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Abstract

We estimate the importance weights and their as-
sociated confidence set in label shift problems us-
ing hierarchical models via the Empirical Bayes
and Matrix Constraints (EBMaC) method. Our
approach accommodates dispersion beyond what
is permitted by the classic multinomial model
and produces exact confidence regions in finite
samples for confusion matrix and predicted la-
bels. In addition, we describe the dependence
structure of the importance weights in matrix con-
straints. Through a linear programming technique,
we are able to compute smaller confidence sets
and shorter elementwise confidence intervals for
importance weights compared to existing meth-
ods, while maintaining the probability guarantee.
Applying the results to prediction in the target do-
main directly yields smaller conformal prediction
set and PAC prediction set. Numerical experi-
ments demonstrate the advantages of EBMaC in
producing tighter confidence sets for the impor-
tance weights both marginally and jointly.

1. Introduction

When we simultaneously consider data sets from differ-
ent sources, problems of distribution shift naturally arise.
The most frequently studied distribution shifts are covariate
shift and label shift. Here, we focus on label shift, which
describes the scenario where the marginal distributions of
the labels differ in the source and the target domains, but
given the label, the conditional distributions of covariates re-
main unchanged. The key quantity of interest is importance
weights, i.e. the ratios of the label proportions between the
two domains.

Given a classifier, there are three types of approaches for
estimating the importance weights. The first one mainly
relies on the linear relationship of the confusion matrix and
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the predicted label distribution (Lipton et al., 2018; Aziz-
zadenesheli et al., 2019), and is named the confusion matrix
method. The classifier is used to produce the confusion ma-
trix in the source domain and to generate the predicted label
distribution in the target domain. In forming the confusion
matrix, either hard assignments or soft assignments can be
implemented (Garg et al., 2020). The difference between
BBSE (Lipton et al., 2018) and RLLS (Azizzadenesheli
etal., 2019) is that BBSE pioneered the method while RLLS
refined it by adding a regularization term on the importance
weights to address potential near-singularity issues in the
confusion matrix. The second one estimates the importance
weights by maximum likelihood estimator (MLE). To this
end, Saerens et al. (2002) proposed MLLS which finds the
MLE by EM algorithm. Alexandari et al. (2020) proposed
BCTS and demonstrated that further calibrating a classi-
fier on the source domain significantly improves the MLE.
The improvement happens because a classifier trained on
the source domain may not perfectly represent the true pro-
portions of the labels, even if it achieves high prediction
probabilities (Guo et al., 2017). Such miscalibration bi-
ases the label predicting probability in the source domain
and thus the estimated importance weights. The last one
solves an estimating equation, formed by the projected score
function, and is named ELSA (Tian et al., 2023). ELSA
has the feature of being robust to an uncalibrated classifier,
and it outperforms BCTS in computational efficiency while
maintaining competitive accuracy.

In terms of the confidence intervals of the importance
weights, most results hold only in the asymptotic sense.
In finite samples, BBSE and RLLS rely on expressing the
estimators explicitly in terms of confusion matrix and pre-
dicted label distribution. On the other hand, Si et al. (2023)
proposed the Gaussian elimination (GE) method, where
they modified each step of the Gaussian elimination proce-
dure when solving the linear system in the confusion matrix
method. Nevertheless, these methods do not produce tight
confidence sets.

We propose EBMaC (Empirical Bayes and Matrix
Constraints) method in the confusion matrix method class.
We first construct confidence regions for the confusion ma-
trix and the predicted label distributions using empirical
Bayes method in a hierarchical model. It incorporates the
overdispersion phenomenon, which is often encountered in
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practice. We further take into account by recognizing it as
a linear programming problem. This allows us to bypass
matrix inversion and to obtain the tightest confidence sets
for the importance weights. Furthermore, we demonstrate
that applying the resulting confidence set yields the small-
est finite sample prediction sets in the target domain. The
superiority of EBMaC is rigorously proven in theory and
illustrated through extensive numerical experiments.

2. Problem Setup

Letz e ¥ =Rlandy e Y ={1,...,K} = [K] C N*
denote the feature and the label, respectively. Let P and @
represent the source and target distributions, respectively.
Then, let p(-) denote the pmf/pdf for the source domain
and ¢(-) for the target domain. The letters in the () reflect
corresponding random variables. For example, p(y) is the
marginal pmf of the labels in the source domain. The label
shift setting assumes that p(x | y) = ¢(x | y) while p(y) #
q(y) in general. Suppose we have a classifier g, defined
as g : X — ). Then the K x K confusion matrix C, is
defined by (Cg)ij = ]P(X’y)wp{g(X) = Z,Y = j}, for
i,j € [K], where IPx y)~ p stands for probability in source
domain. In the target domain, we define the predicted label
proportions, q, = (q1, ...,qk) ' . Foreach k € [K], ¢ =
Px~gx{9(X) = k}, where Qx is the distribution of X in
the target domain. We also use [P to denote the probability
in the combined domain. Let w = (w1, ...,wK)T be the
importance weights, where w, = ¢(y)/p(y) for y € [K].
We aim at the estimation and inference for w.

Remark 2.1. Under label shift, for any classifier g such
that y = g(«), we have p(y|y) = q(y|y). It is clear
that ZyEJJ (¥, y)wy = ¢(7). When the confusion matrix
C, is invertible, solving the linear system Cyw = qg4 isa
valid method for estimating the importance weights w. In
practice, since the true values of C, and q, are unknown,
we estimate them by the sample versions using the source
and target data, as described in (Lipton et al., 2018).

3. Main Results

EBMaC incorporates multiple classifiers instead of treating
a single one (Lipton et al., 2018), and adopts the empir-
ical Bayes (EB) approach to estimate model parameters
of C,4’s and qg’s. In addition, EBMaC employs a linear
programming method to solve for confidence regions for
the importance weights w, rather than the classic Gaus-
sian elimination method (Si et al., 2023). Through these
innovations, EBMaC can directly produce the estimation
and inference results simultaneously for C,- and g4+ of a
chosen classifier g*, which facilitates inference for w. To-
gether, implementing linear programming in combination
with multiple classifiers enables EBMaC to achieve tighter
elementwise confidence intervals for w. As an end result,

given the confidence intervals for Cg« and g4+, EBMaC
provides the smallest possible confidence region for w.

3.1. Estimation and Inference by Empirical Bayes
3.1.1. BAYESTAN MODELING

Let {(xs,ys)}72, be the source data and {@,,1+}7; be
the target data. Let G = {¢1,...,9c} be a collection
of G classifiers. Given a classifier ¢ € G, we apply
it on the set {x;}™ ,, resulting in s = g(x;) for all
s =1,...,m. Let My;; = Zm Hys =i, ys = j}
then Zfil Z;il M, ;; = m. For simplicity, we de-
note the vectorization of [M,;;] by My, ie. M, =
(Mga,...,M, k2)". Similarly, we denote ¢, = vec(C,),
ie. ¢y = (Cgn1r-rcqi2)’ € AKT1 which is a
(K? — 1)-dimensional probability simplex. We assume
a hierarchical model

My|e;, ~ Multinomial(m, cg),

¢, ~ Dir(ay),

where Dir(a) denotes the Dirichlet distribution, and
o = (01,0 CstJ(z)T is the concentration hyperparame-
ter. Given as, we assume that cg, , ..., €4, are independent.

Additionally, given a classifier g, we write Ymit =
g(xm+t) Let Ny = > 1 I{Um4t = k}. Note that
Zk 1 Ny, = n. We assume the hierarchical model for the
target domain to be

Ny|lqy ~ Multinomial(n,qq),
qq, ~ Dir(ay).
Here, a; = (o1, ...7at7K)T is the hyperparameter for

the target data. Similarly, qg,, ...
independent given o;.

,dg; are assumed to be

3.1.2. ESTIMATION OF HYPERPARAMETERS

Because ¢, is latent, in Appendix A.2, we derive the the
marginal distribution of M given o to be

I'(me)I'(m + 1)
T'(mg +m)

K2
fimgia) = I s

Hra, ortme, + 1)

KZ
where mo = > ;.

When we observe (my, , ...,

1 @5 ; and I'(+) is the Gamma function.
myg,, ), the log-likelihood is

logsmyg,, ..., mgG)
XG:IO F( m—|—1 H ask—kmg?k)
i=1 ¢ I'(mo +m) Do )T (mg, x +1)

x  G{logT'(mg) —
G K?

+ 375 {log vk + mg, k) — log T(evs )}

=1 k=1

log I'(mo +m)}

ey
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The partial derivative of with respect to as j, is

0l os;myg,, ..., Myg,)

6as,k

= G{¢(mo) — ¥ (mo +m)}
G
+ 3 {Blasn +mgr) — Ylase)},

i=1

where ¢ (z) is the digamma function, defined as i (z) =
dlogT'(z)/dx. When K is small, we implement numerical
optimization in Scipy to minimize the negative of the log-
likelihood in (1). If K is large, following Minka (2000), we
find the maximum by fixed-point iteration. In the (¢ + 1)-th
iteration, we set

1 G
oD (t G~! 21:1{1#(@22@ + mg, k) — w(agti)}
: (mg) +m) = (mg)
fork=1,..., K2,

)

and m((fﬂ) =3 agt?). We use the moment matching

estimation to get the initial ago), with details in Appendix

A.1. Similar procedure is conducted to estimate o, based
on the target model and data. The only differences are in
changing K2 to K, a; to ay, and my, to ng, fori € [G].
Let the estimators be g and ;.

3.1.3. INFERENCE BASED ON THE POSTERIOR
DISTRIBUTION

Given a new classifier g*, we aim at estimating C4+ and q¢~,
which are simplified as C* and q*. Because Dirichlet distri-
bution is the conjugate prior of multinomial distribution, the
posterior distributions of C* and q* are still the Dirichlet
distributions with updated parameters ot = o5 + M4+ and
a; = oy + ng-. Using the mode of posterior distributions,
we estimate C* and q* by

= max(A, —1,0)/(mg +m — K?),
= max(a; —1,0)/(ng +n — K),

Q) Q

where AS isa K x K matrix reshaped from a,.

Because there is no closed form to build a confidence set
for the Dirichlet distribution, we consider each component
of C and q marginally. A nice feature is that the marginal
distributions of Dirichlet distributions are Beta distributions.
Specifically, the marginal posterior distributions are

Clj | mg- ~ Beta(Ayi, mo+m—Agg), @)
q | mg« ~ Beta(ayk, no +n— ), 3)
for 4,j,k € [K]. Note that Beta(a,b) has dramatically

different shapes depending on a and b, hence we set the
confidence intervals differently. Fora > 1 and b > 1, itis

unimodal, and we set the confidence interval from (4/2)-
th to (1 — ¢/2)-th quantile. Fora < 1 and b > 1, itis
monotonically decreasing, and the confidence interval is
chosen from 0 to (1 — 0)-th quantile. Fora > 1 and b < 1,
it is monotonically increasing, and the confidence interval
is set from J-th quantile to 1. We exclude the case of a < 1
and b < 1, which cannot occur. We use [C,;,Cy;] and
(g, T),] to denote the confidence intervals of level (1 — 9)
for C7; and gj; for 4, j, k € [K].

3.2. Estimation and Inference of Importance Weights

Following Lipton et al. (2018), we estimate the importance
weights by

w= max(afla, 0),

where C~! is the inverse of C. However, we construct
confidence sets of w very differently from the literature Si
et al. (2023).

Let C = (C;;), C = (Cy), q = (Qk)’ and @ = (qy)
be the collection of endpoints of confidence intervals for
C}; and g;. For any matrices A and B of the same size,
define A < B if A;; < B;; for all 4, j, and similarly define
A <B,A >B,and A > B. Let Z € [A, B] if and only
if A<Z<B.LetC=[C,Cl]and Q = [q,q].

Given the relation C*w = q¥, it is readily obtained that
w = C*~lqg*. Based on this explicit expression and the
availability of C and Q, Si et al. (2023) constructed confi-
dence interval for w through computing C~!q using Gaus-
sian elimination. However, during this process, many re-
laxations are implemented, which result in inflation of the
confidence set. Rather than solving for the explicit solution
of w, we directly impose the linear constraints on w, which
leads to

Q={w:3CeC,Cwe Q,w>0}

Although the definition of €2 is clear, it is hard to implement
because to verify w € €2, we have to find the particular
C such that the requirement is satisfied. An important dis-
covery is the equivalence of €2 and {w : Cw > q,Cw <
q,w > 0}. We present the result in Theorem 3.1 and the
proof in Appendix B.1.

Theorem 3.1. {w :3C € C,Cw € Q, w > 0} = {w:

Cw >q,Cw <q,w > 0}.

Note that if we have used level 1 — §;; for confidence in-
terval [C;;, O] and 1 — §y, for [g, ,q;], then the overall
confidence levelis 1 — (3_; (k) 0ij + Dke(x) Ok)- Thus,
if we want to reach a reasonable overall confidence level,

then the individual confidence levels should be much higher.

Although Theorem 3.1 gives the clear description of the
confidence set, it may have irregular shape. In practice,



EBMacC - Empirical Bayes and Matrix Constraints

people are often interested in more regular shapes such as
hyperrectangle. For this purpose, we try to find the bounding
hyperrectangle for €2 by solving 2K optimization problems

“
&)

for k € [K]. Thanks to Theorem 3.1, w €  contains 3K
linear constraints, and wy, is also a linear function of w, we
can solve the optimization problems using linear program-
ming, by simplex algorithm for example. We denote the re-
sulting bounding hyperrectangle as Qpy = Hszl (Wi, @k,
where w, and wy, are the corresponding minimizers and
maximizers. We denote the Gaussian elimination-based
confidence set of Si et al. (2023) by Qgg with detailed ex-
planation in Appendix C. Then Corollary 3.2 holds, where
the proof is in Appendix B.2.

Corollary 3.2. When Qg exists, 2 C Qpg C QGE.

min wy, subjectto w € €2,
w

max wy, subjectto w € €2,
w

3.3. Finite Sample Prediction

Benefiting from the confidence set of w, we propose two
ways of constructing a prediction set, conformal predic-
tion (Vovk et al., 2005) and probably approximately correct
(PAC) prediction (Valiant, 1984). We provide finite sample
guarantee of the prediction set, while in the literature only
asymptotic properties can be achieved.

3.3.1. CONFORMAL PREDICTION

We consider the split conformal prediction setting, where
the source data is divided into calibration set S = {z;
(zi,y:) i =1,...,mq} and training set So = {(x;, y;) :
i = mq + 1,...,m}. We assume that the nonconformity
score r(x,y) € [0, 1] is trained in Sy and that the prediction
set is then derived from the calibration set S;. Let oy be a
new covariate in the target domain with the potential label
yo- Under label shift assumption, the calibration data set
S1 and zg = (o, yo) satisfy the weighted exchangeability
condition in Tibshirani et al. (2019), that is,

ma
Q(Z()a 21y eeny Zml) = p(zoa Zleeey Zml) Hwym
1=0

where p(zo, -+, Zm, ) = P(20(0)s ++s Zo(m,)) for any permu-
tation o : {0,....,m1} — {0,...,m1}. Letr; = r(x;,y;)
fori = 1,...,m;. We can then create the level (1 — «)
conformal prediction set Fop(2g; w), denoted by

Fop(xo;w) = {yo € [K] : r(x0,%0) < Tcp(yo;w)},

where 7ap (yo; w) is defined as

Tcp (Yo; w)

L w w
Ql—a(z 67"- ™m = + 61 m o

— ' Zj:ll Wy; T Wy Zj:ll Wy; + Wy

4

where §,. denotes the Dirac measure on 7, and (1 _,, denotes
the (1 — «)-th sample quantile. When the true importance
weight w is known, Fop (@o; w) has a 1 — « coverage rate
by Theorem 2 of Podkopaev & Ramdas (2021). However,
w is unknown in practice. Given a potential confidence set
Qg of w, we can construct a prediction set by computing

(6)

sup Tcp (yo; w)
weN

Tep (Yo; Qo)

and

Fep(xo; Qo) = {yo € [K] : 7(z0,y0) < Tcp(Yo; Qo) }-

Compared to the known w case, the construction in (7)
increases the confidence interval. However, we can still
control the prediction level at 1 — § — «, as established in
Theorem 3.3. See Appendix B.3 for the proof.

Theorem 3.3. IfP(w € Qg) > 1 —§, then

P (x,,v5)~01Y0 € Fep(Xo;20)} > 1 -6 — o

Note that €2y can be obtained using the entire source data,
while to guarantee the conformal prediction probability, we
have to perform data splitting. Additionally, the advantage
of Qpp over Qgg in Corollary 3.2 is inherited in the con-
formal prediction set, in that at the same prediction level,
the prediction set based on 2y is always smaller than that
based on Q¢g. This property and the more general result
are summarized in Theorem 3.4. The proof is provided in
Appendix B.4.

Theorem 3.4. If @ C Qo then Fcp(mogﬂl) C
Fop(xo; Q) for all xg. In particular, Fop(xo; Qpn) C
Fop(zo; Qer).

3.3.2. PAC PREDICTION

Si et al. (2023) constructed PAC prediction set which relies
on confidence interval Qgg. Similar to section 3.3.1, if we
replace Qg by €2y, we can obtain a smaller prediction
set with the same PAC guarantee (Park et al., 2021).

Theorem 3.5. If Q1 C Qo then FpAc(wo; 91) C
Fpac(xo; Q) for all zg. In particular, Fpac(xo; Qpn) C
Fpac(xo; QaE).

See Appendix D for the construction of Fpac(o; €o) and
Appendix B.5 for the proof of Theorem 3.5.
4. Experiments

In this section, we implemented the EBMaC to evaluate its
performance on the MNIST (LeCun et al., 1998), CIFAR-10,
"and CIFAR-100 data sets (Krizhevsky et al., 2009).

)
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4.1. Classifier Training

For all data sets, we randomly selected 40,000 observations
from training data set, combined with the 10,000 testing
data to train classifiers, and used the remaining data to
perform the analysis. For the MNIST data set, we trained
11 classifiers with different random seeds using the same
architectures as in Azizzadenesheli et al. (2019). Each
model was trained 10 epochs, and the best performer
was retained. The final accuracy ranges from 97.25% to
98.07%. For the CIFAR data sets, we trained five classifiers
using different architectures as shown in Table 1. Each
classifier was trained 200 epochs, and the best performer
was retained. In implementing EBMaC, we used the
classifier with the lowest testing accuracy as ¢*, and
the remaining classifiers as g1, ...,gg, where G = 10
for MNIST and G = 4 for CIFAR-10 and CIFAR-100.

Table 1. Trained classifiers for CIFAR data sets with different accu-
racy on corresponding testing data sets.

Model CIFAR-10 CIFAR-100

VGG16¢ 92.38% 71.80%

ResNet18” 93.98% 75.47%

MobileNetV?2¢ 93.77% 70.23%

PreActResNet18¢ 93.97% 60.15%
RegNetX® 93.93% -

GoogLeNet - 75.78%

“Simonyan (2014)

PHe et al. (2016a)
“Sandler et al. (2018)

“He et al. (2016b)
“Radosavovic et al. (2020)
ISzegedy et al. (2015)

4.2. Experimental Design

To generate the data sets that satisfy the label shift assump-
tion, we performed the following construction using Dirich-
let shift. In generating the source data, we first generated
a random vector v from Dir(alg). For each k € [K], we
randomly draw mvy, observations, from those with y = k.
Here m is the source sample size, and o = 10, 000. We gen-
erated the target data in the same way, except that o = 10P
with p = -3, -2, —-1,0, 1, 2, 3, and we did not retain the
labels. We chose eight different m values, ranging from
1000 to 8000, with a step size of 1000. This resulted in 56
different data sets. In each data set, the sizes of the source
data and target data are both m. Note that a smaller « leads
to less balanced label distribution. This design is applied to
MNIST, CIFAR-10 and CIFAR-100.

4.3. Performance of EBMaC on Importance Weights

We compared EBMaC to BBSE (Lipton et al., 2018), RLLS
(Azizzadenesheli et al., 2019), and MLLS (Azizzadenesheli
et al., 2019), using MSE ||w — &||? as a criterion. The
implementation code for the existing methods was adapted
from Ye et al. (2024) !. For CIFAR-100, as shown in the
first plot of Figure 1, as the sample size and concentration
parameter « increase, the MSE for EBMaC decreases, while
the remaining three plots show that the MSE of EBMaC
is generally smaller than other methods. The results for
MNIST and CIFAR-10 are in Figures 5 and 6 in Appendix
E.

In our analysis, we found that in some classes in the tar-
get data, the variance of predicted label counts sometimes
exceeds its mean, which violates the property of the multi-
nomial distribution. However, the hierarchical modeling
allows overdispersion by introducing additional hyperpa-
rameters, which extends the model flexibility. As shown
in Tables 2, 3, and 4 in Appendix E, we observe that the
CIFAR-100 data set has larger average variance-mean ratios
compared to that of MNIST and CIFAR-10.

4.4. Performance of EBMaC on Confidence Sets

In obtaining confidence sets for CIFAR-100, we fix the same
confidence level for 2, gy, and QgE, and present results
in Figure 2. In the left panel, the x-axis represents the aver-
age length ratios of the GE method to the LP method, com-
puted as K ! 25:1 (lk,cr/lk,BH), Where [, = Wk —wy,,
and [, g is defined similarly. Here, GE was implemented
using the code from Si et al. (2023)2. Further, we perform
a one-sided t-test to evaluate whether the log-ratio of the
lengths log (k. cr/lk,BH) is greater than zero across the la-
bels. The resulting — log,,(P-value) is shown in the y-axis.
The horizontal line is at —log;,(0.05), representing the
statistical significance. In the right panel, we provide the
bar plot of the ratio of the volume of €2 to 2y at each «
value, presented in percentage. The results for CIFAR-10
and MNIST are similarly presented in Figures 3 and 4.

In Figure 2, in the left panel, the vast majority is above
the horizontal line, indicating that the improvement of the
length ratio is significant in most cases. When compar-
ing the results across three data sets, we find that EBMaC
exhibits the best performance on CIFAR-100 in terms of
both length ratio and P-value, but shows less improvement
on MNIST. Note that all classifiers for MNIST have the
best accuracy, while those for CIFAR-100 have the worst.
This reflects that worse performance of classifiers generates
more improvement of BH over GE. This is because worse
classifiers lead to a confusion matrix that is less diagonal

"https://github.com/ChangkunYe/MAPLS
Zhttps://github.com/averysi224/pac-ps-label-shift
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Figure 1. Comparison of label shift estimation methods on CIFAR-100. The first contour plot displays the average MSE of different
classifiers in log10 scale for all data sets. The second contour plot shows the log2 ratio of MSE from BBSE to that from EBMacC. The
third and fourth contour plots are similar to the second one, but they present the comparison results of RLLS and MLLS to that of EBMaC,

respectively.

dominant, which can be handled by BH without any issue
but results in much inflation of the confidence set by GE.

From the right panel of Figure 2, we can see that in the
settings when « is large, the difference between €2 and
Qpy can be very large, reflected in very small volume ratio.
This indicates that aiming for a hyperrectangular shape can
be costly. In such case, it might be wiser to use €2 to further
perform conformal / PAC prediction. The performance in
Figures 3 and 4 is slightly different in that the ratios of the
volumes in the right panels are generally larger. This is
because the shapes of €2 resemble more a hyperrectangle for
CIFAR-10 and MNIST, due to a more diagonal dominant
confusion matrix.

5. Discussion

The main innovations of EBMaC are in proposing an empir-
ical Bayesian approach in hierarchical modeling for label
shift problems (EB) and in handling the matrix constraints
via linear programming (MaC). EB is able to handle overdis-
persion, while MaC achieves the tightest confidence sets for
importance weights. These two components can work sepa-
rately. For example, we can combine Clopper-Pearson inter-
val (CIP) with MaC to obtain CIPMaC. We can also combine
EB with GE to create EBGE. One obvious advantage of EB
is in handling overdispersion, while the advantage of MaC
is established theoretically. When the collection of clas-
sifiers performs poorly, EBMaC showcases the significant
improvement of MaC over GE. The nice property of EBMaC
naturally leads to a better outcome of downstream analysis,
such as the prediction performance described in 3.3.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Dirichlet-Multinomial model
A.1. Moment Matching Estimation for Dirichlet-Multinomial Model

We first give the moment matching estimation, which of course requires marginal statistics. Recall that we assume a common
a for all g € G in Dirichlet prior. For any & in {1, ..., K}, the marginal expectation and variance of m, j are

E(Mgy) = E{E(Mgyx|cg)} = E(megr) =mE(cgr) = mpw
Var(Mgr) = E{Var(Mgy|cy)}+ Var{E(Mg|cg)}
= E{mcgr(l1—cor)t+m Var(cgk)
= E(mecyr) —mE*(cgr) — mVar(cyx) + m*Var(cy)
mo +m

= m#k(l - #k)m’

2
where py, = o 1 /mo and mgy = Zszl s ;. Next, matching them to the sample mean and the sample variance leads to
following equations,

G
mu, = G! ng,k =My (8)
g=1
mo +m 1 < 5
myug (1 — Mk)m Z Mgk — mk = V. 9
g=1

From Equation 8, we know p;, = 7, /m, Rearrange Equation 9 and replace ju, with 72y, /m, we have

J/\IO _ mmy (m — mk) - m‘//\'k

m‘/}k . mk(m — mk)

m‘/}k -
(m—1) {mk(m_mk) - 1} ~1

Note that, we can have g for each class, so we can average them to have a final My. Then we substitute it into
Qs | = Moy /m to obtain & x, for any k € {1, ..., K?}.

A.2. Marginal distribution for Dirichlet-Multinomial model

fimgian) = /C F (Mg | €9)f(cy; ),

KZ
F(mo) g k71 F Mgk
= | == 1l H 25 de,
L Hk:l F(asak) k=1 I Hk- 1 (mg k + ]- k: 1 g
K2
_ F(mo) as E— 1 mg K
o K2 gk ng
1= Dlew) Hk 1 m9k+1 Ck 1
I'(mo) L(m+1) e k-«-ka 1
- K2 deyg
[Tie: Tlask) Hk 1 (mge+1) Je k: 1
I'(mo) I'(m+1)

= B<as,1+mg,17"'7as,K2 +m ,K2)
" Do) T, T (g + 1) ’
2
T (mo)T(m + 1) ﬁ T(asx +mgr)
L'(mg + m) F(as,k)r(mg,k +1)

k=1
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B. Proofs
B.1. Proof of Theorem 3.1

Proof. Suppose that C € C,q € Q, and that w satisfies Cw = q and w > 0. The linear equation Cw = q is equivalent to
Zle cijw; = g;. Since w; > 0, we get that

K K
Z@'jwj > Zcijwj =¢ 249,

J=1 Jj=1

K K

E ¢ jwj < E Cijwj = i < q;,
i=1 =1

which implies that w € €.

Now, we prove the other direction. Suppose that w € €2. Then for each i € [K], we can apply the following procedure. If
Zle ¢;jw; <, Vi € [K], take ¢! = (€, ..., Circ) and q; = ZJKZI ¢;jwj. Otherwise, for [ € [K], define

! K
ai(l) = Zgijwj + Z CijWj
j=1 J=l+1
Then ¢;(1) is a decreasing function of I, and ¢;(K) = Z]K=1 ¢;;w;j < q; by the condition. Thus, we can find /o such that

¢i(lo — 1) > G; > qi(lo). Let €] = (Ci1, -1 €1y 1> Cilgs Ciylo+1, -+ Cixc) and q; = G;, where

~ q; — qi(lo)
Cilo = City + %
0

Then ¢;;, € [gilu , Cil,] and ciTw = ¢;. Taking ciT as the ¢-th row of C and g; as the -th element of q, we get that Cw = q,
where C € Candq € Q. O

B.2. Proof of Corollary 3.2

Proof. The first part, 2 C Qpy, is trivial from its definition. For the second part, note that 2 C Qgg by Theorem 3.1.
Since Qpy is the smallest hyperrectangle that contains €2, we get Qpy C QgE. O

B.3. Proof of Theorem 3.3
Proof. By Theorem 2 of Podkopaev & Ramdas (2021), we have IP(x, y,)~q{Yo € Fcp(Xo;w)} > 1 — a. Also, if
w € Q, we get Fop(Xo;w) C Fep(Xo; ) by Theorem 3.4. Then

P x,,v0)~1Y0 & Fep(Xo; 20)}
IP(XO,YO)NQ{“-’ S QO and Yb Q FCP(XQ; Qo)} + P(XU’YO)NQ{(JJ ¢ QO and YO € FCP(Xo; Qo)}

< Pixyvo)~@lY & Fop(Xos;w)} + P(w € o)
< a+d.
O
B.4. Proof of Theorem 3.4
Proof. First, (6) implies 7cp (y; 1) < 7op(y; Q2) for all y. Then (7) gives the result. O
B.5. Proof of Theorem 3.5
Proof. First, (11) implies Tpac{T (91, 51, V,b)} < mpac{T (2,51, V,b)} for all y. Then (12) gives the result. O

10
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C. Gaussian Elimination With Intervals

Given that C* € C = [C, C] and q* € Q = [q,q], Si et al. (2023) introduce an intuitive way, which they named Gaussian
elimination with intervals, of finding €2 that contains w = C*~'q*. Suppose that Cij 2 0, q, > 0,and w; > 0 fori, j € [K].
They follow two phases of Gaussian elimination when solving a system of linear equations C*w = q* and derive the
elementwise interval for w;. First, set c = Cij» c?j = Cij, g? =g, andq @) = q;. In the first phase (forward elimination), the

elementary row operations are applied sequentlally fork=1,. K — 1 to delete the (4, k) element in the matrix for i > k
by adding the multiple of the k-th row. Then the lower bound ckJrl and the upper bound Ef;“l are derived from the interval

[C*, C"] at the k-th step as

0, ifi >k, j<k,
et =Sk~ b i >k,
ij , otherwise.
0, ifi >k, j <k,
k Kk
ot =k — % ifi,j >k,
e otherwise.

Simultaneously, gf“ and qf“ are obtained from the same row operations to be

_k —k
k _ Ciklk e
FH = i ifi >k,
- f ; otherwise.
—k gikg: if i k‘
6k+1 _ q; — Eﬁk , 11>k,
1 .
@, otherwise.

Then c;; and ¢" !

[ ffli and [¢FT! qu] In the second phase (back substitution), they compute w, and @, iteratively fori = K, ..., 1,

replacing the truth with intervals as in the first phase.

K K
K - _ _K—
E CiiW; and 35; = E C;jWj,

, which would have been obtained in the forward elimination step solving C*w = q*, always lie in

j=i+1 j=i+1
q.—S; _ g, — s
.= =t and ;= A 2
W Ei[i{ ws ¢ 5
Then Q¢ is defined as the K- dimensional hyperrectangle HK 1lw;,@;]. Sietal. (2023) provide a theoretical result that
their method yields w € Qg if ck >0, c > 0, and qk > 0 for all ¢, j, k € [K]. The basic assumption in order to satisfy

the condition is that ¢;;, < ¢y, Th1s is ensured when the classifier g(X) is accurate, that is, when the diagonal terms ¢}, in
C* dominate non-diagonal terms. If the assumption is violated, we may encounter a possibility that c,*c’kk' ~ 0, which may
lead to cf, < 0. Then in the forward elimination phase, ck+1 for all ¢, j > k will be —oo, which may make the algorithm

impractical. Furthermore, if g, < 5;or c& < 0 for some 14, then the back substitution phase would lead to w; < 0 or
w; = 00, which does not pr0V1de any 1nf0rmat10n about the interval of w;. In order to deal with the nonpositive bounds they
mention that choosing a wider margin, which would, however, make €2gg larger than its optimal size.

D. Details of PAC prediction

Let the calibration set be S1 = {(x;, y;) }.~4 and denote by r(x,y) the nonconformity score trained separately. The PAC
prediction set Fpac(; w, S1) under label shift (Vovk, 2012; Park et al., 2021; Si et al., 2023) is defined by

Pg, ~pmi[P(x,,vp)~0{Y0o € Fpac(Xo;w,S1)} > 1 —¢/ >1—1.

11
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Si et al. (2023) constructed a set that satisfies a modification of PAC guarantee such that
Ps,~pmi v[Px,,v5)~@{Y0o € Frac(Xo;w, S1,V,0)} > 1 —¢] > 1 —n, (10)
where V = (V1,..., Vi, ) T ~ Unif([0,1])™* and b = maxe k] wi. The set Fpac (;w, Sy, V, b) is in the form of
Fpac(z;w, S1,V,0) =y € [K] : r(z,y) < mpac{T(w, S1,V,b)},

where T'(w, S1,V,b) = {(x;,y;) € S1:V; < w,y,/b} is a target sample generated by rejection-sampling from S;. Let
mo = |T'(w, S1,V,b)|. Here, Tpac{T(w, S1,V, b)} is chosen to satisfy

Z Nyi & Feac(zi;w, 51,V,0)}
(mi7yi)eT(w7517V)b)
- Z ]I[T(Sci,yi) > TPAC{T(wa Sl) Kb)}] S k(m()v €a77)7

(z4,y:) €T (w,S1,V,b)

that is, Tpac{T'(w, S1, V, b)} is the largest value that is less than the k(mo, €, n)-th largest value of {r(x;,y;) : (x4, v:) €
T(w, S1,V,b)}, where

k(mo, €, 77) = max{k : FBinom(mO,e) (k) < 77}

Note that Fginom(n,c)(-) is the CDF of Binom(n, ). If the true importance weight w is used, then the modified PAC condition
(10) is satisfied. When the confidence set ¢ with IP(w € Q) > 1 — 4 is provided, we can define

TPAC{T(ﬂvslv‘/vb)} = SuaTPAC{T(wa Slvvv b)} (11)
we

and
FPAC(m;QaShV? b) = [y € [K} : T(ﬂ)‘7y) < TPAC{T(Q’ShV’ b)}] (12)

Then Fpac(x; €2, S1, V, b) satisfies the modified PAC condition (10) with 7 being 1 + .
Theorem D.1. Suppose that P(w € Qo) > 1 — 4. Then

Ps, ~pmi v[Px,vo)~01Y0o € Fpac(Xo; 2,51, V,0)} > 1 —€¢ >1—-n—4.
Proof. The proof follows from Theorem 3 of Park et al. (2021). O]

E. Data Dispersion

Table 2. (MNIST) Average variance-mean ratios for all classes under different sample size and Dirichlet shift combinations.

log (@)
sample size (m) -3 -2 -1 0 1 2 3
8000 3.62 3.17 3.10 043 032 031 0.32
7000 6.05 806 578 058 030 025 0.29
6000 826 638 357 077 028 025 0.27
5000 377 473 144 038 022 023 0.26
4000 308 3.82 267 027 021 0.18 0.15
3000 497 3.07 107 033 0.15 0.13 0.15
2000 269 208 094 042 0.14 0.12 0.11
1000 1.04 1.15 0.79 0.09 0.08 0.09 0.07

12
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Table 3. (CIFAR-10) Average variance-mean ratios for all classes under different sample size and Dirichlet shift combinations.

log) ()
sample size (m) -3 -2 -1 0 1 2 3
8000 355 273 158 061 023 031 0.36
7000 570 572 233 0.63 023 0.18 0.17
6000 6.10 445 144 028 035 023 0.18
5000 384 358 077 022 023 0.14 0.20
4000 415 4.02 243 027 0.15 028 0.26
3000 274 392 079 027 023 0.13 0.14
2000 1.19 219 0.70 022 0.14 0.19 0.15
1000 1.06 0.85 0.83 0.16 0.16 021 0.13

Table 4. (CIFAR100) Average variance-mean ratios for all classes under different sample size and Dirichlet shift combinations.

log;(c)
sample size (m) -3 -2 -1 0 1 2 3
8000 2595 1242 370 1.36 095 0.86 0.90
7000 12.82 10.68 4.31 1.14 0.81 0.78 0.82
6000 11.02 1291 3.68 1.18 0.75 0.77 0.74
5000 5.09 1620 259 1.00 0.70 0.75 0.64
4000 10.08 803 3.07 093 0.77 057 0.65
3000 6.14 764 333 098 064 055 0.54
2000 2.93 296 202 071 0.53 053 0.55
1000 1.15 1.68 0.87 048 046 0.55 046
log10(EBMaC) log2(BBSE / EBMaC) log2(RLLS / EBMaC) l0g2(MLLS / EBMaC)
-50 -43 -36 -30 -23 50 -25 0.0 25 5.0 2.0 6.2 104 146 188 6.6 -3.3 0.0 3.3 6.6
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Figure 5. Comparison of label shift estimation methods on MNIST. The first contour plot displays the average MSE of different classifiers
in log10 scale for all data sets. The second contour plot shows the log2 ratio of MSE from BBSE to that from EBMaC. The third and fourth
contour plots are similar to the second one, but they present the comparison results of RLLS and MLLS to that of EBMaC, respectively.
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log10(EBMaC) log2(BBSE / EBMaC) 10g2(RLLS / EBMaC) I0g2(MLLS / EBMaC)
39 -32 25 -18 55 27 00 27 55 7 45 83 122 160 70 -35 00 35
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Figure 6. Comparison of label shift estimation methods on CIFAR-10. The first contour plot displays the average MSE of different
classifiers in log10 scale for all data sets. The second contour plot shows the log2 ratio of MSE from BBSE to that from EBMacC. The
third and fourth contour plots are similar to the second one, but they present the comparison results of RLLS and MLLS to that of EBMaC,
respectively.
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