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ABSTRACT

Multi-view classification based on the Dempster-Shafer theory is widely recog-
nized for its reliability in safety-critical domains with multi-view data. However,
the adoption of a late fusion strategy constrains information interaction among
views, thereby leading to suboptimal utilization of multi-view data. A recent ad-
vancement addressing this limitation involves generating a pseudo view by con-
catenating individual views. Yet, the efficacy of this pseudo view may diminish
when incorporating underperforming views like noisy views. Additionally, the in-
tegration of a pseudo view exacerbates the issue of imbalanced multi-view learn-
ing, as it contains a disproportionate amount of information compared to individ-
ual views. To address these issues, we propose the enhancing Trusted multi-view
classification via Evolutionary multi-view Fusion (TEF) approach. TEF employs
an evolutionary multi-view architecture search method to create a high-quality
fusion architecture serving as the pseudo view, facilitating adaptive view and fu-
sion operator selection. Furthermore, TEF enhances each view within the fusion
architecture by concatenating the fusion architecture’s decision output with its
respective view. Our experimental results demonstrate the effectiveness of this
straightforward yet powerful strategy in mitigating imbalanced multi-view learn-
ing issues, particularly on complex many-view datasets exceeding three views.
Extensive evaluations across six multi-view datasets validate the superior perfor-
mance of our proposed method compared to other trusted multi-view learning
approaches. (The code will be published.)

1 INTRODUCTION

Multi-view classification (MVC) endeavors to construct classifiers utilizing multi-view data,
wherein each sample is characterized by multiple groups of feature sets (Wen et al., 2023; Liang
et al., 2022; Zou et al., 2023b; Jiang et al., 2024). Notably, a plethora of methodologies has been
proposed in this domain. Among these, trusted multi-view classification (TMVC) methods (Xu
et al., 2024; Liu et al., 2023) deviate from conventional approaches by leveraging distinct views at
the level of evidence rather than focusing solely on features. They have garnered significant applica-
tion across various safety-critical medical diagnostic fields, including retinal anomaly identification
(Wang et al., 2023), eye disease screening (Zou et al., 2023a), and medical image classification (Xu
et al., 2022).

However, the adoption of a late fusion strategy restricts the interaction of information among views,
leading to suboptimal utilization of multi-view data. To address this limitation,Han et al. (2023)
proposed an enhanced trusted multi-view classification (ETMC). ETMC augmented their pioneering
work on Trusted Multi-view Classification (TMC) (Han et al., 2021) by introducing a pseudo view
obtained through the concatenation of individual views, thereby enriching it with complementary
information. Yet, real-world multi-view data often suffer from noise or uncertainty due to complex-
ities in data collection and transmission (Zhou et al., 2023). Additionally, each view may have its
own feature or distribution, in some cases, the data in each separate view may not be compatible
with the other. Obviously, if a fusion approach is unable to cope appropriately with multiple views,
the obtained pseudo view may be suboptimized when incorporating underperforming views. This
issue is illustrated in Fig. 1(a) where the classification accuracy of the pseudo view is lower than
the view 3. The similar results on experimental multi-view datasets can be observed by comparing
the accuracy of pseudo views from Table 1 with one of best view (BV) from Table 3. Regrettably,
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Figure 1: Two issues of existing trusted multi-view learning and our solutions.

the pseudo view generation strategy of ETMC is susceptible to negative influences from noisy or
corrupted views in certain real-world scenarios.

Moreover, as shown in Fig. 1(b), the pseudo view inherently contains a disproportionate amount
of information compared to individual views. The phenomenon is referred to as imbalanced views.
Recent study (Peng et al., 2022) has shown that the multi-view models learn on imbalanced views
may be suboptimized evens fail to outperform its uni-view counterpart due to view with better per-
formance contributes to lower whole loss then dominates the optimization progress via propagating
limited gradient over the other view. To our knowledge, the exiting pseudo-view-guided trusted
multi-view learning have not yet paid attention to this issue, limiting their performance. In addition,
the predominant approach to tackling imbalanced multi-view learning involves the manipulation of
gradients and they are often a challenging technique to use (Wei et al., 2024; Wang et al., 2020).

To address these issues, we propose the enhancing Trusted multi-view classification via Evolu-
tionary multi-view Fusion (TEF) approach. Specifically, as shown in Fig.1(c), TEF introduces an
evolutionary multi-view architecture search method to generate a high-quality fusion architecture
serving as the pseudo view, enabling adaptive selection of views and fusion operators. To mitigate
the imbalanced multi-view learning problem, each view within the fusion architecture is enhanced
by concatenating the decision output of the fusion architecture with its respective view shown in
Fig.1(d). With the two simple but effective techniques, the potential of trusted multi-view classifi-
cation is significantly unleashed, particularly on complex many-view datasets featuring more than
three views compared to its counterparts. Notably, compared to gradient-based NAS that requires a
predefined search space and substantial memory, and reinforcement learning-based NAS that relies
on extensive computational resources, evolutionary NAS offers advantages such as global search
capability, flexibility, and parallelization (Liang et al., 2021). This makes it particularly suitable for
handling complex multi-view tasks and large search spaces. The issue of time consumption for TEF
will be discussed and addressed in the experimental section 4.2. The contributions of this paper are:

• The pseudo view generation is formulated as a population-based multi-view neural archi-
tecture problem where the higher-quality views can be automatically selected and fused
with selected some fusion operators from a candidate fusion operator set.

• From the perspective of view enhancement, we propose a simple yet effective strategy to
deal with the issue of imbalanced multi-view learning that is raised by a disproportionate
amount of information between pseudo view and individual views.

• Extensive evaluations across six multi-view datasets validate the superior performance of
our proposed method compared to other trusted multi-view learning approaches.
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2 RELATED WORK

Multi-view classification (MVC): MVC methods can be divided into early fusion and late fusion.
Early fusion combines data from different views at the initial stage to form a unified representation
before inputting it to the classifier. Techniques include element-wise addition, multiplication, and
feature concatenation, along with advanced operators like MLB (Kim et al., 2017), MFB (Yu et al.,
2018), TFN (Zadeh et al., 2017), LMF (Liu et al., 2018), and PTP. This approach fully utilizes in-
formation from all views but may suffer from dimensionality issues and redundancy. Late fusion
processes each view independently and merges the outputs of multiple classifiers using methods like
majority voting and weighted averaging. It offers strong model flexibility and reduces view inter-
ference but has higher decision fusion complexity. Early fusion focuses on feature-level integration,
while late fusion emphasizes decision-level integration, each with its own strengths and weaknesses
(Liang et al., 2022). As shown in Fig. 2, our TEF possesses their strengths by achieving early fusion
and late fusion at the stage 1 and the stage 2, respectively.

Trusted multi-view classification (TMVC) : TMVC, a late-fusion method, stands out for its ability
to integrate diverse views based on their respective trustworthiness, quantified through the Dempster-
Shafer theory (Xu et al., 2024; Liu et al., 2023). A typical example is TMC (Han et al., 2021), which
involves Dempster’s combination rule that assigns smaller weights to highly uncertain views. Fol-
lowing this approach, various opinion aggregation methods have been proposed (Liu et al., 2022;
Han et al., 2023). Recent studies have highlighted that a significant feature of previous methods
is that the uncertainty mass decreases after integrating another opinion into the original one. Re-
cently, ECML introduced the idea that uncertainty should increase when incorporating unreliable
or conflicting opinions. To address this, ECML (Xu et al., 2024) proposed a conflictive opinion
aggregation strategy and theoretically proved that uncertainty increases for conflicting instances.
TMVC methodologies differ from traditional approaches by leveraging distinct views at the ev-
idence level rather than focusing solely on features. The utilization of the variational Dirichlet
distribution is pivotal in modeling the distribution of class probabilities. This distribution, parame-
terized with evidence gleaned from diverse views, facilitates the integration of evidence through the
interpretable framework of the Dempster-Shafer theory. This strategic shift yields a more stable and
reasonable estimation of uncertainty, thereby enhancing the reliability and robustness of classifica-
tion outcomes. Although they have shown great potential for widespread adoption in safety-critical
domains, they sometimes fail to outperform non-trusted multi-view classification method even uni-
view counterpart due to the limited interaction among views and imbalanced issue among views.

3 METHOD

The enhancing trusted multi-view classification via evolutionary multi-view fusion (TEF) approach
consists of two stages: (1) obtaining a high-quality fusion architecture as pseudo view with neu-
ral architecture search, and (2) balanced and trusted fusion driven by enhanced pseudo view. Its
overview is illustrated in Fig. 2.

3.1 PSEUDO VIEW GENERATION

The research conducted by (Han et al., 2023) underscores the significance of pseudo views in aug-
menting the performance of TMC method. Particularly, early interaction among views is identified
as a critical factor in this enhancement. To refine the quality of pseudo views, we advocate for
an automated approach. Our proposition involves framing the pseudo view generation process as
a multi-view neural architecture search task within the evolutionary computation paradigm. This
methodological framework holds promise for eliciting superior pseudo views, thus offering a path-
way to further elevate the efficacy of the trusted multi-view learning.

Multi-view classification model encoding and individual decoding: Specifically, let V denote the
set of views and F represent the set of fusion operators (see A.2). These sets collectively define a
multi-view neural architecture space, denoted as H . Within our framework, each multi-view classi-
fication model h from H corresponds to an individual in the evolutionary computation framework.
It can be encoded multiple forms like tuple or tree. The study on individual encode is out of scope
of our work. Here, we take a tuple form for example to illustrate the process of encoding and de-
coding. Comparable results between different forms can be found in Section A.5 in the appendix.
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Figure 2: The overview of TEF

Notably, h can be encoded as tuples p = [v, f ], where v = [v1, v2, · · · , vl] represents l used views,
f = [f1, f2, · · · , fl−1] denotes the utilized fusion schemes, and vi and fi are an element from V
and F , respectively.

Each individual chromosome vector p can be decoded to a multi-view classification model h that
takes v = [v1, v2, · · · , vl] as its input. Specifically, each vi is first transferred to ui by a fully
connected layer and then a Relu function. Next fuse z1, z2, · · · , zl in a simple yet effective behavior:

ci =

{
fi(z1, z2), if i = 1,

fi(ci−1, zi+1), if i ∈ [2, 3, · · · , l − 1].
(1)

To alleviate the issue of wide fluctuations in the fused vector values due to different fusion operator
usage in the process of fusion, we normalize c with the follows process

c ← sign(c) |
√
|c| |, (2)

c ← c

∥ c ∥
, (3)

where sign denotes the sign function. Eq. (2) represents Power Law Normalization, while Eq. (3)
denotes L2 Normalization. The effectiveness of this strategy has been validated by many works
(Liang et al., 2021). Lastly, transfer c to a probability vector ŷ by a fully connected layer and a
softmax function. The optimization objective adopts cross entropy loss and is defined as:

Lce =
1

N

N∑
i=1

K∑
k=1

yik log ŷik, (4)

whereN is the number of the examples,K is the number of the categories, yik is 1 if the ith example
belongs to kth category, 0 otherwise, and ŷik is the prediction probability that the ith example belong
to kth category, which is the output of the softmax layer.

Optimization: Our pseudo view, conceived as a multi-view neural architecture rather than a sin-
gular fusion vector, serves as a pivotal element in our approach. The optimal pseudo view can be
autonomously searched via an evolutionary computation method. This search method, detailed in
Alg. 1, encompasses population initialization, fitness evaluation, offspring generation, and selection,
facilitating the systematic exploration and refinement of multi-view neural architectures.

In the initial stage of our evolutionary algorithm, population initialization involves randomly gen-
erating N individual chromosome vectors, each potentially having a distinct value for k. Subse-
quently, the fitness of each chromosome vector p within the population is assessed by decoding it
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into a multi-view classification model. This model is trained on a multi-view dataset and its classi-
fication accuracy is measured on a separate validation set, serving as the fitness metric for p. More
details can be found in Section A.8 in the appendix.

3.2 BALANCED AND TRUSTED FUSION

This part aims to make a better trusted making-decision by jointly fusing the all views and the
generated pseudo view. It is nature idea to directly pass each view into an evidence-based classi-
fier (Sensoy et al., 2018). Yet, the pseudo view inherently contains a disproportionate amount of
information compared to individual views. Thus, its integration exacerbates concerns regarding im-
balanced multi-view learning (Peng et al., 2022). We proposed a very effective solution by adding
the output into the selected views. Specifically, our trusted fusion works as follows:

(1) View enhancement: Let h be the optimal multi-view fusion model searched via Alg. 1, and its
output is denoted as hout. We enhance each view in h by concatenating it with hout, denoted as
[vi, h

out], producing vep = [[v1, h
out], [v2, h

out], · · · , [vk, hout]].
(2) Evidence collection: Let E = [e1, e2, · · · , eK ] be the evidences where each element ek is the k-
th category evidence and its value is larger than 0. Then it can be obtained by replacing the softmax
activation function with the Softplus activation function:

E = Softplus(F out), (5)

where F out is the last layer of the backbone. It is noted that the backbone of the enhanced pseudo
view is h but its takes vep as input instead of v.

(3) Dirichlet distribution calculation: Let α = [α1, α2, · · · , αK ] be the concentration parameters of
one Dirichlet distribution where each element αk is the k-th catagory Dirichlet distribution parame-
ter and can be obtained via

αk = ek + 1. (6)
µ = [µ1, µ2, · · · , µK ] be the mean of the corresponding Dirichlet distribution, its each element µm

k
is computed as

µk =
αk

S
, (7)

where S =
∑K

k=1 ak is the Dirichlet intensities. Then the probability density function of the Dirich-
let distribution is given by:

Dir(µ|α) = 1

B(α)

K∏
i=1

µα−1
i , (8)

where B(α) is the K-dimensional multinomial beta function.

(4) Subjective opinions calculation. Let b be a set of belief masses and u is its corresponding
uncertainty score. Then the subjective opinion M can be represented as

M = [b, u], (9)

where b = [b1, b2, · · · , bK ] where each element bk is the belief mass. Let S =
∑K

k=1 ak be the
Dirichlet intensities. Then bi and u can be obtained by

bk =
ek
S

=
ak − 1

S
, u =

K

S
. (10)

It can be seen from Eq. 10 the probability assigned to category k is proportional to the observed
evidence for category k.

(5) Fusion: Let M1,M2, · · · ,MV and Msp be (V + 1) opinions obtained from V views and the
pseudo view. Then the trusted fusion is conduced via

M = ⊕V
i=1M

i ⊕Msp, (11)
where ⊕ denotes the Dempster’s combination operator for K-Class classification. Various imple-
mentation modalities are available like (Xu et al., 2024; Liu et al., 2023; Han et al., 2023). To show

5
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the advantage of our framework, we adopt its one simple implementation form from (Han et al.,
2023). Specifically, given two opinions M1 = [b11, b

1
2, · · · , b1K , u1] and M2 = [b21, b

2
2, · · · , b2K , u2],

we do the following fusion calculation to generate the combination opinionM = [b1, b2, · · · , bK , u]:

bk =
1

1− C
(b1kb

2
k + b1ku

2 + b2ku
1), u =

1

1− C
u1u2, (12)

where C =
∑

i ̸=j b
1
i b

2
j .

(6) Probability of each class induction: With the Eq. 10, we can get the final probability of each
class and the overall uncertainty via

S =
K

u
, ek = bk × S. (13)

Optimization: The objective function is

L =

N∑
i=1

M∑
m=1

Lm(xmn , yn) +

N∑
i=1

Lpseudo({xmn }Mm=1, yn) +

N∑
i=1

Lfused({xmn }Mm=1, yn), (14)

whereLm(xm, y), Lpseudo({xmn }Mm=1, yn) andLfused are the variational loss functions for them-th
view, the pseudo view and final decision, and their definition are as follows


Lm = Eqmθ (µm|xm)[logp(y|µm)]− λtDKL[Dir(µ

m|α̂m||Dir(µm|[1, · · · , 1])],

Lpseudo = Eµp∼Dir(µp|αp)[log p(y|µp)]− λtDKL[Dir(µ
p|α̂p||Dir(µp|[1, · · · , 1])],

Lfused = Eµ∼Dir(µ|α)[log p(y|µ)]− λtDKL[Dir(µ|α̂||Dir(µ|[1, · · · , 1])],
(15)

where λt balances the expected classification error and KL regularization,

Eqmθ (µm|xm)[logp(y|µm)] = Eµp∼Dir(µp|αp)[log p(y|µp)] =

K∑
k=1

yk(ψ(α
m
k )− ψ(Sm)) (16)

DKL[Dir(µ
m|α̂m||Dir(µm|[1, · · · , 1])] = log(

Γ(
∑K

k=1 α̂k)

Γ(K)
∏K

k=1 Γ(α̂k)
)+

K∑
k=1

(α̂k−1)[ψ(α̂k)−ψ(
K∑
j=1

α̂j)]

(17)
where qmθ (µm|xm) is a probabilistic encoder with parameters qmθ , ψ(.) and Γ(.) are the digamma
function and gamma function, respectively; yk is the k-th element of y that is a onehot vector.
Sm =

∑K
k=1 α

m
k is the Dirichlet distribution Dir(µm|α̂m), α̂m = y+(1−y)⊙αm is the adjusted

parameter of the Dirichlet distribution to prevent penalizing evidence of the groundtruth class to 0.

The optimization process for the proposed model is summarized in Alg. 2.

4 EXPERIMENTS

In this section, we aim to validate the effective of TEF from six aspects: (1) Comparison with
trusted multi-view classification methods, (2) comparison with other state-of-the-art methods, (3)
impact analysis of different fusion strategies on pseudo-view quality, (4) impact analysis of different
pseudo-view generation methods on TEF, (5) impact analysis of different strategies to address view
imbalance, and (6) computation time analysis. Moreover, we offer a more in-depth analysis for our
TEF by conducting more ablation experiments. These results can be found in the appendix A.5.

4.1 SETUP

We briefly present the experimental setup here, including the experimental datasets, evaluation met-
rics, model selection, and comparison methods.

Datasets. In our experiments, we cover six datasets with multiple views, namely Animals with
Attributes (AWA), NUS-WIDE-128 (NUS), Reuters, MVoxCeleb, and YoutubeFace. For the Reuters
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Table 1: Accuracy comparison results with trusted MVCs and other SOTA MVCs (mean± standard
deviation), where the best performance is highlighted in bold. The other four metrics are provided
Table 12 in the appendix.

Methods AWA NUS Reuters5 Reuters3 VoxCeleb YoutubeFace
TMC (ICLR22) 88.59±0.25 72.73±0.30 79.60±0.56 84.23±0.35 73.13±0.15 71.18±2.27

TMOA (AAAI22) 89.17±0.31 72.60±0.48 79.11±0.43 84.19±0.27 84.72±0.21 84.35±0.25
ETMC (TPAMI23) 88.24±0.17 73.05±0.67 79.80±0.41 84.25±0.42 88.70±0.15 79.63±1.89
ECML (AAAI24) 89.06±0.21 72.53±0.55 81.39±0.18 85.88±0.29 80.51±0.41 81.95±0.20

BV 88.65±0.43 68.69±0.59 80.61±0.25 83.98±0.14 63.25±0.14 82.01±0.18
SSV 82.37±1.26 63.70±0.64 79.51±0.41 84.71±0.22 85.10±0.23 84.43±0.31
MR 87.10±0.64 64.39±0.85 78.24±0.45 84.17±0.19 79.92±0.29 84.78±0.21

EmbraceNet 84.97±0.23 72.43±0.38 80.07±0.21 83.58±0.25 81.74±0.34 80.90±1.04
AWDR(PR19) 90.46±0.06 72.44±0.66 79.69±0.27 83.32±0.32 91.08±0.09 85.11±0.15
RMAR(INS22) 90.63±0.13 72.51±0.67 79.84±0.25 83.48±0.25 91.54±0.11 85.21±0.17

DC-NAS (AAAI2024) 90.66±0.15 74.35±0.58 81.35±0.28 85.86±0.14 92.19±0.07 85.28±0.14
TEF (Ours) 93.26±1.25 75.12±0.57 82.26±0.23 86.49±0.10 92.41±0.12 86.02±0.41

dataset, we generate two versions by adding Gaussian noise, named Reuters5 and Reuters3. AWA
and NUS contain seven views each, while Reuters, MVoxCeleb, and YoutubeFace have five views.
For more detailed descriptions of the datasets, please refer to the appendix A.3.

Evaluation metrics. In the experiment, to avoid the randomness caused by data partitioning and
network initialization, we adopted a 5-fold cross-validation strategy within the overall framework,
dividing each dataset into training and testing sets. Notably, during the evolutionary search for the
pseudo-view architecture, the training set was further split into a training set and a validation set to
prevent data leakage. We reported the average performance and standard deviation across five data
partitions. To evaluate the performance of TEF, we used five commonly used evaluation metrics:
accuracy (AC), precision (PE), recall (RE), F1 score, and Kappa (K). Higher values of these
evaluation metrics indicate better performance. All metrics were measured on a single P100 GPU.
For more detailed information about the experimental environment, please refer to Appendix A.4.

Comparison methods. We compare TEF with three categories of multi-view classification meth-
ods (MVCs): (1) Trusted MVCs: For example, TMC, which integrates multi-view information at
an evidence level using the Dempster-Shafer theory in a learnable manner. TMOA integrates multi-
view information at an evidence level using opinion aggregation. ETMC improves upon previous
methods by adding a pseudo view containing complementary information from multiple views and
simply concatenating the original features. ECML fuses view-specific opinions consisting of deci-
sion results and reliability using a conflictive opinion aggregation strategy and simple and effective
average pooling fusion. (2) Other state-of-the-art MVCs: such as BV, SSV, MR, EmbraceNet,
AWDR, RMAR, DMVF, and DC-NAS (Liang et al., 2024). (3) Various multi-view fusion strategies
includeing five basic fusion operators: sum, mean, max pooling, product, and concatenation as well
as five advanced fusion operators: MLB, MFB, TFN, LMF, and PTP. For a detailed description of
these methods, please refer to the appendix A.1.

4.2 EXPERIMENTAL RESULTS

Comparison with trusted multi-view classification methods. According to the results in Table
1, TEF demonstrates significant advantages over various advanced trusted fusion methods across
five metrics on six datasets. For instance, in the AWA, NUS, and VoxCeleb datasets, TEF achieves
approximately 4.09%, 2.07%, and 3.71% accuracy improvements, respectively, compared to the
second-ranked model. This is attributed to the effective implementation of feature-level information
interaction achieved by the high-quality pseudo views obtained through adaptive selection. This
approach addresses the issue of view imbalance caused by high-quality fusion views, thereby en-
hancing the model’s learning capability. This has been validated in the ablation study.
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Table 2: Trustworthiness comparison across different datasets for TMC, ETMC and TEF.
Datasets TMC ETMC TEF(Ours)
AWA 0.461±0.008 0.494±0.013 0.763±0.046
NUS 0.684±0.029 0.793±0.044 0.949±0.010
Reuters5 0.908±0.011 0.842±0.015 0.959±0.002
Reuters3 0.923±0.010 0.879±0.021 0.986±0.002
YoutubeFace 0.621±0.031 0.901±0.010 0.963±0.004

Table 3: Accuracy comparison results with five basic fusion operators and five advanced fusion
operators, the best performance is highlighted in boldface. “PV” denotes our pseudo view generation
at the first stage in TEF. The other four metrics are provided Table 13 in the appendix.

Basic fusion operators
Methods AWA NUS Reuters5 Reuters3 VoxCeleb YoutubeFace

Add 88.56±0.08 72.81±0.70 79.70±0.25 83.46±0.28 87.53±0.41 82.40±0.23
Mul 86.53±0.41 64.58±0.63 77.02±0.38 81.89±0.70 72.31±0.90 83.18±0.14
Cat 88.22±0.17 72.32±0.50 79.91±0.28 83.66±0.17 87.98±0.20 83.05±0.56
Max 88.82±0.32 71.36±0.47 80.02±0.20 84.01±0.28 81.57±0.41 81.49±0.29
Avg 88.83±0.32 73.00±0.51 79.69±0.30 83.58±0.28 87.27±0.33 82.23±0.17

Advanced fusion operators
MLB 87.69±0.21 70.60±0.29 80.16±0.15 83.80±0.28 87.11±0.67 85.20±0.28
MFB 88.87±0.34 71.34±0.40 79.28±0.21 83.25±0.18 85.23±0.20 82.85±0.17
TFN 81.02±0.53 63.66±1.22 79.95±0.30 83.73±0.31 57.53±0.92 81.33±0.19
LMF 88.66±0.43 71.74±0.70 80.02±0.20 84.01±0.28 81.57±0.41 81.49±0.29
PTP 87.78±0.28 71.83±0.50 80.10±0.10 84.06±0.20 88.61±0.36 85.18±0.30

PV(Ours) 91.43±0.20 74.44±0.69 80.97±0.34 85.40±0.30 92.25±0.20 85.60±0.16

Comparison with other state-of-the-art (SOTA) methods. We further compare the TEF with
other SOTA methods including BV, SSV, MR, EmbraceNet, AWDR, RMAR, DMVF, and DC-NAS
(Liang et al., 2024). The conclusion can be made based on the results in Table 1: (1) Performance
superiority: While these SOTA methods outperform previous trusted fusion methods in terms of raw
performance metrics, they fall short in providing trustworthy decisions at the view fusion level, thus
lacking in security and reliability. (2) Trustworthy decision: TEF, as a trusted fusion architecture,
not only achieves superior performance metrics but also ensures trustworthy decisions at the view
fusion level. This dual advantage sets TEF apart from other advanced methods. For instance, on
the AWA and NUS datasets, TEF achieves approximately 2.6% and 0.77% accuracy improvements
compared to the second-best model. These improvements highlight the significant advantage of
TEF in ensuring both high performance and security in decision making. (3) The trustworthiness is
derived from 1 − u, where u is the uncertainty score in Eq. 9. Compared to TMC and ETMC, we
have significant advantages in making trustworthy decisions as shown in Table 2. For example, we
achieved improvements of 26.9% and 15.6% on the AWA and NUS datasets, respectively. This is
because the quality of pseudo-view data after sufficient feature interactions is high, leading to more
reliable decisions and strengthening the overall architecture.

Impact analysis of different fusion strategies on pseudo-view quality. To investigate the impor-
tance of adaptive view selection for pseudo-view quality (PV), we compare our PV with five basic
fusion operators and five advanced fusion operators. Table 3 shows their respective performances. It
can be observed that each operator has its own advantages, with no single operator performing excel-
lently across all datasets.For instance, except for PV, the Max fusion operator performs best on the
AWA dataset, but performs mediocrely on other datasets. Additionally, although advanced fusion
operators involve complex fusion operations, they sometimes perform lower than basic fusion oper-
ators in terms of performance. The strategy of adaptive view fusion achieves the best performance.
These findings highlight the importance of adaptive view selection and fusion operators.

Impact analysis of different pseudo-view generation methods on TEF. This section aims to vali-
date the impact of different pseudo-view generation methods on trusted multi-view learning. Specif-
ically, five basic fusion operators are used as the pseudo views generation method at first stage of
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Table 4: Accuracy comparison results (mean ± standard deviation) with pseudo-views formed by
different fusion strategies introduced in a trustworthy fusion framework, the best performance is
highlighted in boldface. Among them, Cat0 is the direct concatenation of all original features, while
Cat1 unifies all views to the same dimension before concatenation.

Methods AWA NUS Reuters5 Reuters3 VoxCeleb YoutubeFace
Cat0 88.24±0.17 73.05±0.67 79.80±0.41 84.25±0.42 88.70±0.15 79.63±1.89
Add 90.29±0.06 73.05±0.62 78.99±0.65 84.42±0.68 90.65±0.08 78.36±1.54
Mul 89.13±0.24 71.85±0.50 77.70±0.58 83.00±0.48 77.83±0.29 64.09±1.10
Cat1 89.22±0.09 73.29±0.63 79.25±0.49 84.11±0.59 77.82±0.29 70.68±1.50
Max 90.54±0.12 72.29±0.55 78.53±0.63 84.03±0.52 84.02±0.08 74.80±2.91
Avg 90.63±0.18 72.12±0.84 79.86±0.72 84.93±0.57 89.49±0.31 76.40±0.99

TEF (Ours) 93.26±1.25 75.12 ± 0.57 82.26±0.23 86.49±0.10 92.41±0.12 86.02±0.41

Table 5: Comparison results (mean ± std) on addressing the imbalance problem using feature en-
hancement versus directly using decision results, with the best performance highlighted in boldface.

Accuracy
Methods AWA NUS Reuters5 Reuters3 VoxCeleb YoutubeFace
TEF0 88.59±0.25 72.73±0.30 79.60±0.56 84.23±0.35 73.13±0.15 71.18±2.27
TEF1 91.60±0.20 73.71±0.48 79.93±0.54 85.33±0.41 91.44±0.14 76.68±1.44
TEF2 89.81±0.42 73.93±0.52 80.11±0.51 84.79±0.46 62.74±0.20 74.47±2.18
TEF 93.26±1.25 75.12 ± 0.57 82.26±0.23 86.49±0.10 92.41±0.12 86.02±0.41

the proposed TEF, respectively. From Table 4, it is evident that the pseudo views using the sin-
gle fusion operator are significantly inferior to the high-quality pseudo views obtained through our
adopted NAS strategy. For instance, on the YoutubeFace dataset, our approach outperforms the
second-best performing method by 7.66%, and similar improvements of at least one percentage
point are observed on the remaining datasets. This fully demonstrates the importance of introducing
high-quality pseudo views and underscores the necessity of adaptively selecting views and fusion
operators to compose high-quality pseudo views.

Impact analysis of different strategies to address view imbalance. This section aims to validate
the effectiveness of view enhancement strategy for addressing view imbalance by comparing TEF
with its three degraded versions. (1) TEF0: Stage 1 is removed from TEF, i.e., degrading into TMC
(Han et al., 2021), without introducing pseudo-views. (2) TEF1: View Enhancement is removed
from the TEF, i.e., only a high-quality pseudo-view generation architecture is introduced. (3) TEF2:
Directly using the decisions output of the fusion architecture generated by the evolutionary algorithm
for trustworthy fusion, i.e., the decision output houtof Alg. 1 as the pseudo view. Observing Table 5
reveals the following findings: TEF1 significantly outperforms TEF0, highlighting the importance
of introducing high-quality pseudo-views. The performance differences between TEF1 and TEF
indicate the presence of the view imbalance problem. For example, as shown in Fig. 3, introducing
a high-quality pseudo-view generation architecture can significantly exacerbate imbalance issues,
where the pseudo-views are not sufficiently trained. However, concatenated fusion decisions can
significantly resolve this issue. For instance, in the YoutubeFace dataset, the performance improved
from 75.11% without concatenation to 85.18% with concatenation. Similarly, TEF’s performance
increased from 76.68% to 86.02% with the introduction of concatenation. The results of TEF2

indicate that directly introducing the decisions of the fusion architecture is ineffective. Despite its
high individual accuracy, it cannot make a significant contribution to the overall trusted decision-
making process, as it did not participate in the training of the entire trusted architecture.

Computation time. It is well known that evaluating the fitness of all N chromosome vectors re-
quires too much computing time at each generation. Fortunately, evolutionary multi-view learning
has provided many accelerated solutions. In this part, we arm the TEF with two acceleration strate-
gies. The first one is fitness caching (FC) (Liang et al., 2021) where previously evaluated vectors
are recorded, avoiding redundant evaluations of individual chromosome vectors that have already

9
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Figure 3: The accuracy comparison before and after solving the pseudo-view imbalance problem.
The left chart shows the accuracy of pseudo-views in TEF, and the right chart shows the overall
accuracy of TEF. The results of other metrics are shown in Fig. 9 in the appendix.

Table 6: Time comparison of TEFs armed with different acceleration strategies on NUS dataset.
Methods FC CS Time

TEF1 False False 13.21h
TEF2 True False 10.35h
TEF3 False True 4.43h
TEF4 True True 2.46h

been assessed. The second one is search guided by core structure (CS) (Fu et al., 2024) where core
structures are first found from a shrunk space, and then the optimal MMC model is found with the
guidance of CSs from the expanded space. The results are shown in Table 6 where “True” and
“False” denote that the corresponding acceleration strategies is used or not, respectively. One can
see that the TEF4 that is the version of TEF armed with FC and CS is very high-efficiency. Obvi-
ously, new developments of the acceleration techniques in the evolutionary computation community
can be readily integrated into the TEF, achieving a more higher-efficiency implementations of TEF
if more effort is made.

5 CONCLUSION

In this paper, we have proposed an innovative approach to enhance the performance of the trusted
multi-view classification. Our method has contributed to the advancement of trusted multi-view
classification in two key dimensions. Firstly, we introduced a powerful mixture fusion framework
that seamlessly integrates both early and late fusion techniques, with the early fusion process being
automated for enhanced efficiency. Secondly, we addressed the challenge of imbalanced multi-
view learning in large-scale datasets through a straightforward yet highly effective solution. By
enriching the results of trusted multi-view learning through these novel strategies, our approach
offers promising avenues for improved classification accuracy and scalability in complex real-world
scenarios.
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A APPENDIX

In the supplemental material:

• A.1: We describe the basic information of all comparative methods.

• A.2: We describe the five basic fusion operators used in evolutionary NAS.

• A.3: We give detailed descriptions of the datasets.

• A.4: We explain the implementation details.

• A.5: We present supplementary results.

• A.6: We compared TEF with advanced TMVC methods on standard datasets.

• A.7: We showed comparative results of TEF with other TMVCs in conflict scenarios.

• A.8: We describe the detailed algorithm steps of the TEF framework.

• A.9: We describe the drawbacks of TEF and future work.

A.1 BACKBONE MODEL

To ensure a fair comparison, we downloaded the source codes of the compared methods from the
authors’ websites and followed the experimental settings and parameter tuning steps outlined in each
paper. For the trusted fusion methods TMC, TMOA, ETMC, and ECML, as well as other non-trusted
fusion methods, we meticulously tuned them on each dataset to ensure a fully fair comparison. The
main comparison methods are briefly introduced below.

• EmbraceNet (Choi & Lee, 2019): This is a random method where each component of the
fused vector comes from one view determined by a multinomial distribution. The proba-
bility value p of view selection is set to 1

|V | .

• AWDR (Yang et al., 2019): An adaptive-weighting discriminative regression method.
The parameter λ is selected from {10−3, 10−2, · · · , 103}, and k takes values from
{1, 3, 5, · · · , 9}.

• RMAR (Jiang et al., 2022): It adopts the L2,1-norm loss function to learn a joint
weighted projection subspace across all views, preserving correlation and diversity among
views via a self-supervised weighting manner. The parameter λ is selected from
{10−3, 10−2, · · · , 103}, and k takes values from {1, 3, 5, · · · , 9}.

• DMVF: Discriminative multi-view fusion via adaptive regression (Zhang et al., 2024).

• DC-NAS (Liang et al., 2024): It is a method that searches for the optimal multi-view fusion
strategy through evolutionary neural architecture search. The divide-and-conquer approach
used during the search process greatly improves efficiency while ensuring enhanced per-
formance without sacrificing effectiveness.

• ECML (Xu et al., 2024): Fuses view-specific opinions consisting of decision results and
reliability via the conflictive opinion aggregation strategy, employing a simple and effective
average pooling fusion.

• Simple Soft Voting (SSV) (Zhou, 2012): It simply averages the outputs of each single
view method, treating each view equally.

• Best View (BV) (Liang et al., 2021): A winner-take-all weighted strategy at the view level,
selecting the best method among all single view methods.

• Maximum Rule (MR) (Peng et al., 2016): A winner-take-all weighted strategy at the
example level, selecting the highest confidence score among the outputs of all single view
methods.

• TMC (Han et al., 2021): Integrates multi-view information at an evidence level using the
Dempster-Shafer theory in a learnable way.

• TMOA (Liu et al., 2022): Integrates multi-view information at an evidence level using
opinion aggregation.
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• ETMC (Han et al., 2023): An improved version that adds a pseudo view containing com-
plementary information from multiple views by simply concatenating the original features.

• ECML (Xu et al., 2024): Fuses view-specific opinions consisting of decision results and
reliability via the conflictive opinion aggregation strategy, employing a simple and effective
average pooling fusion.

We review bilinear-based fusion (Fukui et al., 2016) and tensor-based fusion (Liu et al., 2018) as
representative of advanced fusion methods. Recently, they are widely applied to many small-scale
applications such as fine-grained classification (two views) (Kong & Fowlkes, 2017), visual question
answering (two views) (Yu et al., 2018) and multimodal sentiment analysis (three views) (Zadeh
et al., 2017).

Compared with linear methods, bilinear methods can yield a richer representation by modeling all
pairwise interactions among features from different views. Two typical methods are multi-modal
low-rank bilinear pooling (MLB) approach (Kim et al., 2017) and multimodal factorized bilinear
pooling (MFB).

MLP (Jin & Zhao, 2021) MLB (Kim et al., 2017) is to solve the dimension curse in feature fusion
by using |V |+ 1 matrix multiplication to approximate the outer product. The fusion process can be
formalized as follows.

c = MLB(v1, v2, · · · , v|V |) = UT(

|V |∧
i=1

UT
i vi) + b, (18)

where
∧|V |

i=1 xi = x1 ◦ x2 ◦ · · · ◦ x|V |; Ui ∈ RMi×d and c ∈ Rm, where d and m are hyper-
parameters to determine the dimension of joint embeddings and the output dimension of low-rank
bilinear models, respectively.

Noting that MLB could result in insufficient representation, (Yu et al., 2018) proposed an enhanced
version MFB of MLB. In MFB, the features from different views are first expanded to a high-
dimensional space and then integrated the expanded vectors with Hadamard product. Then sum
pooling followed by the normalization layers is conducted to squeeze the high-dimensional feature
into the compact output feature. The fusion process can be formalized as follows.

c = MFB(v1, v2, · · · , v|V |) = SumPool(

|V |∧
i=1

ÛT
i vi, k), (19)

where the function SunPool(x, k) uses a one-dimensional non-overlap window with size k to do
sum pooling over x.

Tensor-based methods model interactions among different view features by using a |V |-fold Carte-
sian product from view embeddings. Typical methods include tensor fusion network (TFN) (Zadeh
et al., 2017), low-rank multimodal fusion method (LMF) (Liu et al., 2018) and polynomial tensor
pooling (PTP) (Hou et al., 2019).

TFN (Zadeh et al., 2017) introduce a tensor fusion layer. Given |V | view vectors {vi ∈ Rmi}|V |
i=1,

they are fused as follows:

Z =

[
v1
1

]
⊗

[
v2
1

]
⊗ · · · ⊗

[
v|V |
1

]
, (20)

where ⊗ is the Kronecker product operator, namely outer product, and Z ∈
R(m1+1)×(m2+1)×···×(m|V |+1) is an order-|V | tensor.

Then the tensor Z is mapped into a vector by a linear transformation as follows:

c =WZ + b, (21)

whereW ∈ R(m1+1)×(m2+1)×···×(m|V |+1)×m, b ∈ Rm and c ∈ Rm.

Noting that in TFN the number of parameters to learn in the weight tensorW will increase exponen-
tially with the number of views, (Liu et al., 2018) proposed a low-rank multimodal fusion method
(LMF). The fusion process can be formalized as follows.
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c = LMF(v1, v2, · · · , v|V |) =

|V |∧
i=1

r∑
j=1

(W
(j)
i

[
vi
1

]
), (22)

where r denotes the rank or the decomposition factors of a tensor; W (j)
i ∈ Rm×(mi+1) and c ∈ Rm.

Noting that tensor-based multimodal fusion methods simply fuse features all at once, ignoring the
complex local intercorrelations, (Hou et al., 2019) proposed a polynomial tensor pooling (PTP) by
considering high-order moments, followed by a tensorized fully connected layer. Given |V | view
vectors {vi ∈ Rmi}|V |

i=1, they are fused as follows:

F = f ⊗ f ⊗ · · · ⊗ f︸ ︷︷ ︸
P−order

,

where f = [1,v1,v2 · · ·v|V |] ∈ Ra and F ∈ Ra×a×,···×a; a =
∑|V |

i=1mi + 1.

Then the tensor F is mapped into a vector by a linear transformation as follows:

c = PTP(v1, v2, · · · , v|V |) =WF = (

r∑
j=1

|V |⊗
i=1

w(j)
i )F , (23)

whereW ∈ Ra×a×···×a×m and c ∈ Rm.

Despite achieving promising performance, the manual multi-view fusion might be sub-optimal for
message propagation between views. Moreover, the dimensionality of the fused vector that some
of them produce increases exponentially as the number of view increases and are unsuitable for
many-view data. Hence, we adopt an evolutionary strategy for automatically discovering well-
suitable many-view fusion scheme. For a good computational efficiency in fusing many-view data,
the evolved fusion scheme only includes the basic fusion operators.

A.2 FIVE BASIC FUSION OPERATORS

To better illustrate the fusion process of multiple fusion operators, we define xi as the vector feature,
n represents the quantity of vector features to be fused, where the superscript indicates the index
of the fused vector feature. In this context, the fusion operator set F encompasses the following
operations.

Concatenation (Wang et al., 2017): The information from vector features is fused as follows:

o(xi) = [x1i , x
2
i , · · · , x

|n|
i ], (24)

where [·, ·] is the concatenation operator.

Element-wise fusion operators require that the dimensions of input vectors are the same, hence
different vector features need to be mapped into the same dimension space by a linear function before
fusing. This can be achieved using a fully-connected layer (FC) without any activation function.

Addition (Wu et al., 2014): The information from vector features is fused as follows:

o(xi) = FC(x1i ) + FC(x2i ) + · · ·+ FC(x
|n|
i ). (25)

Multiplication (Gao et al., 2018): The information from vector features is fused as follows:

o(xi) = FC(x1i ) ◦ FC(x2i ) ◦ · · · ◦ FC(x
|n|
i ), (26)

where ◦ denotes Hadamard product, namely element-wise multiplication.

Max (Duong et al., 2017): The information from vector features is fused as follows:

o(xi) = max(FC(x1i ),FC(x
2
i ) · · · ,FC(x

|n|
i )), (27)
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where max is element-wise max, also called max-pooling.

Average: The information from vector features is fused as follows:

o(xi) =
1

|n|
(FC(x1i ) + FC(x2i ) + · · ·+ FC(x

|n|
i ), (28)

where + denotes element-wise addition, also called average-pooling.

A.3 DATASETS DETAILS

We describe the datasets used in the experiments in detail and summarize the datasets in Table 7.

• Animals with Attributes (AWA) (Lampert et al., 2014): This dataset includes 30,475
images of 50 animal subjects with seven views. For each image, six types of low-level
features are extracted: RGB color histogram (CH), local self-similarity histograms (LSS),
PyramidHOG (PHOG), SIFT, rgSIFT, SURF, and one deep feature (ILSVRC-pretrained
ResNet101).

• NUS-WIDE-128 (NUS) (Tang et al., 2017): This dataset contains 43,800 single-label im-
ages from 128 categories. For each image, six types of image features are extracted: color
histogram (CH), color correlogram (CORR), edge direction histogram (EDH), wavelet tex-
ture (WT), block-wise color moments (CM), and bag of words based on SIFT descriptions
(BoW), along with one text feature. The dataset is an extension of the NUS-WIDE dataset
(Chua et al., July 8-10, 2009). In our experiments, we use a subset consisting of 23,438
images from 10 categories, including animal, architecture, art, flowers, food, man, person,
sky, toy, and water. Each image in this subset is related to one label, and each category
includes at least 1,500 images.

• Reuters (Amini et al., 2009): This is a multilingual multi-view dataset where each doc-
ument is described by five different languages: English, French, German, Spanish, and
Italian. To make the model work on this data, the dimensions of all views are reduced to
1,000 using PCA. Gaussian noise is then added to all views or three views, resulting in two
versions named Reuters5 and Reuters3 (Han et al., 2021; Liu et al., 2021), respectively.

• MVoxCeleb: This is a multi-view audio classification dataset constructed from the Vox-
Celeb dataset (Nagrani et al., 2020). Each audio sample has five view features extracted:
two deep features (ecapa and resnet) and three traditional features (fbank, mfcc, and spec).
Gaussian noise is added to the ecapa and resnet mfcc to study the effect.

• YouTube-Faces (Wang et al., 2022): This dataset includes 3,425 videos of 1,595 different
people downloaded from YouTube. Similar to other datasets, we use a subset consisting of
101,499 frames of 31 subjects, with the same five features extracted.

We additionally introduced seven standard datasets commonly used in TMVC methods to compare
with the TEF method and further demonstrate its performance advantages. These datasets were not
used in the main text primarily due to their smaller number of views and samples, as the TEF method
can complete experiments quickly using evolutionary search within a short time. To better highlight
the advantages of TEF, we selected six more challenging datasets for demonstration, but we have
also included the comparison results for these seven datasets in the appendix.

• PIE: It contains 680 instances, divided into 68 categories, with three types of features
extracted: intensity, LBP, and Gabor.

• HandWritten: It has 2000 handwritten digit instances, represented by six sets of features.
• Scene15: It consists of 4485 indoor and outdoor scene images, with GIST, PHOG, and

LBP features extracted.
• Caltech101: It contains 101 categories of images, where the top 10 categories were se-

lected, and deep features were extracted using DECAF and VGG19.
• CUB: It contains 11,788 bird instances, and image and text features were extracted from

the top 10 categories.
• Animal: It includes 50 categories with a total of 10,158 images, where deep features were

extracted using DECAF and VGG19.
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Table 7: Statistic information of datasets
View AWA NUS Reuters MVoxCeleb YouTube Faces
V1 CH(2,688) CH(64) EN(21,531) ecapa(192) V1(64)
V2 LSS(2,000) CM(225) FR(24,893) resnet(512) V2(512)
V3 PHOG(252) CORR(144) GR(34,279) fbank(160) V3(64)
V4 SIFT(2,000) EDH(73) IT(15,506) mfcc(80) V4(647)
V5 SURF(2,000) WT(128) SP(11,547) spec(514) V5(838)
V6 rgSIFT(2,000) BoW(500) - - -
V7 ResNet101(2,048) Tags1k(1,000) - - -

#Sample 30,475 23,438 111,740 153,516 101,499
#Label 50 10 6 1,251 31

Other compared 
methods

Stage 1: Pseudo view 
generation Alg 1.

To train
(80%)

To 
validate
(20%)

Stage 2: Trusted fusion 
Alg 2.

Original
dataset

Stratified five-folds sampling

Stratified sampling with 8:2
Train

validation

Train

Test

Train Test

To train (80%)

To test (20%)

Ours

Compared methods

Figure 4: Details of the dataset partitioning for the training set, test set, and validation set in the
experimental setup.

• NUS-WIDE-OBJECT: It consists of 31 categories with 30,000 images, described using
five different perspectives.

A.4 IMPLEMENTATION DETAILS

In the experiments, to reduce the randomness introduced by data partitioning and network initializa-
tion, we followed the strategy proposed in the literature (Shi et al., 2022). As shown in the Figure
4, we first performed 5-fold cross-validation on the original dataset, dividing the data into training
and testing sets in an 80%:20% ratio. In the first phase of the evolutionary search pseudo-view
generation framework, the training set was further split into a training set and a validation set to pre-
vent data leakage. In the second phase, we continued to maintain a consistent partitioning strategy
with all comparison methods. The reported data represents the average performance and standard
deviation from five data partitions. To ensure fairness in comparison, we conducted meticulous hy-
perparameter tuning for each method to optimize its performance. In multi-view fusion, unifying
dimensions is a key step; therefore, we standardized the dimensions of all methods to 128.

Our computational environment was Ubuntu 16.04.4, with 512 GB DDR4 RDIMM, 2x 40-core Intel
Xeon CPU E5-2698 v4 @ 2.20 GHz, and NVIDIA Tesla P100 (16 GB GPU memory). TEF involves
parameters across two stages: First Stage - DNN Training: All DNN models were trained using the
Adam algorithm. The learning rate was set to 0.001, the exponential decay rate for the first moment
estimate was 0.9, and for the second moment estimate was 0.999. Each network was trained for
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Table 8: Detailed hyperparameters for TEF running on various datasets.
AWA NUS Reuters5 Reuters3 VoxCeleb YoutubeFace

Learning rate 1e-3 1e-3 1e-4 1e-4 1e-4 1e-4
Weight decay 1e-5 1e-5 1e-5 1e-3 1e-4 1e-5

Batch size 256 64 128 64 256 256
Optimizer Adam Adam Adam Adam Adam Adam

Maximum Epoch 500 500 500 500 500 500
Fusion dimension 128 128 128 128 128 128

Lr-patience 20 20 10 10 50 10
Lr-factor 0.3 0.3 0.3 0.3 0.3 0.3

Seed 1 1 1 1 1 1

Table 9: Comparison results on the impact of view enhancement position on TEF (mean ± standard
deviation), with the best performance highlighted in boldface.

Accuracy
Methods AWA NUS Reuters5 Reuters3 VoxCeleb YoutubeFace
TEF 1 88.59±0.25 72.73±0.30 79.60±0.56 84.23±0.35 73.13±0.15 71.18±2.27
TEF 2 91.60±0.20 73.71±0.48 79.93±0.54 85.33±0.41 91.44±0.14 76.68±1.44
TEF 3 93.16±1.21 75.06±0.66 81.14±0.63 86.45±0.18 92.06±0.14 85.35±0.62
TEF 93.26±1.25 75.12 ± 0.57 82.26±0.23 86.49±0.10 92.41±0.12 86.02±0.41

100 epochs. To avoid overfitting, the training process was stopped if the neural network model
performance did not improve after 10 epochs. Evolutionary Algorithm Parameters: To effectively
utilize GPU resources, the population size was set as a multiple of the number of GPUs. Using
7 NVIDIA Tesla P100 GPUs, the population size was set to 28. Following (Shi et al., 2022), the
number of generations was set to 20, with crossover and mutation probabilities set to 0.9 and 0.2,
respectively. It is noteworthy that the same set of parameters was used for all six datasets. Our main
goal was to obtain a fusion architecture to generate high-quality pseudo views in the first stage. The
detailed hyperparameters used in the second stage of TEF for the six datasets are shown in Table 8.

A.5 ADDITIONAL RESULTS

In this section, we provide additional ablation studies and experimental results on the TEF frame-
work to facilitate a comprehensive understanding of the TEF architecture. They include:

1. Impact analysis of fusion dimensions on TEF.
2. Impact analysis of the position where views are enhanced on TEF.
3. Impact analysis of layer where features are extracted to use view enhancement on TEF.
4. Impact analysis of different forms of encoding individual.

These experimental results help to better understand the key factors of the TEF architecture and its
performance in different scenarios.

Impact analysis of fusion dimensions on TEF. We conducted a discussion on the fusion dimen-
sions on the AWA dataset, examining the effects of different dimensions: 32, 64, 128, 256, and
512. Fig. 5 shows the performance of five metrics at these dimensions. It can be seen that as the
fusion dimension increases, the performance of TEF improves significantly. For example, when the
fusion dimension is 32, the accuracy is 92.41%, and it increases to 93.51% when the fusion dimen-
sion reaches 256. This improvement is because higher dimensions bring more learnable parameters,
thereby enhancing the model’s learning capacity. As the dimensions increase, the model’s learning
capacity tends to stabilize, with changes between 256 and 512 not being significant. Considering all
factors, we chose 128 as the fusion dimension to balance performance and model size. It is worth
noting that to ensure a fair comparison, the fusion dimension for all methods compared in this paper
is set to 128.
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Figure 5: The impact of different fusion dimensions on the TEF architecture.
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Figure 6: The impact of different feature layers on TEF’s ability to solve the imbalance in views.

Impact analysis of the position where views are enhanced on TEF. This part aims to investigate
impact of enhancement position on TEF by comparing TEF with its three modified versions. Specif-
ically, TEF 1 denotes that the view enhancement is removed from the TEF; TEF 2 denotes that only
decision output of the pseudo view network is used to pseudo view; TEF 3 denotes the decision out-
put of the pseudo view network is concatenated the fusion layer of the pseudo view network. From
Table 9, it is clear that both the use of feature concatenation and the position where the features are
concatenated impact the performance of the TEF architecture. Compared with TEF 1, TEF demon-
strates a significant performance advantage across all datasets, such as a 9.44% improvement on the
YoutubeFace dataset. Compared to TEF 3, TEF shows that the strategy of concatenating the deci-
sion output of the pseudo view network into the original views is generally superior to concatenating
them after view fusion but before entering the hierarchical stage. This indicates that concatenation
at the original view stage better preserves and utilizes multi-view information, thereby enhancing
the performance of the TEF architecture.

Impact analysis of layer where features are extracted to use view enhancement on TEF. We
explored the effects of concatenating features at different layers to enhance the original views on
the Reuters3 dataset. Specifically, we concatenated features from the last four layers of the fusion
architecture to evaluate the final effect of feature enhancement in TEF. Assuming the fusion archi-
tecture has n layers, we extracted features from the nth layer, (n − 1)th layer, (n − 2)th layer, and
(n−3)th layer, as well as a baseline without using any features. The experimental results are shown
in Fig. 6. The closer to the last layer, the better the performance. For example, in terms of ac-
curacy, concatenating features from the nth layer is 0.59% better than concatenating features from
the (n − 3)th layer. This is because the deepest layers of the fusion architecture often contain the
most complex and advanced representations of the model. These features tend to capture deeper
patterns and more semantic information in the data. Using post-fusion multi-view representations
to enhance the original views helps improve the representational capacity of the views, preventing
information loss during fusion. This approach contributes to achieving better results in multi-view
fusion architecture and helps mitigate the multi-view imbalance problem to some extent.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Impact analysis of different forms of encoding individual. The individual can be encoded in
different forms. Here, we further offer its a binary tree form where the views are used as the leaf
nodes of the tree while the fusion operators are used as the non-leaf nodes. Similar to its tuple form,
if the binary tree contains k views, then it must contain k − 1 fusion operators. From Fig 7 and Fig.
8, it can be observed that the binary tree encoding strategy performs slightly better than the tuple
form. However, for simplicity and generality of the architecture, we initially chose the tuple form.
Of course, TEF can naturally switch between the two.

Accuracy Recall Precision F1 Kappa

70.00%

80.00%

90.00%

75.20 74.47 75.39 74.77
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71.97

Tree encoding strategy
Tuple encoding strategy

Figure 7: A comparative analysis of different
encoding methods across five evaluation metrics
on NUS dataset.
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87.26

84.39

Tree encoding strategy
Tuple encoding strategy

Figure 8: A comparative analysis of different
encoding methods across five evaluation metrics
on YoutubeFace dataset.

Table 10: Performance comparison of TEF and TMVC on seven standard benchmark datasets
Method PIE HandWritten Scene15 Caltech101 CUB Animal NUS

EDL 86.25±0.89 96.90±0.16 52.76±0.54 73.35±1.73 86.22±0.36 84.30±1.76 22.33±0.64
DCCAE 81.96±1.04 95.45±0.35 74.62±1.52 89.56±0.41 85.93±1.36 82.72±1.38 35.75±0.48
CPM-Nets 88.53±1.23 94.55±1.36 67.29±1.01 90.35±2.12 89.32±0.38 87.40±1.12 35.37±1.05
DUA-Nets 90.56±0.47 98.10±0.32 68.23±0.11 93.43±0.04 80.13±1.67 78.65±0.55 39.38±0.34
TMC 91.85±0.23 98.51±0.13 67.71±0.30 92.80±0.50 90.57±2.96 79.31±0.43 35.18±1.55
TMDL-OA 92.33±0.36 99.25±0.45 75.57±0.02 94.63±0.04 95.43±0.20 87.05±0.28 34.39±0.44
RCML 94.71±0.02 99.40±0.00 76.19±0.12 95.36±0.38 94.50±1.13 84.01±0.63 34.04±0.27
RMVC 91.18±0.24 98.51±0.04 73.05±0.24 88.73±0.60 93.18±0.47 87.67±0.17 34.68±0.32
Ours 97.57±0.78 99.64±0.13 78.00±0.48 96.04±0.32 95.92±0.62 90.18±0.08 47.52±0.30

Table 11: Comparing the performance of TEF with other advanced TMVC architectures on seven
conflicting datasets
Method PIE HandWritten Scene15 Caltech-101 CUB Animal NUS

EDL 21.76±0.67 57.25 14.28±0.24 55.74±0.12 53.75±0.42 37.10±0.27 18.07±0.28
DCCAE 26.89±1.10 82.85±0.38 25.97±2.86 60.90±2.32 63.57±1.28 34.02±0.11 32.12±0.52
CPM-Nets 53.19±1.17 83.34±1.07 29.63±1.12 66.54±2.89 68.82±0.17 64.83±0.35 29.20±0.81
DUA-Nets 56.45±1.75 87.16±0.34 26.18±3.1 75.19±2.34 60.53±1.17 62.46±1.12 31.82±0.43
TMC 61.65±1.03 92.76±0.15 42.27±1.61 90.16±2.40 73.37±2.16 64.85±1.19 33.76±2.16
TMDL-OA 68.16±0.34 93.05±0.45 48.42±1.02 90.63±2.35 74.43±0.36 64.20±0.15 32.44±0.26
RCML 84.00±0.14 94.40±0.05 56.97±0.52 92.36±1.48 76.50±1.15 67.67±0.81 31.91±0.22
RMVC 76.47±3.43 94.75±0.75 49.83±2.23 80.56±0.71 72.78±0.42 66.00±0.59 24.63±1.19
Ours 86.76±0.49 98.70±0.31 72.27±0.43 93.42±0.58 77.41±0.47 76.10±0.12 45.84±0.31

A.6 TEF VS. ADVANCED TMVCS

To fully demonstrate the advantages of our method and further verify its fairness, we also conducted
evaluations on seven benchmark datasets commonly used by other TMVC methods Wang et al.,
2015; Zhang et al., 2019; Geng et al., 2022; Yue et al., 2025. Using the same data partitioning
strategy as RCML Xu et al., 2024, we repeated the experiments ten times randomly and calculated
the average results and standard deviations. The results show Table A.5 that our method exhibits
significant advantages across all seven datasets.
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A.7 TEF IN CONFLICT SCENARIOS.

To demonstrate TEF’s effectiveness in handling noisy or uncertain data, we conducted rigorous
tests on seven conflicting datasets, structured according to the method described by RCML Xu
et al., 2024. TEF underwent ten iterations of testing on each dataset to ensure statistical robustness,
with both mean values and standard deviations reported. In Table A.5, these results confirm TEF’s
effectiveness in managing datasets with inherent noise or uncertainty. As shown, TEF consistently
delivers superior performance, even under challenging conditions involving noisy or uncertain data.
Notably, on the NUS dataset, TEF achieved a performance that was 12.08% higher than the second-
best method, and on the Scene15 dataset, it surpassed the next best by 15.3%.

A.8 THE TEF FRAMEWORK ALGORITHM

The trusted multi-view classification enhancement through evolutionary view fusion (TEF) approach
consists of two stages: (1) Using neural architecture search to obtain the optimal pseudo-view gen-
eration model, and extracting subsequent decision features for feature enhancement in the second
stage, as detailed in Alg. 1. (2) Fusion view-guided trusted fusion through evidence fusion, as
referenced in Alg. 2. The detailed evolutionary operations of Algorithm 1 are described as follows:

Population Initialization: Randomly generate N chromosome vectors as the initial population,
where each chromosome p has a different k-value.

Fitness evaluation: Decode chromosome p into a deep fusion neural network model, train it on a
multi-view dataset, and evaluate its fitness based on classification accuracy on the validation set.

Crossover operation: Perform crossover between two chromosomes p1 and p2 to generate new
chromosome vectors p01 and p02.

Mutation operation: Randomly select an individual p and, with a certain probability, replace its
view vi or fusion operator fj to achieve mutation.

Algorithm 1 Evolutionary NAS method
1: Input:
2: N : population size;
3: T : maximal generation number;
4: D = (X,Y ): training dataset;
5: D̂ = (X̂, Ŷ ): validation dataset;
6: F : a set of basic fusion operators;
7: Output: Optimal fusion architecture and decision output features.
8: Generate an initial population P0;
9: Evaluate the fitness of each chromosome vector in P0;

10: for t = 1 to T do
11: Generate offspring Qt using the crossover operator;
12: Conduct mutation on each chromosome in Qt;
13: Evaluate the fitness of each chromosome in Qt;
14: Select next generation population Pt+1 from Qt ∪ Pt using a selection operator;
15: end for
16: pbest ← Select the chromosome with the best fitness from PT .
17: return The fusion network corresponding to pbest and obtain the decision output features of this

network.

A.9 LIMITATIONS AND FUTURE WORKS

Even though the proposed method achieves excellent performance, it still has some potential limi-
tations. (1) Like other trustworthy fusion methods, we did not adjust the fusion order of the trust-
worthy fusion process. Specifically, when we form opinions M1, M2, ..., Mn+1 from n views and
an additional (n+1)th pseudo-view, their aggregation order is crucial as different orders can lead to
different performance impacts. Therefore, in future work, we will conduct a theoretical analysis of
this phenomenon and propose solutions. (2) Additionally, not all opinions need to be aggregated.
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Algorithm 2 Algorithm for trusted multi-view classification
1: Training

2: Input: Multi-view dataset: D =
{
{Xm

n }
V
m=1 ∪Xsp

n , yn

}N

n=1
3: Initialize: Initialize the parameters of the neural network.
4: while not converged do
5: for m = 1 to V do
6: Dir(µm | xm)← variational network output;
7: Subjective opinion Mm ← Dir(µm | xm);
8: end for
9: Dir(µsp | xsp)← variational network output;

10: Subjective opinion Msp ← Dir(µsp | xsp);
11: Obtain joint opinion M with Eq. (11);
12: Obtain Dir(µ | α) with Eq. (13);
13: Obtain the overall loss by updating α and {αv}Vv=1 in Eq. (14);
14: Maximize Eq. (14) and update the networks with gradient descent;
15: end while
16: Output: networks parameters.
17: Test
18: Calculate the joint belief and the uncertainty masses.

For example, some views may generate opinions that are entirely noise or significantly degrade the
fusion results. We need to exclude these invalid opinions to ensure the effectiveness of the fusion.
In future work, we envision that an adaptive method for effectively selecting and aggregating these
opinions to ensure the effectiveness of the entire framework and improve performance will be a
promising research direction. We consider these as important future works.
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Figure 9: Changes in TEF performance before and after addressing the view imbalance issue under
different metrics (Recall, Precision, F1, and Kappa).
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Table 12: Comparison results of the other four evaluation metrics with SOTA algorithms (mean ±
std), with the best performance highlighted in boldface.

Recall
Methods AWA NUS Reuters5 Reuters3 VoxCeleb YoutubeFace

TMC (ICLR22) 84.47±0.54 71.70±0.43 79.60±0.56 84.19±0.29 64.06±0.12 68.50±2.77
TMOA (AAAI22) 83.62±0.91 71.81±0.49 78.85±0.30 84.25±0.30 81.54±0.26 82.63±0.39
ETMC (TPAMI23) 83.52±0.51 72.35±0.79 79.74±0.52 83.51±0.51 85.85±0.22 81.51±0.26
ECML (AAAI24) 84.34±0.88 71.55±0.68 81.52±0.16 85.81±0.27 74.53±0.46 80.59±0.18

EmbraceNet 80.04±0.59 72.04±0.34 79.85±0.26 83.46±0.21 78.36±0.34 80.65±1.13
AWDR (PR19) 86.86±0.20 71.87±0.62 79.59±0.23 83.30±0.29 87.26±0.13 83.57±0.30
RMAR (INS22) 87.08±0.42 71.92±0.65 79.73±0.23 83.45±0.23 87.95±0.11 83.35±0.27

DC-NAS (AAAI2024) 87.82±0.34 73.75±0.71 81.23±0.21 85.77±0.09 90.14±0.10 84.69±0.46
TEF (Ours) 90.26±1.41 74.41±0.60 82.12±0.17 86.47±0.10 89.81±0.20 84.11±0.84

Precision
Methods AWA NUS Reuters5 Reuters3 VoxCeleb YoutubeFace

TMC (ICLR22) 87.76±0.40 72.71±0.22 79.86±0.46 84.43±0.49 73.26±0.34 82.53±2.01
TMOA (AAAI22) 88.15±0.62 72.73±0.53 79.89±0.72 84.40±0.23 84.38±0.30 87.59±0.28
ETMC (TPAMI23) 87.68±0.63 72.39±0.64 79.99±0.33 84.38±0.37 87.28±0.15 83.40±2.33
ECML (AAAI24) 86.27±1.22 73.05±0.26 81.52±0.18 85.81±0.27 74.21±0.46 84.34±0388

EmbraceNet 82.14±0.57 71.73±0.32 80.42±0.25 83.77±0.34 80.95±0.46 83.71±1.10
AWDR (PR19) 89.32±0.33 72.71±0.61 79.87±0.30 83.49±0.34 91.83±0.11 89.94±0.32
RMAR (INS22) 89.41±0.38 72.82±0.64 80.12±0.27 83.70±0.28 92.19±0.06 90.64±0.08

DC-NAS (AAAI2024) 88.99±0.27 73.82±0.45 81.53±0.32 86.07±0.21 91.73±0.10 87.14±0.88
TEF (Ours) 92.33±1.23 75.17±0.55 82.55±0.32 86.65±0.18 93.01±0.19 91.02±1.02

F1
Methods AWA NUS Reuters5 Reuters3 VoxCeleb YoutubeFace

TMC (ICLR22) 85.28±0.54 71.84±0.31 79.52±0.57 84.22±0.38 65.22±0.09 71.92±2.06
TMOA (AAAI22) 83.65±0.86 72.02±0.49 79.14±0.49 84.24±0.24 82.02±0.33 84.85±0.25
ETMC (TPAMI23) 84.60±0.49 72.19±0.68 79.72±0.40 84.24±0.42 86.03±0.20 80.97±1.48
ECML (AAAI24) 84.82±1.05 72.01±0.52 81.35±0.16 85.89±0.28 75.87±0.35 82.30±0.15

BV 85.94±0.50 68.64±0.63 80.61±0.24 83.99±0.11 58.34±0.23 82.49±0.25
SSV 78.82±1.42 62.13±0.69 79.49±0.42 84.75±0.21 81.75±0.23 86.55±0.27
MR 84.14±0.73 62.96±0.93 78.11±0.46 84.16±0.19 75.88±0.30 85.03±0.29

EmbraceNet 80.60±0.62 71.78±0.36 80.07±0.22 83.59±0.25 78.64±0.41 81.61±0.99
AWDR(PR19) 87.72±0.21 72.16±0.62 79.71±0.27 83.37±0.30 88.57±0.13 86.51±0.12
RMAR(INS22) 87.92±0.30 72.21±0.65 79.90±0.25 83.54±0.24 89.20±0.10 86.69±0.17

DC-NAS (AAAI2024) 88.18±0.27 73.60±0.52 81.35±0.26 85.90±0.13 90.59±0.05 85.81±0.19
TEF (Ours) 90.96±1.30 74.65±0.56 82.29±0.24 86.54±0.10 90.87±0.12 87.26±0.38

Kappa
Methods AWA NUS Reuters5 Reuters3 VoxCeleb YoutubeFace

TMC (ICLR22) 88.31±0.26 69.22±0.35 75.44±0.68 81.01±0.42 73.10±0.15 67.68±2.46
TMOA (AAAI22) 88.91±0.31 69.12±0.53 74.82±0.50 80.97±0.33 84.55±0.42 82.60±0.29
ETMC (TPAMI23) 87.95±0.17 69.64±0.77 75.67±0.51 81.04±0.51 88.69±0.15 77.63±1.85
ECML (AAAI24) 88.79±0.21 69.00±0.64 77.59±0.21 82.99±0.34 80.85±0.41 79.97±0.22

EmbraceNet 84.60±0.24 68.99±0.44 75.99±0.25 80.23±0.30 81.72±0.34 78.93±1.12
AWDR (PR19) 90.23±0.06 68.96±0.75 75.54±0.32 79.91±0.38 91.07±0.09 83.40±0.18
RMAR (INS22) 90.41±0.13 69.04±0.78 75.72±0.29 80.11±0.30 91.53±0.11 83.47±0.21

DC-NAS (AAAI2024) 90.43±0.15 71.14±0.66 77.54±0.33 82.97±0.17 92.19±0.08 83.74±0.16
TEF (Ours) 93.10±1.29 71.97±0.64 78.63±0.28 83.74±0.12 92.40±0.12 84.39±0.49
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Table 13: The comparison results between TEF and five basic fusion operators as well as five ad-
vanced fusion operators, with the best performance highlighted in bold. The table shows four met-
rics: Recall, Precision, F1-score, and Kappa.

Basic fusion operators (Recall)
Methods AWA NUS Reuters5 Reuters3 VoxCeleb YoutubeFace

Add 85.16±0.18 72.26±0.74 79.53±0.22 83.34±0.28 84.70±0.56 82.43±0.26
Mul 82.60±0.45 63.38±0.76 76.52±0.47 81.63±0.80 67.70±1.03 83.30±1.01
Cat 84.62±0.30 72.03±0.39 79.82±0.24 83.59±0.21 84.94±0.20 83.40±0.47
Max 85.55±0.32 70.80±0.37 79.87±0.23 83.94±0.21 78.02±0.33 80.75±0.70
Avg 85.37±0.44 72.54±0.55 79.54±0.26 83.46±0.32 84.54±0.45 81.38±0.99

Advanced fusion operators (Recall)
MLB 84.46±0.55 69.75±0.68 79.95±0.24 83.57±0.34 84.27±0.86 84.72±0.25
MFB 85.11±0.75 70.53±0.44 79.04±0.23 83.11±0.19 81.87±0.41 81.89±0.42
TFN 75.62±0.58 62.33±1.46 79.77±0.25 83.67±0.27 51.94±0.93 80.33±0.61
LMF 85.47±0.62 70.92±0.86 79.90±0.17 83.64±0.36 87.69±0.27 85.07±0.22
PTP 84.13±0.49 71.27±0.46 79.88±0.14 84.01±0.18 85.94±0.32 84.78±0.24

TEF (Ours) 90.26±1.41 74.41±0.60 82.12±0.17 86.47±0.10 89.81±0.20 84.11±0.84
Basic fusion operators (Precision)

Add 86.44±0.25 72.46±0.54 79.97±0.32 83.60±0.31 87.52±0.39 83.85±0.39
Mul 83.76±0.57 64.09±0.40 78.32±0.22 82.44±0.43 70.09±1.04 84.31±1.34
Cat 86.17±0.43 71.94±0.21 80.03±0.33 83.81±0.17 87.73±0.17 84.36±1.00
Max 86.72±0.53 71.13±0.56 80.25±0.27 84.19±0.36 81.22±0.51 83.13±1.11
Avg 86.80±0.68 72.54±0.59 79.83±0.36 83.78±0.28 87.34±0.28 84.58±0.96

Advanced fusion operators (Precision)
MLB 85.11±0.47 71.09±0.76 80.64±0.26 84.33±0.31 86.55±0.49 86.73±0.66
MFB 87.00±0.45 71.52±0.46 79.68±0.26 83.52±0.20 83.93±0.18 84.64±0.25
TFN 77.92±0.79 63.13±1.20 80.42±0.44 84.00±0.48 58.89±0.76 83.09±0.55
LMF 86.78±0.60 72.05±0.53 80.29±0.20 84.08±0.31 89.15±0.22 87.02±0.46
PTP 85.63±0.33 71.99±1.44 80.50±0.06 84.28±0.22 87.74±0.34 86.24±0.65

TEF (Ours) 92.33±1.23 75.17±0.55 82.55±0.32 86.65±0.18 93.01±0.19 91.02±1.02
Basic fusion operators (F1)

Add 85.56±0.14 72.24±0.59 79.71±0.25 83.45±0.28 85.20±0.49 82.92±0.24
Mul 82.91±0.47 63.52±0.62 77.13±0.39 81.93±0.68 67.92±1.07 83.53±0.12
Cat 85.12±0.09 71.82±0.29 79.90±0.26 83.68±0.18 85.44±0.20 83.57±0.50
Max 85.96±0.36 70.90±0.44 80.02±0.20 84.04±0.26 78.35±0.40 81.80±0.39
Avg 85.85±0.49 72.46±0.55 79.67±0.29 83.59±0.28 84.93±0.40 82.70±0.22

Advanced fusion operators (F1)
MLB 84.57±0.43 70.06±0.30 80.19±0.14 83.81±0.22 84.62±0.75 85.57±0.32
MFB 85.65±0.72 70.87±0.34 79.28±0.24 83.28±0.18 82.33±0.31 83.17±0.18
TFN 76.05±0.60 62.19±1.47 80.01±0.31 83.79±0.33 52.33±0.91 81.52±0.24
LMF 85.77±0.58 71.27±0.71 80.04±0.17 83.78±0.27 87.92±0.25 85.92±0.19
PTP 84.47±0.39 71.22±0.63 80.11±0.09 84.08±0.18 86.23±0.35 85.41±0.38

TEF (Ours) 90.96±1.30 74.65±0.56 82.29±0.24 86.54±0.10 90.87±0.12 87.26±0.38
Basic fusion operators (Kappa)

Add 88.28±0.08 69.40±0.78 75.55±0.29 80.08±0.33 87.52±0.41 80.63±0.23
Mul 86.20±0.42 60.05±0.72 72.27±0.46 78.17±0.85 72.28±0.90 81.50±0.24
Cat 87.94±0.18 68.88±0.54 75.81±0.33 80.32±0.21 87.96±0.20 81.38±0.56
Max 88.56±0.33 67.77±0.53 75.94±0.24 80.74±0.33 81.55±0.41 79.57±0.31
Avg 85.57±0.33 69.62±0.57 75.55±0.36 80.22±0.34 87.26±0.33 80.36±0.27

Advanced fusion operators (Kappa)
MLB 87.40±0.22 66.87±0.38 76.10±0.19 80.48±0.34 87.10±0.67 83.68±0.29
MFB 88.60±0.35 67.72±0.45 75.04±0.25 79.83±0.22 85.21±0.20 81.04±0.21
TFN 80.59±0.50 58.86±1.26 75.85±0.36 80.41±0.37 57.48±0.92 79.35±0.25
LMF 88.39±0.44 68.17±0.79 75.95±0.18 80.43±0.34 89.91±0.25 84.09±0.24
PTP 87.49±0.29 68.30±0.52 76.02±0.12 80.80±0.24 88.60±0.36 83.68±0.31

TEF (Ours) 93.10±1.29 71.97±0.64 78.63±0.28 83.74±0.12 92.40±0.12 84.39±0.49
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