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ABSTRACT

Antibodies are widely used as therapeutics, but their development requires costly
affinity maturation, involving iterative mutations to enhance binding affinity. This
paper explores a sequence-only scenario for affinity maturation, using solely an-
tibody and antigen sequences. Recently AlphaFlow wraps AlphaFold within flow
matching to generate diverse protein structures, enabling a sequence-conditioned
generative model of structure. Building on this, we propose an alternating op-
timization framework that (1) fixes the sequence to guide structure generation
toward high binding affinity using a structure-based affinity predictor, then (2)
applies inverse folding to create sequence mutations, refined by a sequence-based
affinity predictor for post selection. To address this, we develop a co-teaching
module that incorporates valuable information from noisy biophysical energies
into predictor refinement. The sequence-based predictor selects consensus sam-
ples to teach the structure-based predictor, and vice versa. Our method, Affini-
tyFlow, achieves state-of-the-art performance in affinity maturation experiments.

1 INTRODUCTION

Natural antibodies protect organisms by specifically binding to target antigens such as viruses and
bacteria with high affinity Murphy & Weaver (2016), while therapeutic antibodies bind various tar-
gets to inactivate them, recruit immune cells to them, or deliver an attached drug compound Chiu
& Gilliland (2016). When developing a therapeutic antibody, in vitro affinity maturation—through
targeted mutation and selection—improves the binding affinity of existing antibodies to target anti-
gens Tabasinezhad et al. (2019); Chiu & Gilliland (2016).

These in vitro methods, such as random mutagenesis, are labor-intensive and time-consuming. Re-
cent advancements in deep learning have propelled in silico affinity maturation forward. One line of
research enhances affinity prediction for mutated antibodies Shan et al. (2022); Liu et al. (2021); Cai
et al. (2024); Lin et al. (2024); Xiong et al. (2017); another investigates mutation strategies. Specif-
ically, protein language models propose plausible mutations to enhance binding affinities, though
they lack specificity for target antigens Hie et al. (2024); Ruffolo et al. (2021); Shuai et al. (2021).
Similarly, diffusion models guide the sampling towards high-affinity antibody sequences but require
the often unavailable or insufficiently accurate antigen-antibody complex structure Luo et al. (2022);
Zhou et al. (2024). Our research aligns more with the second line of mutation strategies. In particu-
lar, we focus on enhancing antibody binding affinity through sequence mutations, relying solely on
the antigen-antibody sequence.

Recognizing the crucial link between antibody structure and function, it is essential to inte-
grate structure into the sequence mutation process. The recent release of AlphaFlow Jing et al.
(2024) builds a sequence-conditioned generative model of protein structure, which opens pathways
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for structure-based optimization of antibody sequences. Specifically, AlphaFlow repurposes Al-
phaFold Jumper et al. (2021) in flow matching to generate diverse protein conformations.
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Figure 1: Illustration of alternating optimization.

This motivates the proposal of an alternating optimization framework, as illustrated in Figure 1:
(1) We fix the sequence to guide noisy structures toward high-affinity clean structures. Rather than
re-training the entire AlphaFlow model—a process that is inherently time-consuming—we achieve
guided structure generation through predictor guidance Dhariwal & Nichol (2021). Specifically,
a trained structure-based affinity predictor is integrated into the AlphaFlow sampling process to
direct coordinate denoising. (2) With the high-affinity clean structure, we perform inverse folding to
introduce targeted mutations, and use a sequence-based predictor for post selection, which identifies
promising mutated sequences for the next iteration.

A significant challenge in training both predictors is the scarcity of labeled data. To address this, we
develop a co-teaching module that leverages valuable information from noisy biophysical energies
to refine the predictors, as shown in Figure 2. For any antigen i and antibodies j, k,m, n, we
use Rosetta Alford et al. (2017) to compute the binding free energy ∆G and then calculate the
change in binding free energy ∆∆Gijk = ∆Gij − ∆Gik to form pairwise discrete labels. The
sequence-based predictor selects pairs with which it concurs, considering them likely to be accurate
and informative, and uses these consensus samples to enhance the structure-based predictor. For
instance, if the sequence-based predictor predicts ∆∆Ĝijk > 0, it selects ∆∆Gijk > 0 for training
the structure-based predictor. Similarly, the structure-based predictor reciprocates by informing the
sequence-based predictor; for example, it selects ∆∆Gijm < 0 to refine the sequence predictor,
as shown in Figure 2. Noisy data, such as ∆∆Gijn > 0, are filtered out. This module effectively
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Figure 2: Illustration of co-teaching.

integrates biophysical insights into both predictors, enhancing their accuracy.

In summary, we introduce AffinityFlow, guided flows for antibody affinity maturation. AffinityFlow
achieves state-of-the-art performance in affinity maturation experiments.
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2 PRELIMINARIES

2.1 PROBLEM DEFINITION

Binding affinity between an antibody (Ab) and its antigen (Ag) is predominantly determined by the
complementarity determining regions (CDRs) within these chains Akbar et al. (2022). We model an
antibody chain as a sequence of amino acids, each characterized by a type ai ∈ {A,C,D, . . . , Y }.
While AffinityFlow is applicable to all antibody types, this study specifically focuses on single-
domain antibodies (sdAb), which consist only of heavy chains Wesolowski et al. (2009). We select
sdAb for their high specificity, solubility, stability, and lower toxicity and immunogenicity.

Our goal in affinity maturation is to effectively mutate the CDRs within the context of the entire
Ab-Ag sequence complex to improve binding affinity.

2.2 ALPHAFLOW

AlphaFold Jumper et al. (2021) serves as a single-state protein structure predictor, and AlphaFlow
Jing et al. (2024) repurposes AlphaFold within a flow matching framework to generate diverse pro-
tein conformations. Given a protein sequence a of length N , the objective is to model the structural
ensemble, denoted by p(x | a), where x ∈ R3×N represents the protein 3D coordinates.

AlphaFlow defines the conditional probability path by sampling initial noise x0 from q(x0) and
linearly interpolating it with the data point x1:

x | x1, t = (1− t) · x0 + t · x1, x0 ∼ q(x0) (1)

The vector field is derived as:

ut(x | x1) = (x1 − x)/(1− t) (2)

The marginal vector field is parameterized in terms of a neural network x̂1(x, t;θ) as:

v̂(x, t;θ) = (x̂1(x, t; θ)− x)/(1− t) (3)

This approach allows the reuse of the AlphaFold2 template embedding stack to reconstruct the clean
structure x1 from the noisy input x, with t serving as an additional time embedding. The model
focuses on the 3D coordinates of β-carbons (or α-carbon for glycine), defining the prior distribution
q(x) over these positions as a harmonic prior Jing et al. (2023) to ensure that inputs to the neural
network remain physically plausible. Since AlphaFlow is trained solely on single proteins, this
study connects the antibody sequence and the antigen sequence into one sequence using a linker of
32 GGGGS repeats Lin et al. (2023). The linked sequence complex is then input into the system.

2.3 AFFINITY PREDICTION

This paper focuses on enhancing binding affinity, determined by the difference in free energy be-
tween the bound and unbound states, denoted ∆G. Thus, we predict ∆G as a measure of binding
affinity. Protein properties can be predicted from two views: sequence and structure.

Leading sequence-based models like ESM-2 Lin et al. (2022), AntiBERTy Ruffolo et al. (2021), and
IgLM Shuai et al. (2023) are pre-trained on extensive unlabeled protein sequences. These models
extract hidden representations to predict properties such as binding energy, denoted as fα(∆G|a),
where α represents the model parameters. We choose ESM-2 as our sequence-based predictor due
to its versatility, as the antigen is a general protein rather than an antibody. Specifically, we input
the antibody and antigen sequences separately into ESM-2 to obtain embeddings, which are then
concatenated and fed into a three-layer MLP for the final prediction.

For structure-based prediction, the GVP model is notable for utilizing features from the 3D graph of
proteins to predict properties, denoted as fβ(∆G|x) Jing et al. (2021). Integrating the ESM2 model
as a feature extractor within the GVP model further enhances performance Wang et al. (2022).
Thus, we employ the ESM2-GVP model as our structure-based predictor in this study. The linked
antibody-antigen complex is processed by the pre-trained ESM2 to generate residue embeddings,
from which intersected residues are selected for the GVP model.

Related works on generative protein modeling and co-teaching are detailed in Appendix A.1.
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3 METHOD

3.1 ALTERNATING OPTIMIZATION

Initially, the sequence is fixed while we guide the Ab structure generation to achieve high bind-
ing affinity, supplemented with predictor-corrector refinement. Based on the generated structure,
we then use inverse folding to introduce targeted mutations into the Ab, with the sequence-based
predictor selecting promising sequences for the next iteration.

Guided Structure Generation While AlphaFlow generates structures unconditionally, we aim
to steer structure generation toward improved binding affinity using predictor guidance. Following
Lemma 1 in Zheng et al. (2023), predictor guidance in flow matching is formulated as:

ṽ(xt, t,∆G;θ) = v̂(xt, t;θ) +
1− t

t
∇xt log pβ(∆G | xt, t). (4)

where pβ(∆G | xt, t) denotes the target binding energy distribution. The derivation details are
in Appendix A.2. Training the predictor at different time steps t is resource-intensive; instead, we
approximate pβ(∆G | xt, t) directly from pβ(∆G | x̂1(xt), 1):

pβ(∆G | xt, t) ≈ pβ(∆G | x̂1(xt), 1). (5)

This approximation, termed pβ(∆G | x̂1(xt)), is effective when t is close to 1; therefore, we
primarily apply predictor guidance in the later stages of sampling.

The desired binding energy distribution is formulated as Lee et al. (2023):

pβ(∆G | x̂1(xt)) = e−γf̂β(x̂1(xt))/Z, (6)

where γ is a scaling factor and Z a normalization constant, with the negative sign indicating a
preference for lower binding energy. Integrating this into Eq.(4) leads to:

ṽ(xt, t,∆G;θ) = v̂(xt, t;θ)− γ
1− t

t
∇xt

f̂β(x̂1(xt)). (7)

This vector field guides the sampling process towards lower binding energy. We target the predictor
guidance only to CDR coordinates rather than the full protein to enhance its relevance.

Sequence Mutation Using the generated structure as a reference, we employ inverse folding with
ProteinMPNN Dauparas et al. (2022) to identify potential mutations in the CDR regions. We intro-
duce single-point, double-point, and triple-point mutations, and use the sequence-based predictor to
select high-affinity variants for subsequent iterations. Since the generated structure is conditioned on
the sequence, we avoid multiple simultaneous mutations to minimize disruptive structure changes.

3.2 CO-TEACHING

A primary challenge is the scarcity of labeled data for training both structure-based and sequence-
based affinity predictors. To address this, we enhance the predictors by incorporating insights from
noisy biophysical energies.

Complex Generation To compute biophysical energies, initial protein complexes are required.
We extract A sdAb structures and B antigen structures from existing PDB files, and then use the
docking tool GeoDock Chu et al. (2023) to generate AB complex structures. Next, we employ
Rosetta Alford et al. (2017) to calculate the binding free energy ∆G for each complex.

Pairwise Discrete Data Instead of relying on pointwise continuous samples, which can be highly
variable and noisy, we generate robust pairwise discrete data. For the i-th antigen, we pair antibody
j with antibody k and compute the change in binding free energy as ∆∆Gijk = ∆Gij −∆Gik. We
assign a pairwise label Yijk as 1 if ∆∆Gijk > 0, indicating stronger binding by antibody k, and 0
otherwise. This approach provides a more reliable measure than using absolute property values.
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Sample Selection Given the potential noise from unreliable biophysical energy calculations, we
implement a reciprocal filtering approach to refine the quality of input for each predictor. Each pre-
dictor selects samples that align with its predictions to inform the other. Specifically, the sequence-
based predictor fα(∆G|a) computes Ŷ a

ijk = (∆∆Ĝijk > 0). If Ŷ a
ijk = Yijk, this indicates prob-

able accuracy, prompting us to use this consensus sample for the structure-based predictor. The
structure-based predictor undergoes a similar process, creating a cyclical filtering system.

Fine-tuning With the selected samples, we aim to enhance the performance of our predictors. For
the sequence-based predictor, we minimize the following loss function:

L(α) =−
∑
i,j,k

[
Yijk log pα(Yijk = 1) + (1− Yijk) log(1− pα(Yijk = 1))

]
, (8)

where pα(Yijk = 1) = σ(∆Ĝa
ij − ∆Ĝa

ik) and σ(·) is the sigmoid function. The structure-based
predictor undergoes a similar fine-tuning process.

4 EXPERIMENTS

4.1 BENCHMARK

Dataset We conduct our experiments using a sdAb subset of the SAbDab dataset Dunbar et al.
(2014). Our study focuses on sdAbs, selecting PDB files of 120 labeled sdAb-antigen pairs to
initially train our predictors. From these files, we extract 77 sdAbs and 54 antigens, resulting in
4, 158 docked complex structures generated by GeoDock. Rosetta is then used to calculate the ∆G
for these complexes. For maturation testing, we select 60 sdAb-antigen PDB files, ensuring that
each antigen is unique and these antigens and antibodies were not included in the training set.

Evaluation Our evaluation considers mutations in CDR-H1, CDR-H2, CDR-H3, and the entire
CDR region. Each method generates 3 mutated sequences per antigen, resulting in a total of 180
designs. We measure performance using three metrics: functionality, specificity, and rationality,
following Ye et al. (2024). Functionality is assessed by the Improvement Percentage (IMP) as de-
scribed in Luo et al. (2022). IMP reflects the proportion of mutated sdAbs with reduced binding
energy compared to the original. Structures are predicted using IgFold Ruffolo et al. (2023), docked
with GeoDock Chu et al. (2023), and binding energies are analyzed via Rosetta Alford et al. (2017).
Specificity measures the sequence similarity among antibodies targeting different antigens. An ef-
fective method should generate distinct antibodies for different antigens, so lower similarity (Sim)
indicates better specificity. Rationality is evaluated using inverse perplexity calculated by AntiB-
ERTy Ruffolo et al. (2021). This metric, also referred to as naturalness (Nat), indicates that higher
values of Nat generally reflect better rationality.

We report the baselines in Appendix A.4 and training details in Appendix A.5.

4.2 RESULTS AND ANALYSIS

Table 1: Overall performance comparison

Method CDR-H1 CDR-H2 CDR-H3 All
IMP ↓ Sim↓ Nat ↓ IMP ↓ Sim↓ Nat ↓ IMP ↓ Sim↓ Nat ↓ IMP ↓ Sim↓ Nat ↓

ESM 85.5% 0.559 0.347 72.9% 0.566 0.358 64.0% 0.573 0.359 84.1% 0.562 0.361
AbLang 88.0% 0.536 0.330 85.4% 0.537 0.322 88.5% 0.542 0.336 82.9% 0.548 0.349

nanoBERT 84.7% 0.534 0.322 85.9% 0.536 0.321 81.6% 0.537 0.328 86.0% 0.544 0.341

dWJS 82.7% 0.535 0.319 69.4% 0.537 0.304 66.1% 0.522 0.294 85.6% 0.545 0.317

DiffAb 85.5% 0.541 0.317 86.7% 0.548 0.318 85.6% 0.528 0.317 84.4% 0.540 0.316
AbDPO 88.3% 0.540 0.318 91.1% 0.545 0.318 87.8% 0.525 0.319 90.0% 0.540 0.315

GearBind 87.7% 0.543 0.315 87.1% 0.544 0.317 86.7% 0.527 0.317 88.9% 0.541 0.314

AffinityFlow 88.9% 0.526 0.320 93.3% 0.528 0.321 89.7% 0.514 0.322 91.2% 0.528 0.323

In Table 1, we present the experimental results on four settings CDR-H1, CDR-H2, CDR-H3 and all
design positions. Delineating lines are drawn to distinguish between different groups of methods.
The best and second-best performance are highlighted in bold and underlined, respectively. Our
method demonstrates a clear advantage over the comparison methods. Comprehensive discussions
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of the results presented in Table 1 can be found in Appendix A.6. Additionally, we provide ablation
studies in Appendix A.7 and case studies in Appendix A.8.

5 CONCLUSION

We introduce AffinityFlow, an AlphaFlow-based framework for optimizing antibodies. It integrates
alternating optimization for affinity-driven structure generation and sequence refinement, alongside
a co-teaching module for enhancing predictors with biophysical insights. Our method achieves state-
of-the-art performance in affinity maturation, excelling in functionality, specificity, and rationality.
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A APPENDIX

A.1 RELATED WORK

Generative Protein Modeling Generative protein modeling primarily includes sequence-based
language models and structure-based score generative models. Language models are trained on
protein sequence datasets using masked prediction Rives et al. (2019) or auto-regressive predic-
tion Ferruz et al. (2022). These models are often fine-tuned for specific domains like antibodies,
with examples including AbLang Tobias H. Olsen & Deane (2022), AntiBERTa Leem et al. (2022),
IgLM Shuai et al. (2021), and nanoBERT Hadsund et al. (2024). Language models have also been
explored for modeling tokenized protein structures Hayes et al. (2024); Su et al. (2023).

Score-based models, such as diffusion-based and flow matching models, mainly focus on generat-
ing protein structures. (1) Diffusion-based models like RFdiffusionAA Krishna et al. (2024) and
AlphaFold3 Abramson et al. (2024) generate structures through coordinate denoising. RFdiffu-
sionAA has been applied to antibody design Bennett et al. (2024), but its code is not open-sourced.
Chroma Ingraham et al. (2023) introduces property-specific guidance into diffusion models but does
not research antibody design. Similarly, Kulytė et al. (2024) incorporates force-field guidance but
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struggles to capture realistic structures due to the simplicity of the diffusion model. (2) Flow match-
ing models have shown greater effectiveness and efficiency compared to diffusion models. Recent
studies like AlphaFlow Jing et al. (2024) and FoldFlow-2 Huguet et al. (2024) explore sequence-
conditioned flow matching for protein structure generation. In this work, we utilize the AlphaFlow
framework for antibody sequence design due to its demonstrated effectiveness. It is worth noting that
score-based generative models have also been applied to model discrete biological sequences Camp-
bell et al. (2024); Frey et al. (2023); Li et al. (2024); Ikram et al. (2024).

Co-teaching Co-teaching Han et al. (2018) is a robust technique for addressing label noise by uti-
lizing two collaborative models. Each model identifies small-loss samples from a noisy mini-batch
to train the other. Co-teaching is conceptually related to decoupling Malach & Shalev-Shwartz
(2017) and co-training Blum & Mitchell (1998), as all these approaches involve collaborative learn-
ing between two models. In this study, we adapt co-teaching to work with biophysical binding
energy data rather than a noisy dataset. Specifically, the sequence-based predictor identifies clean
samples for training the structure-based predictor, and vice versa.

A.2 PREDICTOR GUIDANCE IN FLOW MATCHING

According to Lemma1 in Zheng et al. (2023),

ṽ(xt, t,∆G;θ) = atxt + bt∇xt log pβ(xt, t | ∆G) (9)

Based on this, we can derive:

ṽ(xt, t,∆G;θ) = atxt + bt∇xt log pβ(xt, t) + bt∇xt log pβ(∆G | xt, t)

= ṽ(xt, t;θ) + bt∇xt
log pβ(∆G | xt, t)

(10)

In our case, bt = 1−t
t , and this leads to:

ṽ(xt, t,∆G;θ) = v̂(xt, t;θ) +
1− t

t
∇xt log pβ(∆G | xt, t). (11)

A.3 COMPUTATION APPROXIMATION

The guided vector field is defined by:

ṽ(xt, t,∆G;θ) = v̂(xt, t;θ)− γ
1− t

t
∇xt f̂β(x̂1(xt)). (12)

We compute ∇xt
f̂β(x̂1(xt)) as:

∇xt
f̂β(x̂1(xt)) =

∂f̂β(x̂1(xt))

∂x̂1

∂x̂1(xt)

∂xt
(13)

As t approaches 1, x̂1 closely approximates xt, allowing for the simplification:

∂x̂1(xt)

∂xt
≈ I, (14)

where I represents the identity matrix. Consequently, we approximate the gradient as:

∇xt f̂β(x̂1(xt)) ≈
∂f̂β(x̂1)

∂x̂1
(15)

A.4 COMPARISONS WITH OTHER METHODS

In this paper, we primarily benchmark our method against language model-based methods, given
our focus on sequence design. Since our method incorporates additional biophysical energies for
training, we ensure fair comparisons by applying the same trained sequence-based predictor across
all methods, unless stated otherwise. Each method generates a pool of candidate designs, and the
sequence-based predictor selects the top three for final evaluation.

We consider the following language model-based methods:
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1. ESM Hie et al. (2024): This method uses a pre-trained language model to identify potential
mutations. Mutation consensus among six ESM models is assessed, and all promising sequences
are collected over nine rounds.

2. AbLang Tobias H. Olsen & Deane (2022): Specifically trained on antibody sequences, the
AbLang model includes separate models for heavy and light chains. For our purposes, we utilize
the heavy chain model to identify promising mutations across nine rounds.

3. nanoBERT Hadsund et al. (2024): Given our focus on sdAbs, nanoBERT, a model pre-trained
on sdAb sequences, is employed. We conduct nine rounds of mutation identification.

Beyond language model-based methods, we include an additional sequence-design baseline:

4. dWJS Frey et al. (2023): handles discrete sequences by learning a smoothed energy function,
sampling from the smoothed data manifold, and projecting the sample back to the true data
manifold with one-step denoising.

We also evaluate three structure-based methods. Although our approach is sequence-based and does
not inherently require structures for design, we use AlphaFold2 Jumper et al. (2021) to predict the
structures needed for these comparisons. The following methods are considered:

5. DiffAb Luo et al. (2022): Trains a diffusion model on amino acid types, coordinates, and orien-
tations. Antibody optimization is achieved by introducing small perturbations into the existing
antibody-antigen complex and subsequently denoising the structure. We generate ten designs per
antigen and use our predictor to select the top three for evaluation.

6. AbDPO Zhou et al. (2024): Based on DiffAb, this model fine-tunes a pre-trained diffusion
model using a residue-level decomposed energy preference to enable a low-energy protein sam-
pling process. The sampling and selection processes are similar to those of DiffAb.

7. GearBind Cai et al. (2024): Utilizes multi-level geometric message passing and contrastive
pretraining to improve predictions of affinity. We employ AbDPO to produce ten designs per
antigen, from which GearBind selects the three most promising for assessment.

A.5 TRAINING DETAILS

We use a linker composed of 32 GGGGS repeats to connect the sdAb and antigen. Our method uti-
lizes the alternating optimization framework with three iterations, where each iteration introduces
single-point, double-point, and triple-point mutations. This allows for producing 1 to 9 mutations in
total. We set the AlphaFlow sampling steps T to 3 per iteration with a schedule of [1.0, 0.6, 0.3, 0.0]
and use a default scaling factor γ of 5. We employ ESM2-8M, followed by a hidden-dim-320
three-layer MLP, as the sequence-based predictor. For the structure-based predictor, we use a five-
layer GVP model, which takes the structure and ESM2-8M residue embeddings as input. For the
co-teaching module, we use a batch size of 256 and a learning rate of 1× 10−4 with the Adam op-
timizer Kingma (2014). Computational efficiency is detailed in Appendix A.9, and hyperparameter
sensitivity is addressed in Appendix A.10.

A.6 DETAILED RESULTS DISCUSSION

We make the following observations: (1) As shown in Table 1, our method consistently achieves the
best performance in terms of IMP and Sim, thereby highlighting its effectiveness. (2) The notable
IMP is mainly due to our effective predictor guidance, which directs the structure sample generation
towards low binding energy. (3) The low Sim scores can be attributed to antigen-specific modeling
and the diversity introduced by the AlphaFlow sampling process. Language-based methods like
ESM, AbLang, and nanoBERT lack this feature, as they do not incorporate specific antigens into
their design processes. Structure-based methods such as DiffAb, AbDPO, and GearBind consider
specific antigens, but their simplistic diffusion models are less effective at capturing antigen infor-
mation compared to our method.

(4) The language model-based methods ESM, AbLang, and nanoBERT achieve the highest Nat
scores, as they are implicitly trained for this metric. Beyond these methods, our approach achieves
the best Nat. We attribute this to the realistic structure modeling enabled by AlphaFlow and the
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Table 2: Ablation Study of AffinityFlow on CDR-H3.

Methods IMP ↓ Sim↓ Nat ↓

one-iteration 73.3% 0.512 0.319
w/o PC 83.3% 0.521 0.316

w/o AlphaFlow 63.3% 0.528 0.314

w/o energy 66.7% 0.531 0.322
w/o selection 76.7% 0.523 0.326

Ours 93.3% 0.514 0.330

reliable inverse folding performed by ProteinMPNN, which together translate structures into natu-
ral sequences. (5) AbDPO, as a robust baseline, often achieves strong performance in IMP, likely
due to incorporating energy information into its training, allowing for low-energy protein sampling.
However, AbDPO requires training a separate diffusion model for each complex, adding complex-
ity. (6) Lastly, the high IMP scores for baseline methods can largely be attributed to our trained
sequence-based predictor. When using a standard predictor trained only on supervised data, IMP
scores drop significantly. For example, in the CDR-H3 design setting, IMP drops from 64.0% to
22.7% for ESM, from 88.5% to 49.4% for AbLang, from 81.6% to 46.7% for nanoBERT, from
66.1% to 23.9% for dWJS, from 85.6% to 49.4% for DiffAb, from 87.8% to 50.6% for AbDPO,
from 86.7% to 50.6% for GearBind, and from 89.7% to 68.3% for our method. In this context, our
method demonstrates a clear advantage over the comparison methods.

A.7 ABLATION STUDIES

We use AffinityFlow as the baseline to evaluate the effect of removing specific modules, with results
shown in Table 2. The ablation studies are conducted on CDR-H3, considering 10 antigens for
efficiency. Our focus is primarily on the IMP metric, so the discussion centers around this metric.

Alternating Optimization This framework alternates between updating the structure with the se-
quence fixed, and mutating the sequence with the structure fixed. In this study, we perform a single
iteration, applying multiple mutations simultaneously, referred to as one-iteration. We also evaluate
the impact of the predictor-corrector technique by excluding the Amber relaxation step, denoted w/o
PC. As shown in Table 2, both ablations reduce performance, demonstrating the predictor-corrector
and Amber relaxation effectiveness.

We also evaluate the effect of directly removing the AlphaFlow framework. In this variant, we
perform gradient optimization on the existing protein structure instead of using predictor guidance.
This step is followed by Amber relaxation, after which we use ProteinMPNN to identify potential
mutations. This variant is denoted by w/o AlphaFlow in Table 2, which shows that leaving out Al-
phaFlow leads to the greatest performance drop compared to the other two variants. We attribute
this to AlphaFlow’s ability to capture the natural fluctuations of proteins, resulting in more realistic
structures than those generated through direct gradient ascent alone, and accessing binding con-
formations that may be different from either a structure determined experimentally or predicted by
a model like AlphaFold. Less realistic structures in turn yield less natural mutated sequences, as
reflected by the Nat score decreasing from 0.330 to 0.314.

Co-teaching We evaluate the co-teaching module with two variants: (1) w/o energy: using the
trained predictor on limited labeled data only. (2) w/o selection: training on pairwise discrete data
without sample selection. As shown in Table 2, both variants reduce the IMP metric, highlighting
the effectiveness of the module. Notably, w/o energy performs worse than w/o selection, demonstrat-
ing the value of biophysical energy data. We also observe that a better-trained predictor improves
specificity: our method achieves the best Sim, while w/o selection ranks second. This likely results
from the predictor’s role in estimating antigen-specific binding energy, leading to greater specificity.

Additionally, we report the Spearman’s rank correlation coefficient R (Spearmanr) on the test set.
We isolate 10 antigens from the total dataset, with each antigen paired with 77 sdAbs. We calcu-
late Spearman’s R for each antigen and present the average across the 10 antigens. The models
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Figure 3: Visualizations of model-generated antibody structures bound to the SARS-CoV-2 RBD
(a) Relative to a fixed antigen, most model-generated antibodies (green) are predicted to bind with
a noticeable rotation in binding pose compared to the WT conformation (blue). (b) Our model
suggests several mutations frequently, in particular Ala105Pro may stabilize the CDR loop. (c) The
buried Lys99Trp mutation interacts with multiple other aromatic residues across the interface.

without energy data achieve R values of 0.0956 for the sequence-based predictor and −0.0043 for
the structure-based predictor, respectively, reflecting the limitations of the 120 labeled entries. By
utilizing biophysical energy data for direct fine-tuning, the sequence-based predictor reaches a co-
efficient of 0.40, while the structure-based predictor achieves 0.50. While not state-of-the-art for
antibody binding energy prediction in general, these values demonstrate the effectiveness of our
approach when limited data is available. Sample selection further improves performance, with the
sequence-based predictor achieving a coefficient of 0.51 and the structure-based predictor reach-
ing 0.52. These results highlight the benefits of using biophysical energies and sample selection to
enhance prediction accuracy.

A.8 CASE STUDY

To further understand how AffinityFlow generates mutations to improve binding, we analyze the
structures of our proposed mutants and the wild-type of a single-domain antibody (sdAb) known to
bind the SARS-CoV-2 receptor-binding domain (RBD) Yao et al. (2021). We generate 30 mutated
structures, with half containing mutations only in the CDR3 loop and half having mutations across
all CDRs. We use Rosetta to calculate binding energies (∆∆G) and other interface metrics relative
to the wild-type structure (PDB ID 7D30).

All computed structures show ∆∆G < 0, suggesting that the designed antibodies bind the anti-
gen more tightly than the native sequence. However, we do not observe any correlation between
∆∆G and which CDRs are allowed to mutate. We measure other interface metrics (dSASA, shape
complementarity) for all 30 structures and compare these values with those computed for native
antibody-antigen interfaces in the PDB Adolf-Bryfogle et al. (2018). The results align well with
natural structures, demonstrating that our model preserves the correct shape profile of the binding
surface. Interestingly, despite conserving the binding interface shape, most mutants (21/30) dock
with a rotated binding pose of approximately 67 degrees (Figure 3a). This rotation shifts interac-
tions away from CDR1 and toward stronger interactions in CDR2 and CDR3.

Certain mutations occur frequently across all model-proposed antibodies, indicating that the model
focuses attention on these residues. Notably, Lys99Gly, Ala105Pro, and Asp109Gly appear often,
regardless of whether mutations are restricted to the CDR3 loop or allowed across all positions
(Figure 3b). We believe that the Ala105Pro mutation stabilizes the CDR3 loop into an optimal con-
formation for this antigen. Using a Random Forest regression on mutation features, we find that the
rarer Ala105Leu mutation contributes most to improving ∆∆G, likely by increasing hydrophobicity
at the interface and promoting assembly.

Most intriguingly, one model-generated sequence includes a Lys99Trp mutation, an unusual amino
acid to insert within an interface. Visual examination reveals that this tryptophan residue is inserted
such that it creates π-π interactions with two aromatic residues across the interface as well as pro-
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viding stabilizing interactions with a tyrosine on the antibody itself (Figure 3c). This mutation is
particularly interesting since, in the development of the synthetic single domain antibody which
we use as our case study, Li et al. (2020) made a single point mutation mutant, MR17m, with a
single Lys99Tyr substitution. This mutant shows enhanced neutralization activity to the original
MR17, with an IC50 of 0.50 µg/mL. To further improve this activity, the authors suggest the same
Lys99Trp mutation proposed by our model but do not appear to have tested it.

Our structural analysis of mutant and wild-type antibody structures reveals several key insights into
the nature of mutations governing antibody-antigen binding. These results validate our compu-
tational approach and also highlight its potential to guide rational design of improved antibodies
against SARS-CoV-2 and other pathogens, opening new avenues for therapeutic development.

A.9 COMPUTATIONAL EFFICIENCY

All experiments are conducted on a g5.24xlarge server equipped with GPUs with 23GB of mem-
ory. One iteration of our alternating optimization framework takes approximately 10 minutes for a
protein of length 500. Language model-based methods are more computationally efficient, with pro-
cessing times of 18.3 seconds for ESM, 13.0 seconds for Ablang, and 11.4 seconds for nanoBert per
sample. However, our method consistently produces significantly better designs than these meth-
ods, as discussed. In applications such as antibody design, the most time-consuming and costly
stage is often the evaluation of properties in wet-lab experiments. Thus, the differences in computa-
tion time between methods for generating high-performance designs are less significant in practical
production settings, where optimization performance is prioritized over computational speed. This
is consistent with the discussions in A.7.5 Computational Cost Chen et al. (2023).

A.10 HYPERPARAMETER ANALYSIS

This section examines the sensitivity of our method to various hyperparameters—namely, the scaling
factor (γ) and the number of sampling steps (T ) on CDR-H3 with 10 antigens. The reported metrics
are normalized by dividing by the default hyperparameter result to facilitate comparative analysis.

Scaling Factor (γ): The effect of varying γ is investigated with values 0.0, 2.5, 5.0, 7.5, and 10, and
γ = 5.0 as the standard setting. As indicated in Figure 4, the Sim and Nat metrics are stable across
the range of γ. However, below γ ∼ 5.0 the IMP metric drops substantially, presumably because
there is insufficient exploration of alternate backbone conformations when γ is small.

Number of Sampling Steps (T ): We analyze the impact of the number of sampling steps T on the
effectiveness of our method. The normalized metric is plotted as a function of T in Figure 5. Again
the Sim and Nat metrics are relatively unaffected by the choice of T , but IMP requires 3 sampling
steps for maximum benefit. Again this suggests that more exploration of the conformational space
improves the final design.
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