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Abstract
While deep neural networks have achieved great
success on the graph data analysis, recent works
have shown that they are vulnerable to adversarial
attacks where fraudulent users can fool the model
with a limited number of queries. Compared with
adversarial attacks on image classification, per-
forming adversarial attack on graphs is challeng-
ing because of the discrete and non-differential
nature of a graph. To address these issues, we pro-
posed Cluster Attack, a novel adversarial attack
by introducing a set of fake nodes to the origi-
nal graph which can mislead the classification on
certain victim nodes. Moreover, our attack is per-
formed in a practical and unnoticeable manner.
Extensive experiments demonstrate the effective-
ness of our method in terms of the success rate of
attack.

1. Introduction
Recent research in Graph Neural Networks (GNNs) has
shown a promising performance on various applications
to graph data including the recommender systems (Ying
et al., 2018), social networks (Qiu et al., 2018), electronic
commerce (Chen et al., 2019), etc. Just like other types of
deep learning models, recent studies have shown that GNNs
are vulnerable to adversarial attack (Dai et al., 2018; Zügner
et al., 2018). The performance of a well-trained GNN can
be significantly degenerated by adversarial manipulations,
which are carefully crafted inputs with small perturbations
added.

In this work, we consider a more practical scenario in ad-
versarial attack on graph data, which aims to mislead the
predicted labels of certain victim nodes without sacrificing
the prediction on other nodes significantly. In our setting,
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Figure 1. An Illustration of Fake Node Attack

we consider to protect the neighbors of victim nodes within
k-hop from being misclassified. Moreover, we choose to
introduce extra fake nodes into the original graph instead
of directly modifying the original graph, since it is more
practical in real-world scenario.

It is also noted that in the practical scenarios, we can only
access part of the graph. In our setting, we can only access
partial information of the graph data by observe the nodes
being attacked with their neighbor nodes within k-hop. As
a more challenging setup, we have no access to to the model
parameters. We can only have a limited number of queries
on the victim model about the predicted scores of certain
nodes when performing adversarial attack.

To tackle the discrete optimization problem, we propose our
Cluster Attack, which attacks by divide the victim nodes
into several clusters according to their most adversarial fea-
tures, which can be approximately computed within limited
queries.

Our contribution can be summarized as follows:

• We propose a practical threat model on graph adversar-
ial attack. We perform query-based adversarial attack
on graph with partial information about the graph with
non-targeted nodes protected.

• We propose Cluster Attack, an effective and efficient
adversarial attack on graph structured data which at-
tacks by divide victim nodes into several smaller clus-
ters.
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2. Related Works
In recent years, many methods were proposed to perform
adversarial attack on graph. For greedy methods, NET-
TACK (Zügner et al., 2018) proposed to attack the graph
by greedily modifying the edges and features of the graph.
(Wang et al., 2018) proposed to attack by adding fake nodes
and then greedily modifying the edges and features. For
methods based on reinforcement learning, (Dai et al., 2018)
proposed RL-S2V to attack by changing existing edges in
the graph, while (Sun et al., 2020) proposed NIPA to attack
by adding fake nodes. (Xu et al., 2019; Wu et al., 2019; Chen
et al., 2020b;a) proposed to attack using gradient informa-
tion. (Zügner & Günnemann, 2019) uses meta-learning to
attack. (Ma et al., 2019) attacks by Rewiring, a special oper-
ation on the graph. (Chang et al., 2019) proposed GF-Attack,
a restricted black-box adversarial framework. (Ma et al.,
2020) proposed a black-box attack strategy manipulating
the original graph. (Xu et al., 2020) works contemporarily
with us which performs white-box attack by adding fake
nodes. The above methods are either not adoptable in our
setting or having poor performance in our setting.

3. Methodology
3.1. Problem Formulation

Given a set of victim nodes ΦA ⊆ Φ in the graph, our goal
is to perform mild perturbations on the graph G = (A,X),
leading to G+ = (A+,X+), such that the predicted la-
bels of as many nodes as possible in ΦA change. A+ =[
A BT

B Afake

]
and X+ =

[
X

Xfake

]
, where B represents

the connections between original nodes and fake nodes.
Φ+ = Φ∪Φfake denotes the node set of G+. Starting from
Afake = 0,B = 0, we manipulate Afake,B and Xfake,
leading to as low classification accuracy on ΦA as possible.

Our thread model is defined as follows.

Adversarial Budget To ensure our perturbation is unno-
ticeable, we limit the number of new connections between
fake nodes and original nodes by ∆edge. The connections
between fake nodes, i.e., Afake, are free for us to modify
while the connections between original nodes, i.e., A, are
not allowed for us to modify. We can decide Xfake at will
but cannot change X, the features of original nodes. We
limit the number of fake node by the number of rows of
Afake.

Protected Nodes Owing to the non-i.i.d nature of graph
data, attacking victim nodes may have side effects on their
neighboring nodes which we are not aimed for. While at-
tacking victim nodes, we aim to keep the labels of other
nodes which are not targeted unchanged at the same time to

make our perturbation unnoticeable. In our setting, we con-
sider to protect Nk(ΦA), neighbors of victim nodes within
k-hop from being misclassified.

Partial Information We can only query the classification
results of the victim nodes with their neighbors within k-hop
and fake nodes. We can only make connections between
victim nodes and fake nodes.

Limited Queries We can totally query K times for the
predicted scores of all victim nodes with their neighbors
within k-hop. The architecture and parameters about victim
model are unknown by the attacker.

We aim to make the classifier misclassify as many nodes
in ΦA as possible. We formulate our problem as an op-
timization problem. Directly optimizing the number of
misclassified nodes is difficult as the objective is discrete.
Thus we try to optimize a substitute loss function as

min
G+

L(G+; ΦA) ,
∑
v∈ΦA

`(G+, v) + λ
∑

`N
v∈Nk(ΦA)

(G+, v),

(1)
s.t. Nr(G+) ≤ Nfake, Ne(G

+) ≤ ∆edge,

where G+ = (

[
A BT

B Afake

]
,

[
X

Xfake

]
). Nr(G+) denotes

the number of rows of matrix Afake and is no more than
Nfake, which means that we at most introduce Nfake fake
nodes into the original graph. Ne(G

+) represents the num-
ber of non-zero elements of B and is no more than ∆edge,
which means that we can at most add ∆edge extra links.
`(G+, v) and `N (G+, v) represents loss function for every
victim node and every protected node, respectively. Smaller
`(G+, v) means node v is more likely to be misclassified by
victim model f and smaller `N (G+, v) means the predicted
label of node v is less likely to be changed during our at-
tack. We perform targeted attack, which means the labels of
victim nodes have to be misclassified as the ones which we
specify.

Here we choose the C&W loss (Carlini & Wagner, 2016)

`(G+, v) = max(max
yi 6=yt

([f(G+)]v,yi
)− [f(G+)]v,yt

, 0),

(2)
for our attack, where yt stands for the target label of node v
and the attacker succeeds only when node v is misclassified
as yt. [f(G+)]v,yi denotes the output value of node v having
label yi. For protected nodes, we have

`N (G+, v) = max( max
yi 6=yg

([f(G+)]v,yi
)− [f(G+)]v,yg

, 0),

(3)
where yg stands for the ground-truth label of node v pro-
vided by victim model. Overall loss L(G+; ΦA) is summed
over the loss of each victim node along with the loss of each
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Figure 2. An Illustration of Our Cluster Attack

protected neighboring node with a trade-off parameter λ. In
practice, we add square root to the loss of each victim node
to favor the nodes which are likely to be misclassified.

Optimization of Eq. (1) is challenging due to the discrete
nature of G+ and large space of possible choices of G+. To
tackle the optimization problem, we propose our Cluster
Attack.

3.2. Cluster Attack

In an adversarial scenario, it is often the case that the number
of fake nodes we are allowed to add to the graph is much
smaller than the number of victim nodes. To make use of
each fake node better, we have to connect every fake node
to several victim nodes. However, due to the structural
complexity of the graph, different victim nodes may have
very different local structures and the corresponding feature
information, especially when our victim nodes are sparsely
scattered in the whole graph. Consequently, a fake node with
certain feature may change the predicted label of one victim
node after connecting to it, but may not change another
victim node’s.

Building on the above perspective, we have the insight that,
if we connect a fake node to several victim nodes which
share a similarity that their predicted labels are all easily
changed after they are connected to fake nodes with sim-
ilar features, then we have more chance of changing the
predicted labels of those victim nodes. As a result, we can
divide the victim nodes into several clusters according to
this similarity and for each cluster we assign one fake node
to attack.

Most Adversarial Feature In our attack, we use the most
adversarial feature, which represents the vulnerability of
each victim node, to denote the above similarity of victim
nodes. It’s the feature of the fake node connected to the
victim node which minimizes our loss.

Formally, for victim node v, consider that we only connect
one fake node to and only to v. (To achieve this, we may

temporarily remove all the extra edges in G+ and temporar-
ily add one edge connecting this victim node and one fake
node vf . After the computation, the edges in G+ become
the same before the computation.) xvf

is the feature of the
newly added fake node vf . The MAF of v is defined as
followed

MAF(v) = argmin
xvf

L(G+; ΦA), (4)

where L(G+; ΦA) is defined in Eq. (1). The MAF is related
to the victim node’s gradient towards adversarial examples.

Direct computation of MAF for every victim node may
be extremely time-consuming and intractable with only a
limited number of queries. Here we propose an greedy al-
gorithm to approximate MAF(v) with Kt queries for each
victim node which is summarized in Algorithm 1. For con-
venience and consistency, we use the same notation MAF(v)
to denote approximated MAF of node v computed using
Algorithm 1 in the following sections.

Algorithm 1 Fast Approximation of MAF with a Fixed
Number of Queries
Input: Graph G+ = (A+,X+). Victim node v. Number

of queries Kt.
Output: Approximated most adversarial feature MAF(v)

for v
1: initialize Choose one fake node vf and connect it to and

only to v, randomly initialize the fake node’s feature
xvf . Keep other fake nodes isolated.

2: Randomly sample a sequence It from {1, 2, ..., D}with
length Kt. D is the dimension of nodes’ feature.

3: for i ∈ It do
4: if xvf [i] ← 1 − xvf [i] makes L(G+; ΦA) smaller

then
5: xvf [i]← 1− xvf [i]
6: end if
7: end for
8: return MAF(v)← xvf
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Table 1. Success rates of Cluster Attack along with other baselines. T denotes number of victim nodes. For T = 3, we only add 3 fake
nodes in our Cluster Attack.

Method Cora Citeseer
T = 3 T = 5 T = 7 T = 10 T = 3 T = 5 T = 7 T = 10

Random 0.07 0.08 0.04 0.05 0.04 0.02 0.03 0.03
NETTACK 0.61 0.57 0.55 0.53 0.75 0.71 0.66 0.61
NETTACK - Sequential 0.68 0.73 0.72 0.70 0.76 0.74 0.72 0.67
Fake Node Attack 0.61 0.58 0.54 0.52 0.76 0.68 0.62 0.60
KDD Cup 1st Attack 0.61 0.55 0.51 0.42 0.55 0.56 0.51 0.45

Cluster Attack 0.99 0.93 0.84 0.72 1.00 0.89 0.80 0.70

Clustering the Victim Nodes After the computation of
most adversarial features, we divide the victim nodes ΦA

into Nfake clusters C = {C1, C2, ..., CNfake
} according to

their MAFs using K-Means algorithm.

Overall Algorithm Figure 2 is an overview of our attack
algorithm. We only consider the case that ∆edge ≥ |ΦA|,
otherwise some victim nodes do not have the chance to
connect directly to fake nodes. For now, we keep Afake =
0 during our whole algorithm. We leave utilizing Afake, the
connections between fake nodes, to enhance our attack as
our future work. Our method prevents the time-consuming
search of the large space of Afake,B,Xfake and is thus an
efficient method.

4. Experiments
4.1. Experimental Setup

We do our experiments on Cora and Citeseer(Sen et al.,
2008), two benchmark citation networks. The statistics of
the datasets are shown in Table 2.

Table 2. Statistics of the datasets
Name Nodes Edges Features Classes

Cora 2708 5429 1433 7
Citeseer 3327 4732 3702 6

For each experimental setting, we run 100 times of exper-
iments and report the average results. Each round we ran-
domly sample |ΦA| nodes in the graph as victim nodes. To
reduce the variance in the training process of victim model,
we retrain the victim GCN model every 5 rounds of attack.
Number of queries K is set to K = |ΦA| ·Kt +Nfake ·Kf ,
where we set Kt = D and Kf = D. D is the dimension
of node’s feature. We set k = 1 in Nk(ΦA), which means
we can only observe 1-hop neighbors of victim nodes and
we aim to protect those 1-hop neighbors. By default we set
trade-off parameter λ = 0 without specification.

We compare our method with baselines including Random
Attack, NETTACK (Zügner et al., 2018), NETTACK - Se-
quential proposed by us which adds fake nodes sequentially,
Fake Node Attack (Wang et al., 2018) and the method which
won 1st place in KDD Cup competition on graph adversarial
attack (kdd, 2020). For baselines, we don’t limit the number
of queries.

4.2. Performance with Different Number of Victim
Nodes

We evaluate the performance of Cluster Attack along with
other baselines with different number of victim nodes.
Without loss of generality, we uniformly set Nfake = 4,
∆edge = |ΦA| and let the number of victim nodes varies
to see the performance under different Nfake : |ΦA|. We
compare Cluster Attack with other baselines. The results are
shown in Table 1. Our algorithm outperforms all baselines
in terms of success rates.

4.3. Other Experiments

Other experiments demonstrating the effectiveness of our
Cluster Attack are shown in appendix, including experi-
ments with different number of fake nodes, experiments
with different trade-off parameter, experiments with differ-
ent number of queries, analysis of cluster attack on victim
nodes with different degrees and ablation study.

5. Conclusion
In this paper, we propose Cluster Attack, an algorithm of ad-
versarial attack on graph structured data. We perform query-
based black-box adversarial attack on graph by adding fake
nodes with partial information about the graph. We further
consider to protect the predicted labels of neighboring nodes
of victim nodes from being changed. We propose to attack
by clustering the victim nodes according to the similarity
in their most adversarial features, which can be approxi-
mated by a limited number of queries. Experimental results
demonstrate our method has strong performance.
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A. Supplemental Material
A.1. Performance with Different Number of Fake

Nodes.

In this section, we evaluate the performance of Cluster At-
tack along with other baselines with different number of
fake nodes. We fix the number of victim nodes at 10 and
vary the number of fake nodes to examine the success rates.
We set ∆edge = |ΦA| = 10. The success rates are shown in
Figure 3. We only list the results of NETTACK - Sequential
in Figure 3 without NETTACK since we found that NET-
TACK - Sequential performs better than NETTACK. We
see that the success rate is higher when there are more fake
nodes. For Cluster Attack, we conjecture that this is because
the number of clusters get larger when there are more fake
nodes. Thus the MAFs of the victim nodes in each cluster
are able to be closer to each other and they are easier to be
attacked by the same fake node. Among all methods, our
Cluster Attack achieves the highest success rate.
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Figure 3. Success Rates of Cluster Attack with Different Number
of Fake Nodes.

A.2. Performance with Different Trade-Off Parameter
λ.

In this section, we examine the performance of Cluster At-
tack with different trade-off parameter λ between fake nodes
and protected nodes. We examine the performance under
different λ in Cora dataset. We uniformly set Nfake = 4,
∆edge = |ΦA| = 10. We choose 2 most competitive base-
lines, NETTACK - Sequential and Fake Node Attack and
adapt their loss function to our trade-off format. The results
are shown in Figure 4. It can be seen from Figure 4 that our
algorithm performs the best among all baselines in terms of
attack success rates. When λ goes up, which means that we
pay more attention to the protected nodes, the percentage
of protected nodes whose labels remain unchanged during
attack goes up while the success rates of attack drops. When
λ gets large enough (λ ≥ 10), nearly all protected nodes
are successfully protected, which demonstrates the effec-
tiveness of our trade-off formulation in our loss function
Eq. (1). It shows that to protect the labels of not-targeted
nodes from being changed during attack, we can simply set

a large λ. Also, our trade-off formulation between victim
nodes and protected nodes in Eq. (1) not only applies to our
Cluster Attack, but also applies to other baselines.
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Figure 4. Cluster Attack along with Other Baselines in Cora with
Different λ.

A.3. Performance with Different Number of Queries.

In this section, we examine the performance of Cluster
Attack with different number of queries. We set Kt =
Kf = α ·D and examine the performance under different α
in Cora and Citeseer dataset. We uniformly set Nfake = 4,
∆edge = |ΦA| = 10. The results are shown in Figure 5.
The success rate of Cluster Attack drops as the number of
queries drops. Our algorithm still performs well when the
number of queries drops not very much, especially when
α ≥ 0.4. It demonstrates that the most adversarial feature
can be approximated and the fake nodes’ features can be
optimized with a smaller number of queries without a great
decrease in the success rate. It shows that our Cluster Attack
can work in a query-efficient manner.
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Figure 5. Success Rates of Cluster Attack with Different Number
of Queries in Cora and Citeseer.

A.4. Analysis of Cluster Attack on Victim Nodes with
Different Degrees.

In this section, we evaluate the performance of Cluster At-
tack on victim nodes with different degrees. We uniformly
set Nfake = 4, ∆edge = |ΦA| = 10. The success rates of
Cluster Attack on victim nodes with different degrees are
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shown in Figure 6 along with the proportion of sampled
victim nodes with each degree. Victim nodes with degrees
larger than or equal to 7 are counted together since they only
account for a small proportion.
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Figure 6. Success Rates of Cluster Attack on Victim Nodes with
Different Degrees.

It can be seen from Figure 6 that victim nodes with higher
degrees are more robust to our attack in general. We conjec-
ture that when a victim node has a relatively large number
of neighbors, adding one fake node as its neighbor has less
impact on it and thus is less likely to change its predicted
label.

A.5. Ablation Study.

In this section, we examine the effectiveness of our most
adversarial feature (MAF). We uniformly set Nfake = 4,
∆edge = |ΦA| = 10. We compare the success rate of
Cluster Attack without MAF, i.e., the victim nodes’ MAFs
are randomly set. The results are shown in Table 3. Cluster
Attack without MAF performs worse than normal Cluster
Attack with MAF, which demonstrates the effectiveness
of our MAF. MAF is related to the vulnerability of victim
nodes. Nodes with similar MAFs in a cluster are easier to
be affected together by one fake node. Thus the success rate
of Cluster Attack with MAF is better than without MAF.

Table 3. Success Rates of Cluster Attack with and without MAF
in Cora.

Method Success Rate

Cluster Attack - without MAF 0.62
Cluster Attack 0.72


