
Published as a workshop paper at AI4Mat-ICLR 2025

TOWARDS EXTRAPOLATION IN DEEP MATERIAL
PROPERTY REGRESSION

Mianzhi Pan1,2 Jianfei Li1 Yawen Ouyang2 Wei-Ying Ma2

Jianbing Zhang1,3∗ Hao Zhou2∗
1 National Key Laboratory for Novel Software Technology, Nanjing University, China &
School of Artificial Intelligence, Nanjing University, China;
2 Institute of AI Industry Research (AIR), Tsinghua University
3 Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, China
{panmz,lijf}@smail.nju.edu.cn,
{ouyangyawen,zhouhao}@air.tsinghua.edu.cn

ABSTRACT

Deep learning methods have yielded exceptional performances in material prop-
erty regression (MPR). However, most existing methods operate under the as-
sumption that the training and test are independent and identically distributed
(i.i.d.). This overlooks the importance of extrapolation - predicting material prop-
erties beyond the range of training data - which is essential for advanced mate-
rial discovery, as researchers strive to identify materials with exceptional prop-
erties that exceed current capabilities. In this paper, we address this gap by in-
troducing a comprehensive benchmark comprising seven tasks specifically de-
signed to evaluate extrapolation in MPR. We critically evaluate existing meth-
ods such as deep imbalanced regression (DIR) and regression data augmenta-
tion (DA) methods, and reveal their limitations in extrapolation tasks. To ad-
dress these issues, we propose an incredibly simple Matching-based EXtrapo-
lation (MEX) framework, which reframes MPR as a material-property match-
ing problem to alleviate the inherent complexity of the direct material-to-label
mapping paradigm for better extrapolation. Our experimental results show that
MEX outperforms all existing methods and demonstrates exceptional capability
in identifying promising materials, underscoring its potential for advancing mate-
rial discovery. Code is available at https://github.com/panmianzhi/
Matching-based-EXtrapolation.

1 INTRODUCTION

Material property regression (MPR), the task of predicting continuous material property values,
plays a critical role in material discovery across diverse applications such as catalysts and batteries.
Traditional ab initio calculations, such as Density Functional Theory (DFT), while accurate, are
often computationally prohibitive for high-throughput screening. To address this challenge, deep
learning models (Xie & Grossman, 2018; Schütt et al., 2021; Yan et al., 2022; Liao et al., 2024;
Shoghi et al., 2024) have emerged as efficient alternatives, providing rapid predictions that facilitate
the identification of promising material candidates for further validation through detailed simulations
or experiments.

Predicting property values outside the scope of all existing materials, known as extrapolation, is
a crucial yet overlooked area in deep MPR. A common research problem in materials science
is to discover novel materials with higher/lower properties than all known ones, such as organic
light-emitting diodes (OLEDs) with extreme color purity (Xu et al., 2020b; Kim & Yasuda, 2022)
and semiconductor materials with extraordinary thermodynamic stability (Castelli et al., 2012a;b).
Identifying such materials with outstanding properties hinges on effective extrapolation approaches.
Previous work (Hatakeyama-Sato & Oyaizu, 2021; Shimakawa et al., 2024; Segal et al., 2024) has
studied this problem but relies on sophisticated hand-craft material descriptors, limiting their gener-
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Figure 1: (a) Extrapolation in MPR (for Formation Energy), which aims to generalize to label range
outside the training data. (b) Existing methods fail in extrapolative prediction, while our approach
predicts properties closer to the real distribution.

alizability when adapted to deep learning-based MPR. As a result, deep extrapolative MPR remains
an underexplored area of research, presenting significant opportunities for advancement.

To address this gap, this study conducts a thorough investigation into the extrapolative performance
of deep regression methods for predicting diverse material properties, revealing that extrapolating
material properties remains a significant challenge. First, a comprehensive benchmark is established
using four DFT-calculated datasets from Matminer (Ward et al., 2018). To simulate realistic ex-
trapolation scenarios, we divide the whole dataset into train and test sets with disjoint target ranges.
An example dataset is given in Figure 1(a). Then, we systematically evaluate existing methods un-
der a wide range of (1) backbones, including representative equivariant geometric GNNs such as
PaiNN (Schütt et al., 2021) and EquiformerV2 (Liao et al., 2024); (2) training algorithms, including
classic ERM, deep imbalanced regression (DIR) methods (Yang et al., 2021; Gong et al., 2022; Ren
et al., 2022; Keramati et al., 2024), data augmentation techniques (Yao et al., 2022; Kaufman &
Azencot, 2024); and a general nonlinearity encoding method (Na & Park, 2022). The benchmark
outcomes demonstrate a significant degradation in the extrapolative performance of current methods,
highlighting the need for more tailored methodologies for this challenge.

In response, we propose Matching-based EXtrapolation (MEX), a novel and remarkably easy frame-
work that reframes MPR as a material-property matching problem, aimed at simplifying the com-
plexity of target functions to enhance model extrapolation. Our motivation is that matching reduces
the learning difficulty compared to precise prediction, thereby improving extrapolation. Specif-
ically, MEX employs two complementary training objectives to learn aligned feature spaces for
material and property representation matching. First, it performs absolute matching optimization
using negative cosine similarity loss, which pulls paired material and label representations closer
together. Second, MEX leverages Noise Contrastive Estimation (NCE) (Gutmann & Hyvärinen,
2010) to force the model to distinguish between target and noisy labels. Within the well-aligned
latent spaces, MEX predicts by optimizing for the nearest target value for a given sample. Exper-
iments show that MEX not only achieves the best performance on our benchmark (Figure 1(b))
but also exhibits extraordinary detection capability for promising materials, demonstrating superior
extrapolation capabilities and potential for more robust material discovery.

Our contributions are summarized as follows:

• A novel setting of MPR: We highlight the critical importance of extrapolation in MPR, an area
that has been previously understudied yet holds significant implications for realistic material de-
sign scenarios.

• A thorough benchmark for extrapolation in MPR: We curate a comprehensive benchmark
specifically designed to evaluate extrapolation in material properties regression, and thoroughly
investigate the effectiveness of diverse techniques such as deep imbalanced regression (DIR) on
extrapolation tasks, revealing their limitations in handling the complexities of MPR.

• An advanced method with exceptional performance: We propose MEX, a simple yet effective
framework that substantially enhances extrapolation capabilities, achieving new state-of-the-art
performance across diverse datasets and evaluation metrics.

2 RELATED WORK
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2.1 EXTRAPOLATIVE MATERIAL PROPERTY PREDICTION

Extrapolation to unseen material properties has been explored in various studies. Hatakeyama-Sato
& Oyaizu (2021) utilized generative models to recover randomly masked input features together with
property values. Shimakawa et al. (2024) introduced interpretable quantum-mechanical descriptors
combined with interactive linear regression. Segal et al. (2024) applied Bilinear Transduction (Ne-
tanyahu et al., 2023) to material property prediction. These approaches depend on heuristic material
descriptors, whose limited availability and weak expressiveness constrain their broader applicability.
In contrast, deep learning models directly extract features from material structures and have achieved
state-of-the-art performance on extensive benchmarks (Dunn et al., 2020; Choudhary et al., 2024).
Building on this progress, our work investigates extrapolation in deep material property prediction,
focusing on improving generalization to property values beyond the training data.

2.2 DEEP MATERIAL PROPERTY PREDICTION

Recent years have witnessed the tremendous impact of deep learning on predicting material proper-
ties (Schütt et al., 2018; Yan et al., 2022; Shoghi et al., 2024). Considering the 3D atomic systems’
essence of material structure, numerous studies have aimed to enhance neural architectures to ef-
fectively capture the intrinsic physical symmetries of such data. SchNet (Schütt et al., 2018) and
CGCNN (Xie & Grossman, 2018) pioneered the use of graph neural networks for 3D atomic sys-
tems, which modeled the pairwise atomic distance variant with regard to Euclidean transformations.
Since then, a body of research has focused on encoding higher-order geometric invariants (Klicpera
et al., 2020; Gasteiger et al., 2021; Yan et al., 2022) and equivariants (Schütt et al., 2021; Passaro &
Zitnick, 2023; Liao et al., 2024).

Another area of focus lies in pre-training to learn transferable material representations (Shoghi et al.,
2024; Yang et al., 2024; Song et al., 2024). For instance, Shoghi et al. (2024); Yang et al. (2024) pre-
trained inter-atomic force field models and show impressive transfer performance to downstream
MPR tasks. Song et al. (2024) employed a self-supervised pre-training task via crystal structure
reconstruction based on diffusion models. Orthogonal to existing research efforts, our work focuses
on the overlooked issue of extrapolation in deep MPR and approaches it from a unique training
strategy perspective, which can use any model architecture and pre-trained model as backbones.

2.3 DEEP LEARNING EXTRAPOLATION

Extrapolation in machine learning typically refers to predicting unseen data outside the training
distribution. While prior work has examined how deep models perform extrapolation (Xu et al.,
2021; Na & Park, 2022; Netanyahu et al., 2023), they primarily focus on extrapolation w.r.t. the
covariate distribution. In contrast, this paper addresses extrapolation w.r.t. the label space, where
target values are outside the training support.

Several works view extrapolation as a specific deep imbalanced regression (DIR) scenario and tackle
this challenge by sample reweighting (Steininger et al., 2021; Yang et al., 2021; Wang & Wang,
2023), feature space regularization (Gong et al., 2022; Keramati et al., 2024; Zhang et al., 2024)
and unbiased training objective (Ren et al., 2022). Although effective, DIR algorithms lack tailored
strategies to handle disjoint target label intervals, limiting their applicability. This work directly
addresses this challenge by introducing a novel training scheme for MPR. The proposed approach
reformulates MPR as a material-property matching problem, advancing beyond the conventional
end-to-end prediction used in existing DIR methods.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

MPR extrapolation aims to predict unobserved material property values outside the training label
range. Formally, let the input space and label space be denoted as X and Y , where X contains the
structural data of materials, with each sample represented as {ak, pk}nk=1, where ak and pk denote
the atomic number and position of the k-th atom out of n atoms, respectively. Y ⊂ R corresponds
to a continuous range of labels. The training domain and target domain are respectively defined as
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Figure 2: The framework of MEX. (a) During training, MEX begins by drawing negative labels
from a mixture Gaussian distribution. Both samples and labels are embedded into the feature space,
where the absolute matching optimization aligns the sample with its target label by pulling their
representations closer. Noise Contrastive Estimation loss is then applied to refine the feature space
by maximizing the score between the sample and its correct label while minimizing the scores
between the sample and noisy labels. (b) During testing, MEX predicts the label by identifying the
one most similar to the sample in the learned feature space.

Dtrain = {(x, y) | (x, y) ∈ X ×Ytrain} and Dtarget = {(x, y) | (x, y) ∈ X ×Ytarget}, where Ytrain and
Ytarget are two disjoint subspaces of Y , i.e.,

Ytarget ⊂
{
y ∈ Y | y > max(Ytrain) ∨ y < min(Ytrain)

}
Our goal is to develop a model f : X → Y that minimizes the extrapolation error
E(x,y)∼Dtarget [ℓ(f(x), y)], where ℓ : R × R → R is the loss function. Note that the model can
only utilize Dtrain without further adapting to Dtarget during training.

3.2 MATCHING-BASED EXTRAPOLATION

Given a training set of N examples Dtrain = {(xi, yi)}Ni=1, the goal of matching-based extrapo-
lation is to learn a binary matching function M(x, y) : X × Y → R that reflects the matching
degrees between materials and properties, i.e., M(x, y) assigns higher values to paired samples x
and labels y, while assigning lower values to unpaired ones. At inference time, MPR (given x) can
be reformulated as

y⋆ = argmaxy∈YM(x, y). (1)
Since Y is a continuous space, we can optimize for y⋆ via sampling or optimization algorithms.

In the following, we first outline the motivation behind MEX in Section 3.2.1, followed by the pa-
rameterization of the matching function in Section 3.2.2. Next, we detail the training process in
Section 3.2.3, where the matching function is optimized from both absolute and relative perspec-
tives. Finally, a stochastic optimization algorithm is introduced in Section 3.2.4 to efficiently solve
Equation (1).

3.2.1 MOTIVATION

Compared to directly performing numerical regression, matching-based approach fundamentally re-
duces the complexity of learning, enabling better generalization. Common numerical regression
requires unifying all mapping relationships from “material → property” into a single MLP network.
However, the relationship between materials and property values often involves highly complex and
nonlinear correspondences, making it challenging for a single global model to effectively capture
all local scenarios simultaneously. As a result, numerical regression frequently produces overly
smoothed predictions that are confined to the training data distribution, severely limiting its ability
to extrapolate beyond the observed property range. The matching-based approach tackles this chal-
lenge by reframing the problem as a series of localized matching subproblems, where the model
independently evaluates the affinity between material structures and property values. This decom-
position allows the model to focus on learning distinct relationships within specific regions of the
material-property space, thereby effectively reducing the overall complexity. Since reducing task
complexity is closely linked to improved generalization (Xu et al., 2020a), the matching-based ap-
proach naturally facilitates more efficient and reliable extrapolation.
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3.2.2 PARAMETERIZATION

The matching function M(x, y) is parameterized as Sim(Es(x), El(y)), where Es(·) : X → Rd

represents the material encoder, El(·) : R → Rd represents the label encoder, and Sim(·, ·) : Rd ×
Rd → R is non-parametric similarity measurement between two vectors which we employ the
cosine similarity. Throughout the paper, the encoded material and label are denoted as zs and zl,
respectively. Variables with subscript i correspond to the i-th training sample.

3.2.3 TRAINING STAGE

In this section, we will introduce two training objectives for learning the sample-label matching
relationship.

Absolute matching optimization. To establish a strong alignment between materials and their cor-
responding property values, we introduce an absolute matching optimization objective. Specifically,
we leverage the cosine similarity as a metric to quantify the alignment, ensuring that each paired
material representation zs

i and property representation zl
i are pulled closer together:

Labs,i = −
zs
i · zl

i

||zs
i || × ||zl

i||
Labs =

1

N

N∑
i=1

Labs,i, (2)

where Labs,i is the absolute matching loss of the i-th sample and and Labs is the total loss of N
samples.

Relative matching optimization. Although Labs enables the model to capture the matching rela-
tionship between a sample and its corresponding target value, it falls short in modeling the relative
relationships among different property values. This limitation is particularly critical in continuous
label regression tasks, where the ability to discern fine-grained distinctions between similar prop-
erty values is essential for accurate prediction. To achieve this, we introduce Noise Contrastive
Estimation (NCE) (Gutmann & Hyvärinen, 2010), a contrastive learning objective that enhances the
model’s capacity to differentiate between target and noisy labels:

Lnce,i = − log
exp

{
S
(
zs
i , z

l
(i,0)

)
− log q

(
y(i,0) | yi

)}
∑M

m=0 exp
{
S
(
zs
i , z

l
(i,m)

)
− log q

(
y(i,m) | yi

)} , (3)

where y(i,0) indicates the positive value with the representation zl
(i,0), y(i,m) indicates the negative

value with the representation zl
(i,m), and S(·, ·) : Rd ×Rd → R refers to a non-linear score module

that computes the compatibility score between a sample representation and a label representation.

Constructing effective negative label values poses a significant challenge due to the inherently infi-
nite nature of potential negatives—any value other than yi could theoretically serve as a negative. To
address this, we adopt a strategy that prioritizes hard negatives, which are values in close proximity
to the positive label. Specifically, the negative labels are sampled from a mixture of K Gaussians
centered around yi:

q(y|yi) =
1

K

K∑
k=1

N (y; yi, σ
2
k). (4)

The final NCE loss of the training samples is

Lnce =
1

N

N∑
i=1

Lnce,i. (5)

By combining the absolute and relative matching optimization, the total training objective is:

L = Lnce + λLabs, (6)

where λ is a trade-off parameter.
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Algorithm 1 Inference by stochastic optimization
Input: x: Input sample,M: Matching function
Parameter: C: Number of candidate labels, T : Iterations, l: Label lower bound, u: Label upper
bound, σ: initial noise scale, β: noise shrink factor
Output: y⋆: Optimal label

1: initialize {yi}Ci=1, yi ∼ U
(
[l, u]

)
//uniform sample from [l, u]

2: for t← 1 to T do
3: {pi}Ci=1 ← softmax({M(x, yi)}Ci=1) //get each label’s probability
4: {yi}Ci=1 ← sample({yi}Ci=1, {pi}Ci=1) //sample with replacement
5: for i← 1 to C do
6: ϵi ∼ N (0, σ2)
7: yi ← yi + ϵi //random perturb yi
8: yi ← clip(yi, l, u) //clip yi within [l, u]
9: end for

10: σ ← β ∗ σ //noise shrink
11: end for
12: y⋆ ← argmaxy∈{yi}C

i=1
M(x, y)

13: return y⋆

3.2.4 INFERENCE STAGE

Fast prediction of material properties is crucial, particularly in high-throughput screening. There-
fore, an efficient algorithm for solving Equation (1) is essential. To this end, we propose to use a
derivative-free stochastic optimization method based on Monte Carlo sampling (Homem-de Mello
& Bayraksan, 2014). The complete algorithm is described in Algorithm 1. During inference, C
candidate labels are initially sampled within the regression bound and refined iteratively (line 2-10
of Algorithm 1). At each iteration, a probability distribution over the candidate labels is computed
proportionally to their matching values with the input (line 3). Based on this distribution, candidates
are sampled with replacement (line 4). To further explore the solution space, Gaussian noise with
a shrinking scale is added to each label during refinement (lines 6–10). This iterative refinement
allows the candidates to converge toward the optimal labels. Finally, the optimal label is selected as
the candidate label yielding the highest matching value to the input (line 12). An efficiency analysis
of Algorithm 1 is presented in Section 4.5.

4 BENCHMARKING EXTRAPOLATIVE MPR

4.1 DATASET AND EVALUATION METRICS

Dataset. Our benchmark employs four datasets from Matminer (Ward et al., 2018), covering
the following properties: Formation Energy, Shear Modulus, Refractive Index, and Phonons Mode
Peak. All these datasets consist of DFT-calculated data, with data points ranging from 1,265 to
18,928. We provide full label distributions and more dataset characteristics such as atom number
and lattice constants in Supplementary Figure 5 and table 3.

In order to evaluate the extrapolative performance of MPR models, we partition the training and
test sets into disjoint label intervals. Specifically, we divide the datasets so that the test set con-
sists of the 15% of materials with the highest/lowest property values. In addition, we followed the
forward-holdout validation method proposed by Shimakawa et al. (2024) to define the validation
set, comprising the next 15% of materials with the second-highest/lowest property values. Whether
the extrapolative side is higher or lower depends on the specific requirement of material design sce-
narios. For example, researchers aim to identify the structure with the lowest Formation Energy
for a given chemical composition as it represents the thermodynamically most stable phase. Thus,
for such properties, the extrapolative side is low. For properties where both low and high values
are of interest, e.g., Shear Modulus, the dataset is split with both configurations once each to en-
sure comprehensive evaluation across the spectrum. Train/val/test label range of the resulting seven
benchmark datasets are shown in Supplementary Table 4.
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Table 1: Test MAE(↓) on the benchmark dataset where BalancedMSE is abbreviated to BMSE.
Bold is for the best and italics is for the second best in each column for both models. We report the
standard deviation among 3 runs, consistent across all subsequent tables.

Model Algo Formation Energy Shear Modulus Refractive Index Phonons Mode Peak Avg
Ranklow low high low high low high

Pa
iN

N

ERM 0.424(0.001) 0.613(0.089) 0.363(0) 0.275(0.007) 0.781(0.017) 0.82(0.005) 0.975(0.022) 7.4

LDS 0.372(0.018) 0.524(0.001) 0.335(0.004) 0.264(0.004) 0.781(0.011) 0.844(0.029) 1.04(0.091) 5.9
Ranksim 0.42(0.003) 0.54(0.001) 0 .246 (0 .03 ) 0.267(0.004) 0.775(0.002) 0 .732 (0 .106 ) 0.983(0.046) 5
BMSE 0 .36 (0 .05 ) 0 .462 (0 .041 ) 0.214(0.038) 0.269(0.059) 0 .671 (0 .01 ) 0.758(0.011) 1.02(0.018) 3 .4
ConR 0.403(0.012) 0.535(0.004) 0.329(0.002) 0.303(0.129) 0.74(0.06) 0.772(0.15) 0 .939 (0 .007 ) 5

C-Mixup 0.387(0.005) 0.537(0.002) 0.349(0.001) 0.257(0.005) 0.788(0.004) 0.82(0.008) 0.966(0.013) 5.7
FOMA 0.401(0.004) 0.446(0.056) 0.312(0.071) 0 .219 (0 .025 ) 0.746(0.02) 0.776(0.006) 0.991(0.024) 3.9

ANE 0.545(0.004) 0.528(0.002) 0.349(0.003) 0.256(0.001) 0.8(0.019) 0.843(0.033) 1.041(0.037) 7.1

MEX 0.336(0.024) 0.475(0.003) 0.263(0.01) 0.148(0.008) 0.533(0.005) 0.643(0.034) 0.896(0.026) 1.6

E
qu

if
or

m
er

V
2

ERM 0.367(0.003) 0.512(0.001) 0.306(0.001) 0.218(0.001) 0.639(0.002) 0.73(0.006) 0.923(0.01) 6.3

LDS 0 .278 (0 .008 ) 0.4944(0.004) 0.295(0.005) 0.195(0.009) 0.643(0.002) 0.749(0.001) 0.905(0.012) 4.3
Ranksim 0.356(0.003) 0.467(0.075) 0.304(0.003) 0.217(0.002) 0.624(0.002) 0.727(0.005) 0.915(0.005) 4.4
BMSE 0.398(0.136) 0.388(0.028) 0.167(0.02) 0 .184 (0 .006 ) 0 .599 (0 .013 ) 0 .568 (0 .039 ) 1.02(0.022) 3 .4
ConR 0.319(0.003) 0.509(0.004) 0.326(0.006) 0.222(0.004) 0.621(0.006) 0.735(0.004) 0 .897 (0 .009 ) 5.1

C-Mixup 0.312(0.016) 0.509(0.001) 0.314(0.002) 0.205(0.003) 0.626(0.003) 0.752(0.002) 0.915(0.005) 5.6
FOMA 0.314(0.004) 0.511(0.001) 0.311(0.001) 0.196(0.004) 0.627(0.002) 0.741(0.007) 0.914(0.001) 5.3

ANE 0.491(0.02) 0.524(0.001) 0.335(0.002) 0.228(0.005) 0.711(0.017) 0.912(0.041) 1.018(0.019) 8.7

MEX 0.184(0.012) 0 .404 (0 .012 ) 0 .235 (0 .015 ) 0.129(0.001) 0.521(0.023) 0.502(0.015) 0.809(0.018) 1.3

Metrics. We use three regression metrics, including Mean Average Error (MAE), Spearman corre-
lation, and error Geometric Mean (GM). The first two are common metrics for regression and the
third is proposed by Yang et al. (2021), and is defined as

(
Πn

i ei
)1/n

, where ei is the prediction error
of the i-th sample.

4.2 BENCHMARK METHODS

Backbones. We employ Geometric Graph Neural Networks (GNNs) (Han et al., 2024), which are
designed to process data with geometric structures and have been widely used in material property
prediction. Our training framework is architecture-agnostic, and we selected two representative
equivariant Geometric GNNs: the GNN-based PaiNN (Schütt et al., 2021) and the Transformer-
based EquiformerV2 (Liao et al., 2024). We utilize models implemented by fairchem1.

Algorithms. In the benchmark study, we explore three categories of deep extrapolative methods.
The first category is DIR methods. The second is the regression data augmentation (DA) and the
third category is the nonlinearity encoding method. To provide a comprehensive evaluation, we
assess the performance of several representative methods from each category. Specifically, we
choose LDS (Yang et al., 2021), Ranksim (Gong et al., 2022), BalancedMSE (Ren et al., 2022),
and Conr (Keramati et al., 2024) for DIR methods; C-Mixup (Yao et al., 2022) and FOMA (Kauf-
man & Azencot, 2024) for regression DA. Encoding nonlinearity into inputs has been demonstrated
to be an effective way for effective covariate extrapolation (Xu et al., 2021; Na & Park, 2022), we
consider ANE (Na & Park, 2022) since it is a data-agnostic nonlinearity encoding method which
can be seamlessly applied to MPR. All these methods are benchmarked against the empirical risk
minimization (ERM) baseline to evaluate their performance.

Implementation details. MEX is a general training framework agnostic to the material encoder.
For the label encoder of MEX, we employ a linear layer attached by an activation function. The
score module is a 4-layer Multi-layer Perceptron (MLP) that projects the concatenated sample and
label representation to a score scalar. Besides, we empirically investigate various implementations
of and compare their performance in Section 4.5.

In the training phase, 500 noisy labels are sampled for each example. We simply follow Gustafs-
son et al. (2020) to set K = 3 and σ1 = 0.075, σ2 = 0.15, σ3 = 0.3 for the noisy distribution.
During inference, the candidate label size is established at C = 2000, which is initially sampled
uniformly from [−10, 10], which can encompass the theoretical range for most materials-related

1https://github.com/FAIR-Chem/fairchem?tab=readme-ov-file
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properties. Note that the sampling interval can be freely adjusted based on prior knowledge of mate-
rial properties. The candidate labels are updated for 5 iterations before we make the final prediction.
Hyperparameters selection and additional training details are provided in the supplementary.

4.3 MAIN RESULTS

We report the performance for all methods in Table 1 and Supplementary Tables 5 and 6.

MEX achieves superior extrapolation performance. Under the MAE metric (Table 1), MEX
achieves the best average rank across both models, with ranks of 1.6 and 1.3 for EquiformerV2
and PaiNN, respectively. Specifically, MEX attains the lowest MAE on 5 out of 7 datasets for both
models. For the remaining two datasets (Shear Modulus-low&high), MEX performs competitively
with the best-performing method. Under the GM metric (Supplementary Table 5), MEX continues
to outperform all baselines, demonstrating its superior extrapolative ability over existing techniques.

DIR methods are strong baselines for extrapolation. We observe that all DIR methods rank better
than ERM on average for both models. For each dataset, at least one DIR method outperforms ERM,
demonstrating their effectiveness in extrapolation. Notably, among the DIR methods, BalancedMSE
consistently achieves the highest ranking. On certain datasets, it performs competitively to MEX,
highlighting its strong extrapolation capability. We recommend that future evaluations on extrapola-
tion consistently include DIR methods, particularly BalancedMSE, as baselines due to their overall
robustness.

Data augmentation slightly helps extrapolation, while ANE fails to extrapolate effectively in
most cases. Both C-Mixup and FOMA achieve higher overall rankings than ERM, with FOMA
only underperforming MEX and BalancedMSE on the PaiNN model. However, it is noteworthy that
these methods do not consistently outperform ERM across all datasets, and both exhibit performance
comparable to ERM when applied with EquiformerV2. For ANE, it significantly underperforms
other baselines. We hypothesize that this is due to ANE’s design for covariate extrapolation solely
and its strategy of encoding nonlinearity beforehand is unsuitable for predicting unseen target values.

Extrapolation remains a challenging problem. As shown in Table 1, the actual MAEs are rela-
tively large compared to the target values. Furthermore, we observe that all algorithms’ predictions
exhibit weak (0-0.4) or even negative Spearman correlations with the targets across most datasets
(Supplementary Table 6). The Formation Energy dataset, however, is an exception. Most methods
achieve stronger correlations on this task, which we hypothesize is due to the availability of suffi-
cient data and the relative simplicity of the material structure in this task, where the materials are
perovskite with a general chemical formula ABX3. In conclusion, accurately predicting extrapola-
tive samples remains a significant challenge for current methods.

4.4 POTENTIAL IMPACT ON CUTTING-EDGE MATERIAL DISCOVERY

As discussed in Section 4.3, extrapolation presents a significant challenge for methods in the litera-
ture, and our approach is no exception. Given such limitations, one may wonder: To what extent can
current deep learning techniques assist in the discovery of cutting-edge materials?

In addition to accurately predicting the property values of extrapolative samples, we contend that
the ability to detect materials with potentially groundbreaking properties is also crucial. Once iden-
tified, their properties can be further validated by first-principles calculations or wet experiments.
Consequently, models’ detection capabilities could become vital tools in advancing material discov-
ery.

To assess the extrapolative material detection ability of different methods, we employ a classification
metric called exploration accuracy (Eacc) (Xiong et al., 2020) to evaluate the extraordinary material
detection capability of existing methods, defined as Eacc = #Positive

#Positive+#Negative , where a test
sample is marked as positive if its predicted value is outside the training label range, or it is marked
as negative. The results are shown in Figure 3. MEX outperforms previous methods in 5 out of
7 detection tasks. Notably, it achieves a recall rate of over 80% on two datasets and exceeds 60%
on all datasets. This substantial performance advantage demonstrates the robustness of MEX and
highlights its potential to identify cutting-edge materials that might otherwise remain undiscovered.
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Figure 3: Exploration accuracy of MEX and five DIR methods in detecting extrapolative samples.

4.5 DISCUSSION

Score module analysis. The score module S(·, ·) is a critical component in learning relative
matching relationships between sample and label. Here, we investigate the effects of various
design choices. The first, referred to as MEX (mlp+cos), employs two independent 2-layer
MLPs to project the sample and label representations into a new space, after which the co-
sine similarity between the two projections is computed. The second approach, MEX (cos),
directly computes the cosine similarity between the original sample and label representations.

Table 2: Test MAE of EquiformerV2 on For-
mation Energy, Refeactive Index(bottom& top)
datasets. MEX (cos) and MEX (mlp+cos) de-
note different designs of the score module in our
framework.

Dataset Formation Energy Refractive Index

low low high

MEX (cos) 0.382(0.004) 0.231(0.003) 0.625(0.007)
MEX (mlp+cos) 0.188(0.025) 0.191(0.017) 0.577(0.014)

MEX 0.184(0.012) 0.129(0.001) 0.521(0.023)

As illustrated in Table 2, MEX and MEX
(mlp+cos) exhibit comparable performance,
while MEX (cos) demonstrates inferior perfor-
mance relative to the other designs. This obser-
vation aligns with findings in SimCLR (Chen
et al., 2020), which indicate that incorporat-
ing a learnable nonlinear transformation on the
representations before applying the contrastive
loss, rather than directly optimizing the rep-
resentations, could significantly enhance the
quality of the learned features.

Figure 4: Ablation study on λ.

Trade-off parameter analysis. We examine
the selection of the trade-off parameter λ by
assessing model performance across various
values of λ. Figure 4 illustrates the perfor-
mance of MEX alongside prior top-performing
methods on three benchmark datasets. As λ
changes, MEX consistently surpasses previous
approaches across both models, thereby con-
firming its robustness to diverse hyperparam-
eter configurations and backbone architecture
choices.

Running time analysis. Our method requires an iterative refinement of candidate labels before
making the final prediction for each testing sample, which inherently results in a longer processing
time compared to traditional regression methods. Specifically, this involves encoding 1,500 labels
and computing their matching value over 10 iterations during our experiment. Despite this complex-
ity, our experimental results indicate that the average computation time for MEX per test sample is
about 0.006s on the NVIDIA 3090, which is comparable to baseline methods (around 0.002s). Thus,
the computational overhead associated with our approach remains acceptable.

5 CONCLUSION

In this work, we shed light on the challenging task of extrapolation in material property regres-
sion (MPR), which aims to generalize to materials with unseen property values. We introduce a
new benchmark consisting of seven MPR tasks and provide a comprehensive evaluation of existing
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methods’ extrapolation capabilities. To address the task, we propose a simple yet effective frame-
work that captures the sample-label matching relationship in the latent space. Extensive experiments
demonstrate the superior performance of our approach and highlight its potential application in the
discovery of cutting-edge materials.

6 ACKNOWLEDGMENTS

This work was supported by the National Science and Technology Major Project (2022ZD0117502),
the National Natural Science Foundation of China (Grants No. 62376133 and 62406170), the Bei-
jing Nova Program (20240484682) and the Wuxi Research Institute of Applied Technologies, Ts-
inghua University (Grant No. 20242001120). We also acknowledge the support from the AI & AI
for Science Project of Nanjing University.

REFERENCES

Ivano E Castelli, David D Landis, Kristian S Thygesen, Søren Dahl, Ib Chorkendorff, Thomas F
Jaramillo, and Karsten W Jacobsen. New cubic perovskites for one-and two-photon water splitting
using the computational materials repository. Energy & Environmental Science, 5(10):9034–
9043, 2012a.

Ivano E Castelli, Thomas Olsen, Soumendu Datta, David D Landis, Søren Dahl, Kristian S Thyge-
sen, and Karsten W Jacobsen. Computational screening of perovskite metal oxides for optimal
solar light capture. Energy & Environmental Science, 5(2):5814–5819, 2012b.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework for
contrastive learning of visual representations. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pp. 1597–1607. PMLR, 2020. URL http://proceedings.
mlr.press/v119/chen20j.html.

Kamal Choudhary, Daniel Wines, Kangming Li, Kevin F Garrity, Vishu Gupta, Aldo H Romero,
Jaron T Krogel, Kayahan Saritas, Addis Fuhr, Panchapakesan Ganesh, et al. Jarvis-leaderboard:
a large scale benchmark of materials design methods. npj Computational Materials, 10(1):93,
2024.

Alexander Dunn, Qi Wang, Alex Ganose, Daniel Dopp, and Anubhav Jain. Benchmarking materials
property prediction methods: the matbench test set and automatminer reference algorithm. npj
Computational Materials, 6(1):138, 2020.

Johannes Gasteiger, Florian Becker, and Stephan Günnemann. Gemnet: Universal direc-
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A DATASET DETAILS

Figure 5: Overview of the label distribution for the original datasets. The X-axis denotes the respec-
tive property values. They were divided into seven benchmark datasets.
Table 3: Dataset characteristics, including sample number, atom number (mean and std.), and lattice
constants (mean and std.). The symbols a⃗, b⃗, and c⃗ denote the unit cell vectors. The notation ∥ · ∥
denotes the length of a vector and ∠(·, ·) denotes the angle between two vectors.

Property #Samples #Atoms ∥a⃗∥ ∥⃗b∥ ∥c⃗∥ ∠(⃗b, c⃗) ∠(⃗a, c⃗) ∠(⃗a, b⃗)

Formation Energy
Castelli et al. (2012a) 18982 5± 0 4.14 (0.31) 4.14 (0.31) 4.14 (0.31) 90.0 (0) 90.0 (0) 90.0 (0)

Shear Modulus
Jain et al. (2013) 10987 8.63± 8.66 4.96 (1.5) 5.33 (1.67) 6.41 (2.98) 83.29 (20.3) 82.86 (19.78) 85.35 (23.49)

Refractive Index
Petousis et al. (2017) 4764 16.9± 14.67 5.98 (1.94) 6.6 (2.31) 7.98 (3.61) 86.32 (19.39) 87.07 (19.12) 89.55 (22.47)

Phonons Mode Peak
Petretto et al. (2018) 1265 7.53± 3.74 5.32 (1.42) 5.66 (1.57) 6.72 (2.09) 83.55 (23.85) 82.95 (23.4) 84.1 (25.15)

Table 4: Details of our curated benchmark datasets.

Property Extrapolate
side

Train
label range

Val
label range

Test
label range

Formation
Energy low [1.06, 5.16] [0.76, 1.06] [-0.64, 0.76]

Shear
Modulus

low [1.4, 2.72] [1.18, 1.4] [0, 1.18]

high [0, 1.78] [1.78, 1.93] [1.93, 2.72]

Refractive
Index

low [0.56, 4.13] [0.45, 0.56] [0, 0.45]

high [0, 0.9] [0.9, 1.11] [1.11, 4.13]

Phonons
Mode Peak

low [5.72, 8.2] [5.41, 5.72] [4.09, 5.41]

high [4.09, 6.45] [6.45, 6.79] [6.8, 8.2]

B EXPERIMENT DETAILS

B.1 EVALUATION METRICS

MAE. Mean Absolute Error (MAE) is defined as 1
N

∑N
i=0 |yi − ŷi|, where N is the number of

samples. yi and ŷi are the ground truth label and prediction of the i-th sample, respectively. Lower
is better.
GM. Error Geometric Mean (GM) is defined as (ΠN

i=0|yi − ŷi|)1/N , where N is the number of
samples. yi and ŷi are the ground truth label and prediction of the i-th sample, respectively. Lower
is better. We implement GM as

(
ΠN

i=0max{|yi − ŷi|, 10−10}
)1/N

for metric robustness.
Spearman correlation. Spearman correlation measures the direction of the monotonic relationship
between two variables by calculating the Pearson correlation on their ranked values. We use the
implementation in scipy library. Higher is better.

B.2 TRAINING DETAILS

For all experiments, models were trained for a maximum of 200 epochs, with early stopping applied
if the validation mean absolute error (MAE) did not improve for 30 consecutive epochs. We em-
ployed the AdamW optimizer in conjunction with a ReduceLROnPlateau learning rate schedule,
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which reduced the learning rate by a factor of 0.8 after 5 epochs without improvement. Hyper-
parameter selection was performed based on validation MAE via grid search, with the trade-off
parameter λ of MEX selected from {0.25, 0.5, 0.75, 1}, batch sizes from {32, 64, 128}, learning
rates from {0.00005, 0.0001, 0.001}, and weight decay from {0, 0.001}. All methods were eval-
uated under three random seeds, and the average and standard deviation of all metrics across all
datasets were reported.

B.3 BASELINE DETAILS

In this section, we will introduce the details of all the baseline used in this paper, including LDS,
RankSim, BMSE, ConR, C-Mixup, FOMA and ANE.
LDS. LDS (Label Distribution Smoothing) (Yang et al., 2021) convolves a symmetric kernel with
the empirical label distribution to account for the continuity of labels. Specifically, we use Gaussian
kernel. The algorithm has two hyperparameters—the kernel size and the standard deviation, we set
the kernel size as 5 and the standard deviation as 2.
RANKSIM. RankSim (ranking similarity) (Gong et al., 2022) is a regularizer for deep imbalanced
regression that enforces an inductive bias where samples closer in label space should also be closer
in feature space by aligning the sorted neighbor lists in label and feature spaces. The algorithm
has two hyperparameters—the interpolation strength λ and the balancing weight γ. λ trades off the
informativeness of the gradient with fidelity to the original function and γ is the balancing weight
on the regularization term in the overall network loss. We perform grid search for γ from {1, 2, 4}
and λ from {1, 100, 1000}.
BMSE. BalancedMSE (Ren et al., 2022) achieves balanced predictions by utilizing the prior
distribution of the training labels to perform a statistical transformation. Specifically, we use BMC
(Batch-based Monte-Carlo) to implement this algorithm. BMC does not require prior knowledge of
ptrain(y). It considers all labels in a training batch as random samples drawn from ptrain(y). For a
training batch of labels By = {y(1),y(2), ...y(N)}, the loss is given by:

L = − log
exp

(
−∥ypred − y∥2

2
/τ

)
∑

y′∈By
exp

(
−∥ypred − y′∥2

2
/τ

) , (7)

where τ = σ2
noise is the temperature coefficient and σ2

noise is a learnable parameter with an initial
value of 1.0.
CONR. ConR (Keramati et al., 2024) is a contrastive regularizer designed to capture global and lo-
cal label similarities in feature space while preventing minority sample features from collapsing into
majority neighbors. It identifies mismatches between label and feature spaces, applying penalties to
correct them. The algorithm has a temperature hyperparameter τ , we search from {0.25, 0.5, 1, 2}.
C-MIXUP. C-Mixup (Yao et al., 2022) improves the generalization ability of regression tasks by
linearly interpolating a pair of samples and their corresponding labels. Specifically, C-Mixup adjusts
the sampling probability based on the similarity of the labels. We use Gaussian kernel to calculate
the sampling probability of mixed samples, and the interpolation ratio λ ∈ [0, 1] is drawn from a
Beta distribution, i.e., λ ˜Beta(α, α). The algorithm has two hyperparameters—the bandwidth σ of
Gaussian kernel and α of Beta distribution, we search for σ from {0.1, 1} and α from {1, 2}.
FOMA. FOMA (First-Order Manifold Augmentation) (Kaufman & Azencot, 2024) is a simple,
domain-independent and data-driven DA routine, its core idea is that data with similar dominant
components to the training set should be treated as true samples. Let X , Y be the input and output
mini-batch tensors, respectively, and Zl = gl(X) be the hidden representation at layer l. FOMA
generates new training samples Zl(λ), Y (λ) from the given ones by scaling down their small sin-
gular values with a random λ ∈ [0, 1]. λ is drawn from a Beta distribution, i.e., λ ˜Beta(α, α). The
algorithm has a hyperparameter— α of Beta distribution, we search it from {0.1, 0.5, 1, 10}.
ANE. ANE (Automated Nonlinearity Encoder) (Na & Park, 2022) is a data-agnostic embedding
technique designed to enhance the extrapolation ability of neural networks. ANE encodes nonlin-
earities in regression tasks into input embeddings by minimizing the Wasserstein distance between
pairwise distances of data samples in both input and target spaces and then optimizes an MLP pre-
diction network with those embeddings.
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B.4 MORE EXPERIMENT RESULTS

Table 5: Test GM(↓) on the benchmark dataset.

Model Algo Formation Energy Shear Modulus Refractive Index Phonons Mode Peak Avg
Ranklow low high low high low high

Pa
iN

N

ERM 0.388(0.001) 0.571(0.094) 0.340(0.001) 0.228(0.008) 0.709(0.020) 0.750(0.006) 0.849(0.020) 7.6

LDS 0.337(0.019) 0.479(0.001) 0.310(0.003) 0.178(0.003) 0.668(0.008) 0.770(0.026) 0.910(0.098) 5.6
Ranksim 0.385(0.003) 0.495(0.001) 0 .214 (0 .030 ) 0.223(0.008) 0.659(0) 0.646(0.123) 0.852(0.015) 5.1
BMSE 0.247(0.041) 0.367(0.041) 0.142(0.036) 0.205(0.074) 0 .501 (0 .010 ) 0 .581 (0 .018 ) 0 .800 (0 .021 ) 2
ConR 0.367(0.011) 0.489(0.005) 0.306(0.002) 0.275(0.144) 0.66(0.071) 0.688(0.182) 0.814(0.082) 5.4

C-Mixup 0.35(0.005) 0.491(0.002) 0.325(0.002) 0.212(0.005) 0.67(0.003) 0.752(0.008) 0.852(0.014) 6.3
FOMA 0.365(0.004) 0 .391 (0 .067 ) 0.284(0.083) 0 .17 (0 .031 ) 0.634(0.019) 0.701(0.008) 0.877(0.012) 3.9

ANE 0.511(0.006) 0.483(0.002) 0.327(0.003) 0.202(0.006) 0.666(0.022) 0.768(0.03) 0.918(0.026) 6.9

MEX 0 .278 (0 .034 ) 0.425(0.003) 0.227(0.012) 0.093(0.01) 0.435(0.01) 0.555(0.041) 0.75(0.022) 1.7

E
qu

if
or

m
er

V
2

ERM 0.330(0.003) 0.466(0.001) 0.288(0.001) 0.172(0.001) 0.550(0.003) 0.667(0.008) 0.829(0.007) 6.3

LDS 0 .236 (0 .01 ) 0.446(0.004) 0.275(0.005) 0.136(0.011) 0.555(0.003) 0.686(0.001) 0.806(0.009) 4.1
Ranksim 0.319(0.002) 0.413(0.089) 0.286(0.003) 0.171(0.002) 0.534(0.001) 0.665(0.008) 0.824(0.003) 4.7
BMSE 0.301(0.134) 0.298(0.032) 0.11(0.019) 0 .106 (0 .001 ) 0 .456 (0 .015 ) 0 .389 (0 .026 ) 0.822(0.019) 2.7
ConR 0.285(0.003) 0.465(0.004) 0.306(0.004) 0.176(0.006) 0.527(0.004) 0.671(0.003) 0 .800 (0 .01 ) 5.4

C-Mixup 0.277(0.017) 0.463(0) 0.295(0.002) 0.161(0.003) 0.534(0.003) 0.691(0.002) 0.820(0.005) 5.1
FOMA 0.278(0.005) 0.466(0.001) 0.293(0.001) 0.141(0.006) 0.538(0.002) 0.68(0.007) 0.824(0.001) 5.4

ANE 0.457(0.019) 0.481(0.001) 0.316(0.002) 0.173(0.008) 0.601(0.013) 0.833(0.035) 0.904(0.013) 8.4

MEX 0.122(0.011) 0 .335 (0 .017 ) 0 .19 (0 .019 ) 0.056(0.003) 0.41(0.03) 0.35(0.008) 0.668(0.022) 1.3

Table 6: Test Spearman correlation efficient(↑) on the benchmark dataset.

Model Algo Formation Energy Shear Modulus Refractive Index Phonons Mode Peak

low low high low high low high

Pa
iN

N

ERM 0.541(0.005) 0.059(0.148) -0.128(0.047) -0.116(0.039) -0.208(0.065) -0.181(0.007) -0.421(0.004)

LDS 0.660(0.013) 0.171(0.028) -0.022(0.080) -0.104(0.024) -0.265(0.018) -0.230(0.043) -0.379(0.018)
Ranksim 0.542(0.004) 0.170(0.017) -0.018(0.023) -0.070(0.0430) -0.314(0.009) -0.216(0.046) -0.418(0.012)
BMSE 0.351(0.044) 0.099(0.064) -0.054(0.055) -0.133(0.066) -0.237(0.022) -0.260(0.054) -0.302(0.017)
ConR 0.473(0.101) 0.131(0.019) -0.032(0.033) 0.009(0.029) -0.174(0.036) -0.210(0.029) -0.430(0.018)

C-Mixup 0.567(0.005) 0.144(0.019) -0.093(0.017) -0.052(0.016) -0.213(0.129) -0.181(0.010) -0.437(0.014)
FOMA 0.534(0.013) 0.232(0.020) -0.046(0.080) 0.093(0.018) -0.325(0.005) -0.205(0.044) -0.384(0.042)

ANE 0.469(0.125) 0.23(0.007) 0.01(0.027) 0.084(0.059) -0.255(0.016) -0.208(0.059) -0.284(0.047)
MEX 0.489(0.051) 0.319(0.015) -0.003(0.017) 0.059(0.027) 0.039(0.039) -0.201(0.038) -0.335(0.018)

E
qu

if
or

m
er

V
2

ERM 0.615(0.015) 0.336(0.042) 0.069(0.024) 0.194(0.015) -0.120(0.016) 0.008(0.054) -0.459(0.011)

LDS 0.71(0.044) 0.155(0.033) 0.020(0.085) 0.237(0.020) -0.031(0.013) 0.009(0.117) -0.411(0.030)
Ranksim 0.625(0.014) 0.332(0.009) 0.094(0.016) 0.195(0.021) -0.060(0.004) 0.061(0.071) -0.432(0.015)
BMSE 0.273(0.043) 0.278(0.033) 0.074(0.020) -0.016(0.004) -0.126(0.0470) -0.175(0.037) -0.393(0.003)
ConR 0.724(0.012) 0.357(0.023) 0.109(0.038) -0.021(0.047) -0.022(0.008) -0.050(0.108) -0.460(0.047)

C-Mixup 0.682(0.019) 0.328(0.063) 0.117(0.055) 0.183(0.077) -0.045(0.014) 0.005(0.003) -0.479(0.008)
FOMA 0.703(0.004) 0.317(0.032) 0.131(0.060) 0.211(0.028) -0.012(0.003) 0.040(0.042) -0.360(0.184)
ANE 0.6(0.053) 0.336(0.006) 0.171(0.024) 0.033(0.057) -0.21(0.053) -0.232(0.102) -0.492(0.051)

MEX 0.645(0.020) 0.374(0.021) 0.095(0.027) 0.080(0.027) 0.088(0.006) -0.039(0.085) -0.427(0.019)
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