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ABSTRACT

How to estimate the uncertainty of a given model is a crucial problem. Current
calibration techniques treat different classes equally and thus implicitly assume
that the distribution of training data is balanced, but ignore the fact that real-world
data often follows a long-tailed distribution. In this paper, we explore the problem
of calibrating the model trained from a long-tailed distribution. Due to the differ-
ence between the imbalanced training distribution and balanced test distribution,
existing calibration methods such as temperature scaling can not generalize well
to this problem. Specific calibration methods for domain adaptation are also not
applicable because they rely on unlabeled target domain instances which are not
available. Models trained from a long-tailed distribution tend to be more over-
confident to head classes. To this end, we propose a novel knowledge flow based
calibration method by estimating the importance weight for samples of tail classes
to realize long-tailed calibration. Our method models the distribution of each class
as a Gaussian distribution and view the source statistics of head classes as a prior
to calibrate the target distributions of tail classes. We transfer knowledge from
head classes to get the target probability density of tail classes. The importance
weight is estimated by the ratio of the target probability density over the source
probability density. Extensive experiments on CIFAR-10-LT, MNIST-LT, CIFAR-
100-LT, and ImageNet-LT datasets demonstrate the effectiveness of our method.

1 INTRODUCTION

With the development of deep neural networks, great progress has been made in image classification.
In addition to performance, the uncertainty estimate of a given model is also receiving increasing
attention, as the confidence of a model is expected to accurately reflect its performance. A model is
called perfect calibrated if the predictive confidence of the model represents a good approximation
of its actual probability of correctness (Guo et al., 2017). Model calibration is particularly important
in safety-critical applications, such as autonomous driving, medical diagnosis, and robotics (Amodei
et al., 2016). For example, if a prediction with low confidence is more likely to be wrong, we can
take countermeasures to avoid unknown risks.

Most existing calibration techniques assume that the distribution of training data is balanced, i.e.,
each class has a similar number of training instances, so that each class is treated equally. As shown
in Fig.1, the traditional calibration pipeline uses a balanced training set to train the classification
model and a balanced validation set to obtain the calibration model, respectively. The target test
set is in the same distribution as the training/validation set. However, data in the real-world often
follows a long-tailed distribution, i.e., a few dominant classes occupy most of the instances, while
much fewer examples are available for most other classes (Kang et al., 2020; Liu et al., 2019; Cui
et al., 2019). When tested on balanced test data, classification models trained from the training set
with a long-tailed distribution are naturally more over-confident to head classes. Only imbalanced
validation set with the same long-tailed distribution is available for calibrating such models since
the validation set is often randomly divided from the training set.

Due to the different distribution between the imbalanced training data and the balanced test data (Ja-
mal et al., 2020), it is difficult for traditional calibration techniques to achieve balanced calibration
among head classes and tail classes with different levels of confidence estimations. For instance,
temperature scaling (Guo et al., 2017) with the temperature learned on a validation set obtains de-
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(a) Calibration under balanced distribution.

(b) Calibration under long-tailed distribution.

Figure 1: The difference between calibration under balanced distribution and long-tailed distribu-
tion. (a) The classification model and calibration model are both trained on two balanced sets,
respectively, and the test set is also balanced. (b) The classification model and calibration model are
trained on two long-tailed sets, respectively, while the test set is balanced.

graded performance on the test set if the two sets are in different distribution (Tomani et al., 2021;
Pampari & Ermon, 2020). As shown in Fig.2, a balanced test set suffers heavier overconfidence com-
pared with a long-tailed validation set. Although temperature scaling can relieve such phenomenon,
there still exists overconfidence after calibration. Domain adaptation calibration methods (Pampari
& Ermon, 2020; Wang et al., 2020) aim to generalize calibration across domains under a covariate
shift condition but they utilize unlabeled target domain instances. Similarly, domain generalization
calibration method (Gong et al., 2021) uses support set to bridge the gap between the source do-
main and the target domain, which also rely on extra instances. These methods cannot apply to the
long-tailed calibration task directly since instances from the balanced test domain are not available.

In this paper, we investigate the problem of calibration under long-tailed distribution. Since the
distribution between the imbalanced validation set and the balanced target set is different, we utilize
an importance weight strategy to alleviate the unreliable calibration for tail classes. The weight of
each instance is the ratio between the probability density of the source domain and the target domain.
We explicitly model the distribution of each class as a Gaussian distribution. Different from the
source distribution, the target balanced distribution cannot be estimated directly. Since there exists
common information between head classes and tail classes (Liu et al., 2020), we transfer knowledge
from head classes to estimate the target probability density. For each instance in a tail class, we
select the most similar head classes and acquire the corresponding distribution as a prior. Then we
combine the prior distribution and self-distribution of the tail class to obtain the estimated density.
Finally, we calibrate the model with the importance weights. Our contributions are summarized as:

• 1) We explore the problem of calibration under long-tailed distributions, which has impor-
tant practical implications but is rarely studied. We apply the importance weight strategy
to enhance the estimation of tail classes for more accurate calibration.

• 2) We propose an importance weight estimation method by viewing distributions of head
classes as prior for distributions of tail classes. For each instance in a tail class, our method
estimates its probability density from the distribution calibrated by head classes and calcu-
lates the importance weight to realize balanced calibration.

• 3) We conduct extensive experiments on the CIFAR-10-LT, CIFAR-100-LT (Cao et al.,
2019), MNIST-LT (LeCun et al., 1998), ImageNet-LT (Liu et al., 2019) datasets and the
results demonstrate the effectiveness of our method.
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(a) Validation set (b) Test set (c) Temperature scaling

Figure 2: The reliability diagrams of (a) the validation set before calibration, (b) the test set before
calibration, and (c) the test set after calibration with temperature scaling.

2 RELATED WORK

Post-processing calibration. Current calibration techniques can be roughly divided into post-
processing methods and regularization methods (Hebbalaguppe et al., 2022; Cheng & Vasconcelos,
2022). Post-processing methods focus on learning a re-calibration function on a given model. Platt
scaling (Platt et al., 1999) transforms outputs of a classification model into a probability distribution
over classes. It can solve the calibration of non-probabilistic methods like SVM (Cortes & Vapnik,
1995). Temperature scaling (Guo et al., 2017) extends Platt scaling and is applied to multi-class
classification problems. It optimizes a parameter T to re-scale the output logits of a given model.
Non-parametric isotonic regression (Zadrozny & Elkan, 2002) learns a piece-wise constant function
that minimizes the residual between the calibrated prediction and the labels. In (Zhang et al., 2020),
three properties, accuracy-preserving, data-efficient, and expressive of uncertainty calibration are
proposed. Experiments show that a combination of the non-parametric method and the parametric
method can achieve better results.

Domain shift calibration. The most common case is that the validation and test sets are in different
domains (Wald et al., 2021). The re-calibration function learned by the validation domain cannot
be generalized to the test domain. CPCS (Park et al., 2020) utilizes importance weight to correct
for the shift from the training domain to the target domain and achieves good calibration for the
domain adaptation model. TransCal (Wang et al., 2020) achieves more accurate calibration with
lower bias and variance in a unified hyperparameter-free optimization framework. In (Gong et al.,
2021), a support set is applied to bridge the gap between the source domain and a target domain, and
three calibration strategies are proposed to achieve calibration for domain generalization. In (Tomani
et al., 2021), current techniques have demonstrated that overconfidence is still existing under domain
shift and a simple strategy where perturbations are applied to samples in the validation set before
performing the post-hoc calibration step is proposed.

Although long-tailed distribution calibration also suffers the domain shift problem, it is different
from domain shift calibration since unlabeled target domain instances or plenty of data to constitute
a support set are not available for calibration. Therefore, we employ the importance weight and
estimate the target probability density by utilizing the inherent property of long-tailed distribution.

3 METHOD

3.1 NOTATION

We propose the problem of calibration under long-tailed distribution. Given a long-tailed distribu-
tion p(x) and a corresponding balanced distribution q(x), we hold the assumption that p(x) ̸= q(x)
while p(y|x) = q(y|x). Instances are i.i.d. sampled from p(x) to construct a long-tailed training set
S = {(xi, yi)} and a validation set V , where yi ∈ {1, · · · , C} is the label of the ith instance xi, C
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(a) Long-tailed distribution (b) Balanced distribution (c) Our estimated distribution

Figure 3: (a) The long-tailed distribution p(x). (b) The balanced distribution q(x). Compared with
(a), the distributions of head classes are the same, while distributions of tail classes are not. (c) Our
estimated distribution q∗(x). With the help of head classes, we can estimate the distribution of tail
classes and acquire their density.

is the number of classes, and nc denotes the number of instances belongs to the c-th class. Similarly,
instances are i.i.d. sampled from q(x) to construct a balanced test set T . Without loss of generality,
we assume that the classes are sorted by cardinality in decreasing order, i.e., n1 ≥ n2 ≥ ... ≥ nC .
The data obeys the long-tailed distribution, i.e., most instances belong to only a few head classes,
while each of the other tail classes only has a few instances. Moreover, we have given a classification
model ϕ(·) trained on S , where the output of ϕ(xi) is denoted by zi and the corresponding feature
(the output of the layer before the classifier) is denoted by fi. The goal is to calibrate the model ϕ(·)
on the validation set V so that the model is calibrated on the balanced test data T .

3.2 POST-PROCESSING CALIBRATION UNDER LONG-TAILED DISTRIBUTION

Calibration. For each instance xi, we acquire its confidence score p̂i and prediction result ŷi
from the output zi. Formally, if the following Eq.1 is satisfied, the model ϕ(xi) is called perfect
calibrated. The definitions of p̂i and ŷi are in Eq.2

P(ŷi = yi|p̂i = p) = p ∀p ∈ [0, 1] (1)

p̂i = max s(zi) ŷi = argmax
{1,2,··· ,C}

s(zi) s(zi) =
exp(zi)∑C
j=1 exp(zj)

(2)

This formulation means that for example 20% of all predictions with a confidence score of 80%
should be false.

Temperature scaling. As shown in Eq. 3, temperature scaling (Guo et al., 2017) fits a single pa-
rameter T from the validation set and applies it to other test sets.

T ∗ = argmin
T

Ep[L(s(zi/T ), yi)] (3)

Similar to the training classification task, the loss function L(·) for calibrating the temperature is the
Cross Entropy loss. Since the validation set also follows long-tailed distribution while the test set
does not, the learned parameter T is difficult to generalize well to the test set.

Knowledge flow based temperature scaling. To tackle the generalization issue of the original
temperature scaling in long-tailed distribution calibration, we propose our knowledge flow based
temperature scaling method to achieve cross-distribution generalization. The calibration loss on the
balanced target distribution q(x) can be reformulated as calibration error of the source distribution
p(x):

Eq[L(s(zi/T ), yi)] =
∫
q

q(xi)L(s(zi/T ), yi)dx

=

∫
p

q(xi)

p(xi)
p(xi)L(s(zi/T ), yi)dx = Ep[w(xi)L(s(zi/T ), yi)]

(4)

4



Under review as a conference paper at ICLR 2023

As shown in Eq.4, we can acquire the target distribution error Eq[L(s(zi/T ), yi)] by estimating
the ratio of probability w(x) = q(x)/p(x) for each instance. Domain adaptation calibration like
TransCal (Wang et al., 2020) utilizes LogReg (Qin, 1998; Bickel & Scheffer, 2006) to estimate
the ratio of density. It estimates the density by training a logistic regression classifier that realizes
binary classification of source and target domain. Such methods cannot be directly used for the
long-tailed calibration problem since the balanced distribution of test data is unknown and thus
binary classification cannot be applied.

We model the distribution p(x) and q(x) as mixtures of Gaussian distributions, respectively, by
modeling each class as a Gaussian distribution. As shown in Fig.3, because head classes have plenty
of instances in both p(x) and q(x), the distributions of head classes in q(x) can be viewed as the
same as those in p(x), which can be easily estimated from the training set. However, each tail class
only has a few instances in p(x) while sufficient instances are available in q(x), the distributions of
tail classes are different in p(x) and q(x). Since it is difficult to acquire the balanced distribution
q(x), we constitute the estimated distribution q∗(x) to approach the truth distribution q(x), where
the key is to approximate the probability density value of each instance in tail classes under q∗(x)
from the estimated Gaussian distributions of tail classes in p(x).

For an instance xi of the tail class yi in p(x), its output feature fi ∼ N (µyi
,σ2

yi
), where µyi

and σ2
yi

are calculated by the set of features belongs to class yi in the training set. To estimate
the probability density of xi under q∗(x), we transfer knowledge from the most similar head class
yj to xi by the probability zi after softmax, since there exists some common information between
tail classes and head classes (Liu et al., 2020). We view the distribution N (µyj

,σ2
yj
) as a prior to

approximate the distribution of the tail class yi under q∗(x) as follows:

µy∗
i
= αµyi + (1− α)µyj σy∗

i
= ασyi + (1− α)σyj (5)

As shown in Eq.5, the synthetic distribution N (µy∗
i
,σ2

y∗
i
) contains the information of two different

distributions, where α is a hyper-parameter. Then, we can obtain q∗(xi) by calculating the proba-
bility density value under N (µy∗

i
,σ2

y∗
i
).

Based on the estimated q∗(xi), the importance weight is defined in Eq.6.

w∗(xi) =

{
1 yi belongs to head class
min(max(q∗(xi)/p(xi), 0.3), 5.0) yi belongs to tail class

(6)

For each instance in head classes, the importance weight equals 1 since head classes in the two distri-
butions are the same. For each instance in tail classes, the importance weight equals to q∗(xi)/p(xi).
In practice, we restrict the value of the weight from 0.3 to 5.0 to avoid abnormal values.

By using the importance weight to bridge the training long-tailed distribution and the test balanced
distribution, we learn the temperature T in the final softmax layer on the validation set to calibrate
the classification confidence. The final optimization function is shown in Eq.7.

T ∗ = argmin
T

Ep[w
∗(xi)L(s(zi/T ), yi)] (7)

Corollary 3.1 We denote the distribution of the kth class in the long-tailed distribution, the
ground truth balanced distribution, and the estimated distribution by pk(x) ∼ N (µpk

,σ2
pk
),

qk(x) ∼ N (µqk ,σ
2
qk
), and q∗k(x) ∼ N (µq∗k

,σ2
q∗k
), respectively. The absolute error

|Epk
[wk(x)L(s(z/T ), y)]− Epk

[w∗
k(x)L(s(z/T ), y)]| is sensitive to ϵ = Epk

[(wk(x)−w∗
k(x))

2]
and the bound of ϵ is shown as follows, where the formula d2(·||·) presents the exponential in base
2 of the Renyi-divergence (Rényi et al., 1961).

ϵ ∈ [(
√

d2(qk||pk)−
√
d2(q∗k||pk))

2, d2(qk||pk) + d2(q
∗
k||pk)] (8)

The proof is provided in appendix.A.1. Corollary.3.1 presents the error bound of our method, which
is closely related to Renyi-divergence. It is obvious that when qk = q∗k, the lower bound reaches the
minimum and equals 0. Therefore, our estimation method aims to keep q∗k approaching qk to reduce
the calibration error on the test data.
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Table 1: The ECE (%) on CIFAR-10-LT.

IF Dataset Method
Base TS ETS TS-IR IR IROvA Ours

IF=100

CIFAR-10 21.79 12.24 12.16 11.64 12.36 13.36 10.16
CIFAR-10.1 28.97 16.75 16.7 16.65 17.13 17.93 14.24
CIFAR-10.1-C 58.22 43.01 43 43.05 43.34 43.83 40.02
CIFAR-F 29.22 15.27 15.24 15.52 15.75 16.23 12.55

IF=50

CIFAR-10 17.36 7.65 8.04 8.22 9.75 9.45 4.93
CIFAR-10.1 22.79 10.36 10.99 11.72 13.35 12.7 6.81
CIFAR-10.1-C 55.52 38.66 39.9 40.16 41.58 40.76 34.29
CIFAR-F 25.37 11.3 12.21 12.67 14.39 13.37 7.59

IF=10

CIFAR-10 8.39 2.23 1.64 2.03 2.29 2.42 1.47
CIFAR-10.1 13.8 4.87 4.25 4.54 5.38 5.23 3.79
CIFAR-10.1-C 48.31 32.77 31.07 32.11 32.29 31.94 20.73
CIFAR-F 19.73 8.15 6.8 8.42 8.97 8.13 6.54

Analysis. We explore how the importance weight influences the calibration compared with tempera-
ture scaling. For simplicity, we constitute one-dimensional Gaussian distribution p(x) ∼ N (µa, σ

2
a)

and q(x) ∼ N (µb, σ
2
b ), where µa ̸= µb and σ2

a < σ2
b . We draw the conclusion that the value of

w(x) > 1 if τ1 > x or x > τ2, and w(x) < 1 if τ1 < x < τ2, where τ1 and τ2 are calculated as:

τ1 =
µaσ

2
b − µbσ

2
a − σaσb

√
(µa − µb)2 + (σ2

b − σ2
a)(lnσ

2
b − lnσ2

a)

σ2
b − σ2

a

τ2 =
µaσ

2
b − µbσ

2
a + σaσb

√
(µa − µb)2 + (σ2

b − σ2
a)(lnσ

2
b − lnσ2

a)

σ2
b − σ2

a

(9)

The proof is presented in the appendix.A.2. Normally, instances clustered around the mean are
more likely to be classified correctly. Therefore, the instances whose importance weight w(x) < 1
are likely to be classified right while w(x) > 1 on the contrary. In practice, a model trained with
imbalanced data generalizes well for head classes but easily overfits tail classes, and hence obtains
degraded performances on balanced test data. Our importance weight estimation method actually
assigns larger weights to instances of tail classes that are classified incorrectly.

4 EXPERIMENT

4.1 DATASETS

CIFAR-10-LT. CIFAR-10-LT (Cao et al., 2019) is simulated from balanced CIFAR-10 (Krizhevsky
et al., 2009). We conduct experiments with different imbalance factor (IF), which is defined as
Nmax/Nmin . Nmax and Nmin denote the volumes of the most frequent class and the least fre-
quent class, respectively. We generate three imbalanced datasets with IF=100, IF=50, and IF=10,
respectively. For each dataset, we randomly split 80% instances as the training set and 20% as the
validation set. For comparison, we use four test sets: (1) original CIFAR-10 test set, (2) CIFAR-
10.1 (Recht et al., 2018), (3) CIFAR10.1-C (Hendrycks & Dietterich, 2019): 95 synthetics datasets
generated on CIFAR-10.1 with different transformations, (4) CIFAR-F (Sun et al., 2021): 20 real-
word test sets collected from Flickr. MNIST-LT. MNIST-LT is simulated from MNIST (LeCun
et al., 1998). Similar to CIFAR-10-LT, we generate three imbalanced datasets with IF=100, IF=50,
and IF=10, respectively. For comparison, we use four test sets: (1) original MNIST test set, (2)
SVHN (Netzer et al., 2011), (3) USPS (Hull, 1994), (4) Digital-S (Sun et al., 2021): 5 test sets that
are searched from Shutterstock based on different options of color. Note that the original MNIST
test set is slightly imbalanced, which is closer to reality. CIFAR-100-LT. CIFAR-100-LT (Cao et al.,
2019) is generated from the CIFAR-100 dataset. We generate imbalanced datasets with IF=10 and
conduct experiments on the original CIFAR-100 test set. ImageNet-LT. ImageNet-LT (Liu et al.,
2019) is simulated from ImageNet (Deng et al., 2009). We merge the long-tailed training set and
balanced validation set from the original ImageNet-LT. Following the principle of CIFAR-10-LT, we
generate a long-tailed training set and a long-tailed validation set. We conduct extensive experiments
on a balanced test set.
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Table 2: The ECE (%) on MNIST-LT.

IF Dataset Method
Base TS ETS TS-IR IR IROvA Ours

IF=100

MNIST 2.52 1.27 1.84 2.82 2.84 1.84 1.09
SVHN 16.06 7.2 11.62 21.25 22.18 14.93 6.11
USPS 15 9.52 12.25 13.25 13.62 10.58 8.42
Digital-S 32.1 22.13 27.35 30.13 31.01 27.48 20.31

IF=50

MNIST 1.12 0.85 1.14 1.53 1.54 1.02 0.8
SVHN 22.79 10.36 10.99 11.72 13.35 12.7 6.81
USPS 2.32 3.95 3.33 11.42 12.15 2.63 4.18
Digital-S 11.21 8.14 12.81 11.89 11.91 10.54 8.1

IF=10

MNIST 0.56 0.23 0.21 0.5 0.52 0.23 0.37
SVHN 5.75 6.76 6.94 8.1 4.51 5.31 7.41
USPS 8.29 4.81 4.6 6.59 6.98 4.76 4.46
Digital-S 13.55 8.21 8.09 15.37 13.34 8.31 7.36

Table 3: The ECE (%) on CIFAR-100-LT.

Model Dataset Method
Base TS ETS TS-IR IR IROvA Ours

ResNet-32 CIFAR-100 20.38 2.5 2.1 6.07 9.35 5.92 1.58
DenseNet-40 CIFAR-100 16 3.43 2.51 5.57 8.42 5.76 1.66
VGG-19 CIFAR-100 27.86 3.81 2.36 6.35 10.35 6.66 2.18

4.2 EXPERIMENTS SET UP

Classification model. We use our method to calibrate different classification models. For CIFAR-
10-LT and MNIST-LT, we use ResNet-32 (He et al., 2016) and LeNet-5 (LeCun et al., 1998) as
the classification model, respectively. To verify our method can be applied to different mod-
els, we apply ResNet-32, DenseNet-40 (Huang et al., 2017), VGG-19 (Simonyan & Zisserman,
2014) as classification models and test on CIFAR-100-LT, respectively. We do experiments on the
large-scale dataset, ImageNet-LT, with ResNet-50. Details about training strategies are presented
in the appendix.A.3. Metrics/Baselines. The most popular evaluation metric for calibration is
ECE (Naeini et al., 2015). Besides, we also use SCE (Nixon et al., 2019) and ACE (Neumann
et al., 2018) as evaluation metrics. We compare our method with temperature scaling (TS) (Guo
et al., 2017), ETS (Zhang et al., 2020), TS-IR (Zhang et al., 2020), IROvA (Zadrozny & Elkan,
2002), and IRM (Zhang et al., 2020). As for our method, all the experiments are conducted with
hyper-parameter α = 0.999 if not specified.

4.3 RESULTS

CIFAR-10-LT. As shown in Tab.1, our method achieves the best performance on the CIFAR-10-LT
dataset. Usually, the model trained with a heavier imbalanced dataset suffers heavier miscalibra-
tion. Our method can realize competitive results in different situations. Since CIFAR-10.1 and
CIFAR-F are collected from the real-world, the excellent results indicate that our method can gen-
eralize to different domains. The results of CIFAR-10.1-C also verify that our method can handle
datasets containing different transformations. MNIST-LT. Tab.2 demonstrates the effectiveness of
our method on MNIST-LT. Except for (IF=50: USPS) and (IF=10: MNIST, SVHN), our method
achieves the best performance. Although our method obtains negative optimization on (IF=50:
USPS) and (IF=10: SVHN), and lower performance compared with ETS on (IF=10: MNIST), the
performance of our method is still acceptable. Overall, our method outperforms other methods sig-
nificantly in most cases. CIFAR-100-LT. For the CIFAR-100-LT benchmark, our method achieves
the best results on calibrating different models as shown in Tab.3. We do experiments on three
different architectures including ResNet, DenseNet, and VGG. Compared with DenseNet, the per-
formance gains of ResNet and VGG are even higher, while our method achieves the smallest ECE
on DenseNet. ImageNet-LT. As shown in Tab.4, our method achieves the best performance on the
ImageNet-LT benchmark. This indicates that our method can be scaled to large-scale datasets. For
detail, our method reduces the ECE value from 10.18% to 6.21% while the second best method,

7



Under review as a conference paper at ICLR 2023

Table 4: The ECE (%) on ImageNet-LT.

Model Dataset Method
Base TS ETS TS-IR IR IROvA Ours

ResNet-50 ImageNet 10.18 6.72 6.87 10.23 11.15 7.63 6.21

(a) α = 0.999 (b) α = 0.997 (c) α = 0.995

Figure 4: The reliability diagram of our method with (a) α = 0.999, (b) α = 0.997, and (c)
α = 0.995.

TS, can only reduce it to 6.72%. For all datasets, the results of SCE and ACE are presented in the
appendix.A.4 and similar conclusions can be observed.

4.4 ABLATION STUDY

Reliability diagram. We also visualize the reliability diagram of our method with different α on
the CIFAR-10 test set. As shown in Fig.4, our method can give more reliable results and alleviate
the overconfidence problem. The reliability diagrams of the baseline and TS are shown in Fig.2,
and our method achieves competitive results compared with them. Specifically, a higher value of α
achieves better results in the reliability diagram on this benchmark. Compared with TS, our method
well calibrates the predictions for instances with high confidence. We also observe that our method
leads to slight underconfidence in instances with very small confidence values, this may be because
these samples themselves are more difficult to classify.

The distribution of w∗(x). Our method is heavily influenced by the value of w∗(x), so we explore
the distribution of w∗(x) on different datasets. We do experiments on CIFAR-10-LT with IF=100,
IF=50, and IF=10, respectively. As shown in Fig.5, the overall distribution of w is clustered around
the value w = 1. The more imbalanced the dataset, the more instances with larger w values. More
instances have larger values of w at IF=100 than at IF=10. Since the dataset with IF=100 suffers a
heavier imbalance, it faces a more serious domain shift, and more instances equipped with a large
value of w are rational.

Ablation study on hyper-parameter α. The most important hyper-parameter of our method is
α, which controls how much the information of the head class is transferred. Normally, a smaller
value of α means we utilize more information from head classes. As shown in Fig.6, with the
growth of value α, the value of our temperature exhibits a downtrend. Note that α = 1.0 represent
traditional temperature scaling since w(x) = 1 for all instances. A larger temperature can relieve the
overconfidence phenomenon effectively. In addition, a heavily imbalanced dataset (IF=100) needs a
larger temperature value compared with a slightly imbalanced dataset (IF=10).

As shown in Fig.6, for the performance on the CIFAR-10 test set, different α achieve different
performances. Actually, a heavily imbalanced dataset (IF=100) achieves the best performance on
α = 0.995 while a slightly imbalanced dataset (IF=10) achieves best on α = 0.998. This indicates
that we need to utilize more information from head classes if fewer instances of tail classes are
available. However, the CIFAR-10.1-C dataset presents different results and we achieve the best
performance with α = 0.995 for all imbalanced situations. Since CIFAR-10.1-C are synthetic
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(a) IF=100 (b) IF=50 (c) IF=10

Figure 5: The distribution histograms of w∗(x) with α = 0.999. The horizontal axis represents
the value of w∗(x) and the vertical axis represents the probability density. The model is trained on
(a) CIFAR-10-LT with IF=100, (b) CIFAR-10-LT with IF=50, and (c) CIFAR-10-LT with IF=10,
respectively.

(a) CIFAR-10 test set (b) CIFAR-10.1-C test set (c) The value of temperature

Figure 6: The blue line, orange line, and green line denote results on CIFAR-10-LT with IF=100,
IF=50, and IF=10, respectively. The horizontal axis represents the hyper-parameter α. For (a) and
(b) the vertical axis represents the ECE value, and for (c) the vertical axis represents the temperature
value. (a) The performance tested on the original CIFAR-10 test set. (b) The performance tested on
the CIFAR-10.1-C dataset. (c) The temperature value tested on the original CIFAR-10 test set.

datasets generated from CIFAR-10.1, it suffers a heavier domain shift compared with the CIFAR-
10 test set and needs a larger value of temperature to relieve overconfidence. It is interesting that
there is a downtrend and uptrend in the green curve in Fig.6 (a). The reason is that the model is
underconfident when α < 0.998 because of the larger value of temperature. Therefore, it is not a
good choice to calibrate every model with a small value of α and it is proper to apply a smaller value
of α on a heavily imbalanced dataset and a larger value of α on a slightly imbalanced dataset.

5 CONCLUSION

In this paper, we propose a novel importance weight-based strategy to realize post-processing cali-
bration under long-tailed distribution. Different from traditional calibration tasks, the tackled prob-
lem faces the challenge that the validation set follows a long-tailed distribution while the distribution
of the test data is balanced. To this end, we utilize the importance weight strategy to re-weight in-
stances of tail classes. Since it is difficult to acquire the target probability density, we model the
distribution of each class as a Gaussian distribution and enhance the estimation of tail class distri-
butions by transferring knowledge from head classes. Extensive experiments on four benchmarks
show the effectiveness of our method. In our future work, we intend to explore regularization terms
to compensate for the imbalanced influences of head and tail classes for training calibrated models
under the long-tailed distribution.
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A APPENDIX

A.1 ERROR BOUND

Following previous works (Gong et al., 2021; Wang et al., 2020; Pampari & Ermon, 2020; Cortes
et al., 2010), we analyze the error bound of importance weight strategy. We denote pk(x) ∼
N (µpk

,σ2
pk
) as the long-tailed distribution and qk(x) ∼ N (µqk ,σ

2
qk
) as the ground truth bal-

anced distribution, and q∗k(x) ∼ N (µq∗k
,σ2

q∗k
) as estimated distribution, where index k denotes the

kth class. For simplicity, we analyze the error bound of a given class k, and the error bound of
other tail classes can also be analyzed following the same procedure. We denote importance weight
wk(x) = qk(x)/pk(x) and w∗

k(x) = q∗k(x)/pk(x). The unbiased error is:

error = |Epk
[wk(x)L(s(z/T ), y)]− Epk

[w∗
k(x)L(s(z/T ), y)]|

= |Epk
[w(x)L(s(z/T ), y)− w∗

k(x)L(s(z/T ), y)]|

≤
√

Epk
[(wk(x)− w∗

k(x))
2]Epk

[(L(s(z/T ), y))2] (Cachy-Schwarz Ineqaulity)

≤ 1

2
(Epk

[(wk(x)− w∗
k(x))

2] + Epk
[(L(s(z/T ), y))2]) (AM/GM Inequality)

(10)

As shown in Eq.10, the unbiased error is sensitive to the term Epk
[(wk(x) − w∗

k(x))
2] since

Epk
[(L(s(z/T ), y))2]) is determined. To better understand our method, we analyze the upper bound

and lower bound for the first term and denote ϵ = Epk
[(wk(x)−w∗

k(x))
2]. The Eq.11 shows that the

upper bound of error, that is d2(qk||pk)+d2(q
∗
k||pk). The formula d2(q||p) presents the exponential

in base 2 of the Renyi-divergence (Rényi et al., 1961) and is defined in Eq.13 and Eq.14.

ϵ = Epk
[(w(xi)− w∗(xi))

2]

= Vpk
[wk(x)− w∗

k(x)] + (Epk
[wk(x)− w∗

k(x)])
2

= Vpk
[wk(x)− w∗

k(x)] (Epk
[wk(x)] = Epk

[w∗
k(x)] = 1)

= Vpk
[wk(x)] + Vpk

[w∗
k(x)]− 2Cov(wk(x), w

∗
k(x)) (Cov denotes covariance function.)

= d2(qk||pk) + d2(q
∗
k||pk)− 2Cov(wk(x), w

∗
k(x))− 2

= d2(qk||pk) + d2(q
∗
k||pk)− 2Epk

[wk(x)w
∗
k(x)]

≤ d2(qk||pk) + d2(q
∗
k||pk)

(11)

We also analyze the lower bound of our strategy, which is shown in Eq.12. This indicates that the
error of our method will larger than (

√
d2(qk||pk)−

√
d2(q∗k||pk))2.

ϵ = d2(qk||pk) + d2(q
∗
k||pk)− 2Epk

[wk(x)w
∗
k(x)]

≥ d2(qk||pk) + d2(q
∗
k||pk)− 2

√
Epk

[(wk(x))2]Epk
[(w∗

k(x))
2]

= d2(qk||pk) + d2(q
∗
k||pk)− 2

√
(Vpk

[wk(x))] + 1)(Vpk
[w∗

k(x))] + 1)

= d2(qk||pk) + d2(q
∗
k||pk)− 2

√
d2(qk||pk)(d2(q∗k||pk)

= (
√
d2(qk||pk)−

√
d2(q∗k||pk))

2

(12)

Dα(q||p) =
α

2
(µq−µp)

T [ασ2
p+(1−α)σ2

q ]
−1(µq−µp)−

1

2(α− 1)
ln

|ασ2
p + (1− α)σ2

q |
|σ2

q |1−α|σ2
p|α

(13)

dα(q||p) = 2Dα(q||p) (14)

Therefore, we draw the conclusion that ϵ ∈ [(
√
d2(qk||pk) −

√
d2(q∗k||pk))2, d2(qk||pk) +

d2(q
∗
k||pk)].
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(a) Training set (b) Validation set (c) Test set

Figure 7: The distribution of long-tailed cifar-10-LT. The horizontal axis represents the class index
and the vertical axis represents the number of instances.

A.2 THE SOLUTION OF ANALYSIS

For simplicity, we constitute one-dimensional Gaussian distribution p(x) ∼ N (µa, σ
2
a) and q(x) ∼

N (µb, σ
2
b ), where µa ̸= µb and σ2

a < σ2
b . When q(x) > p(x) we have w(x) > 1. As shown

in Eq.15, the formula equals to solve the inequality h(x) = 2σ2
b (x − µa)

2 − 2σ2
a(x − µb)

2 +
4σ2

aσ
2
b (lnσa − lnσb) > 0. h(x) is a quadratic function.

q(x) > p(x)

ln q(x) > ln p(x)

lnσa −
(x− µb)

2

2σ2
b

> lnσb −
(x− µa)

2

2σ2
a

4σ2
aσ

2
b lnσa − 2σ2

a(x− µb)
2 > 4σ2

aσ
2
b lnσb − 2σ2

b (x− µa)
2

(15)

The equation of h(x) = 0 have two solutions and denote as τ1 and τ2, τ1 < τ2, respectively. The
condition for the inequality to hold is x > τ2 or x < τ1. Normally, the solution of quadratic function
is −B±

√
B2−4AC
2A . The coefficient of our function is shown in Eq.16. Therefore, we get the value of

τ1 and τ2 in Eq.17.
A = 2σ2

b − 2σ2
a

B = 4µbσ
2
a − 4µaσ

2
b

C = 2µ2
aσ

2
b − 2µ2

bσ
2
a − 4σ2

aσ
2
b (lnσb − lnσa)

(16)

τ1 =
µaσ

2
b − µbσ

2
a − σaσb

√
(µa − µb)2 + (σ2

b − σ2
a)(lnσ

2
b − lnσ2

a)

σ2
b − σ2

a

τ2 =
µaσ

2
b − µbσ

2
a + σaσb

√
(µa − µb)2 + (σ2

b − σ2
a)(lnσ

2
b − lnσ2

a)

σ2
b − σ2

a

(17)

A.3 DATASET AND TRAINING STRATEGY

Dataset. The distribution of CIFAR-10-LT, MNIST-LT, CIFAR-100-LT, and ImageNet-LT, are
shown in Fig.7, Fig.8, Fig.9, and Fig.10, respectively. The training set and validation set follows
the long-tailed distribution while the test set is not. For CIFAR-100-LT and ImageNet-LT, the local
distribution of the validation set and the training set exists a little difference. Since we split data
randomly and such a phenomenon is rational.

Training strategy. For CIFAR-10-LT and CIFAR-100-LT, we use ResNet-32 as our backbone
following (Cui et al., 2019). We use the SGD optimizer and set the initial learning rate to 0.1. The
model has trained a total of 200 epochs. The first five epochs are trained with the linear warm-
up (Goyal et al., 2017) learning rate schedule. The learning rate drops by 0.1 at epoch 160 and
epoch 180, respectively. We follow the most popular setting to set the batch size, the momentum,
and the weight decay to 128, 0.9, and 5 × 10−4, respectively. For MNIST-LT, we use LeNet-5 as
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(a) Training set (b) Validation set (c) Test set

Figure 8: The distribution of long-tailed MNIST-LT. The horizontal axis represents the class index
and the vertical axis represents the number of instances.

(a) Training set (b) Validation set (c) Test set

Figure 9: The distribution of long-tailed CIFAR-100-LT. The horizontal axis represents the class
index and the vertical axis represents the number of instances.

the backbone. We use an SGD optimizer and set the initial learning rate to 0.1. The model has
trained a total of 100 epochs. The learning rate drops by 0.1 at epoch 60. We follow the most
popular setting to set the batch size, the momentum, and the weight decay to 256, 0.9, and 5×10−4,
respectively. For ImageNet-LT, we use ResNet-50 as backbones and adopt the cosine learning rate
schedule (Loshchilov & Hutter, 2016) that gradually decays from 0.1 to 0 in the first stage. The
model has trained a total of 180 epochs. We follow the most popular setting to set the batch size, the
momentum, and the weight decay to 256, 0.9, and 5× 10−4, respectively.

A.4 RESULTS

We evaluate our method with different evaluation metrics. The results are shown from Tab.5 to
Tab.16. Ours1 and ours2 denote our method with α = 0.999 and α = 0.995, respectively. For the
SCE metric and ACE metric, our method achieves competitive results. The accuracy table shows
that our method will preserve the model’s accuracy.

15



Under review as a conference paper at ICLR 2023

(a) Training set (b) Validation set (c) Test set

Figure 10: The distribution of long-tailed ImageNet-LT. The indices are sorted by the number of
instances per class. The horizontal axis represents the class index and the vertical axis represents the
number of instances.

Table 5: The SCE (%) on CIFAR-10-LT.

IF Dataset Method
Base TS ETS TS-IR IR IROvA Ours1 Ours2

IF=100

CIFAR-10 5.11 4.21 4.2 4.03 4.09 4.22 4.11 3.97
CIFAR-10.1 6.49 4.97 4.96 4.82 5.01 5.02 4.77 4.48
CIFAR-10.1-C 12.63 10.21 10.2 10.34 10.31 10.21 9.72 8.97
CIFAR-F 6.61 4.95 4.94 5.01 4.99 4.96 4.74 4.46

IF=50

CIFAR-10 4.08 3.36 3.36 3.19 3.26 3.35 3.29 3.31
CIFAR-10.1 5.29 4.03 4.06 3.81 4.02 4.04 3.86 3.78
CIFAR-10.1-C 12.18 9.56 9.69 9.64 9.74 9.5 8.86 8.04
CIFAR-F 5.87 4.32 4.37 4.38 4.51 4.32 4.11 4.04

IF=10

CIFAR-10 1.93 1.31 1.29 1.32 1.32 1.3 1.29 1.36
CIFAR-10.1 3.17 1.97 1.88 2.12 2.17 1.91 1.86 1.87
CIFAR-10.1-C 10.91 8.51 8.25 8.76 8.58 8.35 8.2 7.55
CIFAR-F 4.56 3.22 3.14 3.32 3.35 3.23 3.13 3.09

Table 6: The ACE (%) on CIFAR-10-LT.

IF Dataset Method
Base TS ETS TS-IR IR IROvA Ours1 Ours2

IF=100

CIFAR-10 4.99 4.16 4.15 4.02 4.07 4.15 4.06 3.98
CIFAR-10.1 6.22 4.89 4.89 4.8 4.85 4.96 4.66 4.44
CIFAR-10.1-C 12.44 10.16 10.15 10.27 10.24 10.14 9.69 8.98
CIFAR-F 6.37 4.87 4.87 4.87 4.84 4.86 4.68 4.51

IF=50

CIFAR-10 3.96 3.33 3.35 3.2 3.24 3.33 3.3 3.39
CIFAR-10.1 4.99 4.02 4.06 3.84 3.93 3.96 3.84 3.85
CIFAR-10.1-C 11.97 9.5 9.63 9.59 9.66 9.44 8.85 8.08
CIFAR-F 5.62 4.28 4.33 4.31 4.43 4.28 4.15 4.14

IF=10

CIFAR-10 1.76 1.31 1.28 1.29 1.28 1.3 1.28 1.37
CIFAR-10.1 2.82 1.81 1.76 1.91 1.89 1.78 1.74 1.8
CIFAR-10.1-C 10.71 8.47 8.23 8.68 8.52 8.35 8.18 7.56
CIFAR-F 4.29 3.12 3.07 3.14 3.12 3.08 3.06 3.01
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Table 7: The Accuracy (%) on CIFAR-10-LT.

IF Dataset Method
Base TS ETS TS-IR IR IROvA Ours1 Ours2

IF=100

CIFAR-10 69.38 69.38 69.38 70.55 70.27 68.86 69.38 69.38
CIFAR-10.1 59.8 59.8 59.8 60.9 60.5 59.3 59.8 59.8
CIFAR-10.1-C 27.55 27.55 27.55 27.74 27.7 27.4 27.55 27.55
CIFAR-F 57.79 57.79 57.79 58.45 58.56 57.29 57.79 57.79

IF=50

CIFAR-10 74.68 74.68 74.68 74.92 74.65 74.22 74.68 74.68
CIFAR-10.1 66.1 66.1 66.1 65.8 66 65.4 66.1 66.1
CIFAR-10.1-C 29.06 29.06 29.06 28.75 28.71 28.9 29.06 29.06
CIFAR-F 61.51 61.51 61.51 61.3 61.21 61.06 61.51 61.51

IF=10

CIFAR-10 86.1 86.1 86.1 86.36 86.09 85.86 86.1 86.1
CIFAR-10.1 77.75 77.75 77.75 77.9 77.75 77.45 77.75 77.75
CIFAR-10.1-C 33.45 33.45 33.45 33.79 33.66 33.34 33.45 33.45
CIFAR-F 67.84 67.84 67.84 68.24 68.06 67.65 67.84 67.84

Table 8: The SCE (%) on MNIST-LT.

IF Dataset Method
Base TS ETS TS-IR IR IROvA Ours1 Ours2

IF=100

MNIST 0.82 0.85 0.82 0.97 0.97 0.85 0.87 0.93
SVHN 4.77 3.68 4.06 7.25 7.35 4.59 3.61 3.42
USPS 3.94 3.34 3.66 4.23 4.24 3.32 3.25 3.22
Digital-S 7.99 6.24 7.16 8.07 8.11 6.91 6 5.33

IF=50

MNIST 0.43 0.44 0.43 0.49 0.49 0.43 0.44 0.45
SVHN 3.08 3.22 3.07 6.33 6.71 2.87 3.24 3.33
USPS 3.39 3.24 3.55 4.23 4.27 3.31 3.23 3.19
Digital-S 5.11 4.59 4.48 8.05 8.2 4.55 4.53 4.34

IF=10

MNIST 0.2 0.22 0.22 0.21 0.22 0.21 0.23 0.23
SVHN 3.52 3.73 3.76 6.21 5.51 3.56 3.79 3.84
USPS 2.91 3.07 3.09 3.27 3.29 3.15 3.19 3.29
Digital-S 4.86 4.27 4.25 6.02 5.69 4.35 4.24 4.24

Table 9: The ACE (%) on MNIST-LT.

IF Dataset Method
Base TS ETS TS-IR IR IROvA Ours1 Ours2

IF=100

MNIST 0.78 0.85 0.82 0.92 0.93 0.83 0.86 0.92
SVHN 4.84 3.81 4.24 7.31 7.37 4.54 3.74 3.59
USPS 3.82 3.28 3.56 4.11 4.02 3.38 3.22 3.09
Digital-S 7.84 6.29 7.09 7.99 8 6.85 6.06 5.51

IF=50

MNIST 0.4 0.43 0.41 0.45 0.45 0.41 0.43 0.44
SVHN 3.21 3.51 3.22 6.19 6.6 3.12 3.53 3.69
USPS 3.26 3.15 3.37 4.01 4.01 3.27 3.14 3.13
Digital-S 5.05 4.58 5.38 7.69 7.83 4.66 4.56 4.39

IF=10

MNIST 0.17 0.19 0.19 0.19 0.19 0.18 0.19 0.2
SVHN 3.79 4.02 4.03 6.26 5.58 3.88 4.08 4.15
USPS 2.82 3.03 3.05 3.05 3.1 3.06 3.1 3.2
Digital-S 4.84 4.43 4.42 5.86 5.55 4.4 4.37 4.37
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Table 10: The Accuracy (%) on MNIST-LT.

IF Dataset Method
Base TS ETS TS-IR IR IROvA Ours1 Ours2

IF=100

MNIST 95.12 95.12 95.12 94.69 94.57 94.92 95.12 95.12
SVHN 26.23 26.23 26.23 22.85 23.39 25.74 26.23 26.23
USPS 72.99 72.99 72.99 71.79 71.79 72.24 72.99 72.99
Digital-S 30.88 30.88 30.88 28.84 28.84 30.13 30.88 30.88

IF=50

MNIST 97.44 97.44 97.44 97.49 97.5 97.34 97.44 97.44
SVHN 36.26 36.26 36.26 32.16 31.79 35.8 36.26 36.26
USPS 76.08 76.08 76.08 75.73 75.63 75.83 76.08 76.08
Digital-S 41.58 41.58 41.58 39.26 38.8 41.13 41.58 41.58

IF=10

MNIST 98.57 98.57 98.57 98.38 98.35 98.56 98.57 98.57
SVHN 35.71 35.71 35.71 29.69 30.6 33.49 35.71 35.71
USPS 79.67 79.67 79.67 78.62 78.52 79.47 79.67 79.67
Digital-S 43.38 43.38 43.38 40.26 41.03 41.81 43.38 43.38

Table 11: The SCE (%) on CIFAR-100-LT.

Model Dataset Method
Base TS ETS TS-IR IR IROvA Ours1 Ours2

ResNet-32 CIFAR-100 0.52 0.33 0.32 0.39 0.4 0.34 0.33 0.32
DenseNet-40 CIFAR-100 0.44 0.33 0.33 0.37 0.37 0.33 0.33 0.33
VGG-19 CIFAR-100 0.64 0.28 0.28 0.28 0.29 0.29 0.27 0.28

Table 12: The ACE (%) of CIFAR-100-LT.

Model Dataset Method
Base TS ETS TS-IR IR IROvA Ours1 Ours2

ResNet-32 CIFAR-100 0.37 0.28 0.29 0.35 0.35 0.29 0.28 0.28
DenseNet-40 CIFAR-100 0.33 0.28 0.28 0.31 0.31 0.28 0.28 0.28
VGG-19 CIFAR-100 0.39 0.26 0.26 0.35 0.34 0.27 0.26 0.27

Table 13: The Accuracy (%) on CIFAR-100-LT.

Model Dataset Method
Base TS ETS TS-IR IR IROvA Ours1 Ours2

ResNet-32 CIFAR-100 56.13 56.13 56.13 54.67 54.89 55.98 56.13 56.13
DenseNet-40 CIFAR-100 60.39 60.39 60.39 59.74 59.5 60.25 60.39 60.39
VGG-19 CIFAR-100 56.06 56.06 56.06 54.4 54.8 56.01 56.06 56.06

Table 14: The SCE (%) of ImageNet-LT.

Model Dataset Method
Base TS ETS TS-IR IR IROvA Ours1 Ours2

ResNet-50 ImageNet 0.051 0.049 0.049 0.053 0.053 0.05 0.049 0.049

Table 15: The ACE (%) on ImageNet-LT.

Model Dataset Method
Base TS ETS TS-IR IR IROvA Ours1 Ours2

ResNet-50 ImageNet 0.042 0.041 0.042 0.043 0.043 0.041 0.041 0.041
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Table 16: The Accuracy (%) on ImageNet-LT.

Model Dataset Method
Base TS ETS TS-IR IR IROvA Ours1 Ours2

ResNet-50 ImageNet 48.68 48.68 48.68 48.11 48.11 48.61 48.68 48.68
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