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Abstract

Joint-embedding self-supervised learning (SSL) commonly relies on transforma-
tions such as data augmentation and masking to learn visual representations, a task
achieved by enforcing invariance or equivariance with respect to these transforma-
tions applied to two views of an image. This dominant two-view paradigm in SSL
often limits the flexibility of learned representations for downstream adaptation by
creating performance trade-offs between high-level invariance-demanding tasks
such as image classification and more fine-grained equivariance-related tasks. In
this work, we propose seq-JEPA, a world modeling framework that introduces
architectural inductive biases into joint-embedding predictive architectures to re-
solve this trade-off. Without relying on dual equivariance predictors or loss terms,
seq-JEPA simultaneously learns two architecturally segregated representations: one
equivariant to specified transformations and another invariant to them. To do so, our
model processes short sequences of different views (observations) of inputs. Each
encoded view is concatenated with an embedding of the relative transformation
(action) that produces the next observation in the sequence. These view-action pairs
are passed through a transformer encoder that outputs an aggregate representation.
A predictor head then conditions this aggregate representation on the upcoming
action to predict the representation of the next observation. Empirically, seq-JEPA
demonstrates strong performance on both equivariant and invariant benchmarks
without sacrificing one for the other. Furthermore, it excels at tasks that inherently
require aggregating a sequence of observations, such as path integration across
actions and predictive learning across eye movements

1 Introduction

Self-supervised learning (SSL) in latent space has made significant progress in visual representation
learning, closing the gap with supervised methods across many tasks. Most SSL methods rely on
comparing two transformed views of an image and enforcing invariance to the transformations [Misra
and van der Maaten, 2020} |(Chen et al., 2020, He et al., 2020, [Dwibedi et al., 2021}, [HaoChen
et al.l 2021l |Yeh et al.l 2022, |Caron et al., 2020, 2021, [Ermolov et al., [2021}, |Assran et al.l 2022
Zbontar et al., 2021} Bardes et al.,[2022]. Another group of methods employ techniques to preserve
transformation-specific information, thereby learning equivariant representations [Lee et al., [2021],
Xiao et al.,[2021} |Park et al.} 2022, Dangovski et al., 2022} |Gupta et al.,|2023| |Garrido et al., 2023}
2024, |Gupta et al., [2023]/2024] [Yerxa et al.| [2024].
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Equivariance is a crucial representational property for downstream tasks that require fine-grained
distinctions. For example, given representations that are invariant to color, it is not possible to
distinguish between certain species of flowers or birds [Lee et al.,|2021} Xiao et al.,[2021]]. Moreover,
recent work has shown that equivariant representations are better aligned with neural responses in
primate visual cortex and could be important for building more accurate models thereof [Yerxa
et al.| 2024]. While some equivariant SSL approaches have reported minor gains on tasks typically
associated with invariance (e.g., classification) [Devillers and Lefort, 2022} Park et al., [2022] |Gupta
et al.l 2023]], a growing body of work highlights a fundamental trade-off between learning invariance
and equivariance, i.e., models that capture equivariance-related style latents do not fare well in
classification and vice versa |Garrido et al.| 2023], |2024] |Gupta et al.| 2024, [Yerxa et al., 2024,
Rusak et al., 2025[]. This trade-off has recently received theoretical support [[Wang et al., 2024b],
underscoring the need for new architectural and objective designs that can reconcile these competing
goals.

In contrast to the two-view paradigm in SSL, humans and other animals rely on a sequence of
actions and consequent observations (views) for developing appropriate visual representation during
novel object learning [Harman et al.,|1999, |Vuilleumier et al., 2002]. For example, they recognize
a 3-D object by changing their viewpoint and examining different sides of the object [Tarr et al.,
1998]]. Inspired by this, we introduce seq-JEPA, a self-supervised world modeling framework that
combines joint-embedding predictive architectures [LeCunl [2022] with inductive biases for sequential
processing. seq-JEPA simultaneously learns two architecturally distinct representations: one that is
equivariant to a specified set of transformations, and another that is suited for invariance-demanding
tasks, such as image classification.

Specifically, our framework (Figure[T) processes a short sequence of transformed views (observations)
of an image. Each view is encoded and concatenated with an embedding corresponding to the relative
transformation (action) that produces the next observation in the sequence. These view-action pairs
are passed through a transformer encoder, a form of learned working memory, that outputs an
aggregate representation of them. A predictor head then conditions this aggregate representation on
the upcoming action to predict the representation of the next observation.

Our results demonstrate that individual encoded views in seq-JEPA become transformation/action-
equivariant. Through ablations, we show that action conditioning plays a key role in promoting
equivariant representation learning in the encoder network. In contrast, the aggregate representation
of views, produced at the output of the transformer, becomes largely transformation/action-invariant.
This emergent architectural disentanglement of invariant and equivariant representations is central to
seq-JEPA’s competitive performance compared to invariant and equivariant SSL methods on both
categories of tasks (Figure [3). Unlike most prior equivariant SSL methods [Lee et al., 2021} [Park
et al., 2022} |Dangovski et al., 2022, |Gupta et al.| 2023} |Garrido et al.| 2023, (Gupta et al., 2024,
Yerxa et al., 2024, our model does not rely on explicitly crafted loss terms or objectives to achieve
equivariance, nor is it instructed to learn the decomposition of two representation types. Instead, the
dual representation structure arises naturally from the model architecture and action-conditioned
predictive learning.

Beyond resolving the invariance-equivariance trade-off, seq-JEPA further benefits from processing
a sequence of observation views; we show that it performs well on tasks requiring integration
over sequences of observations. In one scenario, inspired by embodied vision in primates, our
model learns image representations without augmentations or masking, solely by predicting across
simulated eye movements (saccades). In another setting, it performs path integration over sequences
of actions—such as eye movements or 3D object rotations in 3DIEBench [|Garrido et al., [2023[]. Our
key contributions are as follows:

* We introduce seq-JEPA, a self-supervised world model that learns architecturally dis-
tinct equivariant and invariant representations through sequential prediction over action-
observation pairs, without requiring explicit equivariance losses or dual predictors.

* We empirically validate that seq-JEPA matches or outperforms existing invariant and equiv-
ariant SSL methods across tasks requiring either representational property.

* We demonstrate that seq-JEPA naturally supports tasks that involve sequential integration of
observations, such as predictive learning across saccades and path integration over action
sequences.



2 Method

2.1 Invariant and equivariant representations

Before presenting our architecture and training procedure, we briefly define invariance and equiv-
ariance in the context of SSL [[Dangovski et al, [2022] [Devillers and Lefort, [2022]]. Let 7 denote
a distribution over transformations, parameterized by a vector ¢. These transformations—such as
augmentations or masking—can be used to generate multiple views from a single image x. Let
x1 and o be two such views, produced by applying transformations ¢; and t, sampled from 7.
Additionally, let a denote the relative transformation that maps x; to x2. Additionally, we denote a
as a transformation that transforms x; to x5. We distinguish between ¢ (an individual transformation)
and a (an action), where the latter reflects the change from one view to another. Let f be an encoder
that maps inputs to a latent space. We say that f is equivariant to ¢ if:

Vte T, 3,u;s.t. ft(2)) = w(f(x)), D

where u; is a transformation in latent space corresponding to ¢. Equivariance can similarly be defined
in terms of relative transformations (actions):

Ya € T, 3,uq;s.t. flx2) = ua(f(z1)). )

As a special case, if u; and u, are identity functions, then f is invariant to the transformation:
f(t(x)) = f(z) or f(z2) = f(x1).

2.2 Architecture

Figurepresents the overall architecture of seq-JEPA. Let {x; f\i J{I be a sequence of views generated
from a sample 2 via transformations {t;}2/T*. The relative transformations (actions) {a;}}, are
defined as a; £ At; 41, i.e., the transformation mapping x; to ;1. In our default setting, we use a
learnable linear projector to encode these actions.

A backbone encoder, f encodes the first M views, producing representations {z; }},. Except for
znr, each z; is concatenated with its corresponding action embedding and passed to a transformer
encoder g (no MLP projector is used after the encoder), which aggregates the sequence of action-
observation pairs. The transformer uses a learnable [AGG] token (analogous to the [CLS] token in
ViT [Dosovitskiy et al.l 2020]) to generate the aggregate representation:

zace = 9((z1,a1), (22,a2)..., (zm—1,aMm=1), 2M) ©)

This aggregate representation z4c¢ is then concatenated with the final action embedding aj,
(corresponding to the transformation from x s to x741), and passed to an MLP predictor A to
predict the representation of x4 1:

Zvg1 = hMzaca, am)- “4)

The ground truth 2z, is computed using a target encoder—an exponential moving average (EMA) of
f. This target representation is passed through a stop-gradient operator (sg) to avoid representational
collapse [Grill et al.| 2020, |(Chen and He} 2021} |Assran et al., [2023]]. The training objective is to
maximize the cosine similarity between 25,1 and 2741 with the loss function:
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No additional loss terms or equivariance-specific predictors are used during training.
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2.3 Action and observation sets

To evaluate generalization across transformation types, we consider three sets of action-observation
pairs (Figure[2)). See Appendix [A-T]for details of each setup.

3D Invariant Equivariant Benchmark (3DIEBench). The 3DIEBench dataset [Garrido et al.} [2023]
is designed to evaluate representational invariance and equivariance. It includes 3D object renderings
with variations in rotation, floor hue, and lighting. In this benchmark, the action between two views
is the relative difference of these three factors of variation. We primarily study equivariance to SO(3)
rotations and secondarily to appearance factors of floor and light hue.

Hand-Crafted Augmentations. In this setting, we use transformed views generated via common
SSL augmentations (e.g., crop, color jitter, blur), and actions correspond to relative augmentation
parameters. We use CIFAR100 and Tiny ImageNet for experiments in this setup, and follow
EquiMod’s augmentation protocol [Devillers and Lefort, 2022].

Predictive Learning Across Saccades (PLS). Going beyond conventional transformations such
as augmentations or 3D rotations, we show that seq-JEPA can learn visual representations from a
sequence of partial observations thanks to architectural inductive biases—without relying on any
hand-crafted augmentations. Our PLS has a similar flavor to I-JEPA [Assran et al., [2023]] but does
not require engineered masking strategies. In PLS, we train seq-JEPA on sequences of patches
extracted from full-resolution images. For instance, with STL-10 dataset, we use small 32 x 32
patches to form the observation sequence. In this setting, actions correspond to the relative positions
between patch centers, simulating saccadic eye movements and inducing 2-D positional equivariance
to representations. To select fixation points, we adopt two biologically inspired techniques that
increase informativeness, reduce redundancy, and improve the downstream utility of the aggregate
representation (Figure [2)):

* Saliency-Based Fixation Sampling. Using DeepGaze IIE [Linardos et al., 2021]], we
extract saliency maps for each image and use them to probabilistically sample fixation points
Itti et al},[1998}, [Li, 2002} [Zhaoping, 2014]]. The maps are pre-computed and introduce no
training overhead.
¢ Inhibition of Return (IoR). To reduce spatial overlap between patches and emulate natural
exploration [Posner et al.}[T985], we implement IoR by zeroing out the sampling probability
of areas surrounding previously sampled fixations.




3 Experimental Setup

3.1 Compared methods and baselines

We compare seq-JEPA against both invariant and equivariant SSL baselines. Invariant methods include
SimCLR [Chen et al.|[2020], BYOL [Grill et al.| [2020]], and VICReg [Bardes et al.}[2022] and VICReg
with trajectory regularization [Wang et al., [2024a]. Equivariant methods include SEN [Park et al.,
2022]], EquiMod [Devillers and Lefort, [2022], SIE [Garrido et al., [2023|], and ContextSSL [Gupta
et al.| [2024]. For all baselines, architectural details are given in Appendix We also evaluate two
hybrid baselines based on our architecture:

* Conditional BYOL. A two-view version of seq-JEPA with no sequence aggregator, where
BYOL’s predictor is conditioned on the relative transformation between target and online
views. This encourages representations to encode transformation information.

e Conv-JEPA. A baseline for the saccades setting. It uses the same sequence of saliency-
sampled patches as seq-JEPA and predicts the final patch’s representation from each earlier
patch individually. These losses are summed across the pairs before backpropagation.

3.2 Training protocol

All models use ResNet-18 [He et al.l 2016] as the backbone encoder. For action conditioning, we use
a learnable linear projection to learn action embeddings (default action embedding is 128-d). The
sequence aggregator in seq-JEPA is a lightweight transformer encoder [[Vaswani et al., | 2017]] with
three layers and four attention heads. The predictor is a 2-layer MLP with 1024 hidden units and
ReLU activation. In order to control for and eliminate any performance gain resulting from using
a transformer encoder in seq-JEPA instead of an MLP projection head, we trained baselines that
typically use MLP projectors in two variants: (1) with original MLP projector; and (2) with the MLP
replaced by a transformer encoder and a sequence length of one. We did not see any benefit from
switching to transformer projectors in any of the baselines, and include the transformer-projector
results in Appendix All models are trained from scratch with a batch size of 512. We use 1000
epochs for 3DIEBench and 2000 epochs for other datasets to obtain asymptotic performance. We
use AdamW for models with transformer projectors (including seq-JEPA) due to its stability and
improved regularization in transformer training. For ConvNet-only models with MLP heads, we use
the Adam optimizer. Full hyperparameters are detailed in Appendix [A]

3.3 Evaluation metrics and protocol

To assess equivariance, we follow the protocol of |Garrido et al.|[2023]] and train a regressor on frozen
encoder representations to predict the relative transformation (action) between two views. We report
the R? score on the test set. In addition to action decoding R?, we also report retrieval-based metrics
including Mean Reciprocal Rank (MRR), Hit@1, and Hit@5 [Kipf et al.| [2020| |Park et al., [2022]
Garrido et al.l 2023] to evaluate the quality of the predictor. As a proxy measure of invariance,
we use top-1 classification accuracy of a linear probe on top of frozen representations. For all
baselines, probes are trained on encoder outputs. For seq-JEPA, we measure accuracies on top of the
aggregate representation (24 ¢ in Figure[I)) and report the number of observation views used during
training and inference. For completeness, we also report classification performance on top of encoder
representation (z; in Figure [T)) for seq-JEPA models in Appendix [B.8] Training details of evaluation
heads are given in Appendix[A.2]

4 Results

4.1 Quantitative evaluation on 3DIEBench

We use the 3DIEBench benchmark to quantitatively compare invariant and equivariant representations
in seq-JEPA with baseline methods. This benchmark allows us to measure equivariance through
decoding 3D object rotations while enabling invariance measurement through object classification.
Table[I] provides a summary of our evaluation on the 3DIEBench where equivariant methods have
been conditioned on rotation (a 4-D quaternion representing the relative rotation between two views).
In addition to the relative rotation between two views, in the last column we provide the R? score for
predicting individual transformation parameters from representations of a single view. For seq-JEPA,
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we trained models with varying training sequence lengths (denoted by My, in the table) and measure
the linear classification performance on top of aggregate representations with different inference
lengths (denoted by M,q;).

Among invariant methods, BYOL achieves the highest classification accuracy, yet does not offer
a high level of equivariance. Adding a linear trajectory regularization loss to VICReg Wang et al.
[2024a] without using ground-truth transformations improves over VICReg, which shows that
imposing geometric priors can improve both invariant and equivariant performance—even when
these priors do not fully materialize in the environment, e.g., when we have non-smooth angle
changes as in 3DIEBench. Among equivariant baselines, SIE and ContextSSL yield strong rotation
prediction performance due to their specialized equivariance predictors and loss functions, but
underperform in classification. EquiMod and SEN offer better classification performance, yet
compromise equivariance. In contrast, seq-JEPA achieves strong performance in both, matching
the best rotation R? scores while exceeding baselines in classification, with gains increasing with
inference sequence length M,,,;. Ablating action conditioning leads to a sharp drop in equivariance
but retains classification accuracy, confirming our hypothesis that action-conditioned sequential
aggregation enables a segregated invariant-equivariant representation structure. For additional results
on 3DIEBench including MRR, Hit@1, and Hit@5 metrics, performance of models with varying
training and inference sequence lengths and models conditioned on both rotation and color, and
evaluation on an out-of-distribution (OOD) set of 3DIEBench see Appendices [B.T]to

4.2 Qualitative evaluation on 3DIEBench

To visualize equivariance in representational space, we retrieve the three nearest representations of a
query image from the validation set of 3DIEBench (Figure[d). While all models retrieve the correct
object category, only seq-JEPA and SIE consistently preserve rotation across all retrieved views,
consistent with their high R? scores. Next, we projected encoder and aggregate representations
using 2D UMARP (Figure[5). The left panel shows encoder representations colored by class label,
while the middle panel displays the same encoder representations colored by rotation angle. The
smooth color gradation across the map within each class cluster in the middle panel suggests that
the encoder captures rotation angle as a continuous factor, implying equivariance to rotation (e.g.,
the red class in the bottom-right corner of the right panel and the corresponding part in the middle
panel). The right panel shows aggregate representations colored by class label. Comparing the
class-colored plots (left and right panels), we observe that both encoder and aggregate representations
contain class information. However, when we aggregate multiple views of a sample, some of the
intra-class variability (resulting from transformations such as rotation) is eliminated, causing each
class’ representational cluster to become more homogeneous. This aggregation procedure likely
reduces variation due to rotation and makes the representations more invariant, resulting in decreased
intra-class spread and increased inter-class distance. We create a similar UMAP visualization for seq-
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Table 2: Evaluation with hand-crafted augmentations on CIFAR100 and Tiny ImageNet; equivariance is mea-
sured by predicting relative transformation parameters associated with crop, color jitter, or blur augmentations.
For all seq-JEPA models, Myq = 5.

CIFAR100 Tiny ImageNet
Conditioning | Method Classification (top-1)  Crop (R?) Jitter (R?) Blur (R?) || Classification (top-1)  Crop (R?) Jitter (R?) Blur (R?)
Invariant
SimCLR 61.72 0.56 0.18 0.04 34.29 0.30 0.08 0.13
- BYOL 62.17 0.39 0.05 -0.01 35.70 0.17 0.01 0.16
VICReg 61.35 0.49 0.11 -0.06 35.29 031 0.05 0.19
VICRegTraj 61.07 0.46 0.14 0.02 34.95 0.28 0.09 0.16
Equivariant
SEN 61.94 0.65 0.51 0.85 36.01 0.24 0.48 0.87
coptnes | EQUMod 61.80 0.59 0.49 0.74 36.75 0.38 0.46 0.86
SIE 58.81 034 026 0.53 31.37 026 0.56 0.88
Conditional BYOL 60.63 0.56 0.46 0.73 35.49 0.34 0.54 0.87
SEN 61.56 0.66 0.15 0.10 35.95 0.24 0.11 0.49
Crop EquiMod 61.77 0.62 0.15 0.01 36.83 0.26 0.12 0.30
SIE 57.55 0.69 0.11 0.25 32.38 034 0.05 0.14
Conditional BYOL 60.17 0.55 0.10 -0.01 37.07 0.22 0.01 0.24
SEN 6178 0.50 0.52 0.02 36.59 0.26 0.50 0.21
Color jitter EquiMod 61.53 0.44 0.50 -0.02 37.18 0.20 0.52 0.29
SIE 59.29 048 0.59 0.06 34.37 0.39 0.62 0.35
Conditional BYOL 61.30 0.36 0.52 0.02 37.93 0.24 0.62 0.30
SEN 61.47 043 0.15 0.84 34.62 0.16 0.08 0.79
Blur EquiMod 62.72 041 0.15 0.74 36.12 0.24 0.10 0.91
SIE 57.66 0.40 0.07 0.71 31.00 026 0.05 0.85
Conditional BYOL 60.74 0.36 0.11 0.69 36.17 0.19 0.02 0.85
Invariant-Equivariant
cuopriersne | seq-JEPA (Mg, = 1) 52.90 0.77 0.52 0.23 37.10 0.64 0.49 0.89
cropritersir | seq-JEPA (M, = 2) 60.17 0.78 0.64 0.88 35.56 0.69 0.42 0.93
croprriversse | seq-JEPA (M;, = 3) 58.33 0.79 0.63 0.92 34.85 0.67 0.64 0.96
Crop seq-JEPA (M, = 2) 59.32 0.78 0.01 0.10 35.74 0.70 0.12 0.46
Color Jitter | seq-JEPA (M, = 3) 58.62 0.68 0.68 0.29 35.21 0.60 0.66 0.62
Blur seq-JEPA (M, = 3) 56.82 0.71 0.15 0.74 35.79 0.58 0.22 0.97
- seq-JEPA (M, = 2) 58.37 0.64 0.14 0.16 35.97 0.52 0.18 0.47

JEPA with ablated rotation conditioning in Appendix [B.9|to highlight the role of action conditioning
in achieving equivariance to rotation.

4.3 Evaluation with Hand-Crafted Augmentations

We assess invariance and equivariance under hand-crafted augmentations by training on CIFAR100
and Tiny ImageNet (Table [2). Models with action conditioning are trained conditioned on crop,
color jitter, blur, or all three (indicated in the first column of the table). seq-JEPA consistently
achieves higher equivariance than both invariant and equivariant baselines across all transformations.
Notably, except for the model trained on CIFAR-100 and conditioned on blur, the best equivariance
performance for a given augmentation is achieved when the model is specialized and conditioned
only on that augmentation. Furthermore, ablating actions (last row in the table) causes seq-JEPA to
lose its equivariance across transformations compared to action-conditioned models. Overall, our
model outperforms both invariant and equivariant families in terms of equivariance, while being
competitive in terms of classification performance. For additional results with varying training and
inference sequence lengths, see Appendix [B.7]

4.4 Predictive Learning across Saccades and Path Integration

In our third action-observation setting, we consider predictive learning across simulated eye move-
ments to exhibit seq-JEPA’s ability in leveraging a sequence of partial observations to learn visual
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representations. In Table 3] seq-JEPA reaches 83.44% top-1 accuracy on STL-10, comparable to
SimCLR (85.23%) trained with full-resolution images and strong augmentations. This gap narrows
further when increasing the inference sequence length from M,,; = 4 to M,,; = 6. Ablating action
conditioning causes the accuracy on top of the aggregate representations to drop sharply, indicating
that 2-D positional awareness is essential to forming semantic representations across simulated eye
movements. Compared to Conv-JEPA—which accumulates prediction losses pairwise—seq-JEPA
performs better in classification, highlighting the importance of sequence aggregation when dealing
with partial observations in SSL. Further ablations show that saliency-driven sampling and IoR are
critical for forming informative, non-overlapping patch sequences and subsequently a high-quality
aggregate representation. Interestingly, while random uniform patch sampling negatively impacts
classification accuracy due to lower semantic content, it results in the highest positional equivariance
as the model samples patches and corresponding saccade actions from a more diverse set of positions
across the entire image, not just the salient regions. The UMAP projections for PLS with and without
action conditioning in Appendix [B.9]further underscore the role of action conditioning in enabling
positional equivariance.

Path Integration. In the context of eye movement-driven or any sequential observations, an ability
that naturally arises from predictive learning is path integration [McNaughton et al.| [2006], i.e.,
predicting the cumulative transformation/action from a sequence of actions. We evaluate this task in
both eye movements in PLS (visual path integration) and object rotations in 3DIEBench (angular path
integration). As shown in Figure [6] seq-JEPA demonstrates strong performance in both settings, with
performance degrading gracefully as sequence length increases. Ablating action conditioning causes
path integration to fail, whereas ablating the visual stream has only a minor impact—highlighting
that action information is the dominant signal for this task. Full details of the path integration setup

are provided in Appendix
4.5 Action Conditioning Ablations

To better understand the mechanisms underlying seq-JEPA’s invariant-equivariant representation
learning and role of action conditioning, we perform a set of ablation experiments on 3DIEBench.
Specifically, we study: (i) the role of action conditioning in the transformer and predictor; (ii) the im-
pact of action embedding dimensionality. Table ] summarizes our ablation results. Removing action
conditioning entirely causes a significant drop in equivariance (R? from 0.71 to 0.29), although classi-
fication accuracy remains high thanks to sequence aggregation and segregated invariance-equivariance
in our model. Conditioning only the transformer or only the predictor leads to intermediate results,
with predictor conditioning proving more critical for equivariance. We also vary the dimensionality of
the learnable action embeddings: performance saturates around the default size of 128, with smaller
sizes (e.g., 16 or 64) already sufficient to capture the rotation structure.

4.6 Scaling Properties: Role of Training and Inference Sequence Lengths

We study the effect of both training and inference sequence lengths on performance across tasks, i.e.,
scalability of seq-JEPA in terms of context length (Figure[7). We draw inspiration from recent findings
in foundation models, where increased training and inference context—whether in text [Brown et al.}
2020, [Touvron et al.,[2023]], vision [Zellers et al., 2021} /Chen et al.,[2021]], or video [Bain et al.| 2021},
Arnab et al.| 2021]—consistently leads to stronger representations.



Table 4: Ablation results for action condition- i ///d—* 80 }»//.*»—-—*-
ing (3DIEBench). All models use M, = 3, <
Myar = 5 (results over three random seeds). —~— T e

—»— 3DIEBench —=— STLIO (PLS)
—=— STLIO (PLS) —+— CIFARI00
—+— CIFAR100 40 —+— TinylmageNet

Variant Top-1 Acc. (%) Rotation (R?) ‘\&:r—ﬁny‘\msqewl P
Act. conditioning i 2 3 i 2 3 4 5 1234567
None 87.36 + 0.7 0.29 + 0.04 Train Seq Length (M) Train Seq Length (M,,) Val Seq Length (M,4))
No predictor cond. 87.17+£0.3 0.37 £ 0.06 N . .

No transformer cond. 8633 0.1 0.53 £ 0.05 Figure 7: Effect of training and inference sequence length
Act. embedding dim. on seq-JEPA’s performance; left:: Equivariant performance
agim = 16 8620+ 04 070+ 0.01 R2 SN lenoth: middle: Classificati
agim = 64 87.11 £ 0.2 0.70 = 0.02 ( ) versus training sequence length; mi e: assification
agim = 128 (default) 8741£05  0.71+0.02 accuracy versus training sequence length; right: Classifica-
agim = 256 87.26+0.6  0.72+0.00

tion accuracy versus inference sequence length.

We observe that equivariance generally improves with longer training sequences (left panel). A
possible explanation for this observation is the presence of more transitions (z;, a;, z;+1) in working
memory, which means the predictor has access to a richer context z,g. This enables the predictor to
more accurately approximate the transition p(z; 41 | Zagg,i, @;). Because accurate prediction requires
the model to preserve and utilize information about a;, the encoder is implicitly encouraged to learn
structured, more equivariant representations.

Classification performance on 3DIEBench and STL-10 (middle panel) benefits from a longer training
sequence. In contrast, on CIFAR100 and Tiny ImageNet with synthetic augmentations, longer
training sequences slightly decrease classification performance. We hypothesize that leveraging and
aggregating a sequence of action-observation pairs, i.e. seq-JEPA’s architectural inductive bias, is
most effective in settings where the downstream task benefits from sequential observations. In the
case of object rotations in 3DIEBench, seeing an object from multiple angles is indeed beneficial in
recognizing the object’s category, which explains the improved classification accuracy with increased
training sequence length. Similarly, in the case of predictive learning across saccades, each eye
movement and its subsequent glance provides additional information that can be leveraged for
learning a richer aggregate representation.

At inference time, all datasets benefit from longer context lengths (M,4;), confirming that richer
aggregate representations yield stronger performance (right plot). This scalability via sequence
lengths opens avenues for efficient representation learning with small foveated patches in lieu of
full-frame inputs, mirroring how foundation models scale with input tokens at test time. Together with
our transfer learning results on ImageNet-1k (Appendix [B.TT)), these findings suggest that seq-JEPA’s
architectural inductive bias enables graceful scaling via longer sequence lengths.

5 Related Work

Non-Generative World Models and Joint-Embedding Predictive Architectures. Non-generative
world models predict the effect of transformations or actions directly in latent space, avoiding
reconstruction in pixel space. This includes contrastive SSL. methods that model transformed views
from context representations [[van den Oord et al., 2019, |Gupta et al.| |2024]], as well as approaches in
model-based reinforcement learning (RL) to improve sample efficiency, generate intrinsic rewards,
or capture environment transitions [Schwarzer et al.| 2021} |[Khetarpal et al., [2025] N1 et al.| 2024,
Tang et al.} 2023} |Guo et al.} 2022]]. Joint-embedding predictive architectures [LeCun, |[2022] form a
subclass of non-generative world models. They introduce an asymmetric predictor conditioned on
transformation parameters to infer the outcome of an action applied to a latent view. Examples include
I-JEPA[Assran et al., 2023]], which predicts masked regions from positional cues, and IWM [Garrido
et al.| 2024], which conditions on augmentation parameters. JEPAs have been recently extended to
physical reasoning [Garrido et al., 2025] and offline planning [Sobal et al.| 2025], illustrating the
framework’s versatility in representation learning and world modeling.

Equivariant SSL. Equivariant SSL methods aim to retain transformation-specific information in
the latent space, typically by augmenting invariant objectives with an additional equivariance term.
Some approaches directly predict transformation parameters [Lee et al., 2021} |Scherr et al.| 2022,
Gidaris et al., 2018, |Gupta et al.| 2024, Dangovski et al.,2022]. Methods such as EquiMod [Devillers
and Lefort, [2022] and SIE [Garrido et al., 2023|] predict the effect of a transformation in latent space
via a predictor in addition to their invariant objective. SEN [Park et al.| [2022]] similarly predicts



transformed representations but omits the invariance term. Xiao et al.| [2021]] use contrastive learning
with separate projection heads for each augmentation, treating same-augmentation pairs as negatives.
ContextSSL [Gupta et al.} 2024] conditions representations on both current actions and recent context
and employs a dual predictor for transformation prediction to avoid collapsing to invariance. Other
approaches [Shakerinava et al.l 2022| |Gupta et al., [2023| |Yerxa et al.| 2024]] do not require explicit
transformation parameters but instead enforce equivariance by applying the same transformation to
multiple view pairs and minimizing a distance-based loss. Action-conditioned JEPAs incorporate
augmentation parameters and mask positions by conditioning the predictor to induce equivariance
without additional objectives [|Garrido et al.,|2024]]. (Chavhan et al.[[2023]] use an ensemble of heads
trained on top of a pre-trained SSL encoder to span a diverse spectrum of transformation sensitivities
across the latent spaces of each head. Downstream probes then learn to linearly combine these feature
heads depending on the desired invariance-equivariance trade-off.

Positioning of Our Work. seq-JEPA belongs to the family of joint-embedding predictive architectures
and is a non-generative world model. Unlike most equivariant SSL methods, seq-JEPA does not rely
on an equivariance loss or transformation prediction objective, nor does it require view pairs with
matched transformations. Instead, it leverages action conditioning and architectural inductive biases
to learn two separate invariant and equivariant representations. In contrast to ContextSSL, which
extends the two-view contrastive setting of contrastive predictive coding|van den Oord et al.|[2019]
using a transformer decoder projector conditioned on previous views via key-value caching, seq-JEPA
operates on sequences of action-observation pairs in an online end-to-end manner by incorporating
a sequence model (e.g. a transformer encoder) as a learned working memory during both training
and inference. Moreover, while ContextSSL aims to adapt equivariance to recent transformations
by dynamically modifying the training distribution, seq-JEPA is designed to explicitly learn both
invariant and equivariant representations with respect to a specified set of transformations, and is also
well-suited for downstream tasks that require multi-step observation aggregation.

6 Limitations and Future Perspectives

We have validated viability of seq-JEPA across a range of transformations in the image domain. Here,
we discuss limitations and possible future directions. First, seq-JEPA is capable of autoregressive
prediction in time, and therefore, can be leveraged for autoregressive latent planning in control tasks.
Second, the transformer-based aggregator in seq-JEPA could support multi-modal fusion across
language, audio, or proprioceptive inputs—enabling multi-modal world modeling and generalization.
Third, while our results show clear benefits from longer sequences, we have experimented with
relatively short training and inference sequence lengths as the ResNet backbone is also trained
end-to-end. The sequence scaling trends observed in the paper suggest that seq-JEPA can benefit
from longer context windows over representations of pre-trained backbones as in [Pang et al.| 2023,
Lin et al.; 2024]. Fourth, our method assumes access to a known transformation group (e.g., SO(3)
for 3D rotations). Designing group-agnostic or learned transformation models [Finzi et al., 2021]]
without access to transformation parameters or pairs of same transformation is an open challenge
in equivariant SSL that future work may tackle. Finally, our preliminary ImageNet-1k transfer
results (Appendix point to potential for broader generalization. Scaling seq-JEPA to larger
foveated image settings or video and multi-modal datasets such as|Song et al.| [2023]] could support
the development of lightweight, saliency-driven agents capable of learning efficiently from partial
observations in embodied settings with a limited field of vision.
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A Implementation Details

A.1 Data preparation

3DIEBench. The original 256 x 256 images are resized to a 128 x 128 resolution for all experiments.
Normalization is done using the means and standard deviations in |Garrido et al.[[2023]], i.e., u =
[0.5016, 0.5037, 0.5060] and o = [0.1030, 0.0999, 0.0969] for the three RGB channels, respectively.

CIFAR100. We use 32 x 32 images with normalization parameters typically used in the literature,
i.e., ;1 =1[0.4914,0.4822,0.4465] and o = [0.247,0.243, 0.261]. For data augmentation, we follow
EquiMod’s augmentation strategy.

Tiny ImageNet. The training set consists of 100000 ImageNet-1k images from 200 classes (500 for
each class) downsized to 64 x 64. The validation set has 50 images per class. We use normalization
parameters p = [0.4914, 0.4822, 0.4465] and o = [0.247,0.243, 0.261], for the three RGB channels,
respectively. For data augmentation, we use the same augmentation parameters as CIFAR100 with
the kernel size of Gaussian blur adapted to the 64 x 64 images.

STL10. In order to extract the saliencies, we resize images to 512 x 512, feed them to the pre-
trained DeepGaze IIE [Linardos et al., 2021]], resize the output saliencies back to 96 x 96, and store
them alongside original images. We use normalization parameters p = [0.4467,0.4398, 0.4066],
o = [0.2241,0.2215,0.2239] for the three RGB channels, respectively. After sampling fixations
from saliencies, the patches that are extracted from the image to simulate foveation are 32 x 32
(compared to the full image size of 96 x 96). For IoR, we zero-out a circular area with radius of 16
around each previous fixation.

Transformation parameters. For 3DIEBench, we use the rotation and color parameters provided
with images for action conditioning as done in|Garrido et al.|[2023]. For the augmentation setting,
we use the parameters corresponding to each of the three augmentations and form the action as the
relative augmentation vector between two images. For crop, we use four variables, i.e., vertical
and horizontal coordinate, and height and width. For color jitter, we use four variables: brightness,
contrast, saturation, and hue. For blur, we use one variable: the standard deviation of the blurring
kernel. In predictive learning across saccades, the action is a 2-d vector, i.e., the normalized relative
(z,y) coordinate between two patches.

A.2 Training and evaluation details

Additional Training Details. We used the PyTorch framework for training all models. For experi-
ments that use CIFAR100 and low-resolution STL-10 patches in predictive learning across saccades,
we use the CIFAR variant of ResNet-18. For models trained with AdamW, we used with default 3;
and S35, a weight decay of 0.001, and a learning rate of 4 x 10~% with a linear warmup for 20 epochs
starting from 10~° followed by a cosine decay back to 10~°. For models trained with Adam, we use
the Adam optimizer with a learning rate of 10~3, default 3; and [32, and no weight decay.

Protocols for training evaluation heads. For linear probing, we follow a common SSL protocol
and train a linear classifier on top of frozen representations with a batch size of 256 for 300 epochs
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using the Adam optimizer with default hyperparameters. For action prediction, we follow a similar
protocol as SIE [Garrido et al.l 2023]]. Specifically, for rotation, color jitter, and crop, we train an
MLP regressor with a hidden dimension of 1024 and ReLU activation for 300 epochs. For color (in
3DIEBench), blur (in the augmentation setting), and position (in predictive learning across saccades),
we use a linear regressor and train it for 50 epochs. For path integration experiments, the same
regressor architectures as the equivariance evaluation heads are used, i.e., the MLP for angular path
integration and the linear regressor for saccade path integration. All regression heads are trained
using the Adam optimizer with default hyperparameters.

Hardware. Each experiment was run on a single NVIDIA A100 GPU with 40GB of accelerator
RAM.

Compute cost and FLOP analysis. We report pretraining compute time across methods (see Table 3.
All experiments are run under the same configuration: a single A100 GPU, 128 x 128 resolution, batch
size 512, for 1000 epochs on 3DIEBench. seq-JEPA with a sequence length of one has similar runtime
to other baselines (e.g., BYOL, SimCLR), while seq-JEPA with sequence length of three incurs a
moderate increase in wall-clock time (15.1 GPU-hours) due to encoding additional action-view pairs.

Table 5: GPU-Hour comparison across methods

Method A100 pretraining GPU hours
SimCLR 11.4
BYOL 11.1
SIE 12.0
VICReg 10.9
EquiMod 11.8
seq-JEPA (train seq len = 1) 12.3
seq-JEPA (train seq len = 3) 15.1

seq-JEPA’s inference cost is primarily governed by two factors: sequence length and input resolution.
Below, we report detailed FLOP counts (in Gigaflops) per forward pass of a single datapoint across a
range of configurations (Note: these reflect inference-time cost).

Table 6: FLOPs for different seq-JEPA configurations (in gigaflops)

Resolution / Config Encoder only Post-aggregator

seqlen=1 seq len =2 seqlen=3 seqlen=4 seqlen=8
Each view is 128 x 128 0.60G 0.63G 1.24G 1.85G 2.46G 4.9G
Views of 64 X 64 vs. full image (224 X 224) 1.82G (224) / 0.15G (64) 0.18G 0.34G 0.51G 0.67G 1.32G
Views of 84 x 84, vs. full image (224 x 224) 1.82G (224) / 0.30G (84) 0.33G 0.64G 0.95G 1.26G 251G

We observe that for single-view inference at 128 x 128 resolution, the encoder requires only 0.60G
FLOPs, which matches the compute cost of standard SSL baselines such as SImCLR and BYOL. As
sequence length increases, the additional compute cost grows sub-linearly as additional views should
be encoded and aggregated. For example, lengths 2 and 3—where invariant performance improves
substantially—incur ~1.2G and ~1.85G FLOPs, respectively. The cost can be offset by reducing
input resolution. In our saccade-based setup, we can feed low-resolution foveal glimpses (e.g., 64x 64
or 84 x84 crops sampled via saliency maps), which require only 0.15G-0.30G FLOPs per view.
This enables the use of longer sequences at an overall compute cost comparable to full-resolution,
single-view pipelines (e.g., compare the FLOPs of aggregating eight 64 x64 crops with encoding a
single 224 x224 image in the second row of Table [6).

A.3 Architectural details
Below, we describe the architectural details and hyperparameters specific to each baseline.

BYOL. We use a a projection head with 2048-2048-2048 intermediate dimensions. The predictor
has a hidden dimension of 512-d with ReLU activation. We use the same EMA setup outlined in the
original paper [[Guo et al.,2020], i.e., the EMA parameter 7 starts from 7Tpyse = 0.996 and is increased
following a cosine schedule.

17



SimCLR. We use a temperature parameter of 7 = 0.5 with a projection MLP with 2048-2048-2048
intermediate dimensions.

VICReg. We use A\jpy = Ay = 10, Ac = 1, and a projection head with 2048-2048-2048 intermedi-
ate dimensions.

VICRegTraj. We use the same architecture as VICReg and add a trajectory loss (Equation 2
in|Wang et al.|[2024a]]) with a coefficient A\;.q; = 0.01.

Conditional BYOL. The architecture is the same as BYOL, except that the predictor also receives
the normalized relative transformation parameters. We use a linear action projector of 128-d and the
same EMA setup as BYOL.

SIE. For both invariant and equivariant projection heads, we use intermediate dimensions of 1024-
1024-1024. For the loss coefficients, we use Aipy = Ay = 10, Aequi = 4.5, and A\c = 1. We use the
hypernetwork architecture for all experiments.

SEN. We use a temperature parameter of 7 = 0.5 with a projection MLP with 2048-2048-2048
intermediate dimensions.

EquiMod. We use the version based on SimCLR (both invariant and equivariant losses are con-
trastive with 7 = 0.1 and have equal weights). The projection head has 1024-1024-128 intermediate
dimensions. We use a linear action projector of 128-d.

ContextSSL. We use the pre-trained weights provided by the authors (trained for 1000 epochs) and
follow their evaluation protocol on 3DIEBench.

seq-JEPA. For the sequence aggregator, we use a transformer encoder with three layers, four
attention heads, and post-normalization. For the predictor, we use an MLP with a hidden layer of
1024-d and ReL.U activation. The linear action projector in our default setting is 128-d. We use the
same EMA setup as BYOL.

B Additional Experimental Results

B.1 Evaluation results on 3DIEBench for models conditioned on rotation and color

Table [7 reports performance of seq-JEPA and several equivariant baselines when conditioned on
both rotation and color in 3DIEBench. All methods suffer a drop in classification performance and
become highly sensitive to color. Similar performance degradations have been previously observed
with 3DIEBench [Garrido et al.| 2023} |Gupta et al.,|2024]], though without a clear explanation. One
plausible explanation aligned with Principle II in|Wang et al.|[2024b], is that color in 3DIEBench,
i.e., floor and light hue, are weakly correlated with class labels in 3DIEBench (low class relevance).
Therefore, forcing the encoder to encode color information would cause class information to be lost,
resulting in degradation of classification accuracy.

Table 7: Evaluation on 3DIEBench for rotation and color prediction (equivariance) and linear probe classification
(invariance). All models are conditioned on both rotation and color.

Method Classification (top-1)  Rotation pred. (R?) Color pred. (R?)
SEN 82.17 0.29 0.96
EquiMod 82.58 0.27 0.95
Conditional BYOL 81.95 0.38 0.94
SIE 75.34 0.46 0.97
seq-JEPA (Mg, = 4, Mg = 5) 79.31 0.52 0.97

B.2 Measuring invariance of aggregate representations
In order to have a more direct measure of invariance of the aggregate representation, we trained a

model on 3DIEBench with M,,,; = 3 and rotation conditioning, then attempted to predict the individ-
ual rotation parameters of each input view from zagg. To prevent leakage of rotation information
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during prediction, all action embeddings were zeroed out. The resulting mean R? score obtained by
predicting individual rotations of the three views using z4¢ ¢ is 0.141 £ 0.002; indicating that the
aggregate representation contains little to no rotation-specific information.

B.3 Results with a transformer projector instead of an MLP projector for baselines

By using a transformer projector for baselines that normally use an MLP projector, we tested whether
transformer-based projectors alone account for any performance gains. We did not see any benefit
from switching to transformer projectors in any of the baselines. Table [§] shows the transformer-
projector results for the baselines on 3DIEBench (plus sign indicates a transformer projector).

Table 8: Comparison of baselines trained with transformer projectors on 3DIEBench.

Setting\Metric ~ Top-1 Acc  R? (rel rot)  R2 (abs rot)
SimCLR+ 77.92 0.32 0.48
BYOL+ 81.05 0.09 0.16
VICReg+ 75.10 0.15 0.28
VICRegTraj+ 77.82 0.24 0.36
SEN+ 81.74 0.31 0.44
Cond. BYOL+ 73.62 0.27 0.36

B.4 Out-of-distribution results

We created an OOD set for 3DIEBench to enable evaluation on unseen transformations. The original
dataset samples rotations from (—7/2,7/2). Our OOD test set instead uses the disjoint range
(=, —m/2) U (7/2, ), ensuring no angular overlap with the training set. Rendering this dataset
took around five hours on a single A6000 GPU. From Table 0] we see that all methods fail at
OOD rotation decoding (with R%s even reaching near —1.0). The sharp drop in R? values may
be attributed to a domain shift in transformation geometry: while representations are well-aligned
with in-distribution rotation trajectories (inside the range (—7 /2, 7/2)), they are not geometrically
structured to extrapolate beyond this range to (—m, —7/2) U (7/2, 7). Despite the failure in OOD
equivariance generalization, seq-JEPA exhibits a graceful degradation in invariant classification
accuracy compared to other baselines. We hypothesize that this robustness stems from its sequence-
level aggregation mechanism: even when latent representations become less equivariant under
OOD transformations, aggregation across multiple views still filters out transformation-specific
variability and recovers shared semantic content. Thus, seq-JEPA maintains object identity better
under distribution shift, indicating that aggregation over input views promotes invariance, even when
equivariance is imperfect.

Table 9: Unseen Transformation Generalization (OOD Rotations)

Setting\Metric ~ Top-1 Acc (drop) OOD R? (rel rot) OOD R? (abs rot)
SimCLR 63.86 (-17.27) -0.41 -0.201
BYOL 55.68 (-27.22) -0.25 -0.198
VICReg 61.28 (-19.20) -0.31 -0.206
SEN 60.03 (-23.40) -0.41 -0.201
SIE 60.19 (-17.30) -0.63 -0.200
EquiMoD 58.54 (-25.75) -0.45 -0.206
Cond. BYOL 57.91 (-24.70) -0.42 -0.202
VICRegTraj 62.94 (-18.32) -0.36 -0.214
seq-JEPA (1,1) 61.53 (-22.55) -0.69 -0.199
seq-JEPA (3,3) 65.03 (-21.11) -0.71 -0.211

19



B.5 Equivariance predictor evaluation metrics

Following the protocol in|Garrido et al.| [2023], we compute and report MRR, Hit@1, and Hit@5
metrics to evaluate predictor quality on the 3DIEBench validation set for seq-JEPA and two predictor-
based baselines (Table [T0). These results confirm that seq-JEPA achieves strong equivariance
performance not only in terms of R, but also in top-rank retrieval metrics.

Table 10: Predictor evaluation metrics on 3DIEBench validation set.

Setting MRR H@l H@S5
SIE 0319 0.215 0.404
EquiMod 0.136  0.037 0.186

seq-JEPA (1,1) 0.340 0.241 0.442
seq-JEPA (3,3) 0.388 0.273 0.468

B.6 Training with more compute

To examine convergence under a high-compute regime, we trained five models using 2000 epochs,
256 x 256 resolution, and batch size 1024. Each of these experiments was run on 4 A100 GPUs (our
main experiments were run on a single A100). The evaluation results (Table confirm that seq-
JEPA achieves a strong performance in the high-compute regime without suffering from a trade-off
between invariance and equivariance. Importantly, our method achieves near-saturated performance
already in the low-compute regime, indicating that it requires fewer steps for convergence and is less
sensitive to input resolution and batch size than competing methods.

Table 11: Evaluation results under the high-compute regime.

Setting Top-1 Acc  R? (relrot) R? (absrot) MRR H@1 H®@5
SIE 82.652 0.721 0.764 0411 0.287 0.490
SimCLR 85.961 0.473 0.609 - - -

EquiMod 86.833 0.492 0.625 0.154 0.048 0.201
seq-JEPA (1,1) 85.370 0.661 0.713 0.365 0.263 0.447
seq-JEPA (3,3) 87.581 0.736 0.781 0419 0.282 0483

B.7 Complete evaluation results for linear probing on top of aggregate representations

We provide our complete evaluation results for linear probing on top of seq-JEPA’s aggregate repre-
sentations for our three transformation settings with different training and inference sequence lengths.
Figure 8] shows the top-1 accuracy on 3DIEBench models conditioned on rotation. Figure [9] shows
top-1 accuracy on STL-10 for models trained via predictive learning across saccades. Figures[I0]
and [1 1| show top-1 accuracy on CIFAR100 and Tiny ImageNet, respectively, with different types
of action conditioning (crop, color jitter, blur, or all three). These heatmaps reflect the same trends
observed in Figure[7)and discussed in Section[4.6] illustrating the consistent effect of sequence length
on representation quality.

B.8 Comparison of evaluation results on encoder representations and aggregate
representations

For completeness, we provide linear probe classification on encoder representations for different
transformation settings in Table[I2]and compare them with accuracy on aggregate representations
for different inference evaluation lengths. The aggregate representation generally achieves a much
higher classification performance thanks to the architectural inductive bias in seq-JEPA.

B.9 Additional UMAP Visualizations

In Figure 12} we visualize the UMAP projections of seq-JEPA representations trained on 3DIEBench
without action conditioning. Similarly, Figure|14|shows projections for models trained on STL-10
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Figure 8: seq-JEPA’s performance on 3DIEBench with rotation conditioning; the heatmap shows
linear probe accuracy on top of aggregate representations for different training and inference sequence
lengths.
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Figure 9: seq-JEPA’s performance on STL-10 with predictive learning across saccades; the heatmap
shows linear probe accuracy on top of aggregate representations for different training and inference
sequence lengths.
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Figure 10: seq-JEPA’s performance on CIFAR100 with different types of action conditioning (crop,
color jitter, blur, or all three); the heatmap shows linear probe accuracy on top of aggregate represen-
tations for different training and inference sequence lengths.
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Figure 11: seq-JEPA’s performance on Tiny ImageNet with different types of action conditioning
(crop, color jitter, blur, or all three); the heatmap shows linear probe accuracy on top of aggregate
representations for different training and inference sequence lengths.

via predictive learning across saccades, also without action conditioning. Compared to the action-
conditioned counterparts (Figures [3]and [I3)), these projections exhibit weaker or no smooth color
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Table 12: Comparison of seq-JEPA classification performance across datasets and conditioning. Top-1
classification accuracy is reported for z,.cs and 2444, with varying inference lengths My ;.

Dataset Conditioning My | Zres Zagg
‘ A[(i’l)(ll =1 Meval =3 Afm)a,l =5

3DIEBench None 3 80.91 81.61 86.05 87.36
3DIEBench Rotation 1 84.88 84.08 85.34 85.31
3DIEBench Rotation 3 82.49 81.72 85.32 87.41
3DIEBench Rotation + Color 4 74.88 71.14 75.97 79.31
CIFAR100 None 2 53.00 51.60 57.05 58.37
CIFAR100 Crop + Jitter + Blur 1 56.23 54.24 52.90 52.92
CIFAR100 Crop + Jitter + Blur 2 52.07 53.07 59.34 60.35
CIFAR100 Crop + Jitter + Blur 3 46.31 49.48 57.60 58.33
CIFAR100 Crop 2 52.62 52.06 58.07 59.32
CIFAR100 Color Jitter 3 54.92 50.21 57.20 58.62
CIFAR100 Blur 3 5141 48.69 55.54 56.72
Tiny ImageNet None 2 32.84 30.48 35.03 35.97
Tiny ImageNet Crop + Jitter + Blur 1 33.03 32.34 36.14 37.07
Tiny ImageNet Crop + Jitter + Blur 2 27.20 30.57 34.99 35.56
Tiny ImageNet  Crop + Jitter + Blur 3 24.74 28.84 33.78 34.68
Tiny ImageNet Crop 2 31.13 30.89 35.07 35.69
Tiny ImageNet Color Jitter 3 31.85 29.05 34.27 35.21
Tiny ImageNet Blur 3 27.20 28.83 34.82 35.79
STL-10 None 4 61.38 62.21 69.06 70.45
STL-10 Position 4 81.20 71.45 81.53 83.44
STL-10 Position (no saliency) 4 79.29 63.14 76.93 79.85
STL-10 Position (no IoR) 4 72.49 68.95 76.84 77.97

gradients in their corresponding transformation-colored UMAP—indicating reduced equivariance to
transformation parameters.

Class Label
Class Label

Rotation Aongle (radians)

=,

Figure 12: 2-D UMAP projections of seq-JEPA representations on 3DIEBench without action conditioning
(M¢r = 3, Myai = 5). Encoder outputs are color-coded by class (left) and rotation angle (middle); aggregate
token representations are color-coded by class (right).

B.10 Details of Path Integration Experiments.

While an agent executes a sequence of actions in an environment, transitioning from an initial state
to a final state, it should be capable of tracking its position by integrating its own actions. This is
also a crucial cognitive ability that enables animals to estimate their current state in their habitat
[McNaughton et al} [2006]. Here, we evaluate whether seq-JEPA is capable of path integration.
Given the sequence of observations {z;}T! generated from transformations {t;}*" and the
corresponding relative action embeddings {a;}},, we define the task of path integration over the
sequence of actions as predicting the relative action that would directly transform x; to 741 given
zaaa and a . In other words, given the aggregate representation of a sequence of action-observation
pairs and the next action, we would like to predict the overall position change from the starting point
(z1) to the end point (xps4+1). We consider path integration for rotation angles in 3DIEBench and
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Figure 13: 2-D UMAP projections of seq-JEPA representations on STL-10 with action conditioning (M, =
My a1 = 4). Encoder outputs are color-coded by class (top-left) and by X/Y" fixation coordinates (bottom); the
aggregate token is color-coded by class (top-right).
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Figure 14: 2-D UMAP projections of seq-JEPA representations on STL-10 without action conditioning
(M = Myq1 = 4). Encoder outputs are color-coded by class (left) and fixation coordinates (middle); the
aggregate token is color-coded by class (right).

across eye movements with STL-10. For rotations, the task is integrating a series of object rotations
from the first view to the last, i.e. angular path integration. For eye movements, the task is integrating
the eye movements from the first saccade to the last, i.e. visual path integration. To measure path
integration performance for inference sequence length M, we train a regression head on top of the
concatenation of z4g¢ and ays to predict the transformation from x; to xps41. Figure |§| shows
that seq-JEPA performs well in both angular and visual path integration. The red curve corresponds
to the performance of the original seq-JEPA. The blue curve corresponds to experiments in which
the action embeddings are ablated (zeroed-out during inference for all views). The green curve
corresponds to experiments in which the encoder (visual) representations are ablated during inference.
As expected, path integration becomes more difficult as the number of observations increases (red
curves). Ablating action conditioning (blue curves) results in failure of path integration. On the other
hand, ablating the visual representations (green curves) results only in a small performance drop
compared to the original model, indicating that action conditioning is the key factor that enables path
integration.

B.11 Transfer learning results on ImageNet-1k

To evaluate generalization of our model beyond STL-10, we assess transfer performance of the model
trained on STL-10 patches via predictive learning across saccades on ImageNet-1k. We follow the
same linear probing protocol as in-distribution evaluations: we freeze the ResNet and transformer
encoder and train a linear classifier on aggregate representations generated from foveated patches.
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We extract saliency maps for ImageNet-1k images using DeepGaze IIE, resize them to 224 x 224, and
sample sequences of patches sized 32 x 32 or 84 x 84 for this out-of-distribution (OOD) evaluation
setting. Figure[T5]shows top-1 linear probe accuracy on ImageNet-1k validation set across varying
inference sequence lengths (M,,,;). For both patch sizes, performance improves with longer inference
sequences, validating seq-JEPA’s ability to benefit from extended context even in this difficult OOD
ImageNet- 1k setting. These results echo findings in the main experiments for different training and

inference sequence lengths and confirming the possibility of model’s scalability in terms of data,
parameter count, and compute.
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Figure 15: Linear probe transfer learning accuracy on ImageNet-1k for two different patch sizes; the
model is pre-trained on STL-10 via predictive learning across saccades.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All the claims in the abstract and introduction (summarized by the items
at the end of introduction) are supported by controlled experimental results on different
benchmarks.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The main limitations are discussed in Section [6l
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The work does not contain theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All details required to reproduce our results even without access to the code
provided or are included in Sections [3.2]and [3.3|and Appendix [A]

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Code, date, and checkpoints have been made publicly available.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The most important experimental details necessary to understand the results
are discussed in the main text (Section [3). Other details are provided in Appendix [A]

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The main experimental results in Tables [I] [2] and [3|are averaged over three
independent random seeds. For additional experiments, we pre-trained one model per setting
due to compute limitations. Standard deviations are reported in Table [4]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The hardware setup and approximate wall-clock time are provided in Ap-
pendix
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The paper complies with NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper proposes a method and architecture that is not closely tied to any
societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper is not releasing such data or models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All data used in our experiments are open-source. We credit and cite the
datasets and methods in the paper when necessary.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We use STL-10 and ImageNet-1K saliency maps and an out-of-distribution set
of 3DIEBench. We have made all the three publicly available

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

30


paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
L.LM) for what should or should not be described.
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