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Abstract

Normalising flows are a flexible class of generative models that provide exact likelihoods, and
are often trained through maximum likelihood estimation. Recent work suggests that these
models can assign undesirably high likelihood to out-of-distribution image data, question-
ing their reliability for applications where likelihoods are important (e.g. outlier detection).
We show that continuous-time normalising flows trained with the conditional flow matching
objective (CFM models) also provide unreliable likelihoods. Motivated by a hypothesis that
unreliable likelihoods might be due to image-specific structures in the data, we investigate
whether CFM models trained on various feature representations can lead to more reliable
likelihoods. We evaluate CFM models trained on (1) the original data; (2) features from
a pretrained classifier; (3) features from a pretrained perceptual autoencoder; and (4) fea-
tures from an autoencoder trained with a simple pixel-based reconstruction loss. We show
empirically that representations containing image-specific structure still lead to unreliable
likelihoods from CFM models. Our proposed pixel autoencoder representations lead to re-
liable likelihoods from CFM models on out-of-distribution data, but can yield samples of
lower quality, suggesting opportunities for future work.

1 Introduction

Normalising flows are generative models that specify a target density through a base distribution and an
invertible transformation process, with applications in computer vision (Kingma & Dhariwal, 2018; Dinh
et al., 2017; Lipman et al., 2023; Kumar et al., 2020; Müller et al., 2019; Abdelhamed et al., 2019), audio
generation (Esling et al., 2019; Kim et al., 2018; Prenger et al., 2019), graph generation (Madhawa et al.,
2019), reinforcement learning (Mazoure et al., 2020; Ward et al., 2019; Touati et al., 2019) and physics (Kan-
war et al., 2020; Köhler et al., 2019; Noé et al., 2019; Wirnsberger et al., 2020; Wong et al., 2020). They
offer exact likelihood evaluation as an advantage over other generative models, enabling, in principle, outlier
detection. Of interest to us is the peculiar phenomenon of normalising flows assigning undesirably high
likelihoods to out-of-distribution data (Nalisnick et al., 2019a; Kirichenko et al., 2020; Voleti et al., 2024),
bringing their reliability for applications into question.

A discrete-step normalising flow specifies a target distribution px(x) in terms of an easy-to-sample-from base
distribution pu(u), and an invertible transformation u = g(x) with u ∼ pu(u), by employing the change-
of-variables formula. g(x) is defined as a composite function, usually a neural network whose architecture
is restricted for a tractable log-determinant in the change-of-variables formula. The continuous-time vari-
ant (Chen et al., 2018; Grathwohl et al., 2019), hereafter referred to as a continuous flow, expresses u = g(x)
as the solution to an initial value problem (IVP):

dz

dt
= fθ(z, t), t ∈ [t1, t0], z0 = z(t0) = u, z1 = z(t1) = x, (1)

and uses a continuous analog of the change-of-variables formula to determine log px(z1) (Chen et al., 2018).
The function fθ(z, t) defines a time-dependent vector field describing the transformation dynamics, with
trainable parameters θ. This formulation circumvents restrictions on g(x) for a tractable log-determinant,
at the time-cost of simulating solution trajectories for the IVP in Equation 1.

1



Under review as submission to TMLR

5000 10000 15000

cifar10 svhn

(a) log likelihoods from a CFM
model trained on CIFAR10

1 patch

FID ≈ 0

4 patches

FID = 33.42

16 patches

FID = 99.45CIFAR10 SVHN

5000 7800 10600 13500

1 patch

4 patches

16 patches1 patch
4 patches

16 patches

(b) random patch shuffles of in-distribution test images lead to the histograms of
log likelihoods shown on the right

Figure 1: The histograms in (a) indicate that a CFM model trained on CIFAR10 assigns higher likelihood
to out-of-distribution data from SVHN, compared to in-distribution CIFAR10 test data. The overlapping
log likelihood histograms in (b) indicate that the same model assigns similar likelihoods to various levels of
patch-shuffled CIFAR10 test images, despite FID scores that suggest changes in semantic content.

Continuous flows trained with the recently introduced conditional flow matching (Lipman et al., 2023; Tong
et al., 2024) objective (CFM models) circumvent maximum likelihood training and the need for simulating
solution trajectories. With the bottleneck of simulation removed, continuous flows become more relevant
to applications at scale. But it turns out that CFM models also assign unreliable likelihoods to out-of-
distribution data, as demonstrated in Figure 1a, where a model trained on the CIFAR10 dataset assigns
higher likelihoods to samples from the SVHN dataset. Motivated by previous observations that unreliable
likelihoods may stem from the structure of the data (Ren et al., 2019; Serrà et al., 2020; Kirichenko et al.,
2020; Zhang et al., 2023), we will explore whether learned representations of the input data can lead to more
reliable likelihoods.

The structure hypothesis can be illustrated by applying experiments from Voleti et al. (2024) to CFM
models. In Figure 1b we show log likelihood histograms obtained from a CFM model trained on CIFAR10,
for patch-shuffled versions of the CIFAR10 test set. The Fréchet inception distance (Heusel et al., 2017) of
these datasets increases with the number of shuffled patches, indicating a change in semantic content, yet
model likelihoods are affected to a much lesser degree. From this we suspect that CFM model likelihoods
may depend on frequently occurring pixels, rather than semantic content.

For discrete-step normalising flows, Kirichenko et al. (2020) managed to improve the reliability of likelihoods
by training on feature representations from a classifier pretrained on ImageNet. Such feature representations
are convenient but not without limitation. Firstly, the pretrained network may struggle to generalise to data
that differs in distribution from ImageNet. Secondly, while a flow model trained in feature space can be
used to generate new feature vectors, the absence of a decoder makes them unsuitable for data generation.
To address these limitations, we will train and evaluate CFM models on a number of representations: (1)
EfficientNet-B4 features, similar to what Kirichenko et al. (2020) did for discrete-step flows; (2) features
obtained from a pretrained perceptual autoencoder (Rombach et al., 2022); and (3) features obtained from a
pixel autoencoder trained from scratch. Autoencoders provide an ability to decode from feature space back
to image space, thereby enabling the generation of image data. Our findings can be summarised as follows:

1. EfficientNet-B4 features lead to CFM models with slightly more reliable likelihoods for out-of-
distribution data, but do not resolve the problem entirely and prevent image generation.

2. CFM models trained on perceptual autoencoder features can generate good samples (in a qualitative
sense), but do not improve the reliability of likelihoods. We believe this may relate to an observation
that image-specific structure is preserved in the feature space of perceptual autoencoders.

3. Finally, a pixel autoencoder that obscures image-specific structure in the feature space offers a
substantial improvement in the reliability of likelihoods from CFM models.
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2 Related work

2.1 Unreliable likelihoods from normalising flows

Nalisnick et al. (2019a) were the first to observe that flow models can provide high likelihoods to out-of-
distribution samples. They show this for discrete-step flow models trained on the FashionMNIST, CIFAR10,
CelebA and ImageNet datasets. Moreover, they postulate that the unreliability of likelihoods is due to the
structure of the data. For instance, SVHN data has a similar mean to CIFAR10 data, and lower variance,
suggesting that the distribution underlying SVHN might be contained within the distribution underlying
CIFAR10. Nalisnick et al. (2019b) further relate the unreliability of likelihoods to the mismatch between a
model’s typical set and its areas of high probability density. Here a model’s typical set refers to the set of
samples whose entropy is close to the true entropy of the density (Cover & Thomas, 2012). Nalisnick et al.
(2019b) also provide a statistical test to determine whether inputs are in the typical set, thereby improving
the reliability of anomaly detection. Other works also consider anomaly detection from the perspective of
atypicality for both discrete (Høst-Madsen et al., 2019) and continuous data (Sabeti & Høst-Madsen, 2019),
but do not consider image datasets and do not provide commentary specifically on flow models. We do
not consider statistical tests for anomaly detection, but rather provide commentary on whether unmodified
likelihoods from CFM models can be reliable.

Serrà et al. (2020) and Voleti et al. (2024) additionally make observations regarding the structure of the data
(or rather, the complexity) and its relation to reliable likelihoods. Serrà et al. (2020) implement a measure
of input complexity through a compression algorithm that can be used for a more reliable likelihood score.
Voleti et al. (2024) implement multi-resolution in continuous-time normalising flows and show that they, too,
exhibit unreliable likelihoods for out-of-distribution data. No solutions are provided for the continuous flows
case, making our work the first to do so. Kirichenko et al. (2020) find reliable likelihoods for discrete-step
normalising flows by changing the composition of the coupling layers (Dinh et al., 2015), thereby modifying
the inductive biases of the flow model. By training the discrete flow model on features from a pretrained
classifier, they additionally show that likelihoods become more reliable at the cost of data generation.

There are approaches that are model agnostic, or consider other types of generative models. Ren et al.
(2019) observe unreliable likelihoods from autoregressive models, show that it can be attributed to back-
ground statistics, and propose a likelihood ratio method to correct for it. Choi et al. (2018) leverage the
Watanabe-Akaike information criterion estimated from various generative models, including flow-based vari-
ants, to detect anomalous data. Song et al. (2019) leverage an observed difference between the training and
evaluation modes of batch normalisation to identify out-of-distribution samples. More recently Zhang et al.
(2023) investigate the KL divergence in flow-based models, towards an explanation of unreliable likelihoods.
Ultimately, they still leverage local pixel dependencies of representations to perform anomaly detection,
indicating the importance of structure.

Our work complements the existing literature on the reliability of out-of-distribution likelihoods by showing
that CFM models (trained with the conditional flow matching objective rather than through maximum
likelihood) exhibit the same out-of-distribution behaviour. It is worth highlighting the importance of this
observation, given that CFM models are more scalable than simulation-based continuous flows. We observe
that unreliable likelihoods seem to stem from the structure of the data, and can be mitigated through
structural interventions (Ren et al., 2019; Serrà et al., 2020; Kirichenko et al., 2020; Zhang et al., 2023).
Following a similar idea, we explore whether autoencoder representations of the input data (that maintain
the ability to generate data) are viable solutions to the likelihood reliability problem in CFM models.

2.2 Representation learning

Autoencoders are a form of unsupervised representation learning, and learn feature representations from
which the input can be reconstructed. Typically, the feature dimensionality is restricted in order to avoid
learning an identity function between the inputs and reconstructions. These models are frequently used
in self-supervised representation learning. For instance, a denoising autoencoder (Vincent et al., 2008;
2010) learns to provide clean reconstructions from noisy inputs. Vincent et al. (2008) argue that including
robustness to partial destruction of the input in this way leads to learning the structure of the data manifold.
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Reconstructing the input under perturbation has been influential in natural language processing too, where
a network is tasked to predict masked tokens (Devlin et al., 2019). Masked training objectives can be applied
to images, leading to improvements in classification models that are finetuned on labelled dataset (He et al.,
2022; Dong et al., 2023). Representations from autoencoders are especially useful for us, since the decoder
component provides an ability for data generation from sampled feature vectors.

Other representation learning approaches could be considered when data generation is not important. In
the self-supervised literature, representations can be obtained through certain pretext tasks such as context
prediction (Doersch et al., 2015), solving jig-saw puzzles (Noroozi & Favaro, 2016) or rotation prediction (Gi-
daris et al., 2018). There are also contrastive learning approaches where a network learns a representation
such that similar inputs are embedded close together, and dissimilar inputs are further apart (Chen et al.,
2015; Tian et al., 2020; Khosla et al., 2020).

Our work makes use of classifier- and autoencoder-based representations. We will show in particular that an
autoencoder which suppresses image-specific structure in the learned feature space can lead to CFM models
that assign reliable likelihoods to out-of-distribution data.

The use of autoencoders in generative modelling is not uncommon. Variational autoencoders (VAEs)
(Kingma & Welling, 2013) and vector quantised VAEs (Van Den Oord et al., 2017), for example, are con-
structed in the autoencoder framework. There have also been various approaches that learn generative
models in a feature space with reduced dimensionality. Vahdat et al. (2021) train score-based generative
models (SGMs) on features obtained from a VAE, enabling the modelling of non-continuous data and learning
of smoother SGMs in a reduced space. Rombach et al. (2022) train a diffusion model also on features from a
VAE, and obtain improvements in inpainting and class-conditional image generation. We will consider their
pretrained autoencoder, specifically to determine the influence of image-specific structure in the features on
likelihood reliability. Dao et al. (2023) use the same autoencoder to learn CFM models in a feature space
with reduced dimensionality, with a specific focus on computational efficiency. We will show that this kind
of pretrained autoencoder does not assist with the reliability of likelihoods. Instead, the pixel autoencoder
we propose has fewer parameters and leads to more reliable likelihoods.

3 Methodology

We are concerned with the problem of unsupervised density estimation. Given a training set D = {xi}N
i=1

with x ∈ Rd, and defining the initial condition z1 = ψ(x) as the feature representations of the input data,
we construct a continuous flow that computes the likelihood of p(z1) as

log p(z1) = log p(z0) −
∫ t0

t1

Tr
[
∂f

∂z

]
dt, (2)

where fθ(z, t) is the dynamics function of a (neural) differential equation defining the transformation be-
tween the data and samples from the base distribution. Following Grathwohl et al. (2019), the transformed
sample u = z0 and log p(z1) are obtained by simultaneously solving Equations 1 and 2 in the torchdiffeq
framework (Chen, 2018) for t ∈ [t1, t0]. Hutchinson’s trace approximation is applied to the Jacobian term
for computational efficiency. The conditional flow matching objective is a regression between fθ(z, t) and a
specified conditional vector field that generates probability paths (i.e. how the probability of a sample evolves
through time). To train a CFM model, we must specify a parameterisation for the probablity path and the
conditional vector field that generates it. Although more general probability paths exist (Tong et al., 2024),
we restrict our focus to Gaussian conditional probability paths,

pt(z | z1) = N (z | µ(t), σ2(t)I), (3)

where µ(t) and σ2(t) describe how the mean and covariance change over time, and with µ also dependent
on z1. Such a probability path follows trajectories between a density concentrated around z1 and the base
density, and is specified by a conditional vector field (Lipman et al. (2023), Theorem 3):

ut(z | z1) = σ′(t)
σ(t) (z − µ(t)) + µ′(t), (4)
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where the prime symbol indicates the derivative with respect to t. By defining µ(t) = tz1 and σ(t) =
1 − (1 − σmin)t, the target conditional vector field leading to the standard base becomes

ut (z | z1) = z1 − (1 − σmin)z
1 − (1 − σmin)t . (5)

The conditional vector field ut (z | z1), with σmin set sufficiently small, leads to the conditional flow matching
objective (Lipman et al., 2023):

L(θ) = 1
N

N∑
i=1

||fθ(z, t) − ut(z | z1)||2, (6)

averaged over N samples in a mini-batch, and with probability paths defined over t ∼ U(0, 1). After
training, we may compute likelihoods by first obtaining the feature representation z1 = ψ(x), and then
solving Equation 2. New samples of images can be generated by the model, if the inverse ψ−1 can be
evaluated. To do so, we first sample z0 from the base distribution of the trained CFM model, and solve the
differential equation in the reverse direction to obtain z1 (i.e. from time t0 to t1). The corresponding image
sample can then be obtained by computing x = ψ−1(z1).

Our goal is to determine whether there are parameterisations of ψ(x) that may lead to reliable likelihoods.
We consider three variants, as described in the sections below. For experimental evaluation we consider the
MNIST, FashionMNIST, CIFAR10 and SVHN datasets.

3.1 Features from EfficientNet-B4

As a starting point, we consider the EfficientNet-B4 network pretrained on ImageNet. 1792-dimensional
features are extracted from one of the fully connected layers of this model. We thereby reproduce the
experimental procedure of Kirichenko et al. (2020), but for continuous flows.

To investigate the impact of presenting this pretrained network with data outside of its training data distribu-
tion, we trained a four-class LDA classifier on the EfficientNet-B4 features obtained from the MNIST, Fash-
ionMNIST, CIFAR10, and SVHN datasets, where we treat these datasets as the four classes, and achieved
a test classification accuracy of 99%. This provides some evidence that the features from EfficientNet-B4 do
differentiate at the dataset level, and suggests that a model learning the density over one of these datasets, in
the EfficientNet-B4 feature space, may discern feature vectors from the other datasets as out-of-distribution.
We also show in Figure 2 that there is a sense of separation between the datasets, even for a 2-dimensional
LDA projection of the 1792-dimensional feature vectors.

We note that the conversion from an image to this feature representation is not invertible, preventing the
generation of image samples from a CFM model trained in this feature space.

MNIST

F-MNIST

CIFAR10

SVHN

MNIST

F-MNIST

CIFAR10

SVHN

Figure 2: Two-dimensional LDA projections of the EfficientNet-B4 feature representations of training samples
from MNIST, FashionMNIST (F-MNIST), CIFAR10 and SVHN.

3.2 Features from a perceptual autoencoder

To retain the ability to generate image samples, we also consider feature vectors obtained from a pretrained
autoencoder (Rombach et al., 2022). This autoencoder was trained using a perceptual distance loss (Zhang
et al., 2018) that measures the perceptual similarity between two images, and an adversarial objective (Larsen
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Inputs Features Reconstructions

Figure 3: Top row: images from CIFAR10, gamma-corrected feature representations from the pretrained
perceptual autoencoder, and decoded reconstructions. Bottom row: images from FashionMNIST, feature
vectors from a trained perceptual autoencoder in which the feature dimensionality is smaller than the input
data, and decoded reconstructions. We observe that image-specific structure persists in this feature space.

et al., 2016; Isola et al., 2017; Dosovitskiy & Brox, 2016; Esser et al., 2021; Yu et al., 2022) based on image
patches (Isola et al., 2017). This combination of objectives is motivated by evidence that an objective based
only on pixel reconstruction is inadequate in terms of decoding high-quality images (Wang & Bovik, 2009;
Larsen et al., 2016). For instance, Wang & Bovik (2009) show with an example that various image distortions
can lead to the same mean squared error when compared to the original image.

The original purpose of this autoencoder was perceptual image compression for computational efficiency
in diffusion-based generative models. We instead focus on whether an autoencoder primed for high-quality
image reconstruction can assist with reliable likelihoods from CFM models, and provide a means of generating
new images of high quality.

We note that feature representations from this perceptual autoencoder have a shape of (28, 28, 4), and is
larger than the original image dimensions of our datasets which are either (28, 28, 1) or (32, 32, 3). The
pixel autoencoder we describe in Section 3.3 will reduce the input dimensionality.

Figure 3 (top) shows the feature representations and reconstructions of randomly chosen CIFAR10 samples,
obtained from the perceptual autoencoder. Examples from the other datasets can be found in Appendix A.
It is apparent that the reconstructions for these datasets, on which the autoencoder was not trained, are
of high quality. It seems that the autoencoder has learned a general purpose feature representation. That
image-specific structure is preserved in the feature representations is striking, and reinforces that the main
purpose of this autoencoder is perceptual image compression. A similar observation followed after we trained
the autoencoder with a feature dimensionality of (16, 16, 1), as illustrated in the bottom row of Figure 3. We
suspect that this might also be due to the fully convolutional nature of the autoencoder, as we found that a
fully convolutional autoencoder trained with a pixel-based reconstruction loss also preserves image-specific
structure in the feature space.

3.3 Features from a pixel autoencoder

As an alternative to the perceptual autoencoder, which seems to preserve image-specific structure in its
features, we consider a simpler autoencoder with a pixel-based, mean squared error reconstruction objective.
This autoencoder reduces the dimensionality of the data, which will assist with computational efficiency. It
has the advantage of a significantly reduced model capacity compared to the perceptual autoencoder, which
can act as a form of regularisation and lead to faster training. Despite its reduced capacity, the autoencoder
can offer sharp reconstructions under suitable hyperparameters.

The encoder module consists of 5 convolutional layers, 3 of which are strided, followed by a fully con-
nected layer that controls the dimensionality of the feature space and assists with suppressing image-specific
structure in the encoded features. The decoder module consists of a fully connected layer, followed by 5
convolutional layers that attempt to reconstruct the input to the encoder. The autoencoder is trained for
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Inputs Features Reconstructions

Figure 4: Input images (left), reshaped feature representations (middle), and reconstructions (right) from
the pixel autoencoder trained on the CIFAR10 dataset. It seems that image-specific structure is no longer
preserved in the features, and that the decoder produces good reconstructions even when presented with
inputs from the SVHN dataset (bottom).

500 epochs, with the Adam optimiser (Kingma & Ba, 2015) and a learning rate scheduler that reduces the
learning rate from 0.001 when the validation loss plateaus.

Figure 4 shows example feature representations and reconstructions for images from the CIFAR10 and SVHN
datasets, obtained from a pixel autoencoder trained on CIFAR10. For display purposes, we reshaped the 768-
dimensional feature vectors to images of size (16, 16, 3). We note that image-specific structure does not seem
to be preserved in the features. Reshaping the features in this way also allows for a U-Net parameterisation
of the vector field (Ho et al., 2020; Lipman et al., 2023), which seems to significantly impact the convergence
of CFM model training. We further note that the quality of the reconstructions is high, even for images from
datasets other than the autoencoder’s training set, indicating that the model has learned a general purpose
feature representation. Examples of feature representations and reconstructions for images from the MNIST
and FashionMNIST datasets can be found in Appendix B.

3.4 CFM model parameterisation

We train CFM models on each of the respective feature representations presented above, and will compare
their performance against baseline CFM models trained in the original image space. Table 1 provides a
summary.

The vector field for the CFM model trained on EfficientNet-B4 (ENet) features is parameterised by a fully
connected network with skip connections. We experimented with a sinusoidal time embedding and also a
hypernetwork for time dependence, but found that adding time as an additional input dimension worked
better. The vector field for the baseline, perceptual autoencoder (PercAE) features, and pixel autoencoder
(PixAE) features is parameterised using the same time-dependent U-Net with attention, modified according
to the input feature dimensionality. Further implementation details are included in Appendix C.

Table 1: Summary of the respective feature representations on which we train CFM models. Greyscale and
colour inputs are denoted by (g) and (rgb). The two autoencoders differ in how they capture local pixel
correlations: the perceptual autoencoder preserves image-specific structure, while the pixel autoencoder does
not. The last column indicates whether or not the trained CFM model can be used to generate images.

Feature space Description Pretrained Feature vector length Image gen.

Baseline Original image space ✗ 784 (g), 3072 (rgb) ✓

ENet Features from an EfficientNet-B4 classifier ✓ 1792 ✗

PercAE Autoencoder trained with a perceptual loss ✓ 3136 ✓

PixAE Autoencoder trained with a pixel-based loss ✗ 256 (g), 768 (rgb) ✓
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3.5 Evaluation metrics

Likelihood metric. Bits-per-dimension, derived from the average log likelihood, is a common metric to
measure generalisation in likelihood-based generative models of discrete image data (Papamakarios et al.,
2017). Bits-per-dimension is not applicable to our (continuous) representations of the data, as it would
require infinite bits to encode continuous data under the model. Instead we use a signed version of the
Bhattacharya distance for out-of-distribution analysis. Given two Gaussian densities h1 = N

(
µ1, σ

2
1
)

and
h2 = N

(
µ2, σ

2
2
)
, and with µd = µ2 − µ1, the signed distance is defined as

DSB (h1, h2) = sign(µd)
[

1
4

(µ2 − µ1)2

σ2
2 + σ2

1
+ 1

2 log
(
σ2

2 + σ2
1

2σ2σ1

)]
, (7)

where we set sign(0) = 1 to avoid a distance of zero for equal means. DSB (h1, h2) evaluates to a high value
when the means of the h1 and h2 are far apart, and their standard deviations are low, thereby indicating less
overlap between the densities. DSB (h1, h2) is positive when µ2 ≥ µ1, indicating that h2 is shifted rightwards
from h1, and it is negative when µ2 < µ1. The signed Bhattacharya distance between two Gaussians with
equal parameters is 0. In our evaluations, a distance will be obtained by fitting Gaussian densities to in-
and out-of-distribution likelihood histograms, and measuring the magnitude and direction of their overlap.
A large magnitude indicates that there is little overlap between the two densities. A positive sign indicates
that in-distribution log likelihoods are, on average, higher than out-of-distribution log likelihoods. Large
positive distances are therefore indicative of reliable likelihoods.

Sample quality. To evaluate sample quality from a trained CFM model, we will make use of the Fréchet
inception distance (FID) (Heusel et al., 2017) between the training set and 50K generated samples. For the
CFM models trained on ENet features, the LDA classifier from before is used to inspect samples of generated
feature vectors. These generated feature vectors cannot be converted to images, and the classifier scores do
not describe sample quality. We consider the LDA classifier merely to verify sensible output from the model.

Quantitative metrics are calculated over multiple runs, and specific hyperparameters and training configura-
tions are provided in Appendix C. We separate our results into three sections, for the three feature spaces,
and compare each with a baseline CFM model trained on the original images. Code for reproducing the
results will be made available upon acceptance of this paper.

4 Results

4.1 CFM models trained on ENet features

Table 2 reports the LDA classifier accuracy on feature vector samples generated by CFM models trained on
ENet features of MNIST, FashionMNIST, CIFAR10, and SVHN, respectively. This provides some verification
that the four trained CFM models can generate feature vectors that are close to their respective training
sets. We suspect that the accuracy can be increased through further hyperparameter tuning.

Table 2: LDA classifier accuracy on samples generated by seperate CFM models trained on ENet features
of MNIST, FashionMNIST, CIFAR10 and SVHN.

MNIST FashionMNIST CIFAR10 SVHN

LDA accuracy 0.8419 0.8452 0.8586 0.7660

Figures 5a and 5b show log likelihood histograms from baseline and ENet models trained on FashionMNIST.
The CFM model trained on ENet features assigns slightly lower likelihoods on average to out-of-distribution
data, compared to the baseline. There is still considerable overlap in the histograms of in- and out-of-
distribution likelihoods, and room for improvement. Figures 5c and 5d show similar (though somewhat
worse) behaviour for a CFM model trained on ENet features of CIFAR10. The impact on likelihood reliability
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Figure 5: Log likelihood histograms from baseline CFM models trained on original images, and from CFM
models trained on ENet features of FashionMNIST and CIFAR10. Blue corresponds to in-distribution
test data, and orange to out-of-distribution data.

that we observe here, by training CFM models on ENet feature representations, is not as significant for the
CIFAR10 dataset as in the reported results for discrete-step flow models. This may be due to the continuous
formulation of our models, or due to the parameterisation of the vector field. Where we use a fully connected
network with skip connections, Kirichenko et al. (2020) incorporate their own st-network for the discrete
flow. We tried other methods of incorporating time dependence, such as a hypernetwork (Ha et al., 2017),
but did not find any improvements.

Table 3 lists the signed Bhattacharya distances between various in- and out-of-distribution histogram dis-
tributions. A positive value indicates that the mean of in-distribution likelihoods is higher than the mean
of out-of-distribution likelihoods. Models trained on the MNIST and SVHN datasets provide reliable like-
lihoods, as implied by the positive distances in Table 3. The results in the table also provide quantitative
evidence for the improvements seen in Figure 5. We conclude that a CFM model can benefit from training
on EfficientNet-B4 feature representations, corroborating what has been shown for discrete flow models.
However, since the conversion of images to this kind of feature representation is not invertible, the resulting
CFM models cannot be used to generate new samples.

Table 3: Signed Bhattacharya distances between likelihoods of in- and out-of-distribution data, from CFM
models trained on original images (the baselines) and ENet features, with out-of-distribution sets as shown.
Means and standard deviations are measured over multiple training runs.

CFMs trained on MNIST

Baseline ENet features
FashionMNIST −2.13 ± 0.06 3.55 ± 0.43

CFMs trained on FashionMNIST

Baseline ENet features
MNIST −0.85 ± 0.01 0.74 ± 0.02

CFMs trained on CIFAR10

Baseline ENet features
SVHN −1.08 ± 0.00 −0.30 ± 0.40

CFMs trained on SVHN

Baseline ENet features
CIFAR10 −1.72 ± 0.02 −2.49 ± 0.51

4.2 CFM models trained on PercAE features

Figures 6a and 6b show log likelihood histograms from baseline and PercAE models trained on Fashion-
MNIST. We note that both models assign higher likelihoods to out-of-distribution data from MNIST, indi-
cating that the perceptual autoencoder does not lead to reliable likelihoods. The same is seen in Figures 6c
and 6d, where both models again assign higher likelihoods to out-of-distribution data when trained on CI-
FAR10. Models trained on the MNIST and SVHN datasets present trends similar to those in Table 3. That
is, they correctly assign lower likelihoods to FashionMNIST when trained on MNIST, and to CIFAR10 when
trained on SVHN.

ENet features seem to lead to more reliable likelihoods over the baseline, compared to PercAE features.
We are doubtful that the increased input dimensionality for models trained on PercAE features are the
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Figure 6: Log likelihood histograms from baseline CFM models trained on original images, and from CFM
models trained on PercAE features of FashionMNIST and CIFAR10.

cause of unreliable likelihoods, as ENet features of FashionMNIST were also of higher dimensionality but
did lead to more reliable likelihoods. It may instead be due to the class separation we observed in the case of
ENet features, and the fact that image-specific structure is preserved in the feature space of the perceptual
autoencoder (as demonstrated in Figure 3). If unreliable likelihoods result from the structure of the data, we
hypothesise that feature representations which preserve image-specific structure may not resolve the issue.

Figure 7 shows generated features and decoded images from CFM models trained on the PercAE features of
FashionMNIST and CIFAR10 which, qualitatively, appear to be quite good.

FashionMNIST features FashionMNIST reconstructions CIFAR10 features CIFAR10 reconstructions

Figure 7: Examples of feature vectors generated by CFM models trained on PercAE features of Fashion-
MNIST (left) and CIFAR10 (right), and the decoded reconstructions. We show gamma-corrected versions
of the first three (out of four) channels of the feature vectors.

4.3 CFM models trained on PixAE features

Figure 8 shows log likelihood histograms from baseline and PixAE models trained on FashionMNIST and CI-
FAR10. As before, the baseline CFM models assign higher likelihoods to out-of-distribution data. However,
the models trained on PixAE features provide clearly separated likelihoods for in- and out-of-distribution
data, with lower likelihoods for the latter. We believe that this may be due to the fact that the pixel autoen-
coder suppresses image-specific structure, in line with observations from Serrà et al. (2020). This result from
training CFM models on PixAE features is a clear improvement over models trained in the other feature
spaces considered.

Table 4 shows the signed Bhattacharya distances between in- and out-of-distribution likelihoods, from CFM
models trained on PixAE features, again compared to baseline models. The large positive distances for
the CFM models trained on PixAE features, across all datasets, again indicate a significant improvement in
likelihood reliability, compared to previous approaches. The pixel autoencoder also contains fewer parameters
than the alternatives we considered.

We show qualitatively in Figure 9 that features generated from our trained CFM models can successfully
be decoded into images, but note that samples from the CIFAR10 and SVHN models are of low quality.
There seems to be a trade-off between feature spaces that lead to reliable likelihoods and feature spaces that
lead to high-quality samples: PercAE features lead to good samples but unreliable likelihoods, while PixAE
features lead to reliable likelihoods but poor samples.

10
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Figure 8: Log likelihood histograms from baseline CFM models trained on original images, and from CFM
models trained on PixAE features of FashionMNIST and CIFAR10.

Table 4: Signed Bhattacharya distances between likelihoods of in- and out-of-distribution data, from CFM
models trained on original images (the baselines) and PixAE features, with out-of-distribution sets as
shown. Means and standard deviations are measured over multiple training runs.

CFMs trained on MNIST

Baseline PixAE features
FashionMNIST −2.13 ± 0.06 5.60 ± 0.13

CFMs trained on FashionMNIST

Baseline PixAE features
MNIST −0.85 ± 0.01 3.90 ± 0.19

CFMs trained on CIFAR10

Baseline PixAE features
SVHN −1.08 ± 0.00 2.67 ± 0.08

CFMs trained on SVHN

Baseline PixAE features
CIFAR10 −1.72 ± 0.02 4.41 ± 0.10

Table 5 confirms our qualitative observations, where we see that FID scores for samples from the PixAE
models are relatively high compared to other approaches. For example, Lipman et al. (2023) report FID
scores of around 8.0 for generative models trained on CIFAR10. We experimented with training the CFM
models for longer, but it did not improve sample quality. The problem persisted for greyscale versions of the
CIFAR10 and SVHN datasets, indicating that the complexity through colour channels is not the main cause
for the lower quality in generated samples. We also experimented with training CFM models on features
obtained from a fully convolutional autoencoder, which yielded samples of higher quality but unreliable
likelihoods. Image-specific structure was again recognisable in the feature space of this autoencoder. It is
possible that some structure is important for high quality samples, offering avenues for future work.

Table 5: Fréchet inception distances of generated samples from CFM models trained on PixAE features
of the respective datasets. Means and standard deviations are measured over multiple training runs.

MNIST FashionMNIST CIFAR10 SVHN

FID 31.48 ± 1.41 58.02 ± 4.08 190.30 ± 5.90 104.82 ± 9.12

5 Conclusion

We explored the phenomenon of normalising flow models assigning undesirably high likelihood to out-of-
distribution data, specifically in the context of continuous-time flow models trained under the conditional
flow matching objective (CFM models), and whether training them in feature space can improve matters.
To that end, we considered three different image feature representations. Our results suggest that feature
spaces preserving image-specific structure do not solve the problem of unreliable likelihoods, whereas feature
representations from more intricate encodings can lead to much more reliable in- and out-of-distribution
likelihoods from CFM models.

Our proposed pixel autoencoder features overcome the limitation of features from a pretrained classifier (like
EfficientNet-B4) by maintaining the ability to generate image samples. However, the quality of generated
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MNIST FashionMNIST CIFAR10 SVHN

Figure 9: Generated feature vectors (top) from CFM models trained on PixAE features of the respective
datasets, and the corresponding reconstructions (bottom).

samples can be somewhat worse compared to an autoencoder trained with a perceptual loss (which in
turn does not solve the likelihood reliability problem). We hypothesise that sample quality from the pixel
autoencoder for datasets like CIFAR10 and SVHN can be improved through additional structural biases
in the feature space, possibly obtained from class labels. The models should also be tested on additional
datasets, e.g. CIFAR100, CelebA and ImageNet, once image generation capabilities are improved.

In conclusion, our exploration into the use of feature representations for CFM model training contributes to
the discourse on reliable likelihoods from scalable continuous flow models.

Broader impact statement

Unreliable likelihoods from flow-based generative models may foster a false sense of confidence in their
predictions. This mistaken equivalence between high confidence and model accuracy can result in poor
decision making in critical or high-risk fields such as healthcare (e.g. diagnosing medical conditions), finance
(e.g. approving loans), and security (e.g. detecting fraud). Asserting the reliability of generative models can
accelerate their adoption but also heighten the risk of misuse. Therefore, we advocate for continued research
into the reliability of flow-based generative models.
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A Features and reconstructions from the perceptual autoencoder
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Figure 10: Example images, gamma-corrected feature representations and reconstructions from the pre-
trained perceptual autoencoder described in Section 3.2, for the MNIST, FashionMNIST, CIFAR10 and
SVHN datasets. Image-specific structures are evident in the features.

B Features and reconstructions from the pixel autoencoder
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Figure 11: Example images, reshaped feature vectors and reconstructions from two versions of the pixel
autoencoder described in Section 3.3. Image-specific structure is no longer preserved in feature space, and
the decoder provides good reconstructions even when the autoencoder is presented with input images from
a dataset different to its training set.
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C Implementation details

Log likelihoods and generated samples from all models are computed using the torchdiffeq framework (Chen,
2018) in PyTorch. All models are trained on a single NVIDIA RTX A6000 GPU. The Adam opti-
miser (Kingma & Ba, 2015) is used with default values for β1 and β2, and its learning rate is warmed
up with a linear scheduler. Hyperparameter tuning was performed on the learning rate and number of
epochs, to the limits of our compute budget.

The implementation from Tong et al. (2024) is adapted for CFM models trained on the original images, on
features from the perceptual autoencoder, and on features from the pixel autoencoder. We refer the reader
to the original implementation of Tong et al. (2024) for descriptions of the various hyperparameters. Final
hyperparameter values for each CFM model are provided in the following sections.

C.1 CFM models trained on the original images

The vector field for the baseline CFM models trained on original images uses the hyperparameters shown in
Table 6.

Table 6: Hyperparameters for the baseline CFM models trained on original image data.

Parameter MNIST FashionMNIST CIFAR10 SVHN

Channels 128 128 128 128
Channels multiple (1, 2, 2) (1, 2, 2) (1, 2, 2, 2) (1, 2, 2, 2)
Heads 1 1 1 1
Heads channels 1 1 1 1
Attention resolution 16 16 16 16
Dropout 0.0 0.0 0.0 0.0
Batch size 128 256 256 256
Epochs 150 150 150 150
Learning rate (warmed up) 0.0002 0.0002 0.0002 0.0002

C.2 CFM models trained on EfficientNet-B4 features

The vector field for CFM models trained on EfficientNet-B4 features is parameterised by a fully connected
neural network with skip connections. We append time as an input, use 5 hidden layers, and skip connections
between hidden layers 1 and 5 and hidden layers 2 and 4. The Swish activation function is used (Ramachan-
dran et al., 2017). Table 7 shows additional hyperparameters for these CFM models.

Table 7: Hyperparameters for CFM models trained on features obtained from EfficientNet-B4.

Parameter MNIST FashionMNIST CIFAR10 SVHN

Number of hidden layers 5 5 5 5
Layer width 1610 1610 1610 1610
Batch size 1024 1024 1024 1024
Epochs 300 300 300 300
Learning rate (warmed up) 0.00005 0.00005 0.00005 0.00005

C.3 CFM models trained on perceptual autoencoder features

The vector field for CFM models trained on perceptual autoencoder features uses a modified version of the
U-Net parameterisation listed for the baseline, since inputs are of different dimensionality. Table 8 lists the
hyperparameters.
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Table 8: Hyperparameters for CFM models trained on features from the perceptual autoencoder.

Parameter MNIST FashionMNIST CIFAR10 SVHN

Channels 128 128 128 128
Channels multiple (1, 2, 2) (1, 2, 2) (1, 2, 2, 2) (1, 2, 2, 2)
Heads 1 1 1 1
Heads channels 1 1 1 1
Attention resolution 16 16 16 16
Dropout 0.0 0.0 0.0 0.0
Batch size 128 128 128 128
Epochs 100 100 100 100
Learning rate (warmed up) 0.0002 0.0002 0.0002 0.0002

C.4 CFM models trained on pixel autoencoder features

The architecture of the pixel autoencoder is described in Section 3.3. A stride length of 2 is used in each of
the strided convolutions in the encoder, and in each of the transposed convolutions in the decoder. A kernel
size of 3 is used throughout, and the Gaussian error linear unit (GELU) activation function (Hendrycks &
Gimpel, 2016) is used. Table 9 lists the modified hyperparameters for CFM models trained on these pixel
autoencoder features.

Table 9: Hyperparameters for CFM models trained on features from the pixel autoencoder.

Parameter MNIST FashionMNIST CIFAR10 SVHN

Channels 128 128 128 128
Channels multiple (1, 2, 2, 2) (1, 2, 2, 2) (1, 2, 2, 2) (1, 2, 2, 2)
Heads 1 1 1 1
Heads channels 1 1 1 1
Attention resolution 16 16 16 16
Dropout 0.0 0.0 0.0 0.0
Batch size 128 128 128 128
Epochs 100 100 100 100
Learning rate (warmed up) 0.0002 0.0002 0.0002 0.0002
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