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Abstract
We introduce a novel class of sample-based expla-
nations we term high-dimensional representers,
that can be used to explain the predictions of a reg-
ularized high-dimensional model in terms of im-
portance weights for each of the training samples.
Our workhorse is a novel representer theorem
for general regularized high-dimensional models,
which decomposes the model prediction in terms
of contributions from each of the training samples:
with positive (negative) values corresponding to
positive (negative) impact training samples to the
model’s prediction. We derive consequences for
the canonical instances of ℓ1 regularized sparse
models, and nuclear norm regularized low-rank
models. As a case study, we further investigate
the application of low-rank models in the context
of collaborative filtering, where we instantiate
high-dimensional representers for specific popu-
lar classes of models. Finally, we study the em-
pirical performance of our proposed methods on
three real-world binary classification datasets and
two recommender system datasets. We also show-
case the utility of high-dimensional representers
in explaining model recommendations.

1. Introduction
Sample-based explanations aim to explain a machine learn-
ing model’s prediction by identifying the most influential
training samples that led to the prediction. This is usually
done by measuring the influence of each training sample on
the model’s prediction scores. The explanations not only
assist users in understanding the rationale behind the predic-
tion, but also allow model designers to debug or de-bias the
training data (Kong et al., 2021; Thimonier et al., 2022).

To measure the impact of each training sample on the predic-
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tion score, a classical technique is to compute the derivative
of the prediction score with respect to each training instance
using implicit function theory, an approach also known as
influence functions (Cook & Weisberg, 1980; Koh & Liang,
2017). However, computing the influence function requires
the inversion of the Hessian matrix, causing significant scal-
ability issues when handling large models. To compute
sample-based explanations in an efficient manner, another
method called Representer Point Selection has been devel-
oped (Yeh et al., 2018). This method is based on the classical
representer theorem (Schölkopf et al., 2001), which states
that a regularized empirical risk minimizer over a reproduc-
ing kernel Hilbert space (RKHS) can be decomposed into
a linear combination of kernel functions evaluated on each
training sample. While functions parameterized with neural
networks do not necessarily lie in a pre-specified RKHS,
Yeh et al. (2018) propose to treat the last layer of a neu-
ral network as a linear machine and the remaining part as a
fixed feature encoder. Upon fine-tuning the last layer with ℓ2
regularization, the representer theorem can then be applied,
allowing us to obtain importance scores of the training data.
In this development, the use of ℓ2 regularization served as a
RKHS norm with respect to linear kernels, which was key
to recruiting the representer theorem.

However, ℓ2 regularizers are not always suitable for high-
dimensional models where the number of parameters might
even be larger than the number of samples, and where the
model parameters might lie in a lower dimensional sub-
space. In such settings, in order for the resulting estimators
to have strong statistical guarantees, it is often critical to
employ high-dimensional regularizations that encourage the
model parameter to lie in such lower-dimensional structured
subspaces (Negahban & Wainwright, 2011). Two canonical
instances of such high-dimensional regularizers include the
ℓ1 norm regularization that encourages parameter vectors to
have sparse structure, and the nuclear norm regularization
imposes low-rank structure on parameter matrices. The
caveat however is that these regularizations cannot typically
be cast as RKHS norms, and thus the classical representer
theorem does not apply. Therefore, it remains unclear how
to select representer points for high-dimensional models,
despite the widespread use of high-dimensional models in
practical applications such as compressed sensing (Donoho,
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2006) and recommender systems (Candes & Recht, 2008;
Recht, 2011).

We first present a general theorem that provides a repre-
senter theorem for regularized high-dimensional models,
where we leverage the rich structure of the regularization
sub-differentials, as well as the analytical framework of
Negahban et al. (2012) that associates the regularization
functions with a collection of structured low-dimensional
subspaces. We term the resulting sample-based explanations
for these high-dimensional models as high-dimensional rep-
resenters. As with the original representer points for ℓ2
regularized models, there is a global importance score per
training sample, as well as a local importance score that mea-
sures the similarity between the test point and the training
sample. But unlike the ℓ2 regularized case, the representer
theorem entails that this local similarity is measured after
an appropriate linear projection of the test input and the
training sample to the structured model parameter subspace.
Thus, even in cases where the model parameters might be
quite high-dimensional, the local similarity is quite mean-
ingful, as well as scalable and efficient since it is computed
over a much lower dimensional structured subspace.

Given the general theorem, we then derive its consequences
for the important settings of sparse vectors with ℓ1 regular-
ization, and low-rank matrices with nuclear norm regular-
ization, leading to sample-based explanation methods under
those high-dimensional regularizers. Equipped with the re-
sults, we explore the use of our technique in the context
of collaborative filtering, including various specific model
instances such as collaborative matrix factorization mod-
els (Koren et al., 2009). We also investigate deep neural
network variations of these models, the two-tower mod-
els (Mao et al., 2021; Li et al., 2019), by treating the final
interaction layer is treated as a bilinear matrix factoriza-
tion model and the other layers are fixed encoders when
applying our method. This cannot be done with the ℓ2 repre-
senter methods as the final layer is a product of two matrices.
Lastly, we evaluate the empirical performance of the high-
dimensional representers on three real-world binary classifi-
cation datasets and two recommender system datasets. We
also demonstrate the practical utility of high-dimensional
representers in explaining the recommendations generated
by our models.

2. Related Work
Prominent approaches for estimating training data influence
to a test point include influence functions (Koh & Liang,
2017), representer point selection (Yeh et al., 2018), and
TracIn (Pruthi et al., 2020). Influence functions (Wojnowicz
et al., 2016; Khanna et al., 2019; Bae et al., 2022) estimate
training sample importance by measuring "how the model’s
prediction change if we remove a particular training sample

and retrain the model." However, computing influence func-
tions requires calculating the inverse of the Hessian matrix.
Exact estimation requires time complexity at least quadratic
to the number of parameters and is thus unsuitable for large
or high-dimensional models (Guo et al., 2020; Hammoudeh
& Lowd, 2022; Schioppa et al., 2022).

TracIn quantifies training data importance by measuring
similarities between gradient at training and test samples
over trajectories (Yeh et al., 2022; Chen et al., 2021). How-
ever, their approach only applies to models trained with
stochastic gradient descent, which may not be an efficient
way for high-dimensional model training. Also, TracIn re-
quires storing and accessing checkpoints of models during
training and is not applicable to off-the-shelf models. The
most relevant work to ours is the (ℓ2) representer point selec-
tion: Brophy et al. (2022) extends it to explain decision trees
using supervised tree kernels. Sui et al. (2021) improves
it with local Jacobian expansion. Another line of sample-
based explanations relies on repeated retraining (Ghorbani
& Zou, 2019; Jia et al., 2019; Kwon & Zou, 2021; Feld-
man & Zhang, 2020), which are more costly compared to
the methods mentioned above since it requires retraining
models multiple times.

On the other hand, representer theorems (Schölkopf et al.,
2001) in machine learning have targeted non-parametric
regression in RKHS. Bohn et al. (2019) connect representer
theorems and composition of kernels. Unser (2019) derive
general representer theorems for deep neural networks and
make a connection with deep spline estimation. Unser et al.
(2016) also propose representer theorems for ℓ1 regulariza-
tion, but their theorems have a different formulation for a
difference purpose: they attribute model parameters to basis
on the nonzero coordinates to show that the minimizer is
sparse. In our work, we consider a simpler task of explain-
ing regularized high-dimensional models and develop novel
representer theorems for this purpose.

3. Preliminary
Before providing our general framework for high-
dimensional representers, it is instructive to recall classi-
cal machinery in high-dimensional estimation. As Negah-
ban et al. (2012) show, we can think of structure in high-
dimensional models as being specified by collections of
lower-dimensional subspaces.

Example: Sparse Vectors: Consider the set of s-sparse
vectors in p dimensions. For any particular subset S ⊆
{1, . . . , p}, with cardinality s, define the subspace: A(S) =
{θ ∈ Rp : θj = 0, ∀j ̸∈ S}. It can then be seen an s-
sparse vector lies in one of the collection of low-dimensional
subspaces {A(S)}S⊆[p].

Example: Low-Rank Matrices: For any matrix Θ ∈
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Rd1×d2 , let col(Θ) ∈ Rd1 its column space, and row(Θ) ∈
Rd2 denote its row space. For a given pair (U, V ) or k-
dimensional subspaces U ⊆ Rd1 and V ⊆ Rd2 , we can de-
fine the subspaces: A(U, V ) = {Θ ∈ Rd1×d2 : col(Θ) ⊆
U, row(Θ) ⊆ V }. It can then be seen that any low-rank
matrix Θ ∈ Rd1×d2 of rank k ≤ min(d1, d2) lies in a col-
lection of the low-dimensional subspaces above.

A critical question in such high-dimensional settings is how
to automatically extract and leverage such low-dimensional
subspace structure. Negahban et al. (2012) showed that
so long as regularization functions r(·) satisfy a property
known as decomposability with respect to one of the col-
lections of subspaces, regularized empirical loss minimiz-
ers yield solutions that lie in a low-dimensional subspace
within that collection. Towards defining this, they require
another ingredient which is a collection of orthogonal sub-
spaces of parameters with orthogonal structure. For sparse
vectors, the orthogonal subspace B(S) = A(S)⊥. For
low-rank matrices, the orthogonal subspace is B(U, V ) =
{Θ ∈ Rd1×d2 : row(Θ) ⊆ U⊥, col(Θ) ⊆ V ⊥}. It can be
seen that in this case, we have that B(U, V ) ⊆ A⊥(U, V ),
since we do not simply want all orthogonal parameters
to the structured subspace, but want orthogonal parame-
ters which are also structured with respect to the collec-
tion of subspaces. A regularization r(·) is said to be de-
composable with respect to collection of subspaces if for
any such structured subspace pair (A,B), we have that:
r(u + v) = r(u) + r(v) ∀u ∈ A, v ∈ B. For the case
of sparse vector subspaces, the ℓ1 norm r(θ) = ∥θ∥1,
and for the case of low-rank matrices, the nuclear norm
r(Θ) = ∥Θ∥∗ can be shown to be decomposable (Negah-
ban et al., 2012).

The sub-differential of the regularization function can be
written as: ∂r(θ) = {u | r(θ′)− r(θ) ≥ ⟨u, θ′ − θ⟩,∀θ′ ∈
Θ}. In the case of structured parameters above, the sub-
differential in turn has additional structure. Suppose (A,B)
is the subspace pair corresponding to the structured param-
eter θ. Then, for any g ∈ ∂r(θ), we have that g = uθ + v,
where uθ ∈ A has a unique representation that depends
on θ, and v ∈ B. Moreover, there exists a (non-unique)
inverse transform (∂θr)

+ of the partial differential, so that
(∂θr)

+(g) = θ, for all g ∈ ∂r(θ), with the property that
(∂θr)

+ is a positive-definite linear operator, with range
within the structured subspace A.

4. Representer Theorem for High-Dimensional
Models

We are interested in regularized empirical risk minimizers.
Given n training samples (x1, y1), (x2, y2), · · · , (xn, yn)
∈ X×R, a loss function ℓ(·, ·) : R×R→ R, and parameters
of a linear model θ ∈ Θ, where Θ ⊆ X we consider the

following optimization problem:

θ̂ = argmin
θ∈Θ

1

n

n∑
i=1

ℓ(yi, ⟨xi, θ⟩) + λr(θ). (1)

In the sequel, we assume that the regularization function
r(·) is decomposable with respect to some collection of
low-dimensional structured subspace, as briefly reviewed in
Section 3. Its role is to encourage the model parameter θ to
have the appropriate low-dimensional structure, while the
hyper-parameter λ balances loss and regularization.

Theorem 1. (high-dim representer theorem) The minimizer
θ̂ of Eqn.(1) can be written as

θ̂ =

n∑
i=1

(
− 1

nλ
ℓ′(yi, ⟨xi, θ̂⟩)

)(
(∂θ̂r)

+xi

)
, (2)

where ℓ′ = ∂ℓ/∂(⟨xi, θ̂⟩) denotes the partial derivative of ℓ
with respect to its second input variable, and (∂θ̂r)

+ is the
(non-unique) inverse transform of the regularization sub-
differential. For any given test sample x′ ∈ X , its prediction
can be decomposed according to training samples:

⟨x′, θ̂⟩ =
n∑

i=1

− 1

nλ
ℓ′(yi, ⟨xi, θ̂⟩))︸ ︷︷ ︸

global importance

⟨(∂θ̂r)
+
2 xi, (∂θ̂r)

+
2 x′⟩︸ ︷︷ ︸

local importance

, (3)

where (∂θ̂r)
+
2 is the square-root of the sub-differential in-

verse transform.

Eqn.(3) provides the attribution of each training sample xi

to a test sample x′, which can be decomposed into the global
importance and local importance. The global importance is
a measure of how sensitive the training sample xi is to the
objective and depends on the derivative of the loss function.
The local importance measures the similarity between the
training sample xi and the test sample x′.

The local importance similarity focuses on the projection
of the data points onto a structured low-dimensional sub-
space A since the range of the sub-differential inverse trans-
form (∂θ̂r)

+
2 is the structured subspace within which the

parameter lies. We can thus think of such high-dimensional
model estimation as specifying the local kernel k(x, x′) =

⟨(∂θ̂r)
+
2 x, (∂θ̂r)

+
2 x′⟩. To see a crucial difference with ℓ2

regularized models (Yeh et al., 2018), where the local im-
portance is simply an inner product between xi and x′,
high-dimensional representers ignore the features in the
orthogonal space B since they have no impact on test pre-
dictions.

The theorem is derived from solving first-order optimality
condition on the low-dimensional subspace A, i.e. one
subgradient of the minimizer with respect to the objective
equals zero. Next, we utilize the fact that the sub-differential
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∂r(θ̂) has a unique representation in the model subspace
A. It allows us to develop the inverse transform operator
(∂θ̂r)

+ and use it to recover the model parameter.

In cases where the inverse transform is non-unique, we
would obtain multiple local importance, one for each inverse
transform, and we can then take an average of these when
computing the local importance.

While the above development was quite abstract, in the
following sections, we derive its consequences for the im-
portant settings of sparse vectors with ℓ1 regularization, and
low-rank matrices with nuclear norm regularization.

4.1. ℓ1-regularized Linear Optimization
Based on the general theorem, we derive the representer
point selection method for ℓ1 regularization. We consider
the following special case of Eqn.(1):

θ̂ = argmin
θ∈Rp

1

n

n∑
i=1

ℓ(yi, ⟨xi, θ⟩) + λ∥θ∥1, (4)

where the ℓ1 regularization encourages the model to be
sparse. Some examples of Eqn.(4) include ℓ1-regularized
generalized linear models (Tibshirani, 1996), compressed
sensing (Donoho, 2006), and sparse estimation of Gaussian
graphical models (Yuan & Lin, 2007; Friedman et al., 2008).

We develop the representer theorem for ℓ1 regularized prob-
lems using Theorem 1. In this case, the structural model
subspace is specified by the sparse model parameter θ̂,
A(S(θ̂)) = {θ ∈ Rp : θj = 0,∀j /∈ S}, where S(θ̂)

denotes a set of coordinates that θ̂ has non-zero values. The
orthogonal subspace B(S(θ̂)) is in turn a set of vectors in
Rp whose coordinates on S(θ̂) are zero.

Next, the sub-differential of the ℓ1 norm is ∂∥θ̂∥1 = {g ∈
Rp|gi = sign(θ̂) if θ̂i ̸= 0, and |gi| ≤ 1 if θ̂i = 0}, which
has a unique representation, sign(θ̂), in A(S(θ̂)). Next,
the inverse transform can be developed by reconstructing θ̂
in the model subspace and zeroing out the sub-differential
in the orthogonal space, where the model parameters are
zero. Specifically, we use (∂θr)

+(x) = |θ̂| ⊙ x, ∀x ∈ Rp,
where | · | denotes a coordinate-wise absolute value operator,
and ⊙ denotes element-wise multiplication. Clearly, we
have (∂θr)

+(g) = θ̂ for all g ∈ ∂∥θ̂∥1 since θ̂jgj = θ̂j if
j ∈ S(θ̂) and θ̂jgj = 0 if j /∈ S(θ̂). By plugging these
notations to Theorem 1, we obtain the following representer
theorem for ℓ1 regularized linear optimization problems.

Corollary 2. (high-dim representer theorem for ℓ1-
regularizaion) The minimizer θ̂ of Eqn.(4) can be written
as

θ̂ =

n∑
i=1

(
− 1

nλ
ℓ′(yi, ⟨xi, θ̂⟩)

)(
|θ̂| ⊙ xi

)
, (5)

For any given test sample x′ ∈ Rp, its prediction can be
decomposed according to training samples:

⟨x′, θ̂⟩ =
n∑

i=1

−
1

nλ
ℓ′(yi, ⟨xi, θ̂⟩))︸ ︷︷ ︸

global importance αi

⟨
√

|θ̂| ⊙ xi,

√
|θ̂| ⊙ x′⟩︸ ︷︷ ︸

local importance

, (6)

where
√
· is a coordinate-wise square root operation.

With Corollary 2, we can quantify training data influence

on a specific test sample (x′, y′). The sign of αi⟨
√
|θ̂| ⊙

xi,

√
|θ̂| ⊙ x′⟩ indicates whether a training sample (xi, yi)

has positive or negative influence on the test sample. Also,
if a training sample (xi, yi) has a large importance value to
a test sample x′, two conditions must be satisfied: (1) global

importance αi is large (2)
√
|θ̂| ⊙ xi is close to

√
|θ̂| ⊙ x′.

That is, xi and x′ are close on the coordinates where the
model parameters θ̂ have non-zero values.

4.2. Nuclear-norm Regularized Linear Optimization
We consider the following canonical nuclear norm regular-
ized linear optimization problem with inputs and model
parameters being matrices. Given n training samples
(X1, y1), · · · , (Xn, yn) ∈ Rd1×d2 × R, a loss function
ℓ(·, ·) : R × R → R, and parameters of a linear model
Θ ∈ Rd1×d2 , we consider the following problem:

Θ̂ = argmin
Θ∈Rd1×d2

1

n

n∑
i=1

ℓ(yi, ⟨Xi,Θ⟩F ) + λ∥Θ∥∗, (7)

where ⟨·, ·⟩F is a Frobenius inner product operator, and ∥·∥∗
is the Nuclear norm, defined as the sum of ℓ1 norm of sin-
gular values. This formulation has been applied in matrix
completion (Candès & Tao, 2010), matrix regression (Yang
et al., 2016), and matrix compressed sensing (Eldar & Ku-
tyniok, 2012) with low-rank constraints.

As in Negahban et al. (2012), the low-rank model subspace
A(U, V ) is specified by a full singular value decomposi-
tion (SVD) of the model parameter Θ̂ = UΣV ⊤, where
the columns of U ∈ Rd1×k and V ∈ Rd2×k are orthog-
onal, Σ ∈ Rk×k is a diagonal matrix, and k = rank(Θ̂).
The orthogonal subspace is B(U, V ) = {Θ ∈ Rd1×d2 :
row(Θ) ⊆ U⊥, col(Θ) ⊆ V ⊥}.

The sub-differential of the nuclear norm (Watson, 1992) is
∂∥Θ̂∥∗ = {UV ⊤ +W : W ∈ Rd1×d2 , ∥W∥2 ≤ 1,WV =
0, U⊤W = 0}, which can be decomposed as a unique
representation in the model subspace (UV ⊤ ∈ A(U, V ))
and W ∈ B(U, V ) in the orthogonal space. In this case, the
inverse transform of sub-differential is not unique: it can be
either (∂θ̂r)

+(X) = UΣU⊤X or (∂θ̂r)
+(X) = XV ΣV ⊤

for any X ∈ Rd1×d2 . One can easily verify that the inverse
transform recovers Θ̂, (∂θ̂r)

+(∂∥Θ̂∥∗) = Θ̂ using the fact
that U⊤U = V V ⊤ = Ik. By instantiating the inverse
transform to Theorem 1, we obtain the following corollary.
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Corollary 3. (high-dim representer theorem for nuclear-
norm regularizaion) Let UΣV ⊤ = Θ̂ be a full SVD of the
minimizer Θ̂ of Eqn.(7). The minimizer of Eqn.(7) can be
written as

Θ̂ =

n∑
i=1

− 1

nλ
ℓ′(yi, ⟨Xi, Θ̂⟩F )

(
UΣU⊤Xi

)
(8)

=

n∑
i=1

− 1

nλ
ℓ′(yi, ⟨Xi, Θ̂⟩F )

(
XiV

⊤ΣV
)
. (9)

For any given test sample X ′ ∈ Rd1×d2 , its prediction can
be decomposed according to training samples:

⟨X′, Θ̂⟩=
n∑

i=1

−
1

nλ
ℓ′(yi, ⟨Xi, Θ̂⟩))⟨

√
ΣU⊤Xi,

√
ΣU⊤X′⟩F (10)

=

n∑
i=1

−
1

nλ
ℓ′(yi, ⟨Xi, Θ̂⟩))⟨XiV

√
Σ, X′V

√
Σ⟩F , (11)

where
√
Σ = diag[

√
Σ11, · · · ,

√
Σkk].

Again, the first term in Eqn.(10) and Eqn.(11),
− 1

nλℓ
′(yi, ⟨Xi, Θ̂⟩)), is the global importance and

the second inner product terms are the local importance.
We first project input matrices Xi and X ′ onto the column
or row spaces by multiplying with

√
ΣU⊤ or V

√
Σ,

respectively, and then computing the Frobenius inner
product. This term measures local similarities between
a test sample and training samples in the column or row
spaces of the minimizer Θ̂.

Unlike Corollay 2, Eqn.(10) and Eqn.(11) provide two dis-
tinct ways to decompose the learned model, leading to two
different ways for data attribution. We refer to Eqn.(10)
as column-based attribution and Eqn.(11) as row-based
attribution, since they compute local importance on the
column/row spaces of Θ̂, respectively. The interpretation
of these two attributions may depend on applications. For
example, as we will show in Corollary 4, the two attribu-
tions correspond to user-based attribution and item-based
attributions when U and V are user and item embeddings
in recommender systems. In other cases, we may take the
average of the two local importance.

4.3. Computation of High-dimensional Representers
In this section, we introduce the computation of high-
dimensional representers. To explain a model’s prediction
on x′, one needs to compute the high-dimensional represen-
ters for the test sample x′ with respect to all training samples
{(xi, yi)}ni=1. In practice, we could pre-process the training
to accelerate the computation. Recall that high-dimensional
representers in Eqn.(3) consist of two components: a global
importance αi = − 1

nλℓ
′(yi, ⟨xi, θ̂⟩)), and a local impor-

tance ⟨(∂θ̂r)
+
2 xi, (∂θ̂r)

+
2 x′⟩. At the pre-processing step,

we compute the global importances α for all training sam-
ples and their projections onto the low-dimensional model
space, i.e. (∂θ̂r)

+
2 xi for all i ∈ [n].

Note that global importances can be obtained by inferring
all training data and calculating their derivatives. The pro-
jection operator can usually be obtained from the training
stage since the model parameter θ̂ is available in the ℓ1 case,
and the full SVD can usually be obtained from the training
stage (Mazumder et al., 2010) in the nuclear norm case. The
pre-processing step requires O(np) and O(nkd1d2) time
for the ℓ1-norm and nuclear norm cases respectively. We
note that in the nuclear-norm case, the pre-processing step
typically takes no longer than training the regularized mod-
els with a single epoch. This is because the training samples
typically need to be projected to the low-dimensional space
to calculate the update formula (Hsieh & Olsen, 2014).

Next, to explain a test prediction, we need to (1) project the
test sample to the model subspace and (2) compute the inner
product between the test and training samples in the model
subspace. While step (1) only needs to tackle one sample,
step (2) takes O(np) and O(nmax(d1, d2)k) time for the
ℓ1-norm and nuclear norm cases respectively.

In many applications of sample-based explanations, such
as generating human-understandable explanations, we only
care about the top influential samples for a test prediction.
This can be significantly sped up by approximate nearest
neighbor search algorithms which can be run in sublinear
time since we only need to find training samples with the
highest inner product values.

5. Applications to Collaborative Filtering (CF)
With the widespread deployment of recommender systems
across various online platforms, the significance of explain-
able recommender systems has grown substantially (Zhang
et al., 2020). Studies have indicated that users prefer rec-
ommendations that are explainable, and explanation tools
are vital for debugging recommendation models (Tintarev
& Masthoff, 2007). In this section, we showcase how high-
dimensional representers can effectively explain collabora-
tive filtering models and (deep) recommender systems.

Notations: Given a set of users U , a set of items I and
a set of user-item interactions D = {(i, j)| | i ∈ U , j ∈
I, yij is observed }, CF aims to learn a k-dimensional em-
bedding for each user and item, and utilizes inner products
between user and item embeddings to predict unknown ele-
ments in the matrix.

5.1. Matrix Factorization (MF) with Nuclear Norm
Regularization

Matrix factorization with nuclear norm regularizations (Can-
dès & Tao, 2010; Candes & Recht, 2012) is a success-
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ful model in CF. Given an incomplete rating matrix Y ∈
R|U|×|I| with each entry Yij = yij , ∀ (i, j) ∈ D, the model
assumes that the rating matrix Y is low-rank and solves the
following optimization problem:

Θ̂ = argmin
Θ∈R|U|×|I|

1

|D|
∑

(i,j)∈D

ℓ(yij ,Θij) + λ∥Θ∥∗, (12)

where Θ̂ ∈ R|U|×|I| is a predicted low-rank rating matrix,
ℓ(·, ·) is a loss function such as square loss, and λ is the
regularization parameter.

We apply Corollary 3 to Eq.(12) to obtain sample-based
explanations. We represent each training pair (i, j) by a
matrix X ∈ R|U|×|V| which contains only one nonzero
entry Xij = 1, so that ⟨X,Θ⟩F = Θij . The resulting
theorem is as below:

Corollary 4. (high-dim representers for matrix factoriza-
tion) Let Θ̂ be the minimizer of Eqn.(12) with rank(Θ̂) = k.
Let UΣV ⊤ = Θ̂ be its full SVD decomposition. For any test
sample (i′, j′) with 1 ≤ i′ ≤ |U| and 1 ≤ j′ ≤ |I|, its pre-
diction can be decomposed according to training samples:

Θ̂i′j′ =
∑

i:(i,j′)∈D
−

1

λ|D|
ℓ′(yij , Θ̂ij)⟨

√
ΣUi,

√
ΣUi′ ⟩ (13)

=
∑

j:(i′,j)∈D
−

1

λ|D|
ℓ′(yij , Θ̂ij)⟨

√
ΣVj ,

√
ΣVj′ ⟩, (14)

where
√
Σ = diag[

√
Σ11, · · · ,

√
Σkk], Ui ∈ Rk×1 and

Vj ∈ Rk×1 denote ith and jth row of U and V respectively.

Corollary 4 shows that the predicted score between user i′

and item j′, Θ̂i′j′ , can be represented as the sum of attribu-
tions to each observed interaction (i, j) ∈ D. Specifically,
Eqn.(13) decomposes predictions according to other users
interacted with the same item j′, while Eqn.(14) decom-
poses predictions according to other items interacted with
the same user i′, They are referred to as user-based attribu-
tions and item-based attributions, respectively. Also, we can
observe that a test sample (i′, j′) is only relevant to training
samples with the same user i′ or the same item j′. Combin-
ing the two attributions, we define the importance score of
each training data to a test sample (i′, j′) as follows:

Definition 1. (high-dim representers for CF) The impor-
tance of a training point (i, j) ∈ D to a test sample (i′, j′),
I((i, j), (i′, j′)), is given by

− 1
λ|D|ℓ

′(yij , ⟨Ũi, Ṽj⟩) ⟨Ũi, Ũi′⟩ if j = j’.

− 1
λ|D|ℓ

′(yij , ⟨Ũi, Ṽj⟩) ⟨Ṽj , Ṽj′⟩ if i = i’.

0 otherwise.

(15)

where Ũ = U
√
Σ and Ṽ = V

√
Σ are normalized embed-

ding matrices for user and item respectively.

Note that we replace Θ̂ij with ⟨Ũi, Ṽj⟩ as they are equiva-
lent. If a training sample (i, j) has a large importance score,
three conditions must be satisfied: (1) It has the same user
or item as the test sample. (2) |ℓ′(yij , ⟨Ũi, Ṽj⟩)| must be
large. When the loss function ℓ(·, ·) is strongly convex, it
implies that the training sample incurs a large loss. (3) Their
normalized user (or item) embeddings are close.

5.2. General Matrix-factorization-based Models
Instead of using the nuclear norm, many matrix factoriza-
tion methods directly reparameterizing the rating matrix Θ
with the product of two low-rank matrices U and V (Koren
et al., 2009; Mao et al., 2021), corresponding to user and
item embeddings. They then directly solve the following
optimization problem:

Û , V̂ = argmin
U∈R|U|×k,V ∈R|I|×k

∑
(i,j)∈D

ℓ(yij , ⟨Ui, Vj⟩), (16)

where the loss function ℓ(·, ·) is point-wise, and training
data D may include negative samples for implicit CF. Popu-
lar choices include binary cross-entropy (BCE) (He et al.,
2017), mean square error (MSE) (Fang et al., 2020), and
triplet loss (Dahiya et al., 2021).

Theorem 3 does not apply to this formulation since it does
not have nuclear norm regularization. While it is possi-
ble to replace UV ⊤ with Θ and retrain the model with
nuclear norm regularization, the retrained model may be-
have differently compared to the given model. However,
the formulation does enforce hard low-rank constraints on
the rating matrix through reparameterization. Therefore,
to conduct sample-based attribution, we assume Eqn.(16)
is implicitly regularized and use Definition 1 to obtain the
high-dimensional representer. For this formulation, we drop
the constant term, 1/λ|D|, since λ is unavailable and does
not affect relative importance among training samples. The
process of computing the high-dimensional representer for
CF and its time complexity analysis are provided in Sec-
tion F in the supplementary material.

5.3. Two-tower models
Two-tower networks are widely used in deep recommender
systems (Hidasi et al., 2015; Covington et al., 2016; Mao
et al., 2021; Li et al., 2019). They encode user information
and item information with two separate neural networks,
which are called towers. The user tower maps each user
(e.g., user history, features, and id) to a k-dimensional user
embedding, while the item tower maps each item (e.g., prod-
uct description and id) to the same embedding space. The
prediction score is then calculated by the inner product of
the user and item embeddings. Formally, let the two sepa-
rate towers be fθ1 and gθ2 . The training objective function
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can be written as:

θ̂1, θ̂2 = argmin
θ1,θ2

∑
(i,j)∈D

ℓ(yij , ⟨fθ1(ui), gθ2(vj)⟩), (17)

where ui and vj denote features of user i and item j. Again,
we focus on models trained with point-wise loss functions.

To explain two-tower models, we consider the final interac-
tion layers as a bilinear matrix factorization model and the
remaining layers as fixed feature encoders. Then we apply
the same explanation technique as MF models to explain
them. Specifically, we concatenate embeddings of all users
and items to form a user matrix and an item matrix, i.e.

Û = [fθ̂1(u1); · · · ; fθ̂1(u|U|)] ∈ R|U|×k

and V̂ = [gθ̂2(v1); · · · ; gθ̂2(v|I|)] ∈ R|I|×k. (18)

Then we use Definition 1 to obtain its sample-based expla-
nations.

6. Experimental Results
We perform experiments on multiple datasets to validate
that the proposed method is a preferable choice compared
with other sample-based explanation methods such as ℓ2
representer point selection and influence function, under the
high dimensional setting. Moreover, we showcase the utility
of the high-dimensional representer in understanding predic-
tions of recommender systems. We also provide another use
case for improving negative sampling strategies for collabo-
rative filtering in Appendix C and additional comparisons
with other approaches in Appendix G.

6.1. Evaluation Metrics
For quantitative evaluations, we use case deletion diagnos-
tics (Yeh et al., 2022; Han et al., 2020; Cook & Weisberg,
1982) as our primary evaluation metric. This metric mea-
sures the difference in models’ prediction score at a partic-
ular test sample z′ after removing (a group of) influential
training samples and retraining whole models. This met-
ric helps validate the efficacy of sample-based explanation
methods and provides a quantitative measurement.

We denote two metrics as DEL+(z
′, k, I) and

DEL−(z
′, k, I) separately. These two metrics mea-

sure the difference between models’ prediction scores
when we remove top-k positive (negative) impact samples
given by method I and the prediction scores of the original
models. We expect DEL+ to be negative and DEL− to be
positive since models’ prediction scores should decrease
(increase) when we remove positive (negative) impact
samples.

To evaluate deletion metric at different k, we follow Yeh

et al. (2022) and report area under the curve (AUC):

AUC-DEL+ =

m∑
i=1

DEL+(z′, ki, I)

m
,AUC-DEL− =

m∑
i=1

DEL−(z′, ki, I)

m
,

where k1 < k2 < · · · < km is a predefined sequence of k.

6.2. Quantitative Evaluation on ℓ1-regularized Models
In this section, we evaluate the effectiveness of the high-
dimensional representer in explaining ℓ1-regularized logistic
regression.

6.2.1. EXPERIMENTAL SETTINGS

Datasets and models being explained: We use the fol-
lowing three datasets on binary classification. (1) 20
newsgroups1: This dataset contains roughly 20, 000 news-
groups posts on 20 topics. It contains 19, 996 samples with
1, 355, 191 features. We randomly split 10% data for the
test set. (2) Gisette (Guyon et al., 2004): It is a hand-
written digit recognition problem, which contains highly
confusible digits ’4’ and ’9’. It contains 6, 000/1, 000 sam-
ples with each containing 5, 000 features for training/testing.
(3) Rcv1 (Lewis et al., 2004): It is a benchmark dataset
on text categorization. It has 20, 242/677, 399 samples for
training/testing. We use bag-of-words features with dimen-
sions 47, 236. We train logistic regression models with ℓ1
regularization using LIBLINEAR (Fan et al., 2008) on the
three datasets. The accuracy of models on the three datasets
is above 97%.

Baselines: We compare the high-dimensional representer
with the ℓ2 representer, the influence function (IF) and ran-
dom deletions. Given a test sample x′, the ℓ2 representer
calculates importance score of a training point (xi, yi) to
the test sample x′ with the following formula:

Iℓ2((xi, yi), x
′) = −ℓ′(yi, ⟨xi, θ̂⟩))⟨xi, x

′⟩.

For the influence function, we adopt the formula in Propo-
sition 5.3 of Avella-Medina (2017). Assume only the first
q ≤ p entries of the minimizer θ̂ are nonzero, the influence
function, IIF ((xi, yi), x

′), is given by

−( 1
n
∇θ1:qℓ(yi, ⟨xi, θ̂⟩) + λsign(θ̂)1:q)⊤H−1

θ̂1:q
x′
1:q,

where Hθ̂1:q
=
∑n

i=1∇2
θ1:q

ℓ(yi, ⟨xi, θ̂⟩) ∈ Rq×q. The cal-
culation of the influence function can be simply viewed as
first projecting features x, x′, and the model parameter θ̂ to
nonzero entries of θ̂ and then computing the influence func-
tion normally. Notice that the naive implementation takes
O(nq3 + np) time complexity to compute inverse hessian
matrix, while the high-dim and ℓ2 representers only take

1http://qwone.com/ jason/20Newsgroups/
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O(np) to compute importance scores of all training samples
to a test prediction.

To compute AUC-DEL scores, we set ki = 0.01iN for
1 ≤ i ≤ 5. We remove 1% to 5% of positive (negative)
impact training samples and report the averaged prediction
difference after removing these samples. Each metric is
reported over 40 trials with each trial containing 40 test
samples.

6.2.2. RESULTS

The results of the four methods are presented in Table 1. We
also report the averaged runtime of computing the impor-
tance of one test prediction to all training data on a single
CPU. The results show that the high-dimensional represen-
ter outperforms the other three methods and is over 25x
faster than the influence function. Also, the ℓ2 representer is
slightly faster than the high-dimensional representer since
inner product is fast when the training data is sparse, and
the high-dimensional representer requires one extra step to
project vectors to low-dimensional model subspace.

Datasets 20 newsgroups Gisette Rcv1

AUC-DEL+

High-dim Rep. −3.733± 0.093 −1.000± 0.081 −3.208± 0.060

ℓ2 Rep. −2.472± 0.067 −0.577± 0.073 −2.780± 0.057

IF −2.583± 0.043 −0.531± 0.011 −2.652± 0.040

Random 0.006± 0.014 0.010± 0.022 0.009± 0.005

AUC-DEL−

High-dim Rep. 7.478± 0.194 3.116± 0.110 3.170± 0.077

ℓ2 Rep. 5.214± 0.143 2.118± 0.093 2.726± 0.067

IF 4.894± 0.086 0.523± 0.013 3.065± 0.082

Random 0.003± 0.014 0.007± 0.024 0.007± 0.005

Runtime (ms)

High-dim Rep. 61.35± 0.59 87.34± 0.71 10.61± 0.13

ℓ2 Rep. 59.47± 0.58 130.16± 0.34 6.14± 0.22

IF 2678.38± 3.19 3628.70± 2.007 263.90± 1.01

Table 1. Case deletion diagnostics for removing positive (negative)
impact training samples on various datasets and models and run
time comparison. 95% confidence interval of averaged deletion
diagnostics on 40 × 40 = 1, 600 samples is reported. Averaged
runtimes over 100 samples are also reported. Smaller (larger)
AUC-DEL+ (AUC-DEL−) is better.

6.3. Quantitative Evaluation on Collarborative Filtering
In this section, we evaluate the effectiveness of the high-
dimensional representer on explaining CF models in recom-
mender systems.

6.3.1. EXPERIMENTAL SETTINGS

Datasets: (1) Movielens-1M (Harper & Konstan, 2015):
It contains about 1M ratings (1-5) from 6,040 users on
3,706 movies. (2) Amazon review (2018) (Ni et al., 2019):

This dataset contains reviews and ratings (1-5) of products
on Amazon. Since the whole dataset is too large, we use
data in the video games category, which contains 284,867
ratings from 15,517 users to 37,077 items. We follow the
preprocessing procedure in Cheng et al. (2019). We filter
out users and items with less than 10 interactions. For every
user, we randomly held out two items’ ratings to construct
the validation and test sets. Also, we normalize all ratings
to [−1, 1].

Models being explained: We test the high-dimensional
representer on three different models: (1) Matrix factoriza-
tion with nuclear norm regularization (MF w. nuclear norm)
as in Eqn.(7). We do not run this model on Amazon review
dataset because the rating matrix is too large. (2) Matrix
Factorization (MF) as in Eqn.(16). (3) YoutubeNet (Cov-
ington et al., 2016), which uses a deep neural network to
encode user features and is one of the representative deep
two-tower models.

All models are trained with squared loss. We use soft-
impute (Mazumder et al., 2010) algorithm to train the Model
(1). The models (2) and (3) are optimized by stochastic gra-
dient descent. Hyper-parameters and model structures are
detailed in Appendix E.

Baselines: We compare the high-dimensional represen-
ter with the following three baselines: (1) Fast influence
analysis (FIA): since the influence function is not scalable
to the size of common recommender system benchmarks,
Cheng et al. (2019) propose FIA as an approximation of
the influence function for MF-based models. (2) Random
deletion, which we randomly delete training samples with
the same user or item as the given test sample.

Notice that the FIA are not applicable to the MF with nu-
clear norm model since it is only applicable to MF models in
Eqn.(16). Also, the ℓ2 representer is not applicable to mod-
els with two separate encoders since it cannot be treated as a
linear mapping. We leave the comparison to TracIn (Pruthi
et al., 2020), which is only applicable to models trained with
SGD-based optimizers, to the supplementary material.

6.3.2. SETUP

We combine user-based and item-based explanations and
sort them according to their importance scores. For
MovieLens-1M, we drop k = 10, 20, 30, 40, 50 samples.
For Amazon reviews, we drop k = 3, 6, 9, 12, 15 samples.
Each metric is averaged over 40 trials with each trial having
40 test samples.

6.3.3. RESULTS

Table 2 summarises the results of different methods. First,
we observe that randomly removing samples have roughly
no/negative effects on models’ predictions for MovieLens-
1M/Amazon reviews, and all other methods outperform the
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Datasets Models Metrics Methods

High-dim Rep. FIA Random

MovieLens-
1M

MF w. nucl-
ear norm

AUC-DEL+ −0.225± 0.006 - −0.002± 0.002
AUC-DEL− 0.160± 0.004 - −0.002± 0.002

MF AUC-DEL+ −0.196± 0.006 −0.101± 0.004 −0.002± 0.002
AUC-DEL− 0.169± 0.004 0.072± 0.004 −0.001± 0.002

Youtube-
Net

AUC-DEL+ −0.227± 0.008 −0.096± 0.006 −0.001± 0.004
AUC-DEL− 0.214± 0.007 0.113± 0.007 0.006± 0.004

Amazon
reviews 2018
(video games)

MF AUC-DEL+ −0.184± 0.012 −0.123± 0.011 −0.070± 0.011
AUC-DEL− 0.080± 0.012 −0.009± 0.012 −0.077± 0.011

Youtube-
Net

AUC-DEL+ −0.234± 0.014 −0.056± 0.013 −0.032± 0.011
AUC-DEL− 0.294± 0.011 0.069± 0.013 −0.032± 0.011

Table 2. Case deletion diagnostics for removing positive (negative) impact training samples on various datasets and models. 95%
confidence interval of averaged deletion diagnostics on 40×40 = 1, 600 samples is reported. Smaller (larger) AUC-DEL+ (AUC-DEL−)
is better.

random deletiton baseline. Second, the high-dimensional
representer outperforms FIA and random deletion in all
settings, indicating that the high-dimensional representer
is able to estimate the importance of each training sample
more accurately.

6.4. Explaining Recommender Systems’ Predictions

Movies User’s rating Movie genre Importance

Men in Black 3 Action,Sci-Fi,
Comedy,Adventure -4.55

Diabolique 2 Drama/Thriller -4.03

Independence
Day (ID4) 5 Action,Sci-Fi,

War 3.52

Star Trek IV:
The Voyage Home 5 Action,Sci-Fi,

Adventure 3.12

Star Trek V:
The Final Frontier 2 Action,Sci-Fi,

Adventure -2.86

Star Trek:
First Contact 5 Action,Sci-Fi,

Adventure 2.59

Table 3. An example of item-based explanations. In the example,
a MF model predicts one user’s rating for the movie "Star Trek VI:
The Undiscovered Country" to be 3.89. The genres of the movie
are action, sci-fi, and adventure.

In this section, we show that the high-dimensional repre-
senter generates explanations based on users’ historically
interacted products for collaborative filtering models.

Table 3 shows an example of an explanation for movie
recommendations. We use an MF model trained with square
loss to predict users’ ratings from 1 to 5 on Movielens-100k,
a smaller version of Movielens-1M. We first choose a user
with 87 historical ratings and predicts their rating on "Star
Trek VI: The Undiscovered Country", calculate similarity
scores with the high-dimensional representer on the user’s
past ratings, and then sort the items according the absolute

importance scores. The explanation can be interpreted as
"the MF model predicts your rating on Star Trek VI: The
Undiscovered Country to be 3.89 mostly because of your
ratings on the following six movies."

The explanation consists of movies with similar genres and
prequels of "Star Trek VI". We see that the model learns the
relations of movies from the explanation since movie names
and genres are not provided during training. Also, the user’s
past ratings of 2 or 3 negatively impact the prediction, and
ratings of 5 have positive influence. It is reasonable since
the user’s preference for similar movies would impact the
model’s predicted ratings. Notice that the high-dimensional
representer can also be used to provide user-based expla-
nations in terms of the influence of other users’ ratings on
the same movie. We do not show these explanations here
since user information is lacking in most publicly available
datasets. More examples can be found in Appendix D.

7. Conclusion
In this paper, we present high-dimensional representers to
explain predictions of high-dimensional models in terms
of contributions from each of the training samples. We in-
vestigate its consequences for canonical instances of sparse
models, as well as low-rank models, together with a case
study on collaborative filtering, which we consider low-rank
matrix-factorization-based models as well as their deep neu-
ral variants. In future work, it would be of interest to derive
corollaries of our general result for additional instances of
high-dimensional models such as group-structured models,
as well as additional applications such compressed sensing
and sparse Gaussian graphical model estimation.
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A. Overview of the Appendix
The appendix is structured as follows: in Appendix B, we explore the potential social impacts of our work. Additionally, in
Appendix C, we utilize high-dimensional representers to enhance negative sampling strategies for collaborative filtering
models, which serves as another use case. Furthermore, in Appendix D, we present additional qualitative examples
that demonstrate the use of high-dimensional representers in explaining recommender systems. Detailed experimental
information regarding the experiments in Section 6 can be found in Appendix E. We also provide the pseudocode and time
complexity analysis of the high-dimensinoal representer for collaborative filtering in Appendix F. Moreover, a comparison
between the high-dimensional representers for collaborative filtering and TracIn (Pruthi et al., 2020) is presented in
Appendix G. Lastly, in Appendix H, we include proofs of our theoretical results.

B. Potential Social Impact of Our Work
One potential social impact is that one may use our approach to change models’ predictions via adjusting training samples.
This may have positive impacts, such as debugging models or making models fair, and negative impacts, such as attacking
existing models or making models more biased and unethical.
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C. Another Use Case: Improving Negative Sampling Strategies
In this experiment, we show that high-dimensional representers can be used to improve negative sampling strategies that are
widely used to train collaborative filtering models for implicit signals.

Motivation: Implicit CF learns from users’ behavior that implicitly affects users’ preferences. For example, it may
learn from the clicks of users or users’ watching history. In this setting, user-item interactions usually contain only
positive interactions, and practitioners usually regard all other unobserved interactions as negative samples. However, these
unobserved interactions may include false negatives. For instance, users may ignore items not displayed to them, not
necessarily because users dislike them. Such false negatives have been demonstrated to be harmful to models (Ding et al.,
2020). However, identifying false negatives is challenging since it is impossible to ask users to look over all items and mark
their preferences.

Proposed approach: We propose to measure aggregated importance scores of negative samples to identify these false
negatives. These scores quantitatively measure the extent to which negative pairs contribute to the decrease in prediction
scores for observed positive interactions. Larger aggregated importance scores indicate that the negative pair reduces the
model’s confidence in other known positive interactions, suggesting a higher likelihood of being a false negative.

Let D = P ∪N be the training set comprising positive interactions P and negative samples N selected through a negative
sampling strategy. The aggregated importance scores are defined as follows:

Ineg((i, j)) =
∑

(i′,j′)∈P

I((i, j), (i′, j′)), (19)

where I(·, ·) is the importance score provided by the high-dimensional representer as in Definition 1. Ineg((i, j)) can be
interpreted as the sum of importance scores of a negative sample to all positive samples in the training set.

C.1. Experimental Setup
To validate the effectiveness of high-dimensional representers in improving negative sampling strategies, we first train a
base model using a normal negative sampling strategy, and then retrain the model after removing identified negative samples.
We use the change in the models’ performance to measure the performance of the proposed method.

Datasets: We use a binarized MovieLens-100k dataset, which contains 100, 000 ratings (1-5) from 943 users on 1,682
movies. We transform user ratings into binary signals by dropping user ratings less than 4 and treating other interactions as
positive samples. In accordance with Toh & Yun (2010); Jaggi & Sulovskỳ (2010), we randomly selected 50% of the ratings
for training and the others for the test set.

Base models: We first train a matrix factorization model with uniformly selected negative samples. The model is trained
with binary cross entropy loss function with the following formulation:

argmin
U∈R|U|×k,

V ∈R|I|×k

−
∑

(i,j)∈P

log(σ(⟨Ui, Vj⟩))− 0.05
∑

(i,j)∈N

log(1− σ(⟨Ui, Vj⟩)),

where σ(·) denotes a sigmoid function, and N = D\P contains all unknown user-item interactions. We multiply loss
functions with negative samples with 0.05 since it improves the models’ performance. After calculating aggregated
importance scores of all negative samples, we remove the top p% samples with the least scores from N and train a new MF
model with the same objective.

Evaluation metrics: In order to assess the effectiveness of the proposed methods, we utilize the following two evaluation
metrics:

1. Number of false negatives identified: Given the impracticality of labeling all user-item interactions, we consider only
the positive interactions in the test set as potential false negatives. This metric evaluates the number of false negatives
correctly identified by each method.
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(a) (b)

Figure 1. (a) Averaged percentage of false negative samples found. (b) Averaged models’ performance improvement after removing top
negative samples.

2. Performance improvement of the base model after retraining: We measure the change in performance of the base model
after removing the top p% of negative samples identified by each method. The models’ performance is evaluated using
the recall@20 metric on the test set (He et al., 2020).

These evaluation metrics enable us to assess the ability of the proposed methods to accurately identify false negatives and
quantify the improvement achieved in the performance of the base model through retraining.

Baselines: We compare the high-dimensional representer with (1) fast influence analysis, (2) loss functions, and (3)
random selections. For FIA, we use importance scores provided by FIA to compute aggregated importance scores in
Eqn.(19). For loss functions, we filter out top p% negative samples with highest loss. For random selection, we randomly
remove p% of negative samples from N .

C.2. Experimental Results
The results of our experiments are presented in Figure 1(a) and Figure 1(b). We observe that the high-dimensional representer,
loss functions, and FIA outperform random selection on both evaluation metrics. Notably, while the high-dimensional
representer identifies slightly fewer false negatives compared to the loss functions and FIA, it identifies more influential false
negatives that contribute the most to performance improvement. These findings indicate that the performance of implicit
collaborative filtering can be enhanced by removing harmful samples. As a potential future direction, it would be interesting
to explore the integration of the high-dimensional representer into negative sampling procedures.
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D. More Qualitative Examples
Table 4 and 5 show qualitative examples of explaining recommender systems’ predictions with high-dimensional representers.
We use a matrix factorization model trained with square loss to predict users’ ratings from 1 to 5 on Movielens-100k datasets.

Movies User’s rating Movie genre Importance

Henry V 1 drama, war -13.57

Cop Land 1 crime, drama, mystery -11.14

Soul Food 5 drama -8.67

Independence Day (ID4) 2 action, sci-fi, war -7.05

Things to Do in Denver when You’re Dead 5 crime, drama, romance 6.86

Star Trek IV:The Voyage Home 2 action, sci-fi, adventure -6.66

Table 4. An example of item-based explanations. In the example, a MF model predicts one user’s rating for the movie "Star Wars" to be
4.00. The genres of the movie are action, sci-fi, romance, war, and adventure.

Movies User’s rating Movie genre Importance

Terminator 1 action, sci-fi, thriller -13.48

M*A*S*H 1 comedy, war -12.81

Fantasia 1 animation, children, musical -11.25

Psycho 2 horror, romance, thriller -10.33

Batman 1 action, adventure, crime, drama -9.31

Gone with the wind 2 drama, romance, war -7.70

Table 5. An example of item-based explanations. In the example, a MF model predicts one user’s rating for the movie "Top gun" to be
3.37. The genres of the movie are action and romance.
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E. More Experimental Details
In this section, we provide details of our experiment settings.

E.1. ℓ1 regularized binary classifiers
We detail data preprocessing for the three datasets we use in Section 6.2, and model hyper-parameters. Dataset statistics and
hyper-parameters are listed in Table 6.

For the three text classification datasets in Section 6.2, we convert these multiclass datasets into binary datasets. For 20
newsgroup, we follow the preprocessing procedure in Keerthi et al. (2005) to group the 20 topics into two classes. For
Gisette, we use the validation set as the testing set since the labels of the testing set are not available. For Rcv1, we treat
CCAT and ECAT as the positive class and treat GCAT and MCAT as the negative class. Instances in both positive and
negative classes are removed.

Dataset # of training samples # of test samples feature dimension ntrainλ Model Accuracy (%)

20 newsgroup 17,997 1999 1,355,191 10 97.50

Gisette 6,000 1,000 5,000 1 97.50

Rcv1 20,242 677,399 47,236 1 97.50

Table 6. Statistics of text classification datasets, model regularization hyper-parameters, and model accuracy.

E.2. Collaborative Filtering
E.2.1. DATASET STATISTICS

Table 7 shows the statistics of datasets we used in Section 6.3, 6.4 and Appendix C.

Dataset User # Items # Interactions # Density (%)

MovieLens-100k 943 1,682 55, 375† 3.49

MovieLens-1M 6,040 3,706 1,000,209 4.47

Amazon review (2018)
(Video games) 15,517 37,077 284,867 0.05

Table 7. Statistics of different recommender system datasets. †We remove the ratings that are less or equal to 3, so the number of
interactions becomes 55,375.

E.2.2. IMPLEMENTATION DETAILS

To evaluate the models’ performance, we follow Mazumder et al. (2010) to use mean absolute error (MAE), which measures
the absolute distance between normalized true ratings and predicted ratings. Below we detail the model architectures and
their performance on different datasets. All models are trained with square error loss functions.

Matrix factorization with nuclear norm: We use Soft-Impute (Mazumder et al., 2010) to train the models. We set max
iterations to 20 and embedding dimension to 12 on the MovieLens-1M dataset. It achieves MAE of 0.54.

Matrix factorization: We use SGD optimizer with learning rate 2.0/15.0 with batch size 3000/3000 to train MF model for
10/10 epochs on MovieLens-1M/Amazon reviews 2018. The model achieves MAE of 0.36/0.46 on MovieLens-1M/Amazon
reviews 2018.

YoutubeNet: For MovieLens-1M/Amazon reviews 2018, we use Adam optimizer with learning rate 0.001/0.001 with
batch size 3000/3000 to train YoutubeNet for 20/10 epochs. We use an embedding of 64/16 trainable parameters to model
user and item information. The user feature encoder consists of 4/3 layers of size 64/16 with 0.2/0.2 dropout probabilities.
The item feature encoder contains only item embeddings. It achieves MAE of 0.36/0.42.
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F. Computation of the High-dimensional Representer for Collaborative Filtering
The whole process of the computation of high-dimensional representers is shown in Algorithm 1. The first step is pre-
processing, which computes normalized user and item embedding matrices through computing SVD of Û V̂ ⊤. Then we
calculate ℓ1representers with Definition 1. We note that the shape of Û V̂ ⊤ is |U| × |I| and it is costly to compute SVD of
it since we may have millions of users and items in real-world applications. We propose to decompose the computation
into computing SVD of Û and V̂ separately and then combining these smaller matrices of size k × k. We show that this
decomposition significantly reduces time complexity in the following analysis.

Note that (U1U3)Σ3(V1V3)
⊤ in the pre-processing step is a valid SVD of Û V̂ ⊤ due to the fact that (U1U3)

⊤(U1U3) =
U⊤
3 U⊤

1 U1U3 = Ik and (V1V3)
⊤V1V3 = Ik.

Algorithm 1 Computation of high-dimensional representers for Collaborative Filtering

Input: A trained user embedding matrix Û ∈ R|U|×k, a trained item embedding matrix V̂ ∈ R|I|×k, a loss function
ℓ(·, ·), training dataset D, and a test sample (i′, j′).
Preprocessing(Û , V̂ ):
U1,Σ

′
1, V

⊤
1 ← SV D(Û).

U2,Σ
′
2, V

⊤
2 ← SV D(V̂ ⊤).

U3,Σ3, V
⊤
3 ← SV D(Σ1V

⊤
1 U2Σ

′
2).

Ũ ← U1U3

√
Σ3, and Ṽ ← V1V3

√
Σ3.

Return: Ũ , Ṽ
Explain(Ũ , Ṽ ,D, ℓ, i′, j′):

Expls← []
# Computation of user-based explanations:
Lu ← {(i, j′)|(i, j′) ∈ D}
for (i, j′) ∈ Lu do

score← −ℓ′(yij′ , ⟨Ũi, Ṽj′)⟩⟨Ũi, Ũi′⟩.
Append ((i, j′), score) to Expls.

end for
# Computation of item-based explanations:
Lv ← {(i′, j)|(i′, j) ∈ D}
for (i′, j) ∈ Lv do

score← −ℓ′(yi′j , ⟨Ũi′ , Ṽj)⟩⟨Ṽj , Ṽj′⟩.
Append ((i′, j), score) to Expls.

end for
Return: Expls

F.1. Analysis of Time Complexity
In algorithm 1, we use a randomized singular value decomposition algorithm (Halko et al., 2011) to decompose matrices.
The SVD algorithm takes an input matrix of size m× n and outputs its decomposition with rank k using O(mn log(k) +
(m+ n)k2) operations.

At the pre-processing step, we perform this algorithm three times to decompose matrices of size |U| × k, |V| × k and k × k
to rank-k matrices, which takes O(max(|U|, |V|)k2) time (assume that |U|, |V| >> k). On the contrary, if we directly
perform SVD on Û V̂ ⊤, the time complexity would be O(|U||V| log k), which is significantly larger than decomposing
three smaller matrices. Also, the matrix multiplications on lines 4 and 5 also take O(max(|U|, |V|)k2) time. Therefore, the
overall time complexity of the pre-processing step is O(max(|U|, |V|)k2).

At the explanation step, let the average number of interactions a user or an item has is n′, i.e., the average sizes of Lu and
Lv are n′. The average time complexity of explaining a single test sample is O(n′k) to compute inner products between
normalized embeddings of size k.
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G. Comparison to TracIn (Pruthi et al., 2020)
TracIn traces the loss change of a given test point during training. When the model being explained is trained with stochastic
gradient descent, the loss change at each iteration can be attributed to a single training data we used to update the model.
However, it is intractable since we do not know the test sample during training. Pruthi et al. (2020) proposes TracInCP as a
practical alternative by measuring gradients similarities only on checkpoints |T | of the model. TracInCP has the following
formulation:

ITracInCP(zi, z
′) =

∑
t∈T

η(t)∇θL(zi, θ(t))⊤∇θL(z′, θ(t)), (20)

where η(t), θ(t) are the learning rate and model parameters at iteration t, and L is a loss function.

To compare the TracIn with the high-dimensional representer, we perform experiments on collaborative filtering since ℓ1
regularized linear models in Section 6.2 are usually not trained with stochastic gradient descent. The experimental settings
are the same as in Section 6.3.

Datasets Models Metrics Methods

High-dim Rep. TracInCP Random

MovieLens-
1M

MF AUC-DEL+ −0.196± 0.006 −0.217± 0.007 −0.002± 0.002
AUC-DEL− 0.169± 0.004 0.161± 0.005 −0.001± 0.002

Youtube-
Net

AUC-DEL+ −0.227± 0.008 −0.161± 0.008 −0.001± 0.004
AUC-DEL− 0.214± 0.007 0.165± 0.007 0.006± 0.004

Amazon
reviews 2018
(video games)

MF AUC-DEL+ −0.184± 0.012 −0.312± 0.013 −0.070± 0.011
AUC-DEL− 0.080± 0.012 0.158± 0.012 −0.077± 0.011

Youtube-
Net

AUC-DEL+ −0.234± 0.014 −0.245± 0.016 −0.032± 0.011
AUC-DEL− 0.294± 0.011 0.276± 0.011 −0.032± 0.011

Table 8. Case deletion diagnostics for removing positive (negative) impact training samples on various datasets and models. 95%
confidence interval of averaged deletion diagnostics on 40×40 = 1, 600 samples is reported. Smaller (larger) AUC-DEL+ (AUC-DEL−)
is better.

Table 8 shows the results. We observe that although in general TracIn is worse than the high-dimensional representer on
YoutubeNet, the performance of tracIn is much better than the high-dimensional representers on vanilla MF models. We
argue that TracIn for MF has the same formulation as the high-dimensional representers on any checkpoints, so it can be
viewed as an ensemble of high-dimensional representers over trajectories.

By applying TracInCP formula (Eqn.(20)) to the MF objective (Eqn.(16)), the TracInCP formulation is as below: given a
training point (i, j) ∈ D, and a test sample (i′, j′), the TracInCP importance scores on MF models are

ITracInCP((i, j), (i
′, j′)) =


−
∑

t∈T η(t)ℓ′
θ(t)(yij , ⟨Ũi, Ṽj⟩) ⟨Ũi, Ũi′⟩ if j = j′.

−
∑

t∈T η(t)ℓ′
θ(t)(yij , ⟨Ũi, Ṽj⟩) ⟨Ṽj , Ṽj′⟩ if i = i′.

0 otherwise.
(21)

Therefore, it has the same formulation as the high-dimensional representer for CF in Definition 1 except that TracInCP
ensembles over the checkpoints on the trajectories. We note that Eqn.(20) uses the same loss function L for both training
and test samples. However, our evaluation criteria is to find positive (or negative) impact samples, which is not necessarily
the triaining loss. Therefore, we replace the test loss L in Eqn.(20) with prediction score ⟨Ui′ , Vj′⟩ and then calculate its
gradients.
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H. Omitted Proofs
H.1. Proof of Theorem 1

Proof. Since θ̂ is the minimizer of Eqn.(1), there exists a subgradient of the regularization r(·), g = uθ + v such that

0 =
∂

∂θ

(
1

n

n∑
i=1

ℓ(yi, ⟨xi, θ̂⟩) + λr(θ)

)
=

∂

∂θ

(
1

n

n∑
i=1

ℓ(yi, ⟨xi, θ̂⟩)

)
+ λg.

It implies

g = − 1

nλ

n∑
i=1

ℓ′(yi, ⟨xi, θ̂⟩)xi.

After applying inverse transform (∂θr)
+ of the partial differential on both sides, we have

θ̂ = (∂θr)
+(g) = − 1

nλ

n∑
i=1

ℓ′(yi, ⟨xi, θ̂⟩)
(
∂θr)

+xi

)
.

By taking inner product with x′ on both sides, we have

⟨x′, θ̂⟩ =
n∑

i=1

− 1

nλ
ℓ′(yi, ⟨xi, θ̂⟩))⟨(∂θ̂r)

+
2 xi, (∂θ̂r)

+
2 x′⟩.

H.2. Proof of Corollary 2

Proof. Below is another proof without applying Theorem 1:

Since θ̂ is the minimizer of Eqn.(4), there exists a subgradient of the ℓ1 norm, v = ∂∥θ̂∥1 ∈ Rp such that

0 =
∂

∂θ

(
1

n

n∑
i=1

ℓ(yi, ⟨xi, θ̂⟩) + λ∥θ̂∥1

)
=

∂

∂θ

(
1

n

n∑
i=1

ℓ(yi, ⟨xi, θ̂⟩)

)
+ λv,

where the ith coordinate of v is vi = sign(θi) if θ̂i ̸= 0, and −1 ≤ vi ≤ 1 if θ̂i = 0 for all i ∈ [p]. The above equation
implies:

v = − 1

nλ

n∑
i=1

ℓ′(yi, ⟨xi, θ̂⟩)xi.

Since we have θ̂ = |θ̂| ⊙ v, by coordinate-wisely multiplying |θ̂| on both sides, we have

θ̂ = |θ̂| ⊙ v = − 1

nλ

n∑
i=1

ℓ′(yi, ⟨xi, θ̂⟩)(|θ̂| ⊙ xi).

By taking an inner product with x′ on both sides, we have

⟨x′, θ̂⟩ =
n∑

i=1

− 1

nλ
ℓ′(yi, ⟨xi, θ̂⟩))⟨

√
|θ̂| ⊙ xi,

√
|θ̂| ⊙ x′⟩.

H.3. Proof of Corollary3

Proof. According to page 40 in Watson (1992), the subgradient of nuclear norm at Θ̂ is

∂∥Θ̂∥∗ = {UV ⊤ +W : W ∈ Rd1×d2 , ∥W∥2 ≤ 1,WV = 0, U⊤W = 0}.

20



Representer Point Selection for Explaining Regularized High-dimensional Models

Since Θ̂ is the minmizer of Eqn.(7), we can find a subgradient UV T +W such that the derivative of Eqn.(7) with respect to
Θ at Θ̂ is zero:

0 =
1

n

n∑
i=1

ℓ′(yi, ⟨Xi, Θ̂⟩)Xi + λ(UV ⊤ −W )

⇒ UV ⊤ = − 1

nλ

n∑
i=1

ℓ′(yi, ⟨Xi, Θ̂⟩)Xi −W

Next, by using the fact that U⊤U = Ik is a identity matrix, we have

Θ̂ = UΣV ⊤ = UΣU⊤UV ⊤

= UΣU⊤

(
− 1

nλ

n∑
i=1

ℓ′(yi, ⟨Xi, Θ̂⟩)Xi −W

)

=

n∑
i=1

(
− 1

nλ
ℓ′(yi, ⟨Xi, Θ̂⟩)

)(
UΣU⊤Xi

)
(Using the fact that U⊤W = 0)

Similarly, we have

Θ̂ =

n∑
i=1

− 1

nλ
ℓ′(yi, ⟨Xi, Θ̂⟩F )

(
XiV

⊤ΣV
)
.

By taking inner product w.r.t a test sample X ′, we have

⟨X ′, Θ̂⟩F =

n∑
i=1

− 1

nλ
ℓ′(yi, ⟨Xi, Θ̂⟩))⟨

√
ΣU⊤Xi,

√
ΣU⊤X ′⟩F

=

n∑
i=1

− 1

nλ
ℓ′(yi, ⟨Xi, Θ̂⟩))⟨XiV

√
Σ, X ′V

√
Σ⟩F ,

using the fact that ⟨A,B⟩F = trace
(
A⊤B

)
and the cyclic property of the trace operator.

H.4. Proof of Corollary 4

Proof. We first show that the optimization problem in Eqn.(12) is a special case of Eqn.(7). Denote the kth data in D as
(ik, jk). Let Xk ∈ R|U|×|I| a zero matrix except that the (ik, jk) coordinate is 1, and yk = Yik,jk . By plugging the Xk, yk
to Eqn.(7) for 1 ≤ k ≤ |D|, we recover Eqn.(12).

Let X ′ ∈ R|U|×|I| be a zero matrix except that the (i′, j′) coordinate is 1. By applying Corollary 3, we have

⟨X ′, Θ̂⟩ = Θ̂i′,j′

=

|D|∑
k=1

− 1

λ|D|
ℓ′(yk, ⟨Xk, Θ̂⟩))⟨

√
ΣU⊤Xk,

√
ΣU⊤X ′⟩F

=

|D|∑
k=1

− 1

λ|D|
ℓ′(yk, Θ̂ik,jk))trace

(√
ΣU⊤X ′X⊤

k U
√
Σ
)
.

Since X ′Xk is a zero matrix if jk ̸= j′ and is a zero matrix except that the entry (ik, i
′) is one if jk = j′, we have

Θ̂i′,j′ =

|D|∑
k=1

− 1

λ|D|
ℓ′(yk, Θ̂ik,jk))1(jk = j′)⟨

√
ΣUi′ ,

√
ΣUik⟩

=
∑

i:(i,j′)∈D

− 1

λ|D|
ℓ′(yij , Θ̂ij)⟨

√
ΣUi,

√
ΣUi′⟩.
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Similarly, by using Eqn.(11), we have

Θ̂i′,j′ =
∑

j:(i′,j)∈D

− 1

λ|D|
ℓ′(yij , Θ̂ij)⟨

√
ΣVj ,

√
ΣVj′⟩.
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