
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

Under review as a conference paper at ICLR 2026

CROCODILIGHT: REPURPOSING CROSS-VIEW

COMPLETION ENCODERS FOR RELIGHTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Cross-view completion (CroCo) has proven effective as pre-training for geomet-
ric downstream tasks such as stereo depth, optical flow, and point cloud predic-
tion. In this paper we show that it also learns photometric understanding due to
training pairs with differing illumination. We propose a method to disentangle
CroCo latent representations into a single latent vector representing illumination
and patch-wise latent vectors representing intrinsic properties of the scene. To
do so, we use self-supervised cross-lighting and intrinsic consistency losses on a
dataset two orders of magnitude smaller than that used to train CroCo. This com-
prises pixel-wise aligned, paired images under different illumination. We further
show that the lighting latent can be used and manipulated for tasks such as interpo-
lation between lighting conditions, shadow removal, and albedo estimation. This
clearly demonstrates the feasibility of using cross-view completion as pre-training
for photometric downstream tasks where training data is more limited.

1 INTRODUCTION

Cross-view completion (CroCo) (Weinzaepfel et al., 2022; 2023) has recently emerged as a promis-
ing pre-training proxy task for downstream problems in 3D geometric vision. The CroCo objective
is to complete missing patches in an image given a second, overlapping view of the same scene,
taken from a different viewpoint (see Fig. 1, left). In order to solve the task, the model must use
cross attention to implicitly reason about correspondence, relative pose and depth in order to cross-
project content from the complete to the masked image. CroCo is able to plausibly complete the
missing patches while being trained on uncontrolled image pair collections with varying illumina-
tions, suggesting that the model not only geometrically cross-projects but also relights the scene.

The hypothesis underlying our work (see Fig. 1, right) is that the CroCo encoder must implicitly
estimate illumination and encode it in the patch embeddings. The cross-view decoder then removes
lighting from the second view (i.e. delights the scene contents), geometrically cross-projects and
then applies the lighting estimated from the observed patches in the masked image (i.e. relights).
Crucially, CroCo’s training objective is unique among self-supervised vision models in requiring
implicit relighting capabilities. While other pretrained vision models learn rich visual representa-
tions, none are explicitly trained to handle the photometric transformations that CroCo encounters
during its cross-view completion task. However, CroCo’s patch embeddings contain this knowledge.

To test our hypothesis, we propose a model in which latent patch embeddings from the CroCo en-
coder are explicitly disentangled into 1. a single latent vector representing lighting and 2. lighting
invariant per-patch latents representing static scene information (i.e. geometry and materials). Then
a second model recombines a given lighting latent with local intrinsic latents back into the CroCo la-
tent domain. We propose a method to train these two networks using pairs of images from the same
view with different lighting and the same structure. In general, such fixed view/varying lighting im-
ages are harder to acquire than the uncontrolled pairs required for training CroCo. We demonstrate
that this disentanglement can be learnt with datasets two orders of magnitude smaller than CroCo’s
original training, suggesting that the underlying photometric understanding is already present and
requires only extraction rather than learning from scratch. Finally, we train a single view CroCo de-
coder to transform CroCo latent patches back into RGB space with high fidelity which can be done
with any arbitrary image dataset. We name our method CroCoDiLight (Cross-view Completion for
Disentangling Lighting).

1
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CroCo Implicit relighting in CroCo

CroCo

CroCo 
Encoder

CroCo 
Decoder

CroCo 
Encoder
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Estimate 
target 

lighting
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source 

lighting
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projection

Delighting

CroCo

Relighting

Figure 1: Left: data flow through CroCo. Right: the relighting that we hypothesise CroCo must
implicitly perform when presented with a pair of images of the same scene but with different lighting.
In order to predict a masked patch (shown with “?”), the target illumination must be estimated from
the unmasked patches (green). Patches containing the same scene content (blue) must be delit using
the source lighting estimated from the second view (purple) and relit (orange) using the estimated
illumination. We show how to make this disentanglement explicit.

Once trained, we demonstrate the use of our model for applications of lighting interpolation (tempo-
ral upsampling of timelapse videos) and relighting (timelapse illumination normalisation). We show
that the learnt disentangling convincingly captures shading effects, cast shadows, coloured lighting,
specularities and even local lighting. Going further, we show how to learn translations of the lighting
latent to enable single image shadow removal and albedo estimation. We evaluate these translations
on standard benchmarks and show performance competitive with the current state-of-the-art.

2 RELATED WORK

CroCo (Weinzaepfel et al., 2022; 2023) demonstrated the effectiveness of cross-view completion as
a pre-training objective for purely geometric downstream tasks. The cross-attention decoder was
fine-tuned for stereo depth and optical flow models. Subsequently, DUST3R (Wang et al., 2024)
and MAST3R (Leroy et al., 2024) expanded upon this to directly predict a 3D point cloud using
unposed frames. Our hypothesis is that the encoder from CroCo pre-training has also learnt lighting
information from the scene, enabling photometric tasks such as relighting, shadow removal, and
intrinsic image decomposition. Our work is similar in spirit to other efforts to repurpose foundation
models for tasks where it is believed the original training objective means the model must already
implicitly solve the task. For example, Kerssies et al. (2025) show that Vision Transformers implic-
itly learn segmentation, while generative image models have been shown to learn monocular depth
estimation (Ke et al., 2024), complete intrinsic image decomposition (Ke et al., 2025) and zero-shot
classification (Li et al., 2023a).

Relighting When it comes to relighting images, there are a few main approaches. HDR panoramas
can be used to condition changes to the lighting of an image as done in UniRelight (He et al.,
2025). Text conditioning is also possible in models such as Neural Gaffer (Jin et al., 2024). This
is most effective in outdoor scenes or for relighting individual objects where the global lighting
can vary according to the aforementioned inputs. Other methods based on generative models can
better handle local image dynamics with indoor lighting. An example of this is LightLab (Magar
et al., 2025) which enables detailed control of the colour and intensity of individual lights. LumiNet
(Xing et al., 2024) predicts lighting from a reference image and encodes it to a latent vector which
is used to relight another image. All of these approaches enable relighting, but our method aims
at developing a general-purpose model to disentangle the lighting of an image in order to carry out
lighting interpolation and transfer, along with more clearly defined tasks.

Intrinsic Image Decomposition Beyond directly relighting images, many methods such as Ordi-
nal Shading (Careaga & Aksoy, 2023) and Lossless Intrinsic Image Decomposition (Sha et al., 2025)
tackle the task of intrinsic image decomposition into albedo and shading images. These two images
can be easily recombined to produce the original image. Other methods such as DiffusionRenderer

2
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I
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Swap Lighting
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Lighting Latent

Intrinsic Patches

CroCo Patches

Figure 2: The architecture of the model comprises four main components. First is the frozen CroCo
encoder. Last is the decoder D which is separately pre-trained and then frozen to decode from CroCo
latent space to RGB. Then there are the delighting and relighting transformers, I and R respectively,
which disentangle lighting and intrinsics before recombining them. The training process here shows
pairs of images encoded and relit to match the lighting of the other image.

(Liang et al., 2025) separate and recombine images into further components such as ambient occlu-
sion, normals, and depth. However, the primary challenge for all of these methods is training data.
Synthetic datasets such as CGIntrinsics (Li & Snavely, 2018b) and ML-Hypersim (Roberts et al.,
2021) render out dense decompositions but still leave the gap to real-world images. The Multi-
Illumination dataset (Murmann et al., 2019) is a collection of fixed-camera real-world scenes, each
with 25 controlled lighting conditions. BigTime (Li & Snavely, 2018a) on the other hand is a col-
lection of in-the-wild timelapses with varying illumination conditions. While these provide training
data, they don’t provide direct supervision. Intrinsic Images in the Wild (IIW) (Bell et al., 2014) and
Shading Annotations in the Wild (SAW) (Kovacs et al., 2017) provide sparse annotations of lighting
conditions for real-world images along with corresponding evaluation benchmarks.

Shadow Removal The task of shadow removal is challenging as shadows vary in their sharpness
and in the way that they are cast. They can be cast from occluders outside of the image, or self-
occlusion from objects within the image. Datasets provide supervision for these various shadow
types. These include SRD (Qu et al., 2017), WSRD (Vasluianu et al., 2023), and ISTD (Wang et al.,
2018) which provide image pairs of shadowed and shadow-free images that can be used for direct
supervision. With these datasets, there are issues in colour and pixel alignment. To help tackle this,
WSRD+ (Vasluianu et al., 2024) and ISTD+ (Le & Samaras, 2019) are modified versions which
help fix those issues. Many current methods use an input mask to remove a specific shadow as done
in HomoFormer (Xiao et al., 2024) and ShadowFormer (Guo et al., 2023), where as other methods
such as OmniSR (Xu et al., 2025a) remove shadows from the image directly without a mask.

3 RELIGHTING IN CROCO LATENT SPACE

Our method begins by encoding images with the pretrained (and frozen) CroCo v2 encoder (Wein-
zaepfel et al., 2023). An input image X ∈ R

H×W×3 is decomposed into a set of N non-overlapping
patches, each of size P × P , such that the patches cover the entire frame, i.e. N = HW/P 2. The
RGB patches are flattened to vectors, xp ∈ R

K with p = 1 . . . N representing spatial position and

K = 3P 2, and embedded to the dimensionality D = 1024 used throughout the transformer models.
The CroCo v2 encoder operates on patches of size P = 16, applies RoPE positional embeddings
(Su et al., 2024) to the patches and encodes with a transformer:

z = E(x), (1)

where x = patchify(X) = {x1, . . . ,xN} and z = {z1, . . . , zN} with zi ∈ R
D. The CroCo

encoder was originally trained on images of resolution H = W = 224. However, since RoPE can
generalise to patch coordinates beyond the positions seen during training, we operate at resolution
H = W = 448 throughout our method, similar to how DUST3R (Wang et al., 2024) scaled up
resolution during training and use a sliding window approach for scaling up further.

3
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Our approach (see Fig. 2) starts with a delighting transformer which disentangles illumination from
scene intrinsic properties by translating the patch latents into intrinsic patches and estimating a light-
ing latent vector that describes the appearance in that particular illumination environment. Second,
a relighting transformer which recombines a lighting latent vector with intrinsic patches producing
patch embeddings in the original CroCo latent space. Finally, to ensure high quality image synthesis
we train a single view decoder to transform from CroCo latent space back to RGB images.

3.1 SINGLE VIEW DECODER

The original CroCo decoder was trained for the difficult task of using cross-attention to predict
masked patches in an image from a second view. As the decoder is binocular, the only way to
decode a single view is to remove masking and use the same encoded image as if it were the second
view. It was also trained with supervision only on the reconstruction of masked patches, not the
whole image. This means that the image quality is low when decoding a single view (Appendix B).

Our downstream applications of relighting, shadow removal and albedo estimation all operate on
single images and require high quality image output. We therefore train our own single view de-
coder with an autoencoder objective: i.e. we train the decoder to reconstruct original images from
embeddings given by the frozen CroCo encoder. Specifically, we train a decoder:

X ′ = D(z), (2)

which uses self-attention with a DPT head (Ranftl et al., 2021) for reconstruction. The self-attention
module consists of 12 layers each with 16 heads. Every layer is followed by a 2-layer MLP with
a hidden layer size of 2D. To ensure high-fidelity reconstruction, we train the decoder using a
combination of perceptual (LPIPS (Zhang et al., 2018)) and mean squared error (MSE) losses:

Limg(X,X ′) = λLLPIPS(X,X ′) + (1− λ)LMSE(X,X ′), (3)

where we use λ = 0.5 throughout. This objective does not require paired images so can be trained
on any image dataset, for which we use ImageNet (Russakovsky et al., 2015).

3.2 DELIGHTING TRANSFORMER

In order to estimate illumination, we append a learnable query vector z0 ∈ R
D to the CroCo patch

latent embeddings: ẑ = {z0, . . . , zN}. We pass this augmented set to the delighting transformer to
disentangle lighting:

ŝ = I(ẑ), (4)

where ŝ = {s0, . . . , sN}. Here, s0 contains lighting information for the whole image while s =
{s1, . . . , sN} contains intrinsic information about the original image patches, i.e. with the effect
of lighting removed. The architecture of I closely follows the architecture of the CroCo encoder.
It comprises 8 consecutive self-attention blocks, each with 16 heads. Every self-attention block is
followed by a 2-layer MLP with a hidden size double the dimensions of a single patch. Each of the
patches retains the same RoPE positional encoding used by the CroCo encoder. As the self-attention
blocks expect positional encoding for every input patch, when we append z0, we give it a unique
positional encoding for the position −1 as no encoded patch will have that position.

3.3 RELIGHTING TRANSFORMER

Next, we train a relighting transformer that recombines a lighting latent vector with the intrinsic
patch embeddings to return to the CroCo latent space:

ẑ
′ = R(ŝ), (5)

where ẑ
′ = {z′

0
, . . . , z′N}. We discard z

′

0
and retain only the patch embeddings in CroCo latent

space, z′ = {z′
1
, . . . , z′N}. Note that the input lighting latent vector, s0, need not be from the original

image but could be extracted from another image for the purposes of relighting. The architecture of
R comprises an identical architecture to that of the delighting transformer, I, but only keeps z′ as
the predicted CroCo latent patch embeddings to be decoded.

4
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3.4 PAIRED IMAGE TRAINING

We now explain how I and R can be trained using paired images. While CroCo used pairs of
images of the same scene from different viewpoints (possibly with different lighting), we use pairs
of pixel-aligned images from the same viewpoint where the illumination, and therefore appearance,
is different. This provides two forms of supervision.

First, the two images XA and XB are encoded with the CroCo encoder and then disentangled by the
delighting transformer into lighting latents, sA

0
and s

B
0

, and patch-wise intrinsic latent embeddings,
s
A and s

B . Since we expect the intrinsic latent embeddings to represent static aspects of the scene
such as geometry and materials, we use an MSE loss to encourage consistency between the intrinsic
patches from the two images:

Lintrinsic =
1

N

N
∑

i=1

∥

∥s
A
i − s

B
i

∥

∥

2

. (6)

Second, we can impose a cross-lighting constraint. Namely, we can relight the intrinsic patches from
image A with the lighting estimate from image B:

X ′

A,B = D(R({sB
0
, sA

1
, . . . , sAN}), (7)

and similarly using the lighting from B with the intrinsic patches from A to produce X ′

B,A. This
allows us to define a cross-lighting loss:

Lcross-light = Limg(XA, X
′

B,A) + Limg(XB , X
′

A,B). (8)

We train the delighting and relighting modules using a weighted sum of the above two losses. To-
gether, they force the delighting transformer to bottleneck lighting-related aspects of appearance
through the lighting latent vector while making the intrinsic patch embeddings invariant to illu-
mination. Meanwhile, the relighting transformer is encouraged to combine lighting and intrinsic
information such that decoded images closely match the originals.

3.5 SLIDING WINDOW FOR HIGH-RESOLUTION RELIGHTING

In order to generalise the outputs of the model to high-resolution images, each image must be split
into multiple overlapping 448× 448 tiles that are fed into the model as a batch, relit with a lighting
latent per-tile, and merged together by blending the overlapping pixels. While the RoPE embeddings
do enable resolution-agnostic self-attention, the lighting latent has been trained to compress the
lighting information of the specified resolution. This means that despite the intrinsic latent vectors
potentially being accurate for arbitrarily sized images, the lighting latent vector is only meaningful
at the specified resolution. The sliding window ensures that the lighting latent is optimally used.

4 DATASET

Training the lighting modules requires pixel-aligned, paired images with illumination variation. In
general, this type of data is harder to collect, but as long as this requirement is met, many different
datasets can be incorporated in training, whether or not illumination and shadows are controlled.

Uncontrolled lighting For uncontrolled illumination and shading, BigTime (Li & Snavely, 2018a)
is a set of in-the-wild timelapses from static cameras. It contains both indoor and outdoor scenes
and helps models have a more general understanding of lighting. Despite its limited size, it provides
valuable information and can be scaled up as static timelapses are often captured and put online.
These can easily be incorporated into the training process. The main restriction in expanding this
type of dataset is ensuring that the timelapses collected retain consistent structure, as often they are
of the sky or of crowds of people, both of which have changing content beyond just lighting.

Controlled lighting The Multi-Illumination dataset (Murmann et al., 2019) consists of around
1000 scenes each with a set of 25 controlled lighting conditions. All the scenes are indoor but contain
a variety of challenging materials to model, including transparent and highly reflective objects. From
these two datasets, we kept the Multi-Illumination test-set aside for evaluation, and used the rest in

5
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training. For a single epoch through these datasets, every single image was included once, and a
random pair from the same scene was randomly selected every iteration. While this does mean that
several images per scene may be seen multiple times in an epoch, it is still relighting it to a different
illumination condition and it guarantees that every image is seen.

Beyond just arbitrary pairs of various lighting and exposures, albedo estimation and shadow removal
datasets were beneficial. Three shadow removal datasets, SRD, ISTD+, and WSRD+ were included
in training using pairs of shadowed and shadow-free images with which lighting was swapped.
Synthetic image pairs of rendered and albedo images were included to encourage further extraction
of shading information into the lighting latent, in particular ML-Hypersim and CGIntrinsics. The
ML-Hypersim dataset includes series of images following a camera trajectory within a scene, but
for the purposes of this paper and reducing overlapping images, only the first frame of each camera
trajectory was included. Overall, these datasets form 57k image pairs (36k real and 21k synthetic)
to be used in training, which is two orders of magnitude less than the required data for CroCo v2
(Weinzaepfel et al., 2023) which used 2M synthetic pairs and 5M real pairs.

Augmentation In order to help prevent over-fitting to the training images, data augmentation was
used. The primary augmentation was random 448 × 448 crops of the original images. This meant
that different sections of the image are seen every epoch, and that it has seen partial images which
helps it generalise to various resolutions when using a sliding window. We also incorporated random
conversion to greyscale to highlight differences between shadows and colour variation. In general,
any augmentation that preserves the pixel-wise alignment is possible.

5 MANIPULATIONS IN THE LIGHTING LATENT SPACE

The cross-lighting training described above disentangles intrinsic patch latent vectors from a single
dynamic lighting latent vector. This opens up the possibility of editing images by manipulation
within the lighting latent space. Given the aligned nature of the paired training images, the lighting
latent explains lighting effects in image space as opposed to world space (see Appendix C). To
further explore how it works, several downstream tasks were explored.

5.1 LIGHTING INTERPOLATION AND RELIGHTING

The most obvious lighting manipulation is to relight images via interpolation between different
lighting conditions. Given that the latent vector works in image space, the examples explored are

Figure 3: A series of time-lapse photos of a glacier with varying lighting conditions relit to match
the lighting condition of the first image. The top row demonstrates transferring the lighting of the
first image while still showing the intrinsic changes. The second row is of the original images, and
the final row is of the magnified colour-coded patches.

6
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Figure 4: A series of images demonstrating capabilities of the latent-space in changing shadows and
specular highlights. This is done with linear interpolation between two input lighting conditions.

using fixed camera positions with pixel-wise alignment. The main use of this is manipulating the
lighting in timelapses and other fixed-view sets of images with various lighting conditions.

Lighting stabilisation in timelapse One challenge with timelapses is that the lighting can change
drastically from photo to photo, meaning it can be more challenging to see what intrinsic components
of the underlying scene are changing. To tackle this, we can take a timelapse which has desirable
lighting conditions (e.g. well exposed, ambient as opposed to saturated) at the start, extract the
lighting latent, and apply that lighting latent to all subsequent images in the timelapse as shown in
Figure 3 (and see supplementary video). This provides consistent lighting throughout, with only the
structure contained in the intrinsic latent patches changing.

Temporal timelapse upsampling Other components of the lighting latent vector are shadows and
specularities. To better understand these components, the lighting latent vectors were extracted from
various keyframes that have distinct lighting conditions. We then linearly interpolated between these
latent vectors to compare with direct interpolation in RGB space. Figure 4 demonstrates the extent to
which shadows, specularities, and lighting are embedded in the latent space. While the motion of the
shadows is not entirely smooth, it demonstrates that all the correct lighting conditions exist within
that space and the trajectory can be learnt. We provide additional interpolation and relighting results
in Appendix D. This lighting interpolation enables temporal upsampling to generate intermediate
frames. This allows for extending the length of such timelapses in post-production. We show some
quantitative results using FloLPIPS (Danier et al., 2022) in Table 1 in which we interpolate halfway
between every 7th frame and evaluate the temporal perceptual quality.

Clock Shadows Day-night Cycle Indoor Shadows

Interpolation Method FloLPIPS ↓ FloLPIPS ↓ FloLPIPS ↓

Image Space 0.309 0.041 0.950
Latent Space (Ours) 0.286 0.043 0.923

Table 1: A quantitative evaluation of temporal timelapse upsampling. Every 7 frames were sampled,
and interpolated to halfway between the two, either in image space, or in lighting latent space. The
triplet of ground truth frames on either side, and the interpolated frame compared to the reference
frame was evaluated using FloLPIPS. These results were averaged across each timelapse. As we are
testing lighting latent-space interpolation, intrinisics are fixed for each triplet, which means that any
structural dynamics are detrimental as image-space interpolation can smooth those dynamics.

5.2 LEARNING LIGHTING LATENT TRANSFORMATIONS

Beyond lighting interpolation, temporal upsampling, and lighting stabilisation, more concrete down-
stream tasks also exist to which our model can be applied. As we have seen, lighting and shad-
ows can be manipulated using latent vector interpolation. Transformations in latent space exist for
shadow removal and albedo reflectance estimation which models can be trained to learn.

7
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CroCo

Encoder

CroCo

Encoder

Training

Inference

Figure 5: Diagram describing the training process for both the shadow removal and albedo estima-
tion components S and A to learn the transformations in the lighting latent space. We distinguish
between which steps are only done during training and which are done in training and inference. We
also show that all the components apart from S/A have frozen weights during training.

Shadow Removal For the task of shadow removal, a model S matching the architecture of R and
initialised by R’s weights was trained to map from a shadowed latent s0 to a shadow-free latent s′

0

while using the intrinsic latent patches s to guide the process. The difference to R in processing ŝ

is that we keep the output z′
0

as s′
0

and discard z
′. The output latent is then appended to the original

intrinsic latents to produce ŝ
′ = {s′

0
, s1, . . . , sN} which can be subsequently re-entangled using R

and decoded. The loss function is mean squared error (MSE) in the lighting latent space to match the
encoded lighting latent from the ground truth shadow-free image. At this point, only S was being
trained. All the other components had frozen weights. The training process is shown in Figure 5.
This was supervised on the SRD, ISTD+, and WSRD+ datasets. We also compared the model to
using an optimal shadow-free latent which we extract from the shadow-free image and apply it to
the intrinsic latents of the shadowed latent. While in practice, this does not work as the shadow-
free image is not available, it demonstrates that the mapping exists within the latent space and our
pre-training task is capable produce competitive results compared to models trained specifically on
shadow removal.

For evaluating our method, we apply the sliding window, removing the shadow from the each tile.
After recombining the tiles, we resize the output to 256 × 256 as done in previous methods before
calculating the metrics. The metrics we report are LPIPS (Zhang et al., 2018), Mean Absolute
Error (MAE) in L*a*b* colour-space, structural similarity (SSIM), and Peak Signal-to-Noise Ratio
(PSNR) as shown in Table 2. There are several inconsistencies in previous methods in whether they
were using Root Mean Squared Error (RMSE) or MAE, making results less reliable than SSIM and
PSNR. We therefore re-evaluated all the methods that provided their output shadow-free images.
Where these images were not available, we show the metrics reported in the paper.

Albedo Estimation Shadow Removal

Figure 6: Examples of our albedo estimation and shadow removal.
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ISTD+ SRD

Method Mask LPIPS ↓ MAE ↓ SSIM ↑ PSNR ↑ LPIPS ↓ MAE ↓ SSIM ↑ PSNR ↑

BMNet Yes 0.027 1.78 0.967 33.92 0.047 2.36 0.944 31.92

ShadowFormer Yes 0.022 1.60 0.971 35.37 - - 0.958* 32.90*

Li et al. Yes 0.033 2.01 0.959 33.72 0.044 2.17 0.942 33.72

HomoFormer Yes 0.022 1.56 0.968 35.26 0.035 1.56 0.955 35.33

DMTN No 0.033 2.16 0.960 32.19 0.045 2.29 0.937 32.79

ShadowRefiner No 0.043* - 0.928* 31.03* - - - -

OmniSR No 0.025 1.83 0.966 33.30 0.042 2.41 0.941 31.96

StableShadowRemoval No 0.021 1.67 0.968 35.10 0.033 2.21 0.944 33.24

CroCoDiLight (ours - S) No 0.038 2.86 0.929 30.17 0.041 3.01 0.931 30.01

CroCoDiLight (ours - oracle) No 0.028 2.00 0.936 33.41 0.034 2.25 0.937 32.47

Table 2: Shadow Removal evaluations on both the ISTD+ and SRD datasets. We distinguish between
mask-based models and those that do not require shadow masks. All metrics are re-evaluated on the
provided images from each model unless indicated otherwise. “*” indicates that the numbers are
self reported and cannot be re-evaluated. “-” indicates that they did not report the metric.

The methods we compare against are split into two categories, masked and unmasked. The ma-
jority of methods for shadow removal make use of an input mask to specify a specific shadow to
remove. Recent methods have also been tackling the more challenging mask-free shadow removal
task. While the metrics do not put our method as state of the art, our results in Figure 16 show ex-
amples of more effective shadow removal than other methods. It is primarily subtle colour variation
across each image that is detrimental to the metrics. Our pre-training disentangles shadows into the
lighting latent which is then transformed to a shadow-free latent. The oracle metrics demonstrate
that better transformations do also exist. It is also worth noting that other methods fine-tune their
models on case-by-case basis for each benchmark. This enables them to achieve better evaluation
results, but limits the generalisability of their trained models. Our method is jointly trained on all
the aforementioned datasets and applied to every benchmark to produce a single general-purpose
shadow-removal component S . The masked methods we evaluate are BMNet (Zhu et al., 2022),
ShadowFormer (Guo et al., 2023), the method from Li et al. (2023b), and HomoFormer (Xiao et al.,
2024). The mask-free methods we evaluate are DMTN (Liu et al., 2023), ShadowRefiner (Dong
et al., 2024), OmniSR (Xu et al., 2025a), and StableShadowRemoval (Xu et al., 2025b).

Intrinsic Image Decomposition We also trained a latent-space transformation model A for in-
trinsic image decomposition in predicting albedo reflectance images from a fully lit image. As with
shadow removal, A retains the same architecture as R and is initialised with the same weights. It
maps the lighting latent vector s0 to the new albedo latent ŝ0 to be re-entangled with the intrinsic
latents using R as shown in Figure 5. For this task, we train the model using the CGIntrinsics and
ML-Hypersim datasets. Note that while this was only trained using synthetic data, the real data in
pre-training enables generalisability.

Method WHDR (%) ↓

CGIntrinsics (2018) 17.8

NIID-Net (2020) 16.6

PIE-Net (2022) 21.3

Ordinal Shading (2023) 24.9

IntrinsicDiffusion (2024) 17.9

CroCoDiLight (Ours) 15.4

Ordinal Shading + 0.5 15.3

CroCoDiLight (Ours) + 0.5 14.3

Table 3: Evaluations of the WHDR metric on
the IIW test set for models that have not been
trained on the IIW dataset.

In comparing against other models, we evaluate on
the IIW WHDR benchmark using the test set defined
by Narihira et al. (2015). In Table 3 we compare
against CGIntrinsics (Li & Snavely, 2018b), NIID-
Net (Luo et al., 2020), PIE-Net (Das et al., 2022),
Ordinal Shading (Careaga & Aksoy, 2023), and In-
trinsicDiffusion (Luo et al., 2024). Our model pro-
vides state-of-the-art results despite albedo estima-
tion not being the primary task. We do not show
methods trained on IIW for a fair evaluation as they
often over-fit to the WHDR metric, our method is
still very competitive against them despite not train-
ing on IIW. GLoSH (Zhou et al., 2019) has a score
of 15.2%, and Lossless Intrinsic Image Decomposi-
tion (Sha et al., 2025) scores 13.8%. However, this
evaluation metric does have some flaws which are
highlighted in Ordinal Shading. They demonstrate
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that despite having qualitatively good results, they perform poorly on the benchmark, but by doing
a simple shift by adding 0.5 to the image RGB values shifting it out of the range of 0 to 1, they get a
significant jump in performance. This same arithmetic shift gives us a smaller jump in performance.
Despite this potential for tuning a model to the benchmark, our method performs well without doing
so. Figure 6 demonstrates our decomposition results beyond just metrics.

6 DISCUSSION

Ablation Study In order to determine the effectiveness of CroCo pre-training, we trained two
comparison models with the same data, number of iterations, and proposed model components I
and R. One was trained using the same architecture, with the CroCo encoder and our decoder, both
jointly trained from scratch with I and R. The other was without the CroCo encoder to simplify
what the model had to learn by reducing the number of parameters. We instead added a simple en-
coder which splits the image into patches x and embeds them with a simple linear and normalisation
layer into z. Then to decode, a DPT head was attached to the relighting transformer R instead of us-
ing D. The shadow removal and albedo estimation latent-space models S and A were also retrained
for both comparisons. Table 4 demonstrates that when training everything from scratch, the simpler
architecture does well. However, using the pre-trained CroCo v2 encoder makes notable improve-
ments in albedo estimation and as well as improvements in shadow removal. The improvements on
these metrics show the effectiveness of cross-view completion as pre-training for relighting tasks,
primarily in embedding scene intrinsics in latent space. This provides significant evidence for our
hypothesis of the photometric and relighting capabilities of CroCo latent space.

IIW ISTD+ SRD

CroCo Pre-trained WHDR ↓ WHDR (+0.5) ↓ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑

19.1% 16.8% 0.924 29.71 0.928 29.87
✓ 27.7% 22.6% 0.795 25.34 0.824 22.98
✓ ✓ 15.4% 14.3% 0.929 30.17 0.931 30.01

Table 4: Ablation study on the effectiveness of using the CroCo v2 encoder, with or without the
pre-trained weights, or using a simpler architecture trained from scratch.

Limitations and Future Work There are several ways in which this work can be expanded such as
lighting transfer from other sources beyond same-view images. With interpolating between lighting
latents, the use of videos in training can help produce more plausible trajectories through latent-
space than linear interpolation. Finally, extending the current model to have a larger perceptive field
can increase fidelity on high resolution inputs by reducing the reliance on the sliding window which
can produce inconsistent colours (see Appendix F.1). In contrast to the limitations, we show cases
in Appendix F.2 that despite being detrimental on metrics show it is functioning as intended.

Conclusion All these various ways of manipulating the lighting latent space for the purposes of
relighting, shadow removal, and intrinsic image decomposition clearly demonstrate the effectiveness
of this pre-training method. By working within the CroCo latent space to disentangle and swap the
lighting latent vectors, there are many downstream photometric tasks that can be carried out purely
through manipulation of the lighting latent. Our method provides a general-purpose lighting model
that can easily be expanded with extra data or additional sub-modules.

Reproducibility Statement To enable reproducibility of our results, we describe the architecture
of the various model components throughout Section 3, along with task-specific models for shadow
removal and albedo estimation in Section 5.2. The datasets included in training data along with
augmentations are discussed in Section 4 and the hyper-parameters are listed in detail in Appendix
A. If the paper is accepted, we will publicly release the source code, but for reviewing purposes we
provide the current anonymised source code in the supplementary materials along with instructions
on how to train and run the model.
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APPENDICES

A HYPER-PARAMETERS

The pre-training of the decoder D and training of the delighting and relighting transformers, I and
R, were all done on a single NVIDIA H100 GPU. The transformation models S and A for shadow
removal and albedo estimation were each trained on a single NVIDIA A40 GPU. All the models
were implemented using PyTorch (Ansel et al., 2024) and used the Adam optimiser (Kingma & Ba,
2015) in training. To train the single-view decoder, we trained for 120k iterations on ImageNet with
a batch size of 48 and a learning rate of 1× 10−4. The components I and R were jointly trained for
30 epochs (approx. 143k iterations) with a batch size of 12 and the same learning rate of 1× 10−4.
The shadow removal and albedo estimation models S and A were both trained with a batch size of
32 and a learning rate of 5 × 10−5. Due to different task-specific dataset sizes, they were trained
with a different number of epochs. S was trained for 120 epochs (approx. 18.8k iterations), and A
was trained for 40 epochs (approx. 27.5k iterations).

B CROCO DECODING RESULTS

To demonstrate the necessity of training our own single-view decoder instead of using the CroCo v2
binocular decoder, we visualise the results of using each to encode and decode a single image. To
use the binocular encoder as a single-view encoder, we feed the source image in twice. The CroCo
patches are passed in as both the primary and secondary view. Figure 7 shows the lack of fidelity in
the CroCo decoder when compared to our single-view decoder.
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Input CroCo Ours Input CroCo Ours

Figure 7: Comparison of the CroCo v2 binocular decoder compared to our single-view decoder.

C LIGHTING LATENT COMPRESSION

Figure 8 demonstrates how much lighting information is compressed and encoded into the lighting
latent. To demonstrate this, the intrinsic latent patches are extracted from a blank black image, and
then relit with the lighting latent from a reference image, before being decoded. This demonstrates
the components of the reference image that are embedded into latent space. We also demonstrate
the extent of information in the intrinsic patch embeddings by taking them from the reference image
and relight it with a lighting latent consisting of only zeros ensuring the only information shown is
from the intrinsic patches.

Blank Reference Lighting Reference Intrinsics

Figure 8: Visualisation of information encoded into the lighting latent and intrinsic patches. Intrinsic
patches are disentangles from the blank image, and relit using the lighting latent disentangled from
the reference image, and decoded to produce the lighting image. The intrinsics of the reference
image are then entangled with a lighting latent vector that is all zeros before also being decoded to
produce the intrinsics image.

D RELIGHTING EXAMPLES

Here we provide further examples of manipulating the lighting latent. In Figure 9, we take the light-
ing from one frame of a timelapse, and relight the rest of the frames to match it. We also demonstrate
the opposite effect in Figure 10 where we keep the intrinsic patches of a single frame and relight
it to match every other frame. Finally we include a couple more examples of linearly interpolating
the lighting latent in Figure 11. We extract the lighting latents per-tile from two frames, interpolate
between them, and relight the intrinsics of the first with the interpolated latents. Table 1 shows
quantitative results of upsampling by interpolating halfway between every 7th frame in timelapses.
A video demonstration of various lighting latent manipulations is included in the supplementary
material.
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Figure 9: An example of extracting the lighting from the fourth column and relighting the intrinsic
patches of the other frames to match it. The first row is of the ground truth input images, and the
second row is of them relit accordingly.

Figure 10: Examples of taking the intrinsic patches from one of the frames and relighting it with the
lighting from other frames. These examples demonstrate preventing the clock from turning (which
it does in the original frames), and keeping the same parked cars despite them changing throughout
the day. The first row uses the intrinsics from the first column, but the second row uses the intrinsics
from the second column due to a lack of detail in the first column.

Figure 11: Further examples of the capabilities of linearly interpolating between lighting conditions
in the lighting latent space.
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Figure 12: Additional examples of albedo estimation on IIW.

E ALBEDO ESTIMATION RESULTS

To more clearly demonstrate the effectiveness of the albedo estimation module, we include several
examples of albedo estimation from the IIW dataset in Figure 12. We extract ŝ from the image, feed
it through A to produce the albedo latent s′

0
which is used to relight the intrinsic patches.

F SHADOW REMOVAL RESULTS

We also provide additional shadow-removal results on the SRD, ISTD+, and WSRD+ datasets in
Figures 13, 14, and 15. This demonstrates the effectiveness of our model at shadow removal, seem-
ingly in contrast to the metric results in Table 2. To explore the reason for this, we compare specific
examples of shadow removal against the results of previous methods. Figure 16 shows key examples
where our overall image consistency of shadow removal is better than other methods. The difference
maps highlight that the parts of the image outside of the shadow have an overall colour shift with
a greater difference than the other methods, but the difference in the shadowed part of the image is
much less significant. This highlights that with improved colour mapping, our method could get a
boost in the metrics causing them to more clearly reflect the shadow removal effectiveness.
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Input GT Ours Input GT Ours

Figure 13: Additional examples of our shadow removal on SRD.

Input GT Ours Input GT Ours

Figure 14: Additional examples of our shadow removal on ISTD+.

Input GT Ours Input GT Ours

Figure 15: Additional examples of our shadow removal on WSRD+.
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Input & GT Ours Xu et al. (2025b) Xu et al. (2025a) Xiao et al. (2024)

MAE: 3.22 MAE: 1.52 MAE: 1.82 MAE: 1.45
SSIM: 0.913 SSIM: 0.951 SSIM: 0.947 SSIM: 0.913
PSNR: 28.49 PSNR: 33.51 PSNR: 30.94 PSNR: 28.49

MAE: 5.75 MAE: 4.35 MAE: 6.67 MAE: 2.90
SSIM: 0.905 SSIM: 0.907 SSIM: 0.872 SSIM: 0.940
PSNR: 25.26 PSNR: 27.84 PSNR: 21.64 PSNR: 30.81

MAE: 4.03 MAE: 2.31 MAE: 1.74 MAE: 1.51
SSIM: 0.973 SSIM: 0.990 SSIM: 0.983 SSIM: 0.985
PSNR: 27.12 PSNR: 31.60 PSNR: 31.86 PSNR: 34.32

MAE: 1.98 MAE: 1.82 MAE: 2.12 MAE: 2.10
SSIM: 0.958 SSIM: 0.962 SSIM: 0.937 SSIM: 0.931
PSNR: 30.54 PSNR: 30.94 PSNR: 29.20 PSNR: 29.06

Figure 16: Some examples of shadow removal when compared to other methods. We show that our
method produces effective results, while demonstrating a subtle overall colour shift that is detrimen-
tal to the metrics. Each pair of rows show the outputs along with a signed heatmap of the difference
between the outputs and the ground truth averaged across channels and scaled up to be more visi-
ble. We also specify the metrics for each image. From left to right, the other methods we compare
against are StableShadowRemoval, OmniSR, and HomoFormer.
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Figure 17: Shadow removal failure cases. Such failures include varying colours in tiles due to the
sliding window having a small perceptual field, whereas others just fail to remove the shadows.

Input GT Ours Input GT Ours

Figure 18: Shadow removal cases that may not match the ground truth shadow-free image, but are
working better (i.e. removing additional shadows or not removing reflections). We also include
cases where it replaces direct shadows with ambient occlusion.

F.1 FAILURE CASES

While our method is generally effective at shadow removal as seen in the qualitative results, our
model still has some failure cases as shown in Figure 17. Some challenging scenarios cause it to
not remove the shadow. There are also failures caused by the use of the the sliding window. If a
tile is completely covered in shadow, it does not have a big enough perceptual field to determine
the necessary brightness and colour of the shadow-free regions. There are several potential ways
of fixing this issue. Poisson image editing (Pérez et al., 2003) can be used to combine the tiles
using their gradients to match a reference tile. The entire image can be resized to a single tile
which can be processed and upscaled to be a reference for adjusting the colour and brightness of the
high-resolution tiles. Other methods may also be possible to allow self-attention between multiple
lighting latents per-tile, or to allow a model to adjust the lighting latents based on the entire image.

F.2 NON-FAILURE CASES

During evaluation, we noticed that certain shadow-removal results seemed to be effective in ways
that could not be accounted for by the metrics. Figure 18 demonstrates a couple of these examples.
The method is able to distinguish between reflections and shadows in such a way that the shadow can
be removed while retaining the reflection. This however is detrimental to the metric as the ground
truth shadow-free images do not have some of the reflections. Another example of it doing better
than the ground-truth is where it removes additional shadows that were not accounted for. Finally,
we also noticed that when removing direct shadows in the WSRD+ dataset, it replaces them with
ambient occlusion rather than removing it altogether.
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F.3 INS DATASET

StableShadowRemoval and Ordinal Shading make use of the synthetic INS dataset created by
Careaga & Aksoy (2023) in Ordinal Shading to improve results. Although our original model did
not include it in training, we trained our models again with it (while keeping all previously used
datasets) to see if there were any improvements. We adjusted the epochs to account for the change
in dataset size to ensure comparison models had been trained for approximately the same number
of iterations. Table 5 demonstrates a slight improvement on most benchmarks when it is included in
the training process for I and R, but including it in training of S was detrimental. It is worth noting
that some cases it allowed for removal of shadows not accounted for in the benchmarks which is part
of the cause of worse results (see Figure 19). Table 6 demonstrates that including INS in the training
of I and R was detrimental to albedo estimation. It was due to this and minimal improvements in
shadow removal that we did not include it in training our final model.

Ablations ISTD+ SRD WSRD+ INS

INS in I and R INS in S SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑

0.929 30.17 0.931 30.01 0.922 25.30 0.869 21.87
✓ 0.934 31.23 0.932 30.55 0.924 25.31 0.918 25.27
✓ ✓ 0.932 31.07 0.927 29.38 0.914 24.49 0.934 28.30

Table 5: Ablation study on the effect on shadow removal of including the synthetic INS shadow
removal dataset in training the main model components I and R, and in training the shadow removal
module S .

IIW

INS in I and R WHDR ↓ WHDR (+0.5) ↓

15.4% 14.3%
✓ 17.6% 14.9%

Table 6: Ablation study on the effect on albedo estimation of including the synthetic INS shadow
removal dataset in training the main model components I and R.

Input GT Ours - INS

Figure 19: Example of the model where I, R, and S were all trained on INS correctly removing
shadows that SRD did not account for in the shadow-free image.
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