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ABSTRACT

Remote sensing change detection refers to identifying surface changes in very-
high-resolution images acquired over the same geographic area at different times.
It serves as a core technology in natural resource supervision and intelligent ur-
ban management. However, in most real-world scenarios, the changed regions
occupy only a small portion of the image, causing existing methods to be bi-
ased toward background detection. In addition, change detection faces the chal-
lenge of spatio-temporal multi-scale heterogeneity, where change targets exhibit
significant scale variations across temporal sequences and spatial dimensions, in-
creasing the difficulty of feature modeling. To address these issues, we propose a
knowledge-freezing two-stage training framework, termed Domain-Specific Pre-
training and Entropy-Guided Change Detection (DSP-EntCD). First, we introduce
a prior-driven training strategy called Domain-Specific Pretraining (DSP), which
enhances the backbone’s sensitivity to foreground information. Second, we pro-
pose an Entropy-Guided Attention Selection Mechanism (EGASM) to estimate
the uncertainty of spatial locations and alleviate fusion bias between the dual-
branch encoders. Furthermore, we present a Semantic-Guided Cascaded Decoder
(SGCD) that integrates high-level semantics, spatial awareness, and low-level de-
tails in a complementary manner, aiming to enhance perception of multi-scale
change regions and improve detection accuracy across targets of varying sizes.
On the WHU-CD, LEVIR-CD, and LEVIR-CD+ datasets, which exhibit severe
foreground-background imbalance, our method achieves F1 scores of 94.09%,
91.53%, and 83.98%, respectively, demonstrating SOTA detection performance.

1 INTRODUCTION

With the continuous advancement of remote sensing observation technology, the acquired remote
sensing images are characterized by large quantity, high spatial resolution, and wide spatial cover-
age. As a result, change detection (CD) in remote sensing imagery has emerged as a fundamental
and widely studied task in this domain, with numerous real-world applications such as urban devel-
opment Buch et al. (2011), agricultural monitoring Du et al. (2022), land cover prediction Lv et al.
(2022), disaster assessment Longbotham et al. (2012), and military surveillance Gong et al. (2016).
To obtain more accurate change maps, deep learning-based techniques have been widely applied to
change detection tasks. Methods such as DSCN Zhan et al. (2017), TransUNetCD Li et al. (2022),
and ChangeMamba Chen et al. (2024) have continuously improved detection performance.

In the field of remote sensing imagery, compared to semantic segmentation tasks, change detection
often faces the challenge of extreme class imbalance, as illustrated in Figure 1. Remote sensing
change detection requires capturing land surface changes from bi-temporal images. However, due
to the typically short intervals between image acquisitions and the inherently slow transformation
of many land cover types, detectable changes are often limited—even in image pairs containing
complex ground objects. Moreover, in high-resolution bi-temporal remote sensing images, change
regions typically exhibit a spatial pattern of being locally concentrated yet globally sparse, which
further exacerbates the spatial imbalance between foreground and background and significantly in-
creases the difficulty of small-scale change detection.
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WHU-Seg

Figure 1: The core challenge in
remote sensing change detection:
the overwhelming dominance of
background regions leads to severe
class imbalance, making it difficult
to identify foreground changes.

Pre-change
Image (T1)

Temporal Multi-Scale Heterogeneity Spatio Multi-Scale Heterogeneity

Post-change
Image (T2)

Ground
Truth (GT)

(a) (b)

Figure 2: Visualization of the challenges posed by spatio-
temporal multi-scale heterogeneity. (a) Significant scale
variation of change targets within the same temporal span;
(b) Uneven scale distribution of change targets within the
same spatial region.

More challengingly, spatio-temporal multi-scale heterogeneity is prevalent in land cover changes:
temporally, change targets exhibit differences in scale and structure within the same time span; spa-
tially, they present scale and distribution disparities of buildings within a single image. In practical
scenarios, large-scale changes tend to be coarsely detected, while small-scale changes are often
overwhelmed by the background or overlooked, especially in densely built urban areas or complex
terrains. These specific challenges are illustrated in Fig. 2. We propose a novel framework termed
Domain-Specific Pretraining and Entropy-Guided Change Detection (DSP-EntCD), designed to ad-
dress the issues of class imbalance and scale variance in change detection tasks.

To alleviate the challenges caused by the severe foreground-background imbalance, we design a
two-stage training strategy called Domain-Specific Pretraining (DSP). Specifically, we first select
three change detection domain-specific datasets that exclude all-background samples and design a
baseline change detection model (BCD). In the first training stage, we pretrain the BCD model on
the domain-specific datasets and predict the corresponding masks. Through this foreground-aware
data reconstruction and domain-specific modeling strategy, BCD is guided to focus on discrimina-
tive learning in effective change regions. During the main training stage, we reuse the pretrained
encoder of BCD as an Auxiliary Encoder (AE) and introduce a Main Encoder (ME) with the same
architecture to form a dual-branch encoder. In addition, we design an Entropy-Guided Attention
Mechanism to fuse features at corresponding scales from the dual encoders. This mechanism adap-
tively selects and integrates high-confidence regions based on entropy, thereby highlighting true
changes in the source domain and suppressing background interference.

To address the challenge of modeling spatio-temporal multi-scale heterogeneity, we design a
Semantic-Guided Cascaded Decoder (SGCD). Specifically, we incorporate the Supervised Attention
Mechanism (SAM) from A2Net Li et al. (2023b) and integrate our proposed High-level Guidance
Module (HGM) to obtain highly discriminative high-level semantic features, which facilitate accu-
rate recognition of large-scale change regions across temporal sequences and spatial dimensions. In
addition, to enhance the model’s perception of spatio-temporal fine-grained changes, we design a
Low-level Gated Guidance Module (LGGM), which dynamically filters low-level noisy features us-
ing gating weights generated from high-level semantics, thereby improving the model’s sensitivity
to small-scale changes such as edge details. In summary, our main contributions are as follows:

• We propose a domain-specific two-stage training strategy. Based on this strategy, we further
introduce a dual-branch encoder architecture in the second stage, aiming to alleviate the
extreme class imbalance in change detection tasks and enhance the model’s robustness and
foreground representation capability in complex scenarios.

• We propose EGASM to dynamically select features based on their information entropy,
enhancing the model’s response to change regions by controlling the source of features.

• We propose SGCD to achieve cascaded fusion of multi-scale features through semantic
guidance. HGM incorporates high-level semantics during decoding, while LGGM lever-
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Figure 3: Overall framework of the proposed DSP-EntCD. The proposed method consists of two
training stages: Stage I employs a dataset selection strategy δ to construct a domain-specific dataset,
enabling the model to learn strong change-related features and provide prior knowledge of change
for the encoder. Stage II introduces a dual-branch encoder architecture, where the EGASM module
selects the more confident change branch, and the SGCD module performs cascaded decoding of
multi-scale features to generate the final change probability map.

ages gating mechanisms to recover fine details, enabling a coarse-to-fine refined decoding
process.

2 RLATED WORKS

In recent years, change detection (CD) has emerged as a fundamental task in remote sensing, with
substantial progress achieved. Early CD methods predominantly relied on traditional pixel-based
techniques Bruzzone & Prieto (2000), such as image differencing Singh (1989), image regression
Ludeke et al. (1990), and principal component analysis (PCA) Richards (1984). With the rise of
artificial neural networks, several early machine learning methods have been applied to CD tasks,
including Support Vector Machines Bovolo et al. (2008), Decision Trees Sesnie et al. (2008), and
Random Forests Seo et al. (2018). Although these methods can achieve reasonable performance in
specific change scenarios, they often suffer from low accuracy and poor generalization capability.
The development of remote sensing big data and artificial intelligence has brought deep learning
into remote sensing image analysis. As powerful tools for feature extraction from high-resolution
remote sensing data, deep learning methods such as CNNs Vinholi et al. (2022) and Huang et al.
(2025), Transformers Zheng et al. (2022) and Wang et al. (2021), Mamba Zhang et al. (2025) and
Wang et al. (2025), and Diffusion models Wen et al. (2024) and Zang et al. (2025) have provided
new solutions for change detection.

In real-world remote sensing change detection scenarios, there exists an extreme imbalance between
foreground and background regions. In recent years, many methods have been proposed to address
these challenges. PCA-Net Wang et al. (2019) designed a supervised principal component analy-
sis network combined with morphological supervised learning, leveraging pixel information near
class boundaries to guide network training. AERNet Zhang et al. (2023) introduced an attention-
guided edge refinement network that uses a global context aggregation module to fuse multi-level
features, and a coordinate-based attention-guided decoder to capture channel and spatial dependen-
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cies among features. Although the above methods have explored the class imbalance problem in
change detection, they often overlook the significant scale variation of change targets. ICIF-Net
Feng et al. (2022) explicitly explored the potential of integrating CNN and Transformer features
through a linearized convolutional attention module, enabling bidirectional information flow at the
same spatial resolution and allowing each branch to perceive the representation of the other while
preserving its own characteristics. USSFC-Net Lei et al. (2023) proposed a Multi-Scale Decoupled
Convolution (MSDConv) that flexibly captures multi-scale change features through recurrent multi-
scale convolutions. While these methods demonstrate effectiveness in addressing specific issues,
they still face limitations in more extreme environments. To address the aforementioned challenges,
we propose a novel change detection network named DSP-EntCD. DSP-EntCD effectively tackles
the challenges of class imbalance resulting from foreground sparsity and the modeling complexities
introduced by spatio-temporal multi-scale heterogeneity, through a dual-stage training strategy and
the coordinated integration of specialized modules.

3 METHODOLOGY

3.1 NETWORK ARCHITECTURE

Considering that existing end-to-end CD methods struggle with the challenges of extreme
foreground-background imbalance and spatiotemporal multi-scale modeling, we propose a two-
stage framework named DSP-EntCD. As shown in Figure 3, in the first stage, We design a domain-
specific selection strategy δ that filters the source domain to retain only samples containing change
features. The resulting domain-specific dataset consists of bi-temporal image pairs and labels that
are not entirely composed of unchanged pixels. In addition, we propose a base CD model (BCD),
with a ResNet18 He et al. (2016)encoder and a simplified decoder. Notably, BCD enables the
Encoder to learn strong change-related features from high change-ratio data while ensuring feature
space consistency during subsequent source domain training. In the second stage, BCD’s Encoder
trained on the domain-specific dataset is frozen and serves as an Auxiliary Encoder (AE) in the
source domain to provide stable prior change features. These features guide the Main Encoder (ME)
trained on the source domain to enhance its sensitivity to change regions. The source domain train-
ing consists of four steps: 1) The frozen AE and the randomly initialized ME extract multi-scale
dual-branch features from the source domain dataset. 2)An Entropy-Guided Attention Selection
Mechanism (EGASM) evaluates inter-domain differences at the same feature scale and selects the
more confident branch features as the main features. 3) The Semantic-Guided Cascaded Decoder
(SGCD) receives multi-scale hierarchical features provided by EGASM and performs stage-wise
fusion decoding of change instances. 4)The features (m4

1,m
4
2) extracted from the ME encoder are

fed into the HGM to obtain coarse-grained features with strong semantic representation capabili-
ties, which are integrated into the multi-scale decoding process. 5) In the final decoding stage, the
low-level features (m1

1,m
1
2) are introduced and sent to the LGGM module to extract fine-grained

features rich in spatial details.

3.2 OVERCOMING FOREGROUND-BACKGROUND IMBALANCE

Domain-Specific Pretraining Most existing remote sensing change detection datasets suffer from
sparse foreground targets and an overwhelming proportion of background regions. To address this
issue, we propose a Domain-Specific Pretraining (DSP) strategy, where the domain-specific refers to
a subdomain dataset derived from the source domain that contains only change samples. By learning
from regions that are not entirely background, we aim to enhance the encoder’s ability in BCD to
better recognize change regions. Specifically, we construct a foreground selection strategy based on
the change labels Gt from the source dataset Dori, and filter out a domain-specific training subset
Ddsp with a higher proportion of changed pixels. The selection process is defined as follows:

Dori = {(Tn
1 , T

n
2 ), G

n
t }Nn=1, (1)

δn =

1, if
H∑

h=1

W∑
w=1

Gn
t (h,w) > 0,

0, otherwise,
(2)

Ddsp = {[(Tn
1 , T

n
2 ), Gtn] ∈ Dori | δn = 1} , (3)
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where N denotes the total number of samples in Dori, H and W represent the height and width
of Gt respectively, and δn indicates whether the n sample contains changed pixels. If δn = 1, the
sample is included in Ddsp.

On the domain-specific dataset, we use ResNet18 as the encoder for BCD and design a simple
convolutional decoder to prevent downstream modules from interfering with the learning of change
features. In addition, to enhance the encoder’s ability to discriminate change regions and improve
boundary sensitivity, we introduce a joint loss function composed of BCE and Dice loss during
training, which is consistent with the loss used in the second stage. The training loss is defined as:

Ldsp = LBCE(Ydsp, ˆYdsp) + LDice(Ydsp, ˆYdsp), (4)

where Ydsp denotes the ground truth labels from the domain-specific dataset, and Ŷdsp represents the
corresponding model predictions.

Knowledge-Frozen Dual-Stream Encoder In the second stage of DSP-EntCD, we design a dual-
branch parallel encoder based on the DSP strategy. Specifically, the ResNet18 model trained on the
domain-specific dataset is frozen during the second stage and used as the Auxiliary Encoder (AE)
to provide stable change priors. Meanwhile, another randomly initialized ResNet18 is employed
as the Main Encoder (ME) to progressively learn the feature distribution and change patterns of the
source domain dataset. Given an input bi-temporal remote sensing image pair (T1, T2) ∈ Dori, the
feature extraction processes of AE and ME are denoted as Fa(·)and Fm(·), respectively. The final
outputs of the encoder are:

Fa = Fa(T1, T2), Fm = Fm(T1, T2), (5)

Where the specific feature outputs of AE and ME are Fa = {ai1, ai2 | i = 1, 2, 3, 4} and Fm =
{mi

1,m
i
2 | i = 1, 2, 3, 4}, respectively.

Entropy-Guided Attention Selection Mechanism Information entropy is an important statistical
measure used to quantify the uncertainty of random variables. It can be employed to assess the
confidence of heterogeneous feature maps at each spatial location. Therefore, we use entropy as a
guiding signal to dynamically adjust the fusion weights of multi-source feature maps extracted by the
dual-branch encoders, enabling the model to select more reliable change features while suppressing
background noise.

Specifically, the Entropy-Guided Attention Selection Mechanism (EGASM) consists of two key
components: entropy-aware feature alignment and entropy-based strategic selection. The architec-
ture of the module is provided in the Supplementary Material. On the one hand, to enhance the
stability and discriminability of entropy computation, we introduce an attention-guided fusion mod-
ule before entropy is applied. This module integrates the original bi-temporal feature maps extracted
by the source and domain-specific encoders through guided alignment. Concretely, we concatenate
the temporally heterogeneous but source-consistent features (mi

1,m
i
2) and (ai1, a

i
2) to obtain pre-

liminary change feature maps mi and ai, respectively. Then, global average pooling and Conv7×7

are used to extract prominent spatial features mi
s, ais and channel-wise features mi

c, aic. Finally,
attention weights wi

m,wi
a are generated through Hadamard Product ⊙ of these two types of features:

wi
m = mi

s ⊙mi
c, w

i
a = ais ⊙ aic. (6)

Finally, the attention weights are used to perform weighted fusion of (mi
1,m

i
2) and (ai1, a

i
2), provid-

ing stable and semantically enhanced inputs for the subsequent entropy-based selection:

mi
w = mi

1 · wi
m +mi

2 · (1− wi
m), (7)

aiw = ai1 · wi
a + ai2 · (1− wi

a), (8)

where mi
w and aiw denote the stable change features of ME and AE at the i-th scale, respectively.

On the other hand, although the initial attention-based fusion aligns and enhances homologous fea-
tures, the ME and AE branches still exhibit distinct inductive biases. Simply concatenating mi

w and
aiw is insufficient to obtain accurate change features. To address this, we introduce an entropy-based
mechanism that compares their channel-wise entropy and selects the more confident features as the

5
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dominant input. This enables more refined and robust fusion. Specifically, we apply softmax along
the channel dimension to obtain normalized probability distributions:

m̂i
w = softmax(mi

w), â
i
w = softmax(aiw). (9)

Based on the definition of information entropy, calculate the channel-wise entropy of the two branch
features m̂i

w and âiw:

eim = −
∑
c

m̂i
w · log(m̂i

w + ϵ), eia = −
∑
c

âiw · log(âiw + ϵ), (10)

where ϵ is a stabilizing term to prevent log(0). Finally, the channel-wise entropy difference is
computed as the fusion weight, reflecting the spatial uncertainty of ME features, while AE provides
prior guidance. The process is defined as:

∆e = σ
(
β · (eim − eia)

)
, (11)

Ei = (1−∆e) ·mi
w +∆e · aiw, (12)

where ∆e denotes the entropy difference, σ represents the Sigmoid function, and β is a scaling factor
that controls the sensitivity of σ to the entropy difference. Ei represents the weighted fused features
of the dual-branch change maps, which are used for subsequent decoding of the change map.

3.3 SPATIO-TEMPORAL MULTI-SCALE HETEROGENEITY

Semantic-Guided Cascaded Decoder As shown in Figure 2, to address the challenge of spatio-
temporal multi-scale heterogeneity in change detection, we design a cascaded architecture with
progressive decoding, where a SAM is integrated into each decoding stage to establish a fore-
ground/background saliency-guided mechanism. Specifically, SAM first applies Conv1×1 to the
input feature Ê to generate a foreground probability map Pf , and derives the corresponding back-
ground map as Pb. The two maps are then concatenated along the channel dimension to form a
foreground-background saliency map. This map is passed through a 1×1 CBR block and element-
wise multiplied with the original feature Ê. Finally, the result is fed into a 3 × 3 CBR block to
further extract saliency-enhanced features FSAM , thereby achieving guidance enhancement at the
current scale. The process can be formulated as follows:

Pf = σ(Conv1×1(Ê)), Pb = 1− Pf , (13)

FSAM = CBR3(Ê ⊙ CBR1(Cat(Pf , Pb))), (14)
Where Cat denotes channel-wise concatenation of features, CBR represents a sequence of Conv,
BatchNorm, and ReLU layers.

In remote sensing tasks, high-level semantic features are relatively stable and help maintain semantic
consistency of change across stages during the coarse-to-fine cascade decoding process. However,
the top-level outputs extracted by the original encoder are still a pair of features from two tempo-
ral inputs, without explicit temporal modeling, and therefore cannot be directly used for semantic
guidance in decoding. To address this, we construct a multi-scale semantic-guided cascade decoder.
Specifically, we propose the HGM, where the bi-temporal features mi

1 and mi
2 from the source

encoder are first concatenated and then enhanced via 1 × 1 CBR block to obtain the high-level
temporal semantic feature Fh. Finally, we employ multiple CBR blocks to align the channels of Fh

and the current-scale feature FSAM , and fuse them. This process can be formulated as:

Fh = CBR1(Cat(m4
1,m

4
2)), (15)

F̂h = CBR
(
Cat(CBR(FSAM , F ↑

h ))
)
, (16)

where ↑ denotes feature upsampling, and F̂h represents the final output of the HGM, and h indicates
the explicit temporally-aware features.

Finally, at each decoding stage, we fuse the current-stage features with the upsampled features
from the previous stage. By introducing high-level semantic signals from a consistent source into
each stage, the model maintains semantic coherence in its decision-making process, reduces error
propagation caused by scale misalignment or low-level noise, and effectively improves the detection
accuracy of change targets across different scales as well as the reconstruction of their boundaries.

6
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Table 1: Compare our model with other methods on WHU-CD, LEVIR-CD and LEVIR-CD+
datasets. ∗ indicates that the encoder was trained based on ResNet18 weights pre-trained on Ima-
geNet. Bold indicates the best performance.

Methods WHU-CD LEVIR-CD LEVIR-CD+
Pre. Rec. F1. IoU Pre. Rec. F1. IoU Pre. Rec. F1. IoU

FC-EF 79.23 73.45 76.23 61.59 75.90 61.12 67.71 51.19 59.49 51.01 54.92 37.86
BIT 94.57 88.86 91.63 84.55 90.68 90.15 90.42 82.51 82.42 79.54 80.95 67.99

A2Net 92.23 90.48 91.35 84.07 90.13 89.21 89.67 81.27 78.67 78.61 78.64 64.80
SEIFNet 93.45 89.68 91.53 84.38 91.14 89.16 90.14 82.05 81.24 79.23 80.22 66.97

BiFA 93.74 91.64 92.68 86.36 92.26 90.29 91.27 83.94 81.56 82.29 81.92 69.38
ChangeRD 91.81 90.31 91.05 83.57 91.03 89.34 90.18 82.12 82.21 79.67 80.92 67.95
ISDANet 92.18 93.88 93.03 86.96 90.17 90.34 90.26 82.24 73.19 87.45 79.69 66.24

STRobustNet 94.22 92.89 92.55 87.88 92.16 90.40 91.27 83.95 83.58 81.92 82.75 70.57
DSP-EntCD 95.22 90.87 92.99 86.90 92.57 90.52 91.53 84.39 86.90 80.20 83.41 71.54
DSP-EntCD* 95.10 93.10 94.09 88.83 91.65 90.55 91.10 83.65 85.10 82.89 83.98 72.38

Fine-Grained Structural Information Although the cascaded decoder guided by high-level se-
mantics is effective in capturing hierarchical contextual information, it still lacks sensitivity to fine-
grained structures such as object boundaries and subtle textures. To address this issue, we propose
the LGGM. It is worth noting that shallow features are introduced only at the final decoding stage
to enhance the model’s representation of small-scale changes. This design is mainly based on the
following considerations: on one hand, injecting low-level features too early may interfere with
semantic guidance; on the other hand, detailed information becomes semantically meaningful only
when the decoding has restored high-resolution spatial representations.

To alleviate the temporal heterogeneity in low-level features, we first concatenate and fuse the shal-
low features m1

1 and m1
2 from the ME branch along the channel dimension. High-level semantic

features are then introduced as the gating source. This process can be formulated as:

Fl = CBR1(m1
1,m

1
2), (17)

G = σ(CBR1(Fh))⊙ Fl, (18)

Where Fl denotes the low-level detail features with temporal information, Fh represents the high-
level semantic temporal features, and G refers to the gating coefficients used to filter noise in the
low-level features.

Finally, the gating coefficients G are used to weight the fused low-level features, generating a spa-
tially selective mask. The filtered detail features are then fused with the high-level semantics to form
the final representation F̂l:

FG = G⊙ CBR1(m1
1,m

1
2), (19)

F̂l = FG + Fl, (20)

Where ⊙ denotes element-wise multiplication, and F̂l represents the denoised detail features en-
riched with texture and edge information.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To verify the effectiveness of our proposed DSP-EntCD in the field of remote sensing change detec-
tion, we conducted experiments on three public change detection datasets characterized by multi-
scale features and extremely low foreground ratios, namely WHU-CD Ji et al. (2019), LEVIR-CD,
and LEVIR-CD+ Chen & Shi (2020). Detailed information about these datasets can be found in the
supplementary material. All experiments were conducted on an NVIDIA GeForce RTX 3090 GPU,
with input image sizes uniformly resized to 256 × 256 pixels. Simple data augmentation techniques,
including normalization, vertical flipping, and horizontal flipping, were employed. The batch was
set to 8, and the Adam optimizer was used.

To reduce the domain discrepancy between AE and ME, we adopted the same learning rate (1e-4)
and loss functions (BCE Loss and Dice Loss) in both the first and second training stages, ensuring

7
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Table 2: Ablation study of proposed modules. When both Stage 1 and Stage 2 are enabled, the
backbone model pre-trained in Stage 1 is reused as the AE in Stage 2.

Stage1 Stage2 WHU-CD LEVIR-CD LEVIR-CD+
ME EGASM SGCD F1. IoU F1. IoU F1. IoU

✓ ✗ ✗ ✗ 89.70 81.32 90.20 82.15 81.89 69.33
✗ ✓ ✗ ✗ 91.09 83.64 90.50 82.65 81.75 69.13
✓ ✓ ✗ ✗ 91.74 84.74 90.64 82.89 82.27 69.88
✓ ✓ ✓ ✗ 91.93 85.07 90.73 83.03 82.86 70.74
✓ ✓ ✓ ✓ 92.99 86.90 91.53 84.39 83.41 71.54

(a) WHU-CD

(b) LEVIR-CD

(c) LEVIR-CD+

Figure 4: Visual results under different
foreground-background ratios and object scales.
DSP-EntCD∗ demonstrates lower false posi-
tives and miss rates.

Figure 5: Ablation study of backbone. The red
curve represents the quantitative performance
of the baseline model finally adopted by DSP-
EntCD.

T1 Image T2 Image Ground truth w/ SAM w/ LGGM w/ HGM

（a）

（b）

（c）

Figure 6: Ablation study on the module
heatmap results of SGCD in the E1 decoding
stage.

consistent optimization for both modules. For evaluation, we employed the most commonly used
and authoritative metrics in remote sensing change detection, including Overall Accuracy (OA.),
Precision (Pre.), Recall (Rec.), F1 Score (F1.), IoU, and the Kappa coefficient.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We conducted both quantitative and qualitative comparisons between our proposed method and eight
state-of-the-art (SOTA) approaches, including FC-EF Caye Daudt et al. (2018), BIT Chen et al.
(2022), A2Net Li et al. (2023a), SEIFNet Huang et al. (2024), BiFA Zhang et al. (2024), ChangeRD
Jing et al. (2025), ISDANet Ren et al. (2025), and STRobustNet Caye Daudt et al. (2018). Table
1 presents the performance comparison between DSP-EntCD and the aforementioned methods on
three datasets characterized by extreme foreground-background imbalance. Our method achieves
the highest F1 score across all datasets, clearly demonstrating its accuracy and completeness in
detecting small-scale foreground changes. To intuitively demonstrate the effectiveness of DSP-
EntCD in handling extremely imbalanced foreground-background ratios and spatio-temporal multi-
scale scenarios, Figure 4 presents the visual comparison results of different methods on the three
datasets (in each group, the degree of change and target scale increase progressively from top to
bottom).
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Table 3: Ablation study on the scaling factor β controlling entropy sensitivity in EGASM.

Entropy Scaling Factor
WHU-CD LEVIR-CD LEVIR-CD+

OA. F1. IoU. OA. F1. IoU. OA. F1. IoU.
β == 0.0 99.43 92.89 86.73 99.09 90.8 83.15 98.68 82.35 69.99
β == 3.0 99.53 94.06 88.79 99.1 91.08 83.61 98.73 84.11 72.57
β == 5.0 99.54 94.09 88.83 99.1 91.09 83.64 98.71 83.98 72.38
β == 8.0 99.54 94.08 88.81 99.09 91.09 83.64 98.69 83.80 72.12

4.3 ABLATION STUDY

Proposed Modules To further validate the effectiveness and robustness of our proposed two-stage
training strategy and its components, we conducted ablation studies on three datasets: WHU-CD,
LEVIR-CD, and LEVIR-CD+. Based on the DSP-EntCD model architecture, we designed five ab-
lation settings:1) Training the baseline model on the domain-specific dataset and evaluating on the
source dataset; 2) Training the baseline model directly on the source dataset and predicting on the
same; 3) Freezing the baseline model weights trained on the domain-specific dataset, using its en-
coder as the Auxiliary Encoder (AE) in Stage 2, combined with the Main Encoder (ME) to form a
dual-branch encoder for source dataset prediction; 4) Introducing the EGASM module on top of set-
ting 3 to select more confident features for decoding; 5) Incorporating the SGCD module to enhance
multi-scale feature decoding capability. As shown in Table 2, the experimental results are presented
in sequence according to the above settings. It can be observed that with the improvement of the
training strategy and the introduction of the proposed modules, the F1 scores steadily increase across
all three datasets, demonstrating that our model can better handle extreme foreground-background
imbalance and multi-scale land cover challenges. In addition, we further evaluated the impact of
different encoder backbones on the model’s performance. As shown in Figure 5, we compare the
overall performance of DSP-EntCD with different backbones, including MobileNetV2Sandler et al.
(2018), ResNet18, and ResNet34. The results show that ResNet18 achieves the best trade-off be-
tween accuracy and efficiency, delivering the highest overall performance.

Entropy Scaling Factor And Semantic-Guided Cascaded Decoder As described in Section
3.2.3, the parameter β is used to control the sharpness of the entropy difference weight distribution,
thereby regulating the response to entropy differences during feature fusion. Table 3 shows that
the model achieves the best performance when β = 5, where the entropy difference is moderately
amplified, resulting in stable and effective fusion. A too small β causes the fusion to degrade into
a linear average with insufficient information selection, while a too large β leads to most positions
retaining only a single branch, causing feature loss.

To evaluate the contribution of the SGCD module to the final decoding performance of DSP-EntCD,
we conducted ablation experiments on the proposed LGGM and HGM modules. As shown in Figure
6, we selected three representative pairs of bi-temporal remote sensing images along with their
corresponding labels. The attention heatmaps of each module are overlaid on the T2 image for
visualization. In the heatmaps, brighter colors indicate stronger attention responses, while darker
colors suggest lower attention. Overall, the proposed modules help the model better decode multi-
scale features.

5 CONCLUSION

We propose DSP-EntCD to address the prevalent challenges of extreme foreground-background
imbalance and spatiotemporal multi-scale heterogeneity in remote sensing imagery. Specifically, to
tackle the issue of the extremely small proportion of change regions, we design a dual-stage training
strategy that leverages a domain-specific pretrained BCD as an AE in the second stage to provide
change priors for the ME. In addition, we introduce the EGASM to guide feature fusion between
the dual encoders and enhance critical features, enabling the model to better distinguish between
foreground and background. To address the challenges of multi-scale changes, we incorporate the
SGCD to achieve precise localization of global, local, and spatially multi-scale entities within the
image. Extensive experimental results validate the effectiveness of DSP-EntCD in change detection
tasks.
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