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Figure 1. We propose PathFinder, a system capable of navigating image patches in a whole slide image, describe each patch to collect
evidence, and produce a diagnosis. Pathfinder’s process is interpretable and reminiscent of pathologists. Our system consists of multiple
steps carried out by multi-modal agents: 1) Initial Assessment by Triage Agent; 2) Evidence Collection by Navigation and Description
Agents; and 3) Integrated Diagnosis by Diagnosis Agent.

Abstract

Diagnosing diseases through histopathology whole slide
images (WSIs) is fundamental in modern pathology but
is challenged by the gigapixel scale and complexity of
WSIs. Trained histopathologists overcome this challenge
by navigating the WSI, looking for relevant patches, tak-
ing notes, and compiling them to produce a final holistic
diagnostic. Traditional AI approaches, such as multiple in-
stance learning and transformer-based models, fail short
of such a holistic, iterative, multi-scale diagnostic proce-
dure, limiting their adoption in the real-world. We in-
troduce PathFinder, a multi-modal, multi-agent framework
that emulates the decision-making process of expert pathol-
ogists. PathFinder integrates four AI agents—the Triage
Agent, Navigation Agent, Description Agent, and Diagno-
sis Agent—that collaboratively navigate WSIs, gather evi-
dence, and provide comprehensive diagnoses with natural
language explanations. The Triage Agent classifies the WSI
as benign or risky; if risky, the Navigation and Descrip-
tion Agents iteratively focus on significant regions, gen-

erating importance maps and descriptive insights of sam-
pled patches. Finally, the Diagnosis Agent synthesizes the
findings to determine the patient’s diagnostic classification.
Our Experiments show that PathFinder outperforms state-
of-the-art methods in skin melanoma diagnosis by 8% while
offering inherent explainability through natural language
descriptions of diagnostically relevant patches. Qualita-
tive analysis by pathologists shows that the Description
Agent’s outputs are of high quality and comparable to GPT-
4o. PathFinder is also the first AI-based system to surpass
the average performance of pathologists in this challenging
melanoma classification task by 9%, setting a new record
for efficient, accurate, and interpretable AI-assisted diag-
nostics in pathology. Data, demo, code and models are
available at https://pathfinder-dx.github.io/.

1. Introduction
Medical diagnosis of histopathology through the examina-
tion of whole slide images (WSIs) is a cornerstone of mod-
ern pathology. WSIs are high-resolution, digitally scanned
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histopathology cases, providing an extensive view of tis-
sue architecture and cellular detail. Pathologists navigate
these gigapixel-scale images to identify morphological fea-
tures and spatial relationships critical for accurate diag-
noses. They start with a low magnification to identify suspi-
cious regions and then zoom into image patches for detailed
examination [11, 32]. They gather evidence across patches
and accumulate them together to make a final holistic di-
agnosis. This process is the gold standard. However, it is
labor-intensive and requires significant expertise to interpret
complex visual information effectively. It is becoming in-
creasingly unsustainable due to the rising number of cancer
cases globally.

The shift towards more efficient diagnostic methods in
medical imaging is essential, yet must maintain accuracy.
Recent advancements in deep learning report achieving
expert-level performance, promising such a scalable ap-
proach [47]. However, current methods typically divide
WSIs into smaller patches for independent analysis, mak-
ing diagnoses without the holistic context [1, 13, 23, 26, 44,
46, 53, 54, 56]. Transformer-based models attempt to cap-
ture both local and global patterns but are not scalable with
the high-resolution demands of WSI [3, 14, 45, 52, 55].

In contrast, we propose PathFinder, a multi-modal and
multi-agent system designed to mimic the decision-making
process of expert pathologists by integrating four AI agents:
Triage, Navigation, Description, and Diagnosis. The sys-
tem begins with the Triage Agent, classifying the WSI as
benign or risky; if risky, the Navigation and Description
Agents iteratively examine patches, generating natural lan-
guage descriptions and refining their focus with each cy-
cle. Finally, these detailed insights are integrated by the
Diagnosis Agent to produce an accurate and holistic diag-
nostic classification. Figure 1 demonstrates an overview of
PathFinder’s pipeline.

Our experiments demonstrate that the proposed agen-
tic system significantly outperforms prior state-of-the-art
(SOTA) methods on WSI skin melanoma grading, achiev-
ing an accuracy of 74% on the M-Path Skin Biopsy dataset
[9]. This marks an 8% improvement over the best base-
line with accuracy of 66% and a 9% improvement over the
65% average performance of pathologists [9]. Our proposed
system is also fully explainable from the patches visited
to the description of the patches and the final diagnoses,
which takes into consideration all the patch-wise informa-
tion. To the best of our knowledge, PathFinder is the first
AI-based system capable of surpassing the average perfor-
mance of pathologists on this challenging melanoma classi-
fication task.

2. Related Work
Multi-modal Histopathology Models. There have been a
series of studies in histopathology that leverage WSI-level

and pacth-level images to train unimodal classifiers based
on multiple instance modeling leveraging pretrained feature
extractors [35, 45, 51]. More recently unimodal founda-
tional models trained on varying self-supervised objectives
have achieved significant improvements on performance
downstream [4, 22, 49, 53]. With the introduction of large-
scale multi-modal datasets in histopathology, we have seen
significant advancements, with the emergence of large lan-
guage models and vision-language models for histopathol-
ogy. For instance, studies like Quilt-1M [23] and PathGen-
1.6M [46] curate large histopathology image-text paired
dataset and train CLIP-based models to learn joint vision-
language representations, significantly enhancing clinical
histology downstream tasks on patch-level. On the WSI-
level, PathAlign [1] aligns diagnostic texts from pathology
reports with corresponding WSIs, facilitating applications
such as automatic report generation and case/patient-level
visual question answering, moving towards a more clin-
ically integrated and holistic diagnostic process. While
many other studies like Quilt-LLaVA [44], SlideChat [5],
and PathChat [34] train histopathology Multi-modal Large
Language models (MLLM) and improve on diagnostic rea-
soning tasks, none of these models effectively automatically
navigate the giga-pixel scale WSIs towards a diagnosis.

The role of Navigation in Histopathology Diagnosis.
Computational pathology studies have tried to capture and
analyze the navigation patterns of pathologists when re-
viewing digital slide images [11, 36, 37, 41] specifically
characterizing mouse patterns, zooming in/out, and pan-
ning the field of view (FOV) to piece out morphological
clues towards a diagnosis. Often, these studies juxtapose the
navigation patterns of junior and senior-level pathologists.
NaviPath [13], presents a human-AI collaborative naviga-
tion system designed to seamlessly integrate into patholo-
gists’ workflows, considering the specific domain knowl-
edge and navigation strategies required for effective exami-
nation of pathology scans.

Multi-agent Systems. The concept of multi-agent sys-
tems has gained traction in AI research, particularly for
tasks requiring dynamic behavior and contextual under-
standing. Recent research has demonstrated the potential
of large foundation models in creating interactive agent-
based AI systems including interactions between robots, en-
vironments, and humans in the field of robotics [8, 15, 50].
These systems can perform complex tasks by leveraging
the strengths of individual agents utilizing collaboration
and coordination. The potential of multi-agent systems in
handling real-world scenarios has been demonstrated in re-
cent studies including but not limited to role-playing [29],
reasoning [6], gaming [19] and software engineering [16].
In the medical domain some studies have explored role-
playing providers (clinicians) treating patients and accu-
mulating proficiency with increasing interactions [10, 30].
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Figure 2. The left panel illustrates the Navigation Agent, as outlined in Section 4.2. The right panel presents the iterative trajectory
generation process, which employs both the Navigation Agent and Description Agent, as described in Section 4.4.

These studies are centered around multiple providers; how-
ever, in medical image analysis, multi-agent systems can
simulate the collaborative nature of different sub-tasks
within the human-expert decision-making processes, in-
cluding region navigation, understanding and holistic diag-
nosis.

3. Datasets

To lay the groundwork for describing our agents, we first
start by introducing the different datasets used for training
and evaluating our system.
M-Path Skin Biopsy WSIs. The skin biopsy WSIs in this
dataset originate from M-Path study [2, 9, 38], consisting
of 238 melanocytic lesion specimens stained with Hema-
toxylin and eosin (H&E). A consensus reference panel of
three dermatopathologists, each with internationally recog-
nized expertise, independently interpreted all 238 cases and
established a consensus diagnosis for each case through a
series of review meetings. There are 4 diagnostic classes

in this dataset: class 1 with 35 cases (mild and moder-
ate dysplastic nevi); class 2 with 86 cases (severe dys-
plasia/melanoma in situ); class 3 with 70 cases (invasive
melanoma stage pT1a); and class 4 with 47 cases (advanced
invasive melanoma stage pT1b or more). For model devel-
opment, the dataset is divided into training, validation, and
test sets with a 168/35/35 case split, maintaining consistent
class distribution across these sets.

M-Path Pathologists’ Viewport Data. The M-Path study
conducted viewport data collection, recruiting 87 patholo-
gists from 10 U.S. states. Eligibility criteria included com-
pletion of residency and/or fellowship training and recent
experience interpreting skin specimens in clinical practice.
Pathologists’ viewport data was gathered through an on-
line digital slide viewer developed using Microsoft’s open-
source Silverlight-based HD View SL, a gigapixel image
viewer. This viewer enabled pathologists to navigate each
image by panning and zooming up to 60x magnification.
During interpretation, the web-based viewer automatically
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logged viewport tracking data, capturing a rectangular im-
age area displayed on the pathologist’s screen at any given
moment. For each interpretation (unique pathologist-case
pair), the system recorded a list of viewport coordinates,
magnification levels, and timestamps. Data from 32 pathol-
ogists who completed the M-Path study were included in the
current study. Detailed methodology of the M-Path study is
available in [38].

4. PathFinder
The multi-agent multi-modal framework proposed in this
study includes four agents: 1) Triage Agent ; 2) Naviga-
tion Agent ; 3) Description Agent ; and 4) Diagnosis Agent.
The details of training data and model architectures are de-
scribed below. Figure 1 demonstrates how the four agents
interact with each other towards the final goal which is di-
agnosing a WSI.

4.1. Triage Agent

The Triage Agent is an image-only transformer-based
model tasked with separating class 1 (nevus/mild atypia
and moderate atypia/dysplasia) from the rest in the M-Path
dataset (Refer to section 3 for M-Path class definitions). We
describe the data preparation, model architecture, and train-
ing details below.
Data Generation. Each whole slide image (WSI) is di-
vided into non-overlapping 512× 512 patches at 10× mag-
nification. Background patches (saturation less than 15)
are discarded. If fewer than 150 patches remain, we ran-
domly select additional patches from the WSI, apply the
saturation filter again, and include the ones that pass. These
additional patches may overlap with existing patches but
ensure that each WSI contains sufficient information. All
patches are then rearranged based on their spatial coordi-
nates. The patches are embedded using the Quilt-Net image
encoder [23], resulting in a feature vector of shape (N, 768)
per WSI, where N is the total number of patches for the
WSI.
Model Architecture. The Triage Agent includes several
sequential stages (See Fig 1 in the Appendix): The feature
vector is initially projected from (N, 768) to (N, dim) us-
ing a linear layer to align with the model’s embedding di-
mension dim. For compatibility with 2D processing, the
vector is reshaped into a square grid through padding to
dimensions H × H , where H is the smallest integer sat-
isfying H × H ≥ N , with padding achieved by repeat-
ing the first M = H2 − N features. The padded vec-
tor is then processed through a transformer block, followed
by positional encoding via the Pyramid Position Encod-
ing Generator (PPEG) [45], and an additional transformer
block, where each transformer block contains a single self-
attention layer. Subsequently, multi-scale convolutional
layers and a squeeze-and-excitation (SE) block [18] refine

the vector, capturing spatial patterns across scales and em-
phasizing key features. The output is then flattened and
transformed back to the embedding dimension. A learn-
able class token is appended to capture global context, and
the modified vector is passed through another transformer
block, positional encoding, and a final transformer block.
Finally, the class token is pooled and passed through an
MLP head to produce the model’s output.
Training Details. We used binary cross-entropy loss for the
classification task. The embedding dimension dim is set
to 512. Training hyperparameters are as follows: a batch
size of 1, learning rate of 2 × 10−4, weight decay of 1 ×
10−5, and gradient accumulation over 32 steps. Training is
conducted for up to 100 epochs, with early stopping after
30 epochs without improvement to prevent overfitting. Our
approach achieved higher F1-score and accuracy compared
to other methods that are directly comparable for this task
(See Table 1 in the Appendix).

4.2. Navigation Agent

The Navigation Agent is designed to mimic a patholo-
gist’s methodical approach to identifying regions of inter-
est (ROIs) in whole slide images (WSIs). Unlike traditional
systems that scan the entire WSI in a single, mechanistic
sweep, our Navigation Agent adopts a more human-like, it-
erative process collaborating with the Description Agent. It
begins by pinpointing an initial ROI, much as a patholo-
gist would focus on one area at a time. This selected ROI
is then relayed to the Description Agent, which provides a
natural-language description of the area. Figure 2 illustrates
the workflow of the Navigation Agent in the left panel.

In our initial attempt, we designed the Navigation Agent
using a multi-modal architecture inspired by LLaVA [31],
integrating an image encoder and a large language model
(LLM). The image encoder extracted features from a low-
resolution version of the WSI, and the LLM processed these
features along with previous text descriptions to predict the
next ROI. Specifically, the WSI was divided into a grid of
patches, and the LLM would output the grid coordinates
of the most relevant patch based on both visual and tex-
tual inputs. However, this approach faced significant chal-
lenges due to the limited size of our training dataset. The
model tended to overfit, frequently selecting central patches
regardless of the input (see Appendix 2 for details). This
limitation prompted the exploration of more data-efficient
methods that could better generalize from limited samples.

To overcome these challenges, we restructured the Navi-
gation Agent to directly generate an importance map over
the WSI, conditioned on textual descriptions from pre-
vious observations. This approach removes the depen-
dency on the LLM for spatial selection and leverages a
feedback mechanism between the image and text modali-
ties. Let I(t) be the input WSI at iteration t, with previ-
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ously selected patches masked out to avoid re-sampling and
D(1:t) = {D(1), D(2), . . . , D(t)} be the set of textual de-
scriptions up to iteration t. At each iteration t, the Navi-
gation Agent processes the masked WSI I(t) to predict an
importance map M (t), indicating the likelihood of each re-
gion being the next ROI. The importance map is condi-
tioned on the aggregated textual information from previ-
ous descriptions. We define the importance map generation
as M (t) = fNav

(
I(t), E(t−1)

)
where, fNav is the Naviga-

tion Agent’s function (implemented as a lightweight U-Net
[42]) that has four layers in both encoder and decoder and
is conditined with text embeddings of descriptions, as well
as the masked version of the WSI that masks the earlier pre-
dicted ROIs, and E(t−1) is the aggregated text embedding
up to iteration t− 1. E(t−1) is computed by encoding each
description D(k) using a pre-trained Text-to-Text-Transfer-
Transformer (T5) text encoder [40] and averaging the em-
beddings:

E(t−1) =
1

t− 1

t−1∑
k=1

T5text(D
(k)) (1)

At the first iteration (t = 1), since there are no prior de-
scriptions, the importance map is generated solely from the
unmasked WSI M (1) = fNav

(
I(1)

)
.From the importance

map M (t), we then statistically sample the next patch to an-
alyze. The probability p

(t)
(i,j) of selecting a location (i, j) is

proportional to its importance score:

p
(t)
(i,j) =

M
(t)
(i,j)∑

(i′,j′)

M
(t)
(i′,j′)

(2)

We then sample the patch coordinates (i∗, j∗) based on
this probability distribution:(i∗, j∗) ∼ p

(t)
(i,j). The selected

high-resolution patch corresponding to (i∗, j∗) is sent to the
Description Agent, which generates a new textual descrip-
tion D(t). The new description D(t) is encoded and incor-
porated into the aggregated text embedding E(t):

E(t) =
1

t

t∑
k=1

T5text(D
(k)) (3)

This updated embedding E(t) is then used to condi-
tion the Navigation Agent in the next iteration, enabling
the model to refine its importance map M (t+1) based on
both the visual information from I(t+1) and the accumu-
lated textual insights. Therefore, we refer to it as the Text-
conditioned Visual Navigator.
Training details. To train the Navigation Agent, we con-
structed a dataset from M-Path [38] consisting of WSIs
and sequences of textual descriptions for the most impor-
tant patches. Each training sample includes: The WSI and

the corresponding masked versions, the set of descriptions
D(1:t) for each iteration generated by Quilt-LLAVA [44]
and the ground truth importance maps derived from pathol-
ogist annotations. We minimized the binary cross-entropy
loss between the predicted importance maps M (t) and the
ground truth maps M̂ (t). Finally, to prevent overfitting,
we paraphrased each description multiple times while pre-
serving the semantic meaning, augmenting the textual data
available for training.

4.3. Description Agent

We utilize Quilt-LLaVA [44], a multi-modal large lan-
guage model capable of describing individual histopathol-
ogy patches, as our Description Agent. While the orig-
inal Quilt-LLaVA generates highly detailed findings, in
this work, we instruction-tuned the model to produce
more concise summaries, optimizing for computational ef-
ficiency. Using captions from the Quilt-1M dataset [21], we
prompted GPT-4 to generate a list of findings as concise as
possible. This process yielded 102,000 instruction-tuning
samples. Figure 2 in the Appendix presents our prompt and
a sample data entry generated for tuning the Description
Agent. The Quilt-LLaVA 7B model was instruction-tuned
for one epoch to obtain the Description Agent.

4.4. Diagnosis Agent

The Diagnosis Agent is a language-only model that ana-
lyzes all the gathered natural text descriptions produced by
the Description Agent over all the patches identified by the
Navigation Agent, to analyze natural text descriptions of
histopathological findings and classify them into three cat-
egories (classes 2, 3, and 4).
Data Generation. To train the Diagnosis Agent, we gen-
erated diagnostic trajectories—sequences of patch descrip-
tions that simulated how a pathologist examined a whole
slide image (WSI). Using our Navigation Agent, we pro-
ceeded as follows.

We first obtained a heatmap for a sub-sampled WSI
(512 × 512 pixels) using a text-conditioned U-Net model,
which highlighted regions of diagnostic significance. The
WSI was divided into a 16 × 16 grid, creating 256 patches
of 32 × 32 pixels each. Each patch received an impor-
tance score based on the mean intensity of the heatmap over
the patch, indicating its diagnostic relevance. These scores
were normalized across all patches.

To generate a single trajectory, we iterated the following
steps ten times, yielding ten patches per case. At each it-
eration, a patch was selected using weighted probabilistic
sampling based on the normalized importance scores, intro-
ducing variability and ensuring different patches were cho-
sen across iterations. The selected patch was then cropped
from the high-resolution 10× WSI, and a description was
generated by the Description Agent. Selected patches were
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(b) Majority voting accuracy for 5 trajectories with 1-10 patches per
trajectory.

Figure 3. Ablation results. We ran 10 experiments, and plotted both the mean and standard deviation.

masked on the WSI to prevent reselection, and all descrip-
tions generated thus far were combined into a single text
input for the next iteration. The generation of a single tra-
jectory is presented in the right panel of Figure 2.

For each WSI in the training and validation sets, we gen-
erated five (n = 5) different trajectories, each containing
ten patch descriptions, to capture various examination pat-
terns. For the test set, we extracted additional trajectories
(n = 20) to assess the effect of trajectory number on di-
agnosis results. To introduce further variability, we used a
LLaMA 3.1 Instruct model [7] at each iteration to rephrase
the text descriptions. This approach effectively simulated
the variability among pathologists, who might examine a
single case using different patterns while seeking diagnos-
tically relevant regions.

Training Details. The Diagnosis Agent consists of a large
language model (LLM) with a classification head on top.
The classification head maps the LLM’s output (vocabulary
size) to the number of classes, producing the final classifi-
cation probabilities using a single linear layer.

We expand the training set to enhance diversity and ro-
bustness by resampling to create 20,000 cases, resulting in
100,000 trajectories for training. Each trajectory consists of
a randomly selected number of descriptions (between five
and ten), and we shuffle the sequence of descriptions within
each trajectory to prevent over-fitting to any specific order.
Each trajectory is formatted as a prompt to the LLM:

“The image descriptions below are extracted from differ-
ent patches from the same whole slide image (WSI); please
tell me which class the image belongs to: descriptions”,
where descriptions is the list of selected descriptions.

We fine-tune the LLM using LoRA (Low-Rank Adapta-
tion) [17] with the scaling factor α = 8, dropout rate 0.1,
and rank parameter r = 8 in the LoRA layers. The model
is trained using cross-entropy loss, with a learning rate of
5 × 10−5, weight decay 0.001, and batch size 16. Due to
resource constraints and the limited size of the dataset, we
selected GPT-2 [39] as the base pre-trained LLM.

5. Experiments and Results

This section outlines the experimental setup and evaluates
the performance of the proposed PathFinder framework.
First, we conduct a qualitative assessment of the descrip-
tions generated by the Description Agent, comparing them
to two vision-language models (VLMs). Next, we eval-
uate PathFinder on the M-Path dataset for melanoma di-
agnosis (see Section 3), benchmarking it against state-of-
the-art transformer-based and MIL-based baselines, as well
as public and private large language models (LLMs) using
prompting without additional training. Finally, we analyze
PathFinder’s performance under various configurations, al-
tering the Triage, Navigation, and Description Agents. De-
tailed evaluations are provided in the following subsections.

5.1. Pathologist Evaluation of Description Quality

To assess the quality of descriptions generated by our De-
scription Agent, we conducted a survey in which two expert
pathologists rated descriptions produced by our Description
agent in comparison to those generated by GPT4-o [20]
and LLaVA-Med [28]. We selected 25 cases from the M-
Path dataset, sampling across the four diagnostic classes.
For each case, we cropped the consensus region of inter-
est, manually labeled by a panel of expert dermatopatholo-
gists as the area most representative of the diagnosis. Using
this region, we prompted our Description Agent, LLaVA-
Med and GPT4-o to generate concise descriptions of each
histopathology patch. These descriptions were then pre-
sented to two expert pathologists in a randomized, double-
blind format. Each pathologist was asked to respond to two
questions for each case to indicate their preferred descrip-
tion and the reason for their preference. Refer to Appendix
4.1 for a detailed explanation of this assessment. The results
shown in Figure 4 indicate that, PathFinder’s Description
agent achieves comparable performance to GPT-4o while
being significantly more cost-effective, operating with just
7B parameters - a fraction of GPT-4o’s size.
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Figure 4. Expert human pathologist preferences for each model in
assessing description quality, evaluated in a double-blind survey
for unbiased comparison.

5.2. PathFinder Evaluation

For evaluating PathFinder, we utilize the M-Path dataset
which contains histopathology WSIs of melanocytic skin
tissue. As outlined in 4.4, multiple trajectories are gener-
ated per case to simulate the variability in diagnostic pat-
terns observed among pathologists, who may assess a single
case with diverse visual strategies to identify diagnostically
significant regions. To mitigate randomness in our results,
we evaluated PathFinder 10 times on the test set, each time
using a different random subset of 5 trajectories selected
from the total of 20. For each Whole Slide Image (WSI),
majority voting is performed on the predictions from the 5
selected trajectories to produce the final result. The overall
performance is then reported in Table 1 as the mean of the
results across the 10 runs. We balanced the testing dataset to
ensure that each diagnostic class is represented by an equal
number of samples. Consequently, the micro-averaged F1
score, precision, and recall are equivalent to the accuracy
reported in the table. We opted to use micro-averaged met-
rics in our clinical evaluation, because they appropriately
balance the importance of different stages of skin cancer,
which is crucial for assessing the overall reliability and ef-
fectiveness of the diagnostic tool.

We compared Pathfinder to four state-of-the-art baseline
models: 1) three transformer-based models all utilizing the
ScAtNet architecture [12, 32, 52] and 2) four MIL-based
model, using ABMIL [24] with different backbones. ScAt-
Net utilizes a MobileNetV2 backbone [43] to extract multi-
scale features from images at 7.5x, 10x, and 12.5x mag-
nification. For the first baseline model, these feature vec-
tors are subsequently fed into ScATNet which aggregates
information of the three scales to perform the diagnostic
task using Transformer blocks. The second approach [12]
augments the WSI with ROI heatmaps generated by the U-
Net model, appending these maps as a fourth input chan-
nel and using ScAtNet for classification. The third baseline
model, SAG [32], converts diagnostically relevant entities
into attention signals, integrating these with ScAtNet and
employing an attention-guiding loss function that combines
heuristic guidance (HG) and tissue guidance (TG) based on
disease-specific prior knowledge such as tissue, structure,

and cellular information. In addition to the original AB-
MIL model [24], we extended our evaluation by incorpo-
rating three additional ABMIL variants, each using a dif-
ferent pathology-specific foundation model as a backbone:
CONCH [33], UNI2-h [4], and QuiltNet [23]. ABMIL
aggregates information across instances using an attention
mechanism that assigns weights to each instance, allowing
the model to capture its contribution to the final bag label in
a permutation-invariant manner.

Then, we conducted comprehensive experiments to eval-
uate PathFinder by examining different architectures for
each agent component, achieving 74% accuracy that sur-
passes both human experts (65%) and previous state of the
art (66% best). Our evaluation focused on three main as-
pects:
Navigator Architectures. First, to quantify the importance
of Description Agent feedback, we tested a Visual-Only
Navigator that employs weighted probabilistic sampling for
patch selection without iterative feedback in a single pass
over the WSI. Additionally, we implemented Imitated Sam-
pling, which leverages pathologists’ viewing pattern distri-
butions (viewport width, height, and zoom level) from our
M-Path dataset (Section 3) to statistically sample patches as
important WSI regions. If pathologists spend more time fo-
cusing on a region, we gave a higher chance of sampling to
that region. Both Imitated Sampling and Vision-Only Nav-
igator performed similarly (64% and 63% respectively), in-
dicating that both pure statistical and learned ”sampling”,
regardless of source, has limited effectiveness. To further
assess the necessity of our iterative navigation approach,
we added a non-iterative baseline, selecting the top 10
patches from ABMIL attention scores using three differ-
ent pathology-specific foundation model backbones. The
best model with CONCH[33] backbone performed substan-
tially lower than our best navigation-based approach (74%
vs 54%). This confirms that a purely image-based, non-
iterative selection approach is insufficient, as it lacks the
ability to iteratively refine patch selection based on evolv-
ing textual descriptions. Furthermore, we evaluated text-
conditioned visual navigators using either CLIP-based or
T5-based text encoders. The T5-based navigator signif-
icantly outperformed its CLIP-based counterpart (74% vs
62%), suggesting CLIP’s 77-token limit constrains its abil-
ity to effectively process multiple descriptions (we simply
truncate descriptions exceeding 77 tokens, then average if a
description is long). Finally, our navigation-based approach
(74%) outperformed exhaustive search (68%), which uti-
lizes all non-background patches of the WSI, suggesting
that selective patch sampling helps avoid confusion from
irrelevant regions.
Description Agents. We compared a fine-tuned version of
Quilt-LLaVA (optimized for concise descriptions) against
off-the-shelf LLaVA-Med. The fine-tuned version showed
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Methods Accuracy F-1 score

Baselines
Human Experts [9] 0.65 0.65
ScAtNet [52] 0.62 0.62
ScAtNet + ROI Heatmap [12] 0.63 0.63
ScAtNet + SAG [32] 0.60 0.60
ABMIL [24]* 0.46 0.47
ABMIL w/ CONCH [33]* 0.66 0.60
ABMIL w/ UNI2-h [4]* 0.66 0.66
ABMIL w/ QuiltNet [23]* 0.61 0.63

LLM Prompting Baselines
BioMistral-7B 0.43 0.43
Mistral-Nemo-Instruct-2407 0.41 0.41
GPT-4o 0.49 0.49
Meta-Llama-3-8B-Instruct 0.31 0.31
LLaVA-Med-v1.5-Mistral-7b 0.43 0.43
Quilt-LLaVA-v1.5-7b 0.29 0.29

Ours
PathFinder + ABMIL w/ UNI2-h Attention-Based Top Patches 0.46 0.46
PathFinder + ABMIL w/ QuiltNet Attention-Based Top Patches 0.46 0.46
PathFinder + ABMIL w/ CONCH Attention-Based Top Patches 0.54 0.54
PathFinder + T5-Based Text-Conditioned Visual Navigator + No Triage Agent 0.58 0.58
PathFinder + T5-Based Text-Conditioned Visual Navigator + LLaVA-Med Descriptions 0.56 0.56
PathFinder + CLIP-Based Text-Conditioned Visual Navigator + LLaVA-Med Descriptions 0.60 0.60
PathFinder + Imitated Sampling 0.63 0.63
PathFinder + Vision-Only Navigator 0.64 0.64
PathFinder + CLIP-Based Text-Conditioned Visual Navigator 0.62 0.62
PathFinder + Exhaustive search 0.68 0.68
PathFinder + T5-Based Text-Conditioned Visual Navigator 0.74 0.74
* ABMIL result is based on a single run and does not use majority voting

Table 1. Majority voting performance for whole slide image (WSI) diagnosis on the M-Path dataset. Accuracy is reported, and the F-1
score is identical due to the balanced testing set. Finally, coverage here is the percent of patches used across all trajectories.

superior performance (74% vs 56%), demonstrating bet-
ter guidance for the navigator. Notably, when paired with
LLaVA-Med descriptions, the T5-based Navigator showed
no advantage over the CLIP-based version (56% vs 60%).
This suggests that a more powerful text encoder like T5 can
actually be detrimental when processing lower-quality de-
scriptions, potentially steering the Navigator toward irrel-
evant regions. This finding emphasizes the importance of
high-quality descriptions for effective navigation.
Diagnosis Agents. We evaluated various public and private
LLMs as baselines for our Diagnosis Agent(detailed in Ta-
ble 1 under LLM Prompting Baselines). Specifically, we
used PathFinder with T5-Based Text-Conditioned Visual
Navigator and Quilt-LLaVA Description Agent to generate
multiple descriptions for each WSI and prompted LLMs to
make the classification given the descriptions. To view our
prompt, please see Section 4.2 in Appendix.

Finally, it is worth noting that without the Triage Agent,
the performance of the best Pathfinder-variant dropped be-

low baselines, likely due to Quilt-LLaVA’s train dataset’s
bias toward malignant cases.

The evaluation of the baseline models are similarly done
using the majority voting over 10 runs. PathFinder achieves
8% improvement compared to the best baseline approaches,
ABMIL with CONCH [33] and UNI2-h [4] backbones.
Considering that GPT-2 is a relatively small LLM com-
pared to the current state-of-the-art, we believe that utilizing
larger LLMs could further improve diagnostic outcomes.

Lastly, to investigate the impact of the number of trajec-
tories on model performance, we evaluated the model using
between 1 and 20 trajectories for majority voting, as well
as the effect of varying trajectory lengths. Figure 3 illus-
trates this analysis, indicating optimal performance with 5
trajectories and 10 patches per trajectory. We run every ex-
periment for 10 rounds and report the mean and standard
deviation.
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6. Discussion

This study presents PathFinder, a multi-modal, multi-agent
AI framework designed to emulate the multi-scale, iterative
diagnostic approach of expert pathologists for histopathol-
ogy whole slide images (WSIs). By integrating Triage,
Navigation, Description, and Diagnosis Agents, PathFinder
collaboratively gathers evidence to deliver accurate, inter-
pretable diagnoses with natural language explanations. No-
tably, it surpasses state-of-the-art methods and the average
performance of human experts in melanoma diagnosis, set-
ting a new benchmark in AI-driven pathology.

PathFinder has the potential to accelerate diagnostic
workflows, reducing the reliance on manual examination
and enabling timely patient care in clinical settings. Its
natural language descriptions provide interpretability, facil-
itating the validation of AI-generated diagnoses by pathol-
ogists. Moreover, its integration of vision-language models
(VLMs) and large language models (LLMs) highlights the
promise of multi-modal AI in delivering scalable, special-
ized diagnostic tools that could improve access to pathology
expertise.
Limitations. Despite its strengths, PathFinder has limita-
tions. The framework relies on pre-existing datasets and
significant computational resources, posing challenges in
resource-constrained environments. Additionally, the com-
plexity of the Navigation Agent’s decision-making pro-
cess and occasional hallucinations by the Description Agent
could affect transparency and accuracy of the decision-
making process. Future work should address these issues by
enhancing dataset diversity, computational efficiency, and
patch selection strategies, further advancing PathFinder’s
potential as a transformative tool in AI-assisted pathology.
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Supplementary Material

1. Triage agent
Figure 1 illustrates the architecture of the Triage Agent. To
evaluate its effectiveness, we compared the performance of
the Triage Agent against three MIL-based benchmark meth-
ods [25, 27, 45] for detecting Class 1 vs. Non-Class 1 cases
in the M-Path dataset (details in Section 3). As summarized
in Table 1, PathFinder’s Triage Agent, designed to assess
whether a WSI is risky, outperforms the baseline methods.

Method Class 1 F1 Non-Class 1 F1 Overall Accuracy

AMIL [25] 0.16 0.83 0.71
DSMIL [27] 0.35 0.86 0.77
TransMIL [45] 0.40 0.90 0.83

Triage Agent 0.57 0.95 0.91

Table 1. Comparison of Triage Agent with benchmark methods on
Class 1 vs. Non-Class 1 classification

2. VLM-based Navigation Agent
Our initial approach to designing the Navigator Agent ex-
plored a multi-modal architecture based on the LLaVA
framework [31]. This design aimed to enable direct reason-
ing over image latents through an LLM. The architecture
consisted of two main components:
1. A U-Net encoder [42] pre-trained on pathologist view-

ing behavior data (M-Path, details in Section 3), which
served as the image encoder

2. The LLaMA-7B language model [48], which acted as
the reasoning component

2.1. Training Process and Architecture

We first trained a complete U-Net on the M-Path dataset
to learn meaningful representations of WSIs. For the Navi-
gator implementation, we removed the U-Net’s decoder and
retained only the encoder portion. This encoder was then in-
tegrated with LLaMA-7B following the LLaVA framework.
The combined model was trained using instruction tuning,
where each training instance consisted of:
• Input: A WSI and a list of previous observations and their

descriptions obtained from the Description agent
• Output: Grid coordinates (row and column) identifying

regions of interest within the WSI
The underlying hypothesis was that the LLM could ef-

fectively process the U-Net-encoded latent representations
to identify diagnostically relevant grid coordinates directly.

2.2. Limitations and Challenges with a LLaVA-
based Navigator

This approach encountered several significant limitations:

1. Data Scarcity: The available navigation training dataset
proved insufficient for the model to learn robust region
selection strategies.

2. Overfitting Patterns: The model exhibited clear signs
of overfitting:
• Consistently selecting patches from the central regions

of WSIs, regardless of input
• Generating repetitive patch selections
• Failing to generalize to novel slide patterns

2.3. Architectural Pivot

These limitations led us to revise our approach fundamen-
tally. Instead of requiring the LLM to reason directly from
latent representations, we returned to utilizing the complete
U-Net architecture (including the decoder), and leverage the
decoded attention maps for direct region sampling. This
proved to be more robust with limited training data, and we
simply conditioned our U-Net with the descriptions from
the Description Agent to have the feedback loop between
the agents. This experience highlighted the challenges
of applying LLMs to specialized medical tasks with con-
strained training data, even when pre-training sub-modules
(like our U-Net encoder in this case).

3. Description agent

We generated fine-tuning data for the Description Agent by
prompting GPT-4 to extract short and concise histopathol-
ogy findings from provided text. Figure 2 illustrates the
prompt used and a sample of the data generated for fine-
tuning the Description Agent.

4. Evaluation and experiments

This section provides details on the qualitative analysis
conducted by pathologists and the prompt for our LLM-
prompting experiments.

4.1. Qualitative Analysis of Descriptions Assessed
by Pathologists

To evaluate the quality of the descriptions generated by
the Description Agent, we cropped the region of interest
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Figure 1. Overview of the Triage Agent architecture. Definitions of M and H can be found in Section 4.

Figure 2. GPT-4 prompt to generate instruction-tuning dataset for the Description Agent.

from 25 WSIs from M-Path dataset and generated descrip-
tions for these regions using three models: PathFinder’s De-
scription Agent, GPT-4o, and LLaVa-Med. Since our De-
scription Agent is fine-tuned to produce short and concise
descriptions, we ensured a fair comparison by prompting
LLaVa-Med and GPT-4o with the instruction: Describe the
histology image concisely in less than 20 words. We con-
ducted a survey involving two pathologists who were asked
to answer the following two questions regarding descrip-
tions produced by the three models. The study was con-
ducted in a double-blind, randomized manner to ensure un-
biased results:

1. Selection: Please select the description that you believe
best matches the content of the image. (Options: Model
A, Model B, Model C)

2. Reason for Preference: Please choose the primary rea-
son for your preference. You may select more than one
option if applicable. If Other, please specify.
• Correctness: The description accurately reflects the

features of the image.
• Detail: The description provides a comprehensive

analysis of the image.
• Relevance: The description emphasizes the most per-

tinent aspects of the image.
• Other: Please specify.

Figure 3 illustrates the distribution of reasons selected
by pathologists for preferring each model. As shown, none
of the models were preferred for their level of detail, which
aligns with expectations since the models were specifically
prompted to generate short and concise descriptions, inher-
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Figure 3. Expert human pathologist preferences for each model, segmented by the reasons for their choices. Each subplot corresponds to
one pathologist and shows their ratings for PathFinder (Ours), LLaVA-Med, and GPT-4o.

ently limiting detailed information. The majority of prefer-
ences were based on the correctness of the descriptions.

4.2. Prompt used for pre-trained LLM experiments

The following prompt was used in our experiments with
pre-trained LLMs serving as the Diagnosis Agent to make
a diagnosis based on the provided descriptions:
Prompt: Answer the following question related to skin can-
cer. Only use one of the four options given at the end.
The image descriptions below are extracted from different
patches from the same whole slide image (WSI), please tell
me which class the image belongs to:
{descriptions}
The options are:
”diagnosis: (I) mildly dysplastic nevi, moderately dysplas-
tic nevi”
”diagnosis: (II) melanoma in situ and severely dysplastic
nevi”
”diagnosis: (III) invasive melanoma stage pT1a”
”diagnosis: (IV) advanced invasive melanoma stage ≥
pT1b”
Only output the complete text of the option you choose.
Don’t add any more words.
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