whose weight
updates have small, known spectral norm—to design spectral soft cap. This method enforces a
desired maximum spectral norm σmax by approximating the map σ 7→ min(σmax, σ) on all singular
values σ in parallel by iterating odd polynomials on the weights. Theorem B.1 proves that spectrally
capping singular values bounds weight norms when training with Muon; we provide no guarantee for
AdamW because its update norm varies. For AdamW, we explore a second technique that may be
better suited to low stable rank updates. At every step, this technique finds the largest weight singular
value and sets it to σmax. In analogy with a hammer that strikes the nail that sticks out the most, we
call it spectral hammer. Our experiments suggest that the best combination is Muon with spectral
normalization or spectral soft cap, while for Adam the only competitive technique is spectral hammer.

In Section 4, we begin by training a small transformer on Tiny Shakespeare (Karpathy, 2022); our ≤6-
Lipschitz model reaches validation loss 1.20. We are not aware of transformers in the literature that
have been trained with a Lipschitz bound as low as 6; moreover, we reach loss 1.20 in fewer steps than
a recent baseline (Godavarti, 2025). Scaling up to the NanoGPT speedrun benchmark (Jordan et al.,
2024a), we train 140M-parameter transformers to competitive performance without layer norm or QK
norm. We train a ≤10-Lipschitz transformer to 21.2% validation accuracy, compared to 37.4% for a
non-Lipschitz baseline. However, to reach a competitive accuracy of 37.4% requires an astronomical
global Lipschitz upper bound of 10122. While Fazlyab et al. (2019) propose tighter Lipschitz bound
estimates, inspecting the maximum activation norms reveals that the model operates far from the worst
case. On a batch of 393K tokens, the non-Lipschitz baseline has maximum activation entry 1,872
while the ≤10122-Lipschitz model has maximum activation entry 112. Empirically small activations
might allow Lipschitz-constrained transformers to enable low-precision training and inference.

In summary, our contributions are as follows:

• We train transformers with enforced Lipschitz constraints up to 140M parameters, showing
the feasibility of full weight matrix constraints. A ≤10-Lipschitz transformer achieves 21%
accuracy on FineWeb10B, and a ≤2-Lipschitz transformer achieves 60% on Shakespeare.

• We present evidence that weight decay and spectral normalization are more effective with
Muon than AdamW, matching accuracy under smaller Lipschitz bounds. A standard robust-
ness experiment holds when using Muon.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We introduce two weight norm constraint techniques: spectral capping and spectral hammer.
For AdamW, spectral hammer elicits the strongest Lipschitz-constrained performance. For
Muon, we prove spectral soft cap bounds weight norm and find it performs similarly or
slightly better than spectral normalization.

2 RELATED WORK

There is a large literature on the many potential and realized benefits of Lipschitz neural networks
(Béthune et al., 2022; Béthune, 2024; Rosca et al., 2020). Input–output Lipschitz certificates help
in deployment scenarios where there is a benefit to having strong robustness to input perturbations.
Examples include robotic control (O’Connell et al., 2022; Wang et al., 2020), classification in the
presence of adversarial input perturbations (Szegedy et al., 2014), and in protocols for AI safety
(Brown-Cohen et al., 2024). Input–output Lipschitz certificates are also used in certain generalization
guarantees for deep networks (Bartlett et al., 2017; Neyshabur et al., 2018; Dherin et al., 2022).

Similarly, weight–output Lipschitz certificates may be useful in situations where there is an interest
in perturbing the weights of a neural network without incurring unstable output behavior. A prime
example is stable (Qi et al., 2023; Flynn, 2017) and scalable (Large et al., 2024) training. The
recent MuonClip optimizer (Moonshot AI, 2025) similarly addresses exploding attention logits by
constraining query and key weights directly; weight norm constraints are the subject of Section 3. A
second example is for the design of differentially private training algorithms where there is a need to
add carefully calibrated noise to the network weights (Béthune, 2024; Béthune et al., 2024). And a
third example is to aid in weight quantization (Elthakeb et al., 2020; Weng et al., 2020).

In fact, there is a close theoretical link between input–output Lipschitzness and weight–output
Lipschitzness in deep learning (Large et al., 2024; Béthune, 2024). The reason is that when we
compose two subnetworks, Lipschitzness with respect to the weights of the first subnetwork depends
upon the degree of input–output Lipschitzness of the second subnetwork.

Various techniques have been proposed for producing neural networks amenable to Lipschitz certifi-
cation. These include techniques for modifying the architecture and training to improve the resulting
Lipschitz properties. For example, spectral normalization (Miyato et al., 2018; Gogianu et al., 2021)
has been proposed as a means to control the Lipschitz properties of individual weight matrices. New
nonlinearities (Anil et al., 2019) and normalization layers (Qi et al., 2023) have also been proposed.

Furthermore, given a trained model of a given architecture, various techniques have been proposed
for deriving Lipschitz certificates. Deriving the exact Lipschitz constant (i.e. the least upper bound)
is known to be computationally hard (Katz et al., 2017; Virmaux & Scaman, 2018; Weng et al.,
2018) so researchers settle for producing slacker upper bounds. One approach to producing upper
bounds—used in this paper for simplicity—is to obtain Lipschitz statements for each component in
the architecture and add or multiply them as appropriate to compose them (Szegedy et al., 2014).
However, tighter approaches have also been proposed: Weng et al. (2018; 2019) provide examples.

3 WEIGHT NORM CONSTRAINTS TO ENFORCE LIPSCHITZ CONSTRAINTS

A function f(x) has Lipschitz bound K under a norm ∥·∥ if ∥f(x1)− f(x2)∥ ≤ K · ∥x1 − x2∥ for
all inputs x1, x2, with the Lipschitz constant being the smallest such K. For neural networks, the
most common operation is matrix multiplication, which has ℓ2 Lipschitz constant equal to the spectral
norm of the weight matrix. Prior work has constrained spectral norms through weight decay, spectral
normalization, and orthogonal constraints (Krogh & Hertz, 1991; Yoshida & Miyato, 2017; Miyato
et al., 2018; Gouk et al., 2021; Jianlin, 2024). These methods, tested with AdamW, have shown
benefits for generalization and adversarial robustness (Bartlett et al., 2017; Tsuzuku et al., 2018). The
Muon optimizer introduces new possibilities by ensuring small, fixed-norm updates. Inspired by this
property, we revisit existing methods and develop new ones for constraining weights. We ask:

What is the best way to enforce weight norm constraints throughout training?

We compare seven methods by their ability to 1) maintain high performance, 2) enforce weight norm
constraints, and 3) balance performance with a Lipschitz bound. Overall, we find that Muon achieves

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

lower Lipschitz bounds and better performance than AdamW. Among constraint methods, spectral
soft cap, spectral hard cap, and spectral normalization meet these criteria best.

Muon enables hard weight constraints. Unlike AdamW, Muon bounds the weight update norm
by the learning rate—if its orthogonalizing polynomial never exceeds 1. We follow (You, 2025)
to ensure this property in our experiments. Pethick et al. (2025) noted that bounding the update
spectral norm transforms weight decay with parameter λ into a strict spectral norm constraint of
1/λ because equilibrium occurs between the update step and weight decay when the weight norm w
satisfies w = w(1− λη) + η for learning rate η > 0 (see Section B). We hypothesize this property
may explain why Muon improves the Lipschitz vs. performance tradeoff over AdamW for standard
methods such as weight decay.

A spectral generalization of weight decay. Weight decay can be viewed as a special case of an odd
polynomial iteration applied to the weights. Odd polynomials are special because they act directly on
the singular values: p(UΣV ⊤) = Up(Σ)V ⊤, where UΣV ⊤ is a singular value decomposition. The
odd polynomial for weight decay is p(x) = (1− ηλ)x, with learning rate η and decay λ. Cisse et al.
(2017) explored an orthogonalizing polynomial p(x) = (1 + β)x − βx3, but Miyato et al. (2018)
note that pressuring all singular values toward one limits spectral information. Their method, spectral
normalization, enforces norm constraints while allowing singular values below 1 (Gouk et al., 2021),
but scales down the entire spectrum. This motivates a more targeted approach: penalizing only the
singular values that are too large, leaving smaller ones untouched. Ideally, this applies min(σmax, σ)
to each value for maximum norm σmax ≥ 0, but exact SVD is slow. Odd polynomial iterations offer a
fast and effective approximation. We contribute a family of such approximations, spectral soft cap,
which include weight decay as a special case (derivation in Section B).

3.1 METHODS FOR CONTROLLING WEIGHT NORM

The RMS norm is a dimension-independent rescaling of the Euclidean norm, ∥x∥2RMS = 1
d∥x∥

2
2 for

x ∈ Rd, that measures all-ones vectors like (±1, . . . ,±1) as norm 1. We are interested in controlling
the RMS → RMS operator norm, a rescaled spectral norm shown to be natural in deep learning
(Yang et al., 2024; Bernstein & Newhouse, 2025). For a matrix W ∈ Rdout×din , unit RMS → RMS

norm corresponds to spectral norm of
√
dout/din. While related work uses ℓ2 norms, here we report

input–output Lipschitz bounds under the RMS → RMS norm, which convert to ℓ2 by multiplying
with

√
doutput/dinput for a given network. We denote the principal singular vector subspace with

singular value σ1 ≥ 0 by σ1u1v
⊤
1 , computed via power iteration. We review existing weight norm

constraints and introduce two new methods: spectral capping and spectral hammer.

Weight decay, or Frobenius norm regularization, maps W 7→ (1− λη)W where λ > 0 is the decay
parameter and η > 0 is the learning rate, guaranteeing a norm bound in conjunction with Muon.

Spectral weight decay, or spectral norm regularization, targets only the top singular value, mapping
W 7→ W − λσ1u1v

⊤
1 where λ > 0 is the decay parameter (Yoshida & Miyato, 2017; Jianlin, 2024).

Spectral normalization, introduced for GAN training (Miyato et al., 2018) and recently applied
to LLMs (Zhai et al., 2023; Jha & Reagen, 2024), rescales the weight by its spectral norm during
the forward pass. The original implementation leaves the weight unconstrained, so effective update
sizes decrease as the weight norm grows. In this work, we instead apply the mapping W 7→
(σmax/max(σ1, σmax))W , ensuring weights have spectral norm at most σmax, but possibly less.

Stiefel manifold projection pressures all singular values toward 1 using an odd polynomial iteration
W 7→ p(W). We follow You (2025), whose polynomial converges faster than the polynomial from
(Cisse et al., 2017). Although Stiefel manifold projections are typically defined for rectangular
matrices, we use the term here for both square and rectangular matrices.

We extend these ideas with two new methods:

Spectral hammer is similar to spectral weight decay but sets the top singular value to σmax by
mapping W 7→ W + (σmax − σ1)u1v

⊤
1 , like a hammer striking the nail that sticks out most. It does

not guarantee the spectral norm stays below σmax because multiple singular vectors may increase per
update. Spectral hammer is better suited to low stable rank updates, common in Adam (Zhao et al.,
2024), whereas Muon updates are always high stable rank.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

100 101 102 103 104

Lipschitz bound

1.1

1.4

1.7

2.1

2.4

Va
lid

at
io

n
lo

ss

MLP

101 103 105 107 109

Lipschitz bound

1.1

1.4

1.7

2.1

2.4
Transformer

Method:
Muon: weight decay
Muon: spectral normalize
Muon: soft cap
Adam: weight decay
Adam: spectral normalize
Adam: spectral hammer

Figure 2: Muon improves the Lipschitz vs. performance tradeoff for standard weight regu-
larization. We train 3385 MLPs on CIFAR-10 (left) and 800 transformers on Shakespeare text
(right), varying the optimizer and weight constraints. Weight decay and spectral normalization reach
lower loss at smaller Lipschitz bounds with Muon. Our new methods—spectral soft cap and spectral
hammer—also show promise. See Section F for experimental details.

Spectral capping is designed for Muon’s high stable rank updates, approximating σ 7→ min(σmax, σ)
for all singular values in parallel with odd polynomials instead of costly SVDs. Our main variant,
spectral soft cap, applies a loose approximation p2(p1(x)), where p1(x) = x − αx3 and p2(x) =
x+ αx3 with strength parameter α ≥ 0, as discussed in Section B. Weight decay can be used as a
preliminary step by applying p0(x) = (1− λη)x. This composition is designed to decay a singular
value very little when σ ≪ σmax, but when σ = σmax, to decay it enough to counteract Muon’s
update norm, strictly enforcing the bound. With scheduled learning rates, finding the minimal α ≥ 0
prevents error accumulation.

Theorem 3.1 (Spectral soft cap bounds spectral norm when training with Muon). Suppose we wish to
bound the spectral norm of a weight matrix W to never exceed σmax > 0. Let η > 0 be the learning
rate and λ > 0 be the weight decay. If ∥W∥∗ ≤ σmax, then there exists a minimal α∗ ≥ 0 such that
performing the following three operations (“the training step”) preserves ∥W∥∗ ≤ σmax:

1. Weight decay: W 7→ W · (1− λη).
2. Muon update: W 7→ W +∆W , where ∥∆W∥∗ ≤ η.
3. Spectral soft cap: W 7→ p2(p1(W)), where p1(x) = x− α∗x

3 and p2(x) = x+ α∗x
3).

Calculating α∗ reduces to solving for the roots of a quartic polynomial.

Section B gives the proof. Training using the minimal strength parameter α∗ > 0 indefinitely bounds
weight matrix spectral norm. In practice, Muon scales the learning rate by

√
dout/din, so the theorem

instead bounds the RMS → RMS operator norm of the weight matrix.

A second variant, spectral hard cap, uses the matrix sign function to approximate σ → min(σmax, σ)
on the singular values, as discussed in Section C. Because this approximation is fixed, errors can
compound late in training as the learning rate decays to 0. Since spectral soft cap and spectral hard
cap are designed for Muon, we did not test them with AdamW.

Together, these methods cover a range of trade-offs between strict norm enforcement, preserving
the spectrum, and computational efficiency. Other approaches may prove better, making this an
interesting direction for future work.

3.2 ADAMW AND MUON: COMPARING WEIGHT CONSTRAINT METHODS

In Figure 2, we show the tradeoff between validation loss and Lipschitz bound, calculated with respect
to the RMS → RMS operator norm (Section 3.1). For ReLU MLPs, the Lipschitz bound is the
product of the RMS → RMS weight norms. For a transformer, the Lipschitz bound is calculated as
described in Section 4.2. Muon consistently achieves both lower validation loss and lower Lipschitz
bounds than AdamW on CIFAR-10 MLPs and Shakespeare transformers, motivating our choice to
adopt Muon for larger-scale experiments. Spectral normalization and spectral soft cap make the most
efficient use of a Lipschitz budget. Spectral hammer, which is best for AdamW’s low stable rank
weight updates, performs competitively but does not enforce a bound, limiting its reliability where

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Lipschitz bound 15.2 (Muon + soft cap)

Lipschitz bound 7618.8 (Adam + weight decay)

Figure 3: Networks trained with Muon and spectral soft cap have lower Lipschitz bounds and
greater adversarial robustness. Lower Lipschitz bounds have been linked to robustness (Cisse et al.,
2017; Huang et al., 2021). We train a CIFAR-10 MLP with Lipschitz bound 15.2 (Muon + spectral
soft cap), matching the 45% clean accuracy of a baseline model (AdamW + weight decay) with a
much higher Lipschitz bound of 7618.8. Left: Adversarial attacks with varying ℓ2 budget ϵ. Top right:
Robustness across 2000 test images measured by top-1 accuracy against ϵ. The Lipschitz-constrained
model maintains a higher accuracy for larger values of ϵ. Bottom right: The mean correct class
probability in the Lipschitz-constrained network starts below the baseline model’s but degrades slowly
under increasing ϵ. By contrast, the baseline model peaks at ϵ = 0 and drops off sharply.

constraint enforcement is critical. The sweep includes 4185 runs, reporting the best validation loss
per Lipschitz bin.

3.3 ADVERSARIAL ROBUSTNESS OF LIPSCHITZ NETWORKS

Prior work (Cisse et al., 2017; Huang et al., 2021) links adversarial robustness to a network’s Lipschitz
constant, suggesting Lipschitz control as a potential path to high certified accuracy. We confirm this
relationship holds for MLPs trained with Muon and spectral soft cap. Figure 3 compares two MLPs
with similar baseline validation accuracy (≈ 45%) but different Lipschitz bounds: 15.2 (Muon +
spectral soft cap) vs. 7618.8 (AdamW + weight decay).

Both models achieve similar clean accuracy, but the Lipschitz-constrained MLP shows a smoother
drop in accuracy and confidence on the first 2000 CIFAR-10 test images as adversarial ℓ2 perturbations
increase. Larger ϵ values are required to fool the constrained network (Figure 3, left).

3.4 COMPARING WEIGHT CONSTRAINT METHODS WITHIN MUON

In Figure 4, we use Muon alongside all seven weight constraint methods to test three goals: 1) defining
a Lipschitz bound before training, 2) enforcing that bound throughout training, and 3) matching or
exceeding standard weight decay performance. Each method is evaluated on a 3-layer, 256-hidden
dimension MLP trained with Muon on CIFAR-10. Full experimental details are in Section F.

In Figure 4 (left), spectral normalization, spectral soft cap, and spectral hard cap form the Lipschitz
vs. validation loss frontier. In Figure 4 (middle), we see the best hyperparameter settings of spectral
normalization, spectral soft cap, and spectral hard cap are the only methods to reach within 1%
accuracy of the baseline (Muon with weight decay); others fall within 4%.

Figure 4 (right) shows the evolution of hidden layer norms during training. All methods except
spectral hammer keep norms at or under their target values. Spectral hammer exceeds its target but
trends downward late in training, indicating it may work under Muon with longer runs and scheduled
learning rates. Within our 50-epoch window, however, it fails to reliably control the Lipschitz bound.
Spectral weight decay does not enforce predefined Lipschitz bounds and is omitted.

We select soft cap, hard cap, and spectral normalization for transformer experiments. To isolate their
effects, we do not combine them with weight decay, though such combinations may help.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

101 103

Lipschitz bound

1.2

1.4

1.7

2.0

2.2

Va
lid

at
io

n
lo

ss

100 200 300
Lipschitz bound

0.56

0.58

0.60

Be
st

 v
al

id
at

io
n

ac
cu

ra
cy

0 2000 4000
Training steps

0.0

0.5

1.0

1.5

2.0

RM
S

RM
S

op
er

at
or

 n
or

m
(s

ta
nd

ar
di

ze
d

by
 m

et
ho

d)

Constraint method:
Weight decay
Spectral weight decay
Spectral normalize
Stiefel manifold
Spectral hammer
Spectral soft cap
Spectral hard cap

Figure 4: Left: Weight constraint methods designed for Muon lie on the Lipschitz vs. loss
frontier. Each point shows the lowest validation loss achieved at a given bound for CIFAR-10
MLPs. In the low-loss regime, staying on the frontier (left half of the parabola) requires spectral
normalization or spectral capping. Middle: Spectral normalization and spectral capping match
baseline accuracy at lower bounds. Each method falls within 1% accuracy (shaded green region)
while reducing the bound. Right: RMS → RMS norms of hidden layers during training. Norms
are standardized to target 1. Spectral normalization and Stiefel manifold projection hit this target
exactly; weight decay, soft cap, and hard cap stay below the target; spectral hammer fails to constrain.

4 TRANSFORMERS WITH ENFORCED WEIGHT CONSTRAINTS

To develop a toolkit for training Lipschitz-constrained transformers, we first address residual con-
nections and self-attention (Section 4.1), then describe how to calculate a Lipschitz bound for a
transformer (Section 4.2). In Section 4.3, spectral normalization and spectral soft cap perform well on
2M-parameter Shakespeare transformers. In Section 4.4, we scale up to 140M-parameter transformers
trained on FineWeb10B (Penedo et al., 2024), starting from the competitive NanoGPT speedrun
benchmark (Jordan et al., 2024a) to avoid undertuned baselines.

4.1 BREAKING THE MULTIPLICATION BARRIER?

A major triumph of Large et al. (2024) is transformers with depth-independent Lipschitz bounds.
However, their approach assumes activations with unit RMS norm. Since we later relax this constraint,
our transformers will generally not have a depth-independent Lipschitz bound. Nonetheless, we use
their two architectural modifications.

Reparameterizing residual connections. The classic residual connection from He et al. (2016)
defines the update x + block(x), which can exponentially inflate the Lipschitz bound: even x +
identity(x) doubles it every layer. Large et al. (2024) avoid this by using the convex combination

N − 1

N
· x+

1

N
· block(x) (1)

where N is the number of layers, which is 1-Lipschitz if the block is 1-Lipschitz (Proposition 4 of
Large et al. (2024)). We adopt this parameterization, but the bound fails when activation norms exceed
1. Since strict 1-Lipschitz constraints hurt performance, we do not fully break the multiplication
barrier: deeper networks can accrue astronomical Lipschitz bounds.

Attention with 1/d scaling. Original multihead attention from Vaswani et al. (2017) has no global
Lipschitz bound (Kim et al., 2021). Vaswani et al. (2017) used 1/

√
d scaling because two random

vectors u, v with mean 0 and variance 1 will have a dot product u · v with mean 0 and variance the
dimension d. But key-query pairs may align more strongly. Perfect alignment suggests 1/d scaling.
Large et al. (2024) prove that

softmax

(
QK⊤

d

)
V, (2)

is 1-Lipschitz under unit input norms, with respect to ∥·∥∞RMS, the max RMS norm of any token.
Multiplying by 1

3 makes attention composed with the 3-sensitive input tuple (q, k, v) unit sensitivity
(Proposition 7 of Large et al. (2024)). Unlike Large et al. (2024), we remove layer norm so that every
operation is Lipschitz continuous.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.2 CALCULATING THE LIPSCHITZ BOUND OF A TRANSFORMER

To test whether small-Lipschitz transformers can perform well, we would need to know what
weight norm yields a desired Lipschitz bound. This section sketches an algorithm for bounding the
transformer’s Lipschitz constant given its weight norms; details are in Section D. Our bound tightens
Theorem 2 from LipsFormer (Qi et al., 2023) by using individual weight norms rather than the
maximum across residual blocks. Fazlyab et al. (2019) suggest ways to further tighten such bounds,
which we leave to future work. To bound self-attention, we extend Proposition 7 of (Large et al.,
2024) to inputs that are not unit norm, an essential concession to explore Lipschitz vs. performance
tradeoffs.

Our Lipschitz bounds are with respect to the max RMS norm over token positions, denoted ∥·∥∞RMS.

Step 1: Bound activation norms. Our Lipschitz bound for rescaled dot-product attention relies on
the activation norms staying finite. We compute a per-layer bound on the max ∥·∥∞RMS activation
norm by combining residual connections with per-block max activation increases: for an MLP by
multiplying its two weight norms and for attention by multiplying its WV and WO norms. Our MLPs
slightly decay activation norms by scaling GeLU by its maximum derivative, GeLU/1.1289.

Step 2: Bound the Lipschitz constant. Let L be the Lipschitz constant before a layer. After a residual
connection, it is at most (1−α)L+α ·L ·Lblock. For MLPs we calculate Lblock = ∥Win∥RMS→RMS ·
∥Wout∥RMS→RMS/1.1289 from the rescaled GeLU. For attention, we use Theorem D.1.

4.3 SHAKESPEARE TRANSFORMER

Before scaling to NanoGPT, we explore the Lipschitz vs. performance tradeoff in smaller transformers,
aiming for models with small Lipschitz bounds at every layer. While Béthune et al. (2022) comment
that any L-Lipschitz classifier can be made 1-Lipschitz by dividing the logits by L, we do not rescale
logits, although adjusting scaling temperature during training could have beneficial effects (Agarwala
et al., 2023). Full experimental details are in Section F.

We can train a competitive ≤2-Lipschitz Shakespeare transformer. Our ≤2-Lipschitz transformer
reaches a validation loss of 1.29, compared to 1.47 for the Karpathy (2022) baseline, though the
baseline may be undertuned. Our model has dimension 256, depth 3, and was trained for 2000
steps with Muon; the baseline has dimension 384, depth 6, and was trained for 5000 steps with
AdamW. Our transformer does not use layer normalization. Achieving this performance requires
relaxing σmax to around 2. The best validation loss in our sweep was 1.20 with a ≤6.02-Lipschitz
transformer, surpassing any baseline we are aware of, such as the 1.23 loss of Godavarti (2025) while
training on 300x fewer tokens. Some gains may reflect hyperparameters or optimizer choice, but this
demonstrates a performant transformer with a small enforced Lipschitz bound.

4.4 SCALING TO NANOGPT

We validate our methods by training a 140M-parameter transformer on top of the NanoGPT speedrun
benchmark (Jordan et al., 2024a). The baseline is tuned to reach validation loss 3.28 in the shortest
wallclock time. As of February 1, 2025, the record uses 0.7B tokens, or 3 minutes of training on an
8xH100, and achieves 39.4% accuracy. We implement our methods on top of the speedrun while keep-
ing all other training methods fixed. We compare against 1) the original speedrun, 2) the "NanoGPT"
baseline where we remove speedrun-specific architectural decisions such as skip connections and
learnable scale parameters, and 3) the "Modula" baseline with residual reparameterization and 1

d

attention scaling from Section 4.1. We also replace ReLU2 activations with GeLU/1.1289—making
the activation function Lipschitz continuous. We report validation loss and accuracy as well as the
max activation norm as primary comparison metrics.

To implement our method, we remove layer norms, logit tanh softcaps, and QK norms from the
Modula baseline and implement our weight constraints on top. At initialization, we project linear
weights to be semi-orthogonal and normalize the embeddings to RMS norm 1. Finally, unlike
LipsFormer (Qi et al., 2023), we enforce weight norm constraints throughout training: embeddings
are capped to norm 1, and all other weights are constrained after each step using the methods in
Section 3.1. Linear layers in the MLPs and attention use fp8 precision without the need for tensorwise
or blockwise scaling.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Transformer
Architecture

Lipschitz
Bound

Tokens
Used

Weight
Constraint

Validation
Accuracy (↑)

Validation
Loss (↓)

Activation
Max Entry

Activation
Max RMS

Baseline (NanoGPT) ∞ 0.7B none 0.380 3.410 91648 24092
Baseline (Modula) ∞ 0.7B none 0.374 3.491 1872 110.3
Ours (σmax = ∞) ∞ 0.7B none nan nan nan nan
LipsFormer 10130 0.7B none 0.301 4.130 61 -
Ours (σmax = 8) 10134 0.7B spectral normalize 0.362 3.582 37.75 6.1
Ours (σmax = 8) 10122 1.4B spectral soft cap 0.374 3.481 112 28
Ours (σmax = 1) 10 0.7B spectral normalize 0.212 5.047 6.5 1

Baseline (Speedrun) ∞ 0.7B none 0.394 3.280 148480 12480
Ours (σmax = 16) 10264 2.8B spectral normalize 0.395 3.280 49.3 7.1

Table 1: Transformers with enforced Lipschitz constraints can match NanoGPT performance.
The NanoGPT speedrun is a competitively tuned GPT-2 replication (Karpathy, 2022; Jordan et al.,
2024a). Using it as a baseline, we substitute Lipschitz transformer components and constrain weight
norms by σmax ≥ 0. Unlike LipsFormer (Qi et al., 2023), our constraints enforce a bound chosen
prior to training. A ≤10-Lipschitz transformer trains stably to 21.2% accuracy without layer norm,
QK norm, or tanh on logits. The same model without weight constraints diverges. Matching baseline
accuracy, however, requires a Lipschitz bound of 10122, computed as in Section 4.2. Our Lipschitz
bounds may be loose, as suggested by the small maximum activation we observe across a batch of
393K tokens. Final loss variance is 0.0008.

Table 1 summarizes our 140M-parameter results. Unsurprisingly, training diverges without weight
constraints. Unlike LipsFormer, our method enforces a Lipschitz bound specified before training.
The key lever is the maximum RMS → RMS norm σmax for linear layers. Smaller σmax values
correspond to tighter Lipschitz bounds but may reduce performance. The attention and final logit
scale also affect the bound. With spectral normalization, σmax = 1 and final logit scale 8, we train a
≤10-Lipschitz transformer to validation loss 5.047 and accuracy 21.2%. No activation in this model
exceeds RMS norm 1, aiding stability during training. Raising σmax to 8 and using 2× training
data matches Modula baseline performance while keeping all activation entries comfortably within
the fp8 range. Further raising σmax to 16 and using 4× training data matches speedrun validation
performance while achieving max activation entry 49.3, compared to about 148K. The NanoGPT
baseline has a max activation entry of about 92K, demonstrating higher sensitivity than our methods.

5 DISCUSSION

Despite large Lipschitz bounds, our NanoGPT transformers exhibit low maximum activation entries
(6.5–112) compared to the baseline (1,872). This may explain their stable training free from standard
measures including layer norm, QK norm, or tanh logit softcapping. Constrained network activation
entries never exceed the representable range of FP4 E3M0 format. Future work can test whether
these low activations enable low-precision training and whether stability persists at larger scales.

For MLPs and small transformers, we find that using Muon improves the Lipschitz vs. performance
tradeoff. Out of the weight constraint methods we test, spectral normalization, spectral soft cap,
and spectral hard cap compare favorably to standard weight decay. Perhaps surprisingly, on both
CIFAR-10 and Shakespeare data, we achieve our best loss with Lipschitz-enforced models, potentially
representing a training speed benefit.

Our work has several limitations. We did not find a principled way to select weight norm, final logit
scale, and attention logit scale hyperparameters, instead relying on sweeps. Our Lipschitz bound
also increases rapidly as depth increases, unless we constrain weights to unit norm. A different
architecture, or insight beyond a global Lipschitz bound, could make progress on this problem.

In conclusion, this paper develops a method for training transformers with an enforced Lipschitz bound
throughout training, extending earlier efforts focused on different architectures or only constraining
at initialization. Lipschitz-certified transformers may be of particular interest for domains such
as privacy, control, adversarial robustness, low-precision training, and loss-spike-free, large-scale
pretraining. Although training speed benefits fade in our NanoGPT speedrun experiments, we wonder
whether at this scale Lipschitz-enforced training can also be made faster than standard training.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 AUTHOR STATEMENTS

6.1 ETHICS STATEMENT

The authors have read the ICLR code of ethics and declare that we conform to them. We have not
identified any direct major ethical risks of this project.

6.2 REPRODUCIBILITY STATEMENT

We provide multiple resources to reproduce our experiments. In Section A, we provide a link to an
anonymized GitHub repository that includes code for reproducing all of our results. This includes files
for training Lipschitz-constrained MLPs and transformers using our methods and implementations,
as well as code for data loaders that we use to access the public datasets we used for experiments
in this paper. In Section F, we explain the hyperparameters that we used for our coordinate descent
hyperparameter search. We also cite our datasets and explain the compute resources we used for our
experiments. Our two main theoretical contributions have full proofs in Section B and Section C. We
describe our method for calculating Lipschitz bounds for transformers in Section D. All together, the
supplementary materials allow a reader to reproduce our results.

6.3 LLM USAGE STATEMENT

Our ideas, results, and writing are due to humans, not LLMs. We used LLMs to implement some
standard methods, such as power iteration. The majority of our code was authored by humans; the rest
was tested and verified. LLMs were used to assist in coding the figure generation scripts. After we
completed writing the paper, LLMs were sometimes used to make the writing more concise. These
suggestions were reviewed by humans and never copied into our document. Overall, our use of LLMs
was to automate standard procedures and was orthogonal to the originality and results of our paper.

REFERENCES

Atish Agarwala, Samuel Stern Schoenholz, Jeffrey Pennington, and Yann Dauphin. Temperature
check: Theory and practice for training models with softmax-cross-entropy losses. Transactions
on Machine Learning Research, 2023. Cited on page 8.

Cem Anil, James Lucas, and Roger B. Grosse. Sorting out Lipschitz function approximation. In
International Conference on Machine Learning, 2019. Cited on pages 1 and 3.

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In
International Conference on Machine Learning, 2016. Cited on page 1.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv:1607.06450,
2016. Cited on page 1.

Peter Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for neural
networks. In Neural Information Processing Systems, 2017. Cited on pages 1 and 3.

Jeremy Bernstein. The Modula docs, 2025. URL https://docs.modula.systems/. MIT
License. Cited on page 24.

Jeremy Bernstein and Laker Newhouse. Modular duality in deep learning. In International Conference
on Machine Learning, 2025. Cited on pages 4 and 24.

Louis Béthune. Deep Learning with Lipschitz Constraints. PhD thesis, Université de Toulouse, 2024.
Cited on page 3.

Louis Béthune, Thibaut Boissin, Mathieu Serrurier, Franck Mamalet, Corentin Friedrich, and Al-
berto Gonzalez Sanz. Pay attention to your loss: Understanding misconceptions about Lipschitz
neural networks. In Neural Information Processing Systems, 2022. Cited on pages 3 and 8.

10

https://docs.modula.systems/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Louis Béthune, Thomas Massena, Thibaut Boissin, Yannick Prudent, Corentin Friedrich, Franck
Mamalet, Aurelien Bellet, Mathieu Serrurier, and David Vigouroux. DP-SGD without clipping:
The Lipschitz neural network way. In International Conference on Learning Representations,
2024. Cited on pages 1 and 3.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: Composable transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax. Cited on page 24.

Jonah Brown-Cohen, Geoffrey Irving, and Georgios Piliouras. Scalable AI safety via doubly-efficient
debate. In International Conference on Machine Learning, 2024. Cited on page 3.

Franz Louis Cesista. Fast, numerically stable, and auto-differentiable Spectral Clipping via
Newton-Schulz iteration, June 2025. URL http://leloykun.github.io/ponder/
spectral-clipping/. Cited on page 18.

Franz Louis Cesista, Jiacheng You, and Keller Jordan. Squeezing 1–2% efficiency gains out of Muon
by optimizing the Newton-Schulz coefficients, 2025. URL http://leloykun.github.io/
ponder/muon-opt-coeffs/. Cited on page 26.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval
networks: Improving robustness to adversarial examples. In International Conference on Machine
Learning, 2017. Cited on pages 1, 4, and 6.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, Rodolphe Jenatton,
Lucas Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang, Carlos Riquelme, Matthias Minderer,
Joan Puigcerver, Utku Evci, Manoj Kumar, Sjoerd van Steenkiste, Gamaleldin F. Elsayed, Aravindh
Mahendran, Fisher Yu, Avital Oliver, Fantine Huot, Jasmijn Bastings, Mark Patrick Collier,
Alexey Gritsenko, Vighnesh Birodkar, Cristina Vasconcelos, Yi Tay, Thomas Mensink, Alexander
Kolesnikov, Filip Pavetić, Dustin Tran, Thomas Kipf, Mario Lučić, Xiaohua Zhai, Daniel Keysers,
Jeremiah Harmsen, and Neil Houlsby. Scaling vision transformers to 22 billion parameters. In
International Conference on Machine Learning, 2023. Cited on page 1.

Benoit Dherin, Michael Munn, Mihaela Rosca, and David GT Barrett. Why neural networks
find simple solutions: The many regularizers of geometric complexity. In Neural Information
Processing Systems, 2022. Cited on page 3.

Ahmed Taha Elthakeb, Prannoy Pilligundla, Fatemeh Mireshghallah, Alexander Cloninger, and Hadi
Esmaeilzadeh. Divide and conquer: Leveraging intermediate feature representations for quantized
training of neural networks. In International Conference on Machine Learning, 2020. Cited on
page 3.

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George J. Pappas. Efficient
and accurate estimation of Lipschitz constants for deep neural networks. In Neural Information
Processing Systems, 2019. Cited on pages 2 and 8.

Thomas Flynn. The duality structure gradient descent algorithm: Analysis and applications to neural
networks. arXiv:1708.00523, 2017. Cited on page 3.

Mahesh Godavarti. Joformer (journey-based transformer): Theory and empirical analysis on the tiny
shakespeare dataset. arXiv:2506.08652v1, 2025. Cited on pages 2 and 8.

Florin Gogianu, Tudor Berariu, Mihaela Rosca, Claudia Clopath, Lucian Buşoniu, and Razvan
Pascanu. Spectral normalisation for deep reinforcement learning: An optimisation perspective. In
International Conference on Machine Learning, 2021. Cited on page 3.

Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J. Cree. Regularisation of neural
networks by enforcing Lipschitz continuity. Machine Learning, 2021. Cited on pages 3 and 4.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Computer Vision and Pattern Recognition, 2016. Cited on page 7.

11

http://github.com/jax-ml/jax
http://leloykun.github.io/ponder/spectral-clipping/
http://leloykun.github.io/ponder/spectral-clipping/
http://leloykun.github.io/ponder/muon-opt-coeffs/
http://leloykun.github.io/ponder/muon-opt-coeffs/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alex Henry, Prudhvi Raj Dachapally, Shubham Pawar, and Yuxuan Chen. Query-key normalization
for transformers. In Empirical Methods in Natural Language Processing, 2020. Cited on page 1.

Yujia Huang, Huan Zhang, Yuanyuan Shi, J. Zico Kolter, and Anima Anandkumar. Training certifiably
robust neural networks with efficient local Lipschitz bounds. In Neural Information Processing
Systems, 2021. Cited on page 6.

Nandan Kumar Jha and Brandon Reagen. Aero: Softmax-only llms for efficient private inference.
arxiv:2410.13060, 2024. Cited on page 4.

Su Jianlin. Thoughts from spectral norm gradient to new weight decay, Dec 2024. URL https:
//kexue.fm/archives/10648. Cited on pages 3 and 4.

Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, @fernbear.bsky.social, Boza Vlado, You
Jiacheng, Franz Cesista, Braden Koszarsky, and @Grad62304977. Modded-nanoGPT: Speedrun-
ning the nanoGPT baseline, 2024a. URL https://github.com/KellerJordan/
modded-nanogpt. MIT License. Cited on pages 2, 7, 8, 9, 24, and 25.

Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024b. URL https:
//kellerjordan.github.io/posts/muon/. Cited on pages 2 and 18.

Andrej Karpathy. nanoGPT. https://github.com/karpathy/nanoGPT, 2022. MIT Li-
cense. Cited on pages 2, 8, 9, and 24.

Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An
efficient SMT solver for verifying deep neural networks. In International Conference on Computer
Aided Verification, 2017. Cited on page 3.

Hyunjik Kim, George Papamakarios, and Andriy Mnih. The Lipschitz constant of self-attention. In
International Conference on Machine Learning, 2021. Cited on pages 1 and 7.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009. Cited on pages 2 and 24.

Anders Krogh and John A. Hertz. A simple weight decay can improve generalization. In Neural
Information Processing Systems, 1991. Cited on pages 2 and 3.

Tim Large, Yang Liu, Minyoung Huh, Hyojin Bahng, Phillip Isola, and Jeremy Bernstein. Scalable
optimization in the modular norm. In Neural Information Processing Systems, 2024. Cited on
pages 1, 3, 7, 8, 21, and 24.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. Cited on page 2.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In International Conference on Learning Representations, 2018.
Cited on pages 3 and 4.

Moonshot AI. Kimi k2: Open agentic intelligence, July 2025. URL https://moonshotai.
github.io/Kimi-K2/. Technical report on Kimi K2, a 1T parameter Mixture-of-Experts
model with 32B activated parameters. Cited on pages 1 and 3.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-bayesian approach to
spectrally-normalized margin bounds for neural networks. In International Conference on Learning
Representations, 2018. Cited on page 3.

Michael O’Connell, Guanya Shi, Xichen Shi, Kamyar Azizzadenesheli, Anima Anandkumar, Yisong
Yue, and Soon-Jo Chung. Neural-fly enables rapid learning for agile flight in strong winds. Science
Robotics, 2022. Cited on page 3.

Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The FineWeb datasets: Decanting the web for the
finest text data at scale. In Neural Information Processing Systems: Datasets and Benchmarks
Track, 2024. ODC-By 1.0 License. Cited on pages 7 and 24.

12

https://kexue.fm/archives/10648
https://kexue.fm/archives/10648
https://github.com/KellerJordan/modded-nanogpt
https://github.com/KellerJordan/modded-nanogpt
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://github.com/karpathy/nanoGPT
https://moonshotai.github.io/Kimi-K2/
https://moonshotai.github.io/Kimi-K2/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
Volkan Cevher. Training deep learning models with norm-constrained LMOs. arXiv:2502.07529,
2025. Cited on page 4.

Xianbiao Qi, Jianan Wang, Yihao Chen, Yukai Shi, and Lei Zhang. LipsFormer: Introducing Lipschitz
continuity to vision transformers. In International Conference on Learning Representations, 2023.
Cited on pages 1, 3, 8, 9, and 23.

Mihaela Rosca, Theophane Weber, Arthur Gretton, and Shakir Mohamed. A case for new neural
network smoothness constraints. In NeurIPS Workshop on "I Can’t Believe It’s Not Better!", 2020.
Cited on page 3.

Jianlin Su. Computing singular value clipping mclip via msign (part 2), Jun 2025. URL https:
//kexue.fm/archives/11059. Cited on page 18.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In International Conference on Learning
Representations, 2014. Cited on page 3.

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin training: Scalable certification
of perturbation invariance for deep neural networks. In Neural Information Processing Systems,
2018. Cited on pages 1 and 3.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing Systems,
2017. Cited on page 7.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: Analysis and
efficient estimation. In Neural Information Processing Systems, 2018. Cited on page 3.

Yuh-Shyang Wang, Tsui-Wei Weng, and Luca Daniel. Verification of neural network control policy
under persistent adversarial perturbation. In International Conference on Machine Learning, 2020.
Cited on page 3.

Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Boning,
and Inderjit Dhillon. Towards fast computation of certified robustness for ReLU networks. In
International Conference on Machine Learning, 2018. Cited on page 3.

Lily Weng, Pin-Yu Chen, Lam Nguyen, Mark Squillante, Akhilan Boopathy, Ivan Oseledets, and
Luca Daniel. PROVEN: Verifying robustness of neural networks with a probabilistic approach. In
International Conference on Machine Learning, 2019. Cited on page 3.

Tsui-Wei Weng, Pu Zhao, Sijia Liu, Pin-Yu Chen, Xue Lin, and Luca Daniel. Towards certificated
model robustness against weight perturbations. In AAAI Conference on Artificial Intelligence,
2020. Cited on page 3.

Mitchell Wortsman, Peter J. Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D. Co-
Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, Jeffrey Pennington, Jascha Sohl-Dickstein,
Kelvin Xu, Jaehoon Lee, Justin Gilmer, and Simon Kornblith. Small-scale proxies for large-scale
transformer training instabilities. In International Conference on Learning Representations, 2024.
Cited on page 1.

Greg Yang, James B. Simon, and Jeremy Bernstein. A spectral condition for feature learning.
arXiv:2310.17813, 2024. Cited on page 4.

Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the generalizability
of deep learning. arXiv:1705.10941, 2017. Cited on pages 1, 2, 3, and 4.

Jiacheng You. Rapidly converging orthogonalizing Newton-Schulz iteration, 2025. URL https:
//x.com/YouJiacheng/status/1893704552689303901. Cited on page 4.

Shuangfei Zhai, Tatiana Likhomanenko, Etai Littwin, Dan Busbridge, Jason Ramapuram, Yizhe
Zhang, Jiatao Gu, and Josh Susskind. Stabilizing transformer training by preventing attention
entropy collapse. In Proceedings of the 40th International Conference on Machine Learning, 2023.
Cited on page 4.

13

https://kexue.fm/archives/11059
https://kexue.fm/archives/11059
https://x.com/YouJiacheng/status/1893704552689303901
https://x.com/YouJiacheng/status/1893704552689303901

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Pengxiang Zhao, Ping Li, Yingjie Gu, Yi Zheng, Stephan Ludger Kölker, Zhefeng Wang, and
Xiaoming Yuan. Adapprox: Adaptive approximation in Adam optimization via randomized
low-rank matrices. arXiv:2403.14958, 2024. Cited on page 4.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A ANONYMOUS CODE LINK

Our code is available on an anonymized GitHub repository: https://anonymous.4open.
science/r/lipschitz-transformers-A7B3.

15

https://anonymous.4open.science/r/lipschitz-transformers-A7B3
https://anonymous.4open.science/r/lipschitz-transformers-A7B3

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B COUPLING SPECTRAL CAP TO LEARNING RATE

The intuition for the proof can be summarized, “There is a maximum amount the singular values of a
weight can grow after a weight update; as long as the minimum decrease of too-large singular values
exceeds their maximum growth, then the set of weight singular values stays bounded forever.”
Theorem B.1 (Spectral soft cap bounds spectral norm when training with Muon). Suppose we wish
to bound the spectral norm of a weight matrix W to never exceed σmax > 0. Let η > 0 be the learning
rate and λ > 0 be the weight decay. If ∥W∥∗ ≤ σmax, then there exists a minimal α∗ ≥ 0 such that
performing the following three operations (“the training step”) preserves ∥W∥∗ ≤ σmax:

1. Weight decay: W 7→ W · (1− λη).

2. Muon update: W 7→ W +∆W , where ∥∆W∥∗ ≤ η.

3. Spectral soft cap: W 7→ p2(p1(W)), where p1(x) = x− α∗x
3 and p2(x) = x+ α∗x

3).

Calculating α∗ reduces to solving for the roots of a quartic polynomial.

Proof. Let σ1 ≥ · · · ≥ σn be the singular values of a weight matrix W ∈ Rdin×dout , where W has
bounded spectral norm ∥W∥∗ ≤ σmax. Weyl’s inequality in linear algebra says that the singular values
of the updated weight W +∆W cannot change by more than the spectral norm of ∆W ∈ Rdin×dout .
Specifically, the singular values of W +∆W fall in the range σ′

i ∈ [σi − ∥∆W∥∗, σi + ∥∆W∥∗].
The weight update in Muon has bounded spectral norm ∥∆W∥ ≤ η, because ∆W is an orthogonal
matrix (the “o” in Muon) scaled by the learning rate η > 0. Therefore, every singular value of W
after adding ∆W cannot increase by more than η (“max increase”).

We seek a minimal spectral cap strength parameter α∗ ≥ 0 such that performing the following three
operations (“the training step”), collectively referred to as W 7→ Φ(W,α∗), preserves ∥W∥∗ ≤ σmax:

1. Weight decay: W 7→ W · (1− λη).

2. Muon update: W 7→ W +∆W , where ∥∆W∥∗ ≤ η.

3. Spectral soft cap: W 7→ p2(p1(W)), where p1(x) = x− α∗x
3 and p2(x) = x+ α∗x

3).

The remainder of the proof will show that the “minimum decrease” of singular values due to steps (1)
and (3) is a monotonically increasing function in the singular value σ. In other words, larger singular
values are reduced more strongly. Then since step (2) cannot raise singular values by more than a
fixed amount η, performing all three steps cannot raise singular values after a certain point. The
final observation will be that this point occurs at the threshold σmax > 0 when we choose a minimal
strength parameter α∗ ≥ 0 accordingly. Thus the training step satisfies ∥Φ(W,α∗)∥∗ ≤ σmax if
∥W∥∗ ≤ σmax, which will prove that the weight norm remains bounded after each training step.

To begin, we observe that p(σ) = p2(p1(σ)) has derivative bounded above like p′(σ) ≤ 1 for σ ≥ 0.
Furthermore it has non-positive second derivative p′′(σ) ≤ 0 for σ ≥ 0. These two facts together
prove that the decrease σ − p(σ) due to spectral soft cap is a monotonically increasing function of σ.
Thus, after some threshold σ∗, all singular values σ > σ∗ will decrease after the training step.

All that is left is to calculate the minimal coupling strength α∗ that causes this threshold to be
σ∗ = σmax. To do so, we solve for α in the polynomial equation

p(σmax · (1− λη) + η) = σmax.

The equation represents performing all three operations in the training step and finding that the
singular value does not change. Let us denote the largest that σmax can become after steps (1) and (2)
by k = σmax · (1− λη) + η. Expanding, the polynomial equation becomes

−k9α4
∗ + 3k7α3

∗ − 3k5α2
∗ + k − σmax = 0.

This is a quartic polynomial in α. If σmax < 1/λ, then k < σmax means we are done since weight
decay already causes the singular value σmax to decrease, and step (3) will only decrease it further.
Otherwise if σmax ≥ 1/λ, the quartic polynomial will have a solution by the mean value theorem,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 2 4

2

4

Figure 5: Spectral soft cap is a weight constraint method that applies the above odd polynomial to a
weight matrix, which applies it to all singular values in parallel. First it applies p1(x) = x− αx3,
then it applies p2(x) = x + αx3. The composition is depicted for α = 0.2 (blue), α = 0.1 (red),
α = 0.05 (green), α = 0 (purple).

since it evaluates to a nonnegative number at α = 0 but its leading term is negative. Thus there exists
a minimal solution called α∗ that preserves ∥W∥∗ ≤ σmax in every training step, as desired.

One limitation of automatic coupling is that it may be stronger than necessary, because it assumes
updates align perfectly with the weights in the worst case. If the learning rate is scheduled to 0,
gradients may align less with the existing weights especially at the end, which can cause the weight
norm to contract slightly.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C SPECTRAL CLIPPING

Spectral clipping is a generalization of spectral cap that puts an upper and lower bound on the singular
values. It maps σ 7→ clip(σ, σmin, σmax), where 0 < σmin < σmax (Cesista, 2025; Su, 2025).

Definition C.1 (Spectral clipping). Let W ∈ Rm×n and W = UΣV T be its singular value decom-
position, where Σ = (σ1, . . . , σmin(m,n)) are the singular values of W . Then we define spectral
clipping as the matrix function spectral_clip[α,β] : Rm×n → Rm×n acting on the singular values of
W ,

spectral_clip[α,β](W) = Uclip[α,β](Σ)V
T , (3)

where α ≤ β and α, β ∈ R ∪ {−∞,∞} control the minimum and maximum attainable singular
values. The clip function clip[α,β] : R → R is applied element-wise on the singular values of W ,

clip[α,β](x) =


α if x < α

x if α ≤ x ≤ β

β if β < x

. (4)

We could compute spectral clipping via SVD. However, SVD does not take full advantage of GPU
tensor cores and typically requires casting the inputs to full precision, making it slow in practice.
Following Cesista (2025), we can instead spectrally clip via the matrix sign function used by Muon
(Jordan et al., 2024b) because of the following identity,

clip[α,β](x) =
1

2
[α+ β + (α− x)sign(α− x)− (β − x)sign(β − x)]. (5)

Thus,

spectral_clip[α,β](W) = Uclip[α,β](Σ)V
T

= U
1

2
[(α+ β)I + (αI − Σ)sign(αI − Σ)

− (βI − Σ)sign(βI − Σ)]V T

=
1

2
[(α+ β)UV T + U(αI − Σ)sign(αI − Σ)V T

− U(βI − Σ)sign(βI − Σ)V T]

=
1

2
[(α+ β)UV T

+ U(αI − Σ)(V TV)sign(αI − Σ)(UTU)V T

− U(βI − Σ)(V TV)sign(βI − Σ)(UTU)V T]

=
1

2
[(α+ β)UV T

+ (αUV T − UΣV T)(V sign(αI − Σ)UT)(UV T)

− (βUV T − UΣV T)(V sign(βI − Σ)UT)(UV T)]

=
1

2
[(α+ β)UV T

+ (αUV T − UΣV T)(Usign(αI − Σ)V T)T (UV T)

− (βUV T − UΣV T)(Usign(βI − Σ)V T)T (UV T)]

spectral_clip[α,β](W) =
1

2
[(α+ β)I

+ (α ·msign(W)−W)msign(α ·msign(W)−W)T

− (β ·msign(W)−W)msign(β ·msign(W)−W)T

]msign(W). (6)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.1 SPECTRAL HARDCAPPING

Spectral hardcapping is a special case of spectral clipping where α ≤ 0. And since singular values
are always nonnegative, setting α = −β simplifies Equation (5) to

clip[−β,β](x) =
1

2
[β + x− (β − x)sign(β − x)]. (7)

We can now construct a spectral hardcapping formula in terms of the well-known msign function:

spectral_hardcapβ(W) = Uclip[−β,β](Σ)V
T

= U
1

2
[βI +Σ− (βI − Σ)sign(βI − Σ)]V T

=
1

2
[βUV T + UΣV T

− U(βI − Σ)(V TV)sign(βI − Σ)(UTU)V T]

=
1

2
[βUV T + UΣV T

− (U(βI − Σ)V T)(Usign(βI − Σ)V T)T (UV T)]

=
1

2
[βmsign(W) +W

− (βmsign(W)−W)msign(βmsign(W)−W)Tmsign(W)]

spectral_hardcapβ(W) =
1

2
[βmsign(W) +W

−msign(βI −msign(W)WT)(βmsign(W)−W)]. (8)

The last equality follows from the transpose equivariance and unitary multiplication equivariance of
odd analytic matrix functions acting on singular values.

C.2 SPECTRALLY CLIPPED WEIGHT DECAY

As a further extension, we can use spectral hardcapping to construct a spectrally clipped weight decay.
Unlike standard weight decay, spectrally clipped weight decay only applies the decay term to singular
values larger than a threshold β, chosen a priori:

clipped_weight_decayλ,β(Σ) =
{
Σ if Σ ≤ β

(1− λ)Σ + λβ if Σ > β
(9)

= (1− λ)Σ + λ · clip[0,β](Σ).
Thus,

spec_clipped_weight_decayλ,β(W) = Uclipped_weight_decayλ,β(Σ)V
T (10)

= (1− λ)W + λ · spectral_hardcapβ(W) (11)

Following the argument made in Section B, we can derive the equilibrium point of spectrally clipped
weight decay as follows.
Proposition C.0.1 (Equilibrium point of spectrally clipped weight decay). Let η ∈ (0,∞) be the
learning rate, λ ∈ (0, 1] be the decay term, and β ∈ (0,∞) be the singular value threshold above
which we start applying the decay term. Additionally, suppose that the weight updates are constrained
to have norm ||∆W || ≤ η such as with the Muon optimizer. Then spectrally clipped weight decay
has an equilibrium point,

σeq = β +
1− λ

λ
η, (12)

toward which it “pulls” the spectral norm of the weights.

Proof. An update step yields

Wt+1 = spectral_clipped_weight_decayλ,β(Wt +∆Wt).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The subadditivity of norms tells us ||Wt +∆Wt|| ≤ ||Wt||+ ||∆Wt|| ≤ ||Wt||+ η. Thus, we can
bound the spectral norm of the weights after every update step as

σ′
max ≤ clipped_weight_decayλ,β(σmax + η)

σ′
max ≤

{
σmax + η if σmax + η ≤ β

(1− λ)(σmax + η) + λβ if σmax + η > β

Equality is achieved at σeq, where

σeq =

{
σeq + η if σeq + η ≤ β

(1− λ)(σeq + η) + λβ if σeq + η > β

σeq = (1− λ)σeq + (1− λ)η + λβ

σeq = β +
1− λ

λ
η

Note that singular values larger than σeq decrease after every update step,

update(σeq + ϵ) = (1− λ)(σeq + η + ϵ) + λβ

= (1− λ)(σeq + η) + λβ︸ ︷︷ ︸
σeq

+(1− λ)ϵ

update(σeq + ϵ) < σeq + ϵ,

since 1− λ < 1, while singular values smaller than σeq increase,

update(σeq − ϵ) = (1− λ)(σeq + η − ϵ) + λβ

= σeq − (1− λ)ϵ

update(σeq − ϵ) > σeq − ϵ.

Hence σeq is an equilibrium point.

A potentially useful property of spectrally clipped weight decay is that its equilibrium point ap-
proaches β as learning rate is decayed to zero during training, independent of the chosen initial
learning rate and decay term:

σ∗
eq = lim

η→0
β +

1− λ

λ
η = β.

This property may enable tighter final norm bounds without requiring as aggressive of a decay.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D PROVING AN UPPER BOUND ON THE LIPSCHITZ CONSTANT OF A
TRANSFORMER

We elaborate on the algorithm sketched in Section 4.2 and prove a Lipschitz bound on attention. Our
Lipschitz bounds are with respect to the max RMS norm over token positions, denoted ∥·∥∞RMS.

Recall the two primary ways Lipschitz constants Lf and Lg of two functions f and g interact:

• Adding: f + g has Lipschitz constant at most Lf + Lg .
• Composing: f ◦ g has Lipschitz constant at most Lf · Lg .

Step 1: Residual connections. Suppose that, before reaching a certain residual connection, a
transformer maps input data x to f(x) with Lipschitz constant L. Suppose the transformer has 2N
residual connections. Let α = 1

2N . The residual connection acts on f(x) as

[(1− α) · identity + α · block] (f(x)). (13)

After the residual connection, the Lipschitz constant composes and adds to become at most

(1− α) · L+ α · L · Lblock. (14)

Applying this formula sequentially upper bounds the Lipschitz constant of a transformer layer by
layer. We now determine Lblock for an MLP and attention block in terms of their weight norms.

Step 2: MLP. Our MLP composes Wout ◦ (GeLU/1.1289) ◦Win. The Lipschitz constants of the two
weight matrices are their norms ∥Wout∥RMS→RMS and ∥Win∥RMS→RMS, while GeLU/1.1289 has
Lipschitz constant 1 because we divide by the maximum derivative of GeLU. Overall, the Lipschitz
bound for an MLP block is LMLP ≤ ∥Wout∥RMS→RMS∥Win∥RMS→RMS/1.1289.

Step 3: Attention. Let ℓ denote the token dimension. Let the queries, keys, and values be denoted by
(q, k, v) ∈ Rℓ×dQ × Rℓ×dQ × Rℓ×dV . Our attention block composes

1
3Wout ◦ F, (15)

where function attention is denoted by F = softmax
(

1
dQ

qk⊤ +M
)
v for some mask M . As a

consequence of the following theorem, if every attention input is unit norm, then functional attention
is 1-Lipschitz. This property is what motivates scaling functional attention by 1

dQ
rather than 1√

dQ

inside the softmax. Composing functional attention with its input, the tuple (q, k, v), increases its
sensitivity to 3; we scale by 1

3 to make attention as a whole have unit sensitivity. However, functional
attention is no longer 1-Lipschitz if its inputs are not unit norm. Recall that the shorthand notation
∥x∥∞RMS is the max RMS norm of a d-dimensional activation over l tokens, x ∈ Rℓ×d.
Theorem D.1 (Lipschitz bound on functional attention). Let ⋄ denote tensor contraction. Given any
perturbations ∆q,∆k,∆v to the queries, keys, and values, functional attention satisfies

∥∇F (q, k, v) ⋄ (∆q,∆k,∆v)∥ ≤ max(1, ∥v∥max(∥q∥, ∥k∥))∥(∆q,∆k,∆v)∥, (16)

where the norm is ∥·∥∞RMS : Rℓ×d → R, the max-over-tokens RMS norm of the embedding vector,
and ∥(∆q,∆k,∆v)∥ := ∥∆q∥+ ∥∆k∥+ ∥∆v∥. That is, functional attention has Lipschitz bound
max(1, ∥v∥max(∥q∥, ∥k∥)).

Proof. The argument mirrors the proof of Proposition 7 from the modular norm paper (Large
et al., 2024). We write the attention matrix as A = softmax

(
1
dQ

qk⊤ +M
)

. Its derivative is

∆A = ∇(q,k)softmax
(

1
dQ

qk⊤ +M
)
⋄ (∆q,∆k). The derivative of F splits into two terms,

∇F (q, k, v) ⋄ (∆q,∆k,∆v) = A(∆v) + (∆A)v. (17)

We call the maximum ℓ1 norm of the rows of a matrix its L∞ operator norm, which comes into play
by observing that ∥Ax∥∞RMS ≤ ∥A∥∞−op∥x∥∞RMS. For the first term, note that ∥A∥∞−op = 1
because softmax ensures the row-wise sum is always 1. For the second term, Large et al. (2024) in
Equation E.58 show that

∥∆A∥∞−op ≤ ∥∆q∥∞RMS∥k∥∞RMS + ∥q∥∞RMS∥∆k∥∞RMS. (18)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Thus, writing ∥·∥ as shorthand for ∥·∥∞RMS,

∥∇F (q, k, v) ⋄ (∆q,∆k,∆v)∥ = ∥A(∆v)∥+ ∥(∆A)v∥
≤�����∥A∥∞−op∥∆v∥+ ∥∆A∥∞−op∥v∥
≤ ∥∆v∥+ ∥v∥∥k∥∥∆q∥+ ∥v∥∥q∥∥∆k∥
≤ ∥∆v∥+ ∥v∥max(∥q∥, ∥k∥)(∥∆q∥+ ∥∆k∥)
≤ max(1, ∥v∥max(∥q∥, ∥k∥))(∥∆q∥+ ∥∆k∥+ ∥∆v∥)

Hence, ∥∇F (q, k, v) ⋄ (∆q,∆k,∆v)∥ ≤ max(1, ∥v∥max(∥q∥, ∥k∥))∥(∆q,∆k,∆v)∥ as claimed.

More generally for attention layers with attention scale sattn not necessarily equal to 1
dQ

, we can
absorb the extra factor to the query weight WQ and key weight WK , such that

F̃ = softmax
(
sattnqk

T +M
)
v = softmax

(
1

dQ
q̃k̃T +M

)
v, (19)

where q̃ =
√
sattndQq and k̃ =

√
sattndQk. The Lipschitz bound then is,

max(1, ∥v∥max(∥q̃∥, ∥k̃∥)) =
√
sattndQ max(1, ∥v∥max(∥q∥, ∥k∥)). (20)

Step 4. Activation norm bounds. To apply the theorem, we now bound the input norm to attention.
To do so we will track the maximum RMS norm of activations everywhere in the network. We do
not use layer norm and therefore cannot reset activation norms to 1. Let x0, . . . , x2N denote all the
activations, from the initial embedding x0 through to the N alternating attention and MLP blocks
acting via residual connections. Suppose the embedding layer maps tokens to have RMS norm at
most 1, or ∥x0∥∞RMS ≤ 1. Attention and MLP increase the norm as follows:

• Attention computes Wout ◦ (V,A) for some attention matrix A, where (V,A) is shorthand
for functional attention. By definition V cannot increase the RMS norm of the embedding
xi at any token by more than its RMS → RMS operator norm, meaning ∥V xi∥∞RMS ≤
∥V ∥RMS→RMS∥xi∥∞RMS. The same bound applies to (V,A)xi by subadditivity of norms,
since entries of the attention matrix A sum to 1 in the token dimension. Therefore attention
can increase the activation norm by

∥(Wout ◦ (V,A))xi∥∞RMS ≤ ∥Wout∥RMS→RMS∥V ∥RMS→RMS∥xi∥∞RMS. (21)

In words, multiply the weight norms of Wout and V to get the maximum increase.
• The MLP computes Wout◦(GeLU/1.1289)◦Win. Therefore the MLP can increase activation

norm by ∥Wout∥RMS→RMS∥Win∥RMS→RMS/1.1289, since |GeLU(x)| ≤ |x| for all x ∈ R.
• The residual connection acts like

∥(1− α) · xi + α · block(xi)∥∞RMS ≤ (1− α)∥xi∥∞RMS + α∥block(xi)∥∞RMS. (22)

Algorithm to compute Lipschitz bound. Therefore, given the weight norms of all matrices in a
transformer, we use the preceding results to compute its Lipschitz bound in two steps. First, we upper
bound the activation norm everywhere in the network using Step 4. Second, we upper bound the
Lipschitz constant using Steps 1-3. The Lipschitz bound after the final layer is what we refer to as the
transformer’s Lipschitz upper bound.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E IMPLEMENTING LIPSFORMER AND BOUNDING ITS LIPSCHITZ CONSTANT

To turn our enforced norm training into LipsFormer (Qi et al., 2023), we make the following changes:

1. Remove spectral soft cap and embed projections.
2. Use CenterNorm: mean subtraction with learnable entrywise scale and bias.
3. Use scaled-head cosine attention with ϵ = 10−6, τ = 12, ν = 1. Notably, the official

implementation of LipsFormer uses ϵ = 0. According to their Theorem 1, this choice may
make a finite Lipschitz bound impossible. We set ϵ > 0 to fix the issue.

4. Heuristically scale down attention output by 1/nheads to match their implementation.
5. Insert residual connections with learnable strength α, initialized to 1/nresidual_connections.
6. Xavier normal initialize linear layers, then apply spectral normalization W 7→ W/∥W∥∗.
7. Include drop path: every residual connection is skipped with p = 0.5 and, if taken, is scaled

up by 1/(1− p), matching their official implementation which uses nn.Dropout.
8. Use weight decay 0.1, matching their implementation (not applied to scalar parameters).
9. Use the Muon optimizer to give LipsFormer the fairest comparison, copying hyperparameters

from our run. We tested training with AdamW for all parameters, an exact replication,
but found performance degraded sigificantly: after 1770 steps, validation loss was 4.86
(compared to 3.61) and validation accuracy was 0.227 (compared to 0.301).

10. For non-weight-matrix parameters, use Adam hyperparameters η = 0.001, β1 = 0.9,
β2 = 0.999, ϵ = 10−8 to match their implementation.

11. Use cosine learning rate schedule with decay to 0 to match their implementation.

Bounding the Lipschitz constant of LipsFormer. In Table 1, we report that our trained implementa-
tion of LipsFormer has a Lipschitz upper bound of 10130. To calculate this value, we use the final
weight norms of the MLP and attention blocks to bound the Lipschitz constant of each residual block,
relying on LipsFormer’s Theorem 1:

Lip(SCSA)2 ≤ 2N(N − 1)ντϵ−
1
2 ∥WK∥2 + 2(N − 1)ντϵ−

1
2 ∥WQ∥2 + 2Nνϵ−

1
2 ∥WV ∥2.

Using N = 128 (head dimension), τ = 12, ν = 1, and empirical weight norms, we calculate the
Lipschitz bound for every layer. We use the maximum entry of the learned residual strength α, which
is an entrywise multiplication, to convert the layerwise bounds into a final bound

Lip(F) ≤
S∏

s=1

S∏
m=1

(1 + αs,mLip(fs,m)),

which we take from their Equation 19. Alpha has typical maximum entries around 0.5 for attention
connections and 0.15 for MLP connections. With ϵ = 10−6, we compute a final Lipschitz bound of
1.97× 10129.

23

https://github.com/IDEA-Research/LipsFormer/blob/main/models/lipsformer_swin.py#L205-L206
https://github.com/IDEA-Research/LipsFormer/blob/main/models/lipsformer_swin.py#L205-L206

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

F EXPERIMENTAL DETAILS

This section gives experimental details for all results in the paper. The three categories of experiments
we run are MLP training, Shakespeare transformer training, and NanoGPT speedrun training.

Datasets.

• For MLP training we use the CIFAR-10 dataset Krizhevsky (2009) with the standard train
and test splits and no data augmentation. We do not shuffle the order of batches.

• For Shakespeare transformer training we use Karpathy’s 1M character-level dataset with
standard training and validation splits (Karpathy, 2022). We shuffle the order of batches.

• For NanoGPT speedrun transformer training we use the FineWeb10B dataset (Penedo et al.,
2024) loaded in the standard order. We use the same validation split as the modded NanoGPT
speedrun benchmark (Jordan et al., 2024a).

Compute requirement. All our experiments can run on a V100, A100, or H100 GPU in less than 5
minutes, except the NanoGPT speedrun transformer which requires 8xH100 and runs in 5-10 minutes.

Modula library. For MLP and Shakespeare experiments, we use JAX (Bradbury et al., 2018) on
top of the Modula library (Large et al., 2024; Bernstein, 2025). We implement our own model
components. Our AdamW implementation does not include bias correction, although the discrepancy
decays rapidly after aronud 20 steps because we use β1 = 0.9, β2 = 0.95 in all experiments except
one, not reported, in which we determine that this is a good setting for the momentum EMAs.

MLP experiments. All MLPs we train are width 256 and depth 3 (i.e., one hidden layer) with ReLU
activations and no bias on data from CIFAR-10. We use batch size 512 and a linear learning rate
schedule that decays to 0 in all experiments. Modula’s mass calculation causes the effective learning
rate to be scaled by 1/3. We train for 50 epochs except in one case, when we train for 20 epochs for
the models in Figure 3. We zero-initialize the final layer. We train all models in float32 precision
and run the weight constrain methods in float32 precision. We experimented with lower precision
and found comparable metrics across the board for bfloat16 training. We set seed 0 and store all
hyperparameters and log information to enhance reproducibility.

Shakespeare experiments. All transformers we train for Shakespeare are width 256 with 3 blocks
(attention + MLP), no bias, and four attention heads. The out projection in each attention and MLP
block is initialized to zero. We use sequence length 256 and batch size 64 to match the baseline
from (Karpathy, 2022), except we train for 2000 steps while Karpathy trains for 5000 steps. We set
Modula’s blocks mass parameter to 32 to cause 95% of the feature learning to occur in the transformer
blocks. We determined this ratio by sweeping the blocks mass, which controls the ratio of learning
rate between the two embedding layers and the transformer blocks. Training with Muon means
applying Muon to all linear layer weight matrices (including the final logit head) but normalizing the
columns of embedding gradient, as suggested by the ℓ1 → RMS duality map (Bernstein & Newhouse,
2025). We were concerned that rare tokens may cause the momentum buffer to dualize columns
to full strength updates for hundreds of steps until the column decays to exactly zero, so we tested
whether capping the maximum inflation factor for the embedding column normalization could help.
We tested maximum factors in the set {1, 4, 16, . . . , 65536} across 8 seeds and found no significant
difference. We choose to maximally multiply each column by 16 during the dualization step. Finally,
we found that to train to the validation losses reported we had to use a trick: we decayed the learning
rate by a factor of 1/2 per residual layer, causing later layers to train more than earlier layers. This
change is implemented by setting the sensitivity of the Mul module in Modula to 1. We do not know
why this trick is necessary.

Figure 2 sweeps over the following hyperparameters, following a coordinate descent hyperparameter
search method:

• MLPs on CIFAR-10: we test the following combinations of optimizer and weight constraint
method: (AdamW, weight decay), (AdamW, spectral weight decay), (AdamW, spectral
normalization), (AdamW, Stiefel manifold projection), (AdamW, spectral hammer), (Muon,
weight decay), (Muon, spectral weight decay), (Muon, spectral normalization), (Muon,
stiefel manifold projection), (Muon, spectral hammer), (Muon, spectral soft cap), (Muon,
spectral hard cap). For AdamW, we vary the weight decay and spectral weight decay

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

101 103

Lipschitz bound

1.2

1.4

1.7
2.0
2.2

Va
lid

at
io

n
lo

ss

101 103

Lipschitz bound

1.2

1.4

1.7
2.0
2.2

101 103

Lipschitz bound

1.2

1.4

1.7
2.0
2.2

101 103

Lipschitz bound

1.2

1.4

1.7
2.0
2.2

101 103

Lipschitz bound

1.2

1.4

1.7
2.0
2.2

Va
lid

at
io

n
lo

ss

101 103

Lipschitz bound

1.2

1.4

1.7
2.0
2.2

101 103

Lipschitz bound

1.2

1.4

1.7
2.0
2.2 Constraint method:

Weight decay
Spectral weight decay
Spectral normalize
Stiefel manifold
Spectral hammer
Spectral soft cap
Spectral hard cap

Figure 6: Lipschitz vs. loss tradeoff broken down by method. Each point shows the lowest
validation loss achieved at a given bound for CIFAR-10 MLPs, split among methods, rather than
aggregated as in Figure 4, left. We see clearly here that to remain on the frontier of Lipschitz vs. loss
tradeoff (left hand of the parabola), it is best to use spectral capping, spectral hammer, or spectral
normalization.

parameters with 10 points in log-space from 10−2 to 100. For Muon we vary the weight
decay parameter with 10 points in log-space from 10−3 to 100 and the spectral weight
decay parameter with 10 points in log-space from 10−2 to 100. For AdamW with spectral
normalization, Stiefel manifold projection, and spectral hammer, we vary the maximum
weight norm in the set σmax ∈ {2, 3, 4, 5, 6, 7, 8}. For Muon with spectral normalization,
Stiefel manifold projection, spectral hammer, spectral soft cap, and spectral hard cap, we
vary the maximum weight norm in the set σmax ∈ {1, 1.5, ..., 9.5, 10}. For AdamW with all
methods we sweep 16 learning rates in log-space between 10−5 and 10−0.5. For Muon we
sweep 16 learning rates in log-space between 10−2 and 101. Overall, this results in 1,610
total combinations, 682 with AdamW and 2,703 with Muon.

• Transformers on Shakespeare: we test the following combinations of optimizer and weight
constraint method: (AdamW, weight decay), (AdamW, spectral normalize), (AdamW,
spectral hammer), (Muon, weight decay), (Muon, spectral normalize), (Muon, spectral
soft cap). For spectral normalize, spectral hammer, and spectral soft cap, we vary the
maximum weight norm in the set σmax ∈ {1.0, 1.2, . . . , 2.8, 3.0}. For the baseline, we vary
weight decay in the set λ ∈ {2/3, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.03, 0.01, 0}. For AdamW
we sweep 16 learning rates between 10−4.5 and 10−1.5. For Muon, we sweep 12 learning
rates between 10−1.5 and 101.5. We ran tests before to find ranges that cover the optimal
learning rate.

Figure 3 reports adversarial examples and dataset-wide statistics from two models trained for 20
epochs. The AdamW model is trained with learning rate 8.1× 10−3 and weight decay λ = 0.1. The
Muon model is trained with learning rate 2.3× 10−1 and weight decay λ = 0, using the spectral soft
cap method with a weight constraint of σmax = 3.

The left panel of Figure 4 visualizes the same data from the experiment for Figure 2, but focuses
only on MLPs trained with Muon on CIFAR-10. We break down this panel by method in Figure 6.
The middle and right panels use the Muon optimizer, with the following tuples of (weight constraint
method, maximum singular value, weight decay, spectral weight decay, learning rate): (weight decay,
N/A, 0.1, 0, 1.585), (spectral weight decay, N/A, 0, 0.05, 0.157), (spectral normalization, 6, 0, 0, 1.0),
(Stiefel manifold projection, 5, 0, 0, 1.0), (spectral hammer, 4, 0, 0, 0.398), (spectral soft cap, 6, 0, 0,
0.398), (spectral hard cap, 5, 0, 0, 0.631).

NanoGPT experiments. Following the Modded-NanoGPT speedrun standard (Jordan et al., 2024a),
our training runs print log files with the full source code required to reproduce the results. We briefly

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

summarize the changes we made to convert the NanoGPT speedrun record (as of May 2025) into our
method:

• Every step, RMS normalize the embedding columns.
• Initialize all linear layer weight matrices to be orthogonal.
• Reparameterize residual connections according to Equation (1): L−1

L x+ 1
Lblock(x) residual

connections, where L = 24 is the number of residual connections.
• Reparameterize attention according to Equation (2): 1

3 overall scale on the attention output
and 1/dhead scale inside the softmax.

• Every step, apply spectral soft cap (or spectral normalize) to every linear layer weight matrix
based on a prespecified maximum desired weight norm σmax.

• Use different orthogonalization coefficients that at most inflate a singular value to 1.14502.
Therefore, the maximum update norm we pass to the strength parameter solver for learning
rate coupling in spectral soft cap is η · 1.14502 · 1.05 with an extra factor of 1.05 to be safe
around numerical precision errors. The iteration is derived by modifying the method in
(Cesista et al., 2025).

• Remove U-net structure.
• Use GeLU/1.1289 instead of ReLU2.

• Switch the dimension scaling in Muon to be
√
fan_out/fan_in instead of

max(1,
√
fan_out/fan_in).

• Remove RMS normalization: the model is now Lipschitz continuous.
• Add back the 7th attention layer (which was removed in the speedrun).
• Weight projections are run in bfloat16 (which we found to slightly improve performance).

Spectral normalization uses 2 iterations, meaning that weight norms can exceed the specified
maximum σmax due to approximation error; in practice weights with norms enforced by
spectral normalization exceed the specified maximum by around 10%.

26

	Introduction
	Related work
	Weight norm constraints to enforce Lipschitz constraints
	Methods for controlling weight norm
	AdamW and Muon: comparing weight constraint methods
	Adversarial robustness of Lipschitz networks
	Comparing weight constraint methods within Muon

	Transformers with enforced weight constraints
	Breaking the multiplication barrier?
	Calculating the Lipschitz bound of a transformer
	Shakespeare Transformer
	Scaling to NanoGPT

	Discussion
	Author statements
	Ethics statement
	Reproducibility statement
	LLM usage statement

	Anonymous code link
	Coupling spectral cap to learning rate
	Spectral clipping
	Spectral hardcapping
	Spectrally clipped weight decay

	Proving an upper bound on the Lipschitz constant of a transformer
	Implementing LipsFormer and bounding its Lipschitz constant
	Experimental details

