
HarnessLLM: Automatic Testing Harness Generation
via Reinforcement Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Existing LLM-based automatic test generation methods mainly produce input and1

expected output pairs to categorize the intended behavior of correct programs.2

Although straightforward, these methods have limited diversity in generated tests3

and cannot provide enough debugging information. We propose HarnessLLM, a4

two-stage training pipeline that enables LLMs to write harness code for testing.5

Particularly, LLMs generate code that synthesizes inputs and validates the observed6

outputs, allowing complex test cases and flexible output validation such as invariant7

checking. To achieve this, we train LLMs with SFT followed by RLVR with a8

customized reward design. Experiments show that HarnessLLM outperforms input-9

output-based testing in bug finding and testing strategy diversity. HarnessLLM10

further benefits the code generation performance through test-time scaling with our11

generated test cases as inference-phase validation.12

1 Introduction13

Large language models (LLMs) have demonstrated remarkable proficiency in code-related tasks,14

including code generation, completion, and even resolving software engineering issues through tool15

use [1–4]. Compared to these code generation tasks, automatic testing and debugging AI-generated16

programs have received comparatively little attention, even though comprehensive test suites are17

critical for ensuring the correctness and robustness of the AI-generated code [5–7].18

Existing works in automatic testing mainly prompt the model to directly generate input–output pairs19

that characterize the intended behavior of the correct programs [5, 8–10]. As depicted in Figure 1, the20

model produces examples of inputs alongside their expected outputs, which are executed against the21

target program. When the observed outputs diverge from expectations, a bug is exposed. Although22

straightforward, input–output pair testings only give binary judgments of whether the program’s23

result differs from the expected one; they offer no context of why the program makes mistakes, which24

are critical for bug fixing. In addition, this strategy provides limited testing cases, making it difficult25

to find non-trivial bugs lying deep in the program’s paths, especially for complex programs.26

To address these limitations, we propose a novel debugging paradigm with richer context and more27

diverse testing cases: LLM-based test harness generation. Instead of restricting the model to input-28

output pairs, we prompt it to write executable code that ¨ synthesizes richly structured inputs, and29

≠ programmatically validates the corresponding outputs. As shown in Figure 1, for a program30

that sorts a list of input integers, the LLM first writes an input generator, generate_input_1, to31

generate random lists, which are fed to the target program for execution. The returned outputs are32

then validated by an LLM-defined function, check_output, which checks that the result is sorted33

and preserves the original integers. With programmatic input generation and output validation, testing34

harnesses can support complex invariant checking and stress testing, enabling more comprehensive35

testing and detection of deep logical bugs.36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



𝒒: Sort an input list in ascending order ✗ Buggy 
Program

{"input":[1,5], "expected_output":[1,5]},

{"input":[2], "expected_output":[2]}

Input-output Testing

def generate_input_1():
    return [random.randint(1, 100)
        for _ in range(100)
    ]

def check_output(input_list, output_list):
    input_count = Counter(input_list)
    output_count = Counter(output_list)
    assert input_count == output_count
    for i, x in enumerate(output_list[:-1]):
        assert x <= output_list[i + 1]

Test Harness

Figure 1: Comparison between input-output
pairs (top) and test harness (bottom).

Figure 2: Percentage of found bugs (average of
8 runs, higher is better) for two strategies with
different models.

However, off-the-shelf LLMs struggle to write correct test harnesses. Our initial experiment com-37

pares the bug-finding rates of the input–output strategy versus test harness generation on the LIVE-38

CODEBENCH and CODEFORCES datasets [11, 12], using a strong reasoning model Qwen3-32B39

[13]. Surprisingly, direct prompting for test harnesses does not yield better bug finding capabilities40

(Figure 2). We believe the gap arises from the different skills involved in testing harness versus41

code generation. Debugging requires understanding the given program’s logic, control and data flow,42

designing proper stress tests, and writing validation logic, while code generation is mainly about43

writing code to fulfill the required functionality. Closing this gap will therefore require models with44

specific reasoning abilities tailored to test-harness generation.45

Motivated by this observation, we propose HarnessLLM, a two-stage training pipeline combining46

supervised fine-tuning (SFT) with reinforcement learning (RL) with customized reward functions.47

First, we collect SFT data by prompting Qwen3-32B and filtering for harnesses that successfully48

expose a bug. We warm up a smaller model (e.g., Qwen3-4B) with SFT on collected data. The49

purpose of this stage is to train the model to understand instructions, as well as provide a reasonable50

starting point for reinforcement learning, which improves RL’s training efficiency. Second, we51

further train the SFT model using RL with our customized verifiable outcome reward. Here, we52

assume access to a ground-truth program during training. To encourage the model to generate valid53

harnesses, we first give a zero reward to generated harnesses that trigger compilation or runtime54

errors on the ground-truth program. Then, we design rewards to incentivize the model to generate55

effective tests that crash the target programs. Specifically, a positive reward is assigned when the56

ground-truth program can pass the generated tests but the target program fails, indicating that the test57

harness correctly identifies bugs in the target program. We train the model to maximize the expected58

total reward using the GRPO algorithm [14]. The RL training can further strengthen the model’s59

capabilities to generate effective test harnesses, as well as improve the model’s generalizability.60

We train on two base models (Qwen3-4B and Llama3.2-3B [15]) and evaluate on three benchmarks61

containing buggy programs. Experiments show that our model outperforms all baselines, including62

the off-the-shelf Qwen3-32B and another model that is also trained with RL but only generates input-63

output pairs (Figure 2 presents an overview). Moreover, the learned harness generator generalizes64

to code produced by unseen models and can be used for improving code generation performance.65

Specifically, using the execution results of generated test cases to select the best out of 8 responses66

improves Qwen3-32B’s performance from 63.5% to 69.5% on LIVECODEBENCH [11]. To the best67

of our knowledge, HarnessLLM is the first LLM-based testing harness generation that enables68

comprehensive testing and benefits general code generations.69

We summarize our contributions as follows:70

• We propose harness-based automatic program testing, a new debugging paradigm with richer71

context and more diverse testing cases beyond input-output checks.72

• We design a pipeline with SFT and RL to train LLMs to write effective test harnesses.73

2



• We trained specialized reasoning models using HarnessLLM, comparing their effectiveness74

with SOTA LLMs, and demonstrating their utility in code generation.75

2 Related Works76

Automatic Test Case Synthesis. Test cases are crucial in evaluating code correctness. While many77

established benchmarks rely on manually written test cases [1, 16, 17], this process is labor-intensive78

and does not scale well. To address this limitation, a variety of automatic test case synthesis methods79

have been proposed. Traditional approaches leverage programming language techniques to explore80

the input space and cover diverse execution paths [18–21]. Although these techniques improve input81

coverage, they often fall short in capturing code semantic relationships and complex control flows,82

which can lead to undetected failures during runtime. Recently, LLMs have been used to synthesize83

test cases by prompting them to generate both inputs and expected outputs [22–28]. Despite their84

strong code understanding capabilities, LLMs still struggle to consistently generate correct outputs,85

especially when the code is complex. In this work, we propose a novel paradigm that shifts from86

output prediction to execution-based validation. Our HarnessLLM programmatically generates inputs87

and validates outputs, expanding the design space of test cases.88

Reinforcement Learning with Verifiable Rewards. Reinforcement learning has shown great89

potential in improving LLM abilities in many domains requiring heavy reasoning, such as math90

problem solving [3, 14, 29–31], code generation [32–34], and robotic control [35, 36]. In this work,91

we use RL to improve LLMs’ test case generation abilities. By designing a customized reward that92

judges whether the generated test cases can differentiate between correct and buggy programs, we93

train LLMs to learn the reasoning skills required to write effective test cases.94

3 Methodology95

3.1 Problem Formulation96

Formally, let q be the description of a programming problem with input space I and output space97

O. Denote f, g : I ! O as two programs for this problem, where f is a potentially buggy98

implementation that is under testing, and g is a ground-truth implementation for the problem. We99

say f has logical bugs if for some x 2 I, f(x) 6= g(x). In other words, x triggers the divergent100

behaviors of the buggy and reference programs. Therefore, an automatic debugging method generally101

contains two steps: generating inputs that can potentially trigger the bug and comparing the target102

program’s output with the reference output.103

However, in most real-world situations, the ground-truth implementation g is not available, which104

necessitates an approximate verifier to validate the output of f . Denote this verifier as v : I ⇥O !105

{0, 1}, where v(x,y) = 1 indicates that output y on input x is deemed correct. Our goal in this106

paper is to train an LLM for automatic debugging that, given q and f , emits both a set of inputs107

{xi}
N
i=1 and a corresponding verifier v. Note that we mainly focus on finding logical bugs in a target108

program, i.e., deviations from a program’s intended behavior, and leave security vulnerability to109

future work.110

Challenge of Input-Output Testing. The input-output testing can be considered as having a111

simple verifier that compares the program’s output with the expected output. Specifically, the model112

generates a set of pairs {(xi, ŷi)}Ni=1, where ŷi is the expected output for input xi. The verifier is113

then an indicator function v(xi, f(xi)) = 1(f(xi) = ŷi). However, this simple verifier requires the114

model itself to come up with a correct expected output, which limits the complexity of test cases. In115

the following, we propose a framework that generates test harnesses to address this challenge.116

3.2 Generating Test Harness for Debugging117

We propose instead that the LLM writes a test harness code that synthesizes inputs and programmati-118

cally checks outputs. Having harnesses can help produce more diverse testing cases and provide more119

valuable feedback when the program crashes. Specifically, our framework consists of three steps.120

3



Stage 1: SFT

Problem 𝒒

Buggy 
code 𝑓

LLM

Test casesTest casesTest cases

Filtering
𝑓 ✘
𝑔 

SFT data
Correct 
code 𝑔

Stage 2: RL

Problem 𝒒

Buggy 
code 𝑓

LLM
Test casesTest casesTest cases

Correct 
code 𝑔

Execute on 
𝑓 and 𝑔

𝑓 pass 𝑔 fail: 𝑟 = 1

𝑓 pass 𝑔 fail: 𝑟 = 1

Filtering:
𝑓 fail and 𝑔 pass SFT data

GRPO

Stage 1: SFT

Reward 𝑟(𝑜; 𝑓, 𝑔) (Eq. 1)

Stage 2: RL

Figure 3: Overview of our training pipeline.

Step 1: Generate Input. The model implements a set of input generators, e.g.,121

generate_input_1(), each returning a list of inputs for the program. By leveraging loops or122

random functions, the LLM can craft rich test inputs, which would be difficult to get if hardcoding.123

Step 2: Execute. Each generated input is fed to the program f , and the resulting output is captured.124

Step 3: Validate Output. A model-implemented function check_output(input,output) is used125

to validate the correctness of each captured output. The model can use various ways for validation,126

such as checking specific invariants or comparing with output from a brute-force implementation.127

This output checker uses assertions to check correctness, and a bug is reported if the assertions fail128

for any pair of generated input and captured output.129

Figure 7 shows a complete example of model generation for this process, and Figure 9 shows the130

detailed prompt we use.131

3.3 Improving Test Harness via RLVR132

Despite the promise, we found off-the-shelf LLMs struggle to generate effective harnesses. To133

remedy this, we design a two-stage training pipeline to improve their performance. Figure 3 depicts134

an overview of our pipeline.135

Stage 1: SFT Warm-Up. We prompt Qwen3-32B to generate test harnesses as described in Section136

3.2. The model response contains a long reasoning chain and a final code block. We execute the137

harnesses against both the target program f and the ground-truth program g and retain only responses138

for which g passes but f fails. We then fine-tune a smaller model (e.g., Qwen3-4B) with SFT on139

the filtered dataset. The SFT model has a basic understanding and skills for test harness generation.140

Using it as an initialization for RL can improve the learning efficiency of RL, as the early training141

stage can receive some meaningful positive rewards.142

Stage 2: RL with Verifiable Outcome Reward. To further improve the generalizability of the143

warmed-up model, we follow recent works to train the model with RL against a verifiable outcome144

reward [3, 37]. Specifically, for each rollout o the model generates, let {xi}
N
i=1 be the corresponding145

inputs, we define the following reward function based on the execution results on f and g:146

r(o; f, g) =

8
<

:

1, if g passes and f fails;
0.1, if g fails1or f passes, and 9xi : f(xi) 6= g(xi);
0, otherwise

(1)

In other words, a reward of 1 is given only when the ground-truth program can pass the test, but not147

the buggy program, indicating a correct test case. Otherwise, if all inputs are valid (i.e., they do not148

trigger runtime errors on g) and at least one input can trigger different outputs for f and g, we assign149

a partial reward of 0.1, which encourages the model to generate bug-exposing inputs. Note that in this150

case, the input generators work well, but the output verifier generates ineffective assertions, which151

either fail the correct code g or do not crash the buggy code f . Nevertheless, we still assign a partial152

reward to incentivize the model to generate good inputs. Finally, a reward of 0 is given when no input153

can expose the bug. Importantly, the requirement that g has to pass the generated test cases reduces154

false rejection of correct programs. We maximize the expected reward using GRPO.155

1Assertion errors in output verifier. All inputs still need to be valid, i.e., do not trigger runtime errors on g.

4



3.4 Data Collection156

Both training stages in Section 3.3 require data in the format of a problem description q, a buggy157

implementation f , and a ground-truth implementation g. To collect such data, we follow prior works158

[38] to source from existing datasets of coding problems, including TACO [39], SYNTHETIC-1 [40],159

LeetCode [41], and Codeforces [42]. The original solution in the datasets is used as ground-truth160

program g, after an additional round of filtering to make sure g passes all provided test cases of the161

problem.162

To collect the buggy programs f , we prompt a series of LLMs to solve the problem, including163

Qwen2.5-Coder 1.5-7B [43] and DeepSeek-R1-Distill-Qwen-1.5B [3]. We only keep programs164

that satisfy both of the following conditions: ¨ The program passes the demo test cases in the problem165

description; and ≠ The program fails on at least one test case of the problem. This makes sure the166

retained programs are partially correct but still have bugs. We retain at most two buggy programs167

per problem and select the two that pass the most test cases if multiple programs satisfy the two168

conditions.169

After decontamination against all evaluation data in Section 4.1, the resulting training set contains170

12,043 unique (q, f, g) triplets. We use all samples for RL training and a subset of 6,805 samples to171

generate SFT data. Appendix A.1 details the procedure for our data collection process.172

4 Experiments173

We conduct experiments to verify the effectiveness of our framework. Specifically, we aim to answer174

two questions:175

• Does our two-stage training pipeline enhance models’ ability to write test harnesses?176

• Does harness-based testing outperform input-output testing in identifying bugs?177

4.1 Experiment Setting178

Evaluation Benchmarks. We evaluate on three widely used code generation datasets: MBPP+179

[16, 44], LIVECODEBENCH [11], and CODEFORCES [12]. We repurpose these datasets for the180

bug detection task by collecting triplets of problem description, buggy program, and ground-truth181

program. For MBPP+, we directly use the split MBPP+FIX (HARD) in UTGen-32B [5]. For182

LIVECODEBENCH and CODEFORCES, we follow the procedure described in Section 3.4. Par-183

ticularly, we create two dataset variants: ∂ SEEN version contains buggy programs generated by184

DeepSeek-R1-Distill-Qwen-1.5B, which is also used to generate our training data. ∑ UNSEEN185

version contains buggy programs generated by Qwen3-14B, which is never seen during training, and186

evaluates the generalizability of our models to different code generators. Please see Appendix A.2 for187

details of evaluation data.188

Metrics. Each model response contains multiple test cases. Three metrics are reported based on189

the execution results of generated test cases on the buggy and ground-truth programs. ∂ Good190

input (GI) calculates the percentage of responses that have at least one bug-exposing input, i.e.,191

9xi : f(xi) 6= g(xi). This metric purely measures the ability of the input generator. ∑ Invalid test192

rate (ITR) measures the percentage of responses where the ground-truth program fails, e.g., tests193

that have invalid inputs or incorrect assertions. ∏ True bug rate (TBR) measures the percentage of194

responses that correctly expose the bug, i.e., the ground-truth program passes the tests but the buggy195

program fails. This metric assesses the overall performance.196

For each input pair of problem and buggy program, we sample 8 responses and report the average197

performance of 8 runs. We follow the official settings to set the temperature at 0.6 and add a presence198

penalty of 1.5 [13]. The maximum generation length is set at 32,000.199

Baselines. We mainly compare with the baseline that generates input-output pairs for testing. For200

fair comparison, we conduct the same two-stage training as our method. Particularly, we use the same201

teacher model to generate an equal amount of SFT data, and we use the same reward in Eq. 1 for RL202

training. We additionally report the performance of directly prompting Qwen3-32B with both testing203

strategies. Finally, we compare with UTGen-32B [5], which also generates input-output pairs but is204

trained with only SFT without RL.205

5



Table 1: Performance on finding bugs (average of 8 runs). ⇤: The model and training set are not
released, so we compare with the number reported in the original paper. “-” means the corresponding
result is not available. Note that the results of Qwen3-32B come from the original model without any
fine-tuning.

MBPP+FIX (HARD) LIVECODEBENCH CODEFORCES
GI " ITR # TBR " GI " ITR # TBR " GI " ITR # TBR "

UTGen-32B⇤ [5] 56.1 – 34.7 – – – – – –
Qwen3-32B (Input/Output) 56.4 10.1 49.3 56.7 5.1 54.8 79.9 21.6 67.1
Qwen3-32B (Harness) 78.7 11.9 68.6 69.1 15.5 55.1 80.4 33.9 54.8

Qwen3-4B

SFT (Input/Output) 52.1 11.3 44.6 45.7 8.2 42.9 75.1 23.6 59.5
SFT (Harness) 78.1 17.7 62.9 60.4 23.7 42.1 82.5 46.9 46.0

RL (Input/Output) 82.5 13.9 72.7 68.4 9.9 65.1 89.8 21.0 72.2
RL (Harness) 84.4 13.0 74.1 79.1 9.5 69.9 91.8 19.1 74.4

Implementation Details. We demonstrate the effectiveness of our framework on Qwen3-4B and206

Llama3.2-3B. For SFT, we train all models for 15 epochs and select the best checkpoint based on the207

validation performance. For RL, we leverage the Verl training framework [45] and train all models208

for 500 steps with a batch size of 128. We sample 8 rollouts per query during training. Please see209

Appendix B.2 for detailed training hyperparameters. For the teacher model and SFT models, we210

observe that the number of test cases in each response significantly affects the performance (details211

in Appendix B.1), so we report the performance of the best number of test cases. For RL models, we212

allow the model to generate 1 to 20 test cases, and the model learns the optimal number of test cases213

through training.214

4.2 Main Results215

Ability to Find Bugs. Table 1 shows the performance of Qwen3-4B on finding bugs generated216

by models that have been seen during training. There are two observations from the table. First,217

our RL-trained model for test harness generation consistently outperforms the counterpart that218

generates input-output pairs. Specifically, it achieves better performance on all metrics across all219

benchmarks, demonstrating the benefits of test harness generation for both input generation and220

output verification. Second, both RL-trained small models surpass the 32B teacher models, which221

illustrates the effectiveness of our proposed two-stage training. Interestingly, although test harnesses222

initially underperform input-output generation on the teacher model and SFT models, our RL training223

unlocks their advantage and leads to better final performance. Appendix C shows the results on224

Llama3.2-3B, which suggest that our method has better generalizability than input-output testing.225

Table 2: Generalization to unseen models. The
buggy code is sampled from Qwen3-14B, which is
not seen during training.

LIVECODEBENCH CODEFORCES
GI " ITR # TBR " GI " ITR # TBR "

Qwen3-32B

I/O 25.0 8.3 23.0 43.2 20.1 31.5
Harness 36.8 20.4 22.4 61.6 36.3 32.3

Qwen3-4B

SFT (I/O) 19.4 12.4 17.3 35.7 25.4 23.1
SFT (Har) 34.1 34.5 16.3 59.1 45.2 25.3

RL (I/O) 37.0 15.9 33.3 53.0 36.2 32.4
RL (Har) 51.1 17.7 37.2 67.3 26.8 37.9

Generalizability to Unseen Models. We next226

evaluate our models’ ability to debug for mod-227

els that have never been seen during training.228

Specifically, we collect buggy programs gener-229

ated by Qwen3-14B. These buggy programs are230

different from those in Table 1 in two ways: ¨231

They are from an unseen model and thus may232

have different distributions for the bugs in the233

code. ≠ They are from a stronger model and234

pass more test cases, so they contain deeper235

logical bugs. Performance shown in Table 2236

illustrates similar observations as Table 1. Par-237

ticularly, our RL-trained test harness generators238

substantially outperform the model that gener-239

ates input-output pairs. Moreover, our method240

achieves larger improvements than Table 1. For instance, the relative improvement on CODEFORCES241

increases from 3.0% to 17.0%. The results show that our models can better generalize to unseen242

models. It also verifies that the improvements of our method are not overfitting to a particular243

distribution of bugs.244

6



Figure 4: True bug rate (TBR) and invalid test rate (ITR) as the number of test cases increases.

Scaling Number of Test Cases. So far, we have limited each response to at most 20 test cases. We245

next investigate if we can further improve the performance by increasing the number of test cases246

in each response. Specifically, we employ different strategies to scale up the number of test cases247

for baselines and our method. For the baseline that generates input-output pairs, we directly change248

the instruction to the LLM to ask it to generate more test cases. For our method, since many of the249

input generators use random functions to generate inputs, we simply run the input generators multiple250

times to get more test cases. Figure 4 shows the performance of the RL-trained models with respect251

to the number of test cases. As can be observed, when generating more test cases for the baseline252

method, the percentage of correctly identified bugs (TBR) drops significantly, and the amount of253

invalid tests (ITR) quickly increases, leading to a much worse performance. The observation confirms254

the limitations of hardcoded input-output pairs, since the probability of getting all test cases correct255

decays exponentially when the number of test cases increases. On the contrary, for our method that256

generates test harnesses, TBR consistently increases for three datasets and maintains the original257

value for the other two datasets, and ITR also demonstrates only a marginal increase. The results258

illustrate one of the benefits of programmatically verifying outputs: so long as the output checker is259

correct, we can easily generate more inputs to increase the test coverage and find more bugs,260

thus reliably improving the performance.261

Table 3: Best-of-8 performance on LIVE-
CODEBENCH where the code is selected based
on the execution results of the generated test cases.

Code Generator
Qwen3-4B Qwen3-14B Qwen3-32B

Original pass@1 52.60 60.23 63.53
RL (I/O) 60.12 65.40 67.45
RL (Harness) 60.70 66.57 69.50

Using Feedback for Test-time Scaling.262

Given the superior bug-finding performance263

of our model, we now explore whether it can264

be applied to improve code generation tasks265

through test-time scaling. Specifically, given266

a coding problem, we sample 8 candidate267

solutions from an LLM. We then feed each268

solution to the test case generator to generate269

corresponding test cases. We run all generated270

test cases on each candidate solution and select271

the solution that passes the most test cases as the final program. Table 3 shows the results on272

three code generators. As can be observed, scaling with both test case generators significantly273

improves the performance of the original LLM (original pass@1). Furthermore, our model with test274

harnesses outperforms the input-output testing, demonstrating its superior performance in judging275

code correctness. The results also confirm that our model’s improvements on finding bugs can be276

transformed into improvements on code generation.277

4.3 Additional Analyses278

Performance across Difficulty Levels. Section 4.2 reports aggregated performance across all279

problems in a dataset. We next investigate if the improvement of our method is consistent across280

problems with different difficulty levels. Figure 5 shows the detailed performance breakdown of the281

baseline and our method. Specifically, on LIVECODEBENCH, we use the original difficulty categories.282

On CODEFORCES, we split problems based on their ratings (HARD corresponds to problems with283

7



Figure 5: Performance across difficulty levels.
Figure 6: Distribution of testing strategies.

ratings greater than 2400 and MEDIUM corresponds to problems with ratings greater than 1800). As284

can be observed, while the performance of both methods degrades when problems become harder,285

our method better maintains the performance compared to the baseline. The results indicate that286

test harnesses can better generalize to difficult problems, verifying our motivation that input-output287

testing is limited for complex problems.288

Distribution of Testing Strategies. By programmatically generating inputs and validating outputs,289

test harnesses allow models to have broader strategies for debugging. For example, we identify290

two main ways models use to generate inputs, which are explicitly emphasized in our SFT data: ¨291

Hardcoded: models return a list of hardcoded inputs. ≠ Dynamic: models dynamically generates292

inputs with code (e.g., randomized inputs through random functions). Similarly, we identify three293

ways models employ to validate a captured output: ¨ Hardcoded: models compare the output with a294

hardcoded expected output. ≠ Compare reference: models implement a reference solution (e.g., a295

brute-force solution) and compare the output with that obtained from the reference solution. Æ Check296

invariant: models check if the output satisfies specific invariants such as the length and range.297

We prompt Qwen3-32B to classify the strategies used in each model response (details in Appendix298

B.3). Figure 6 shows the distributions of the input generator and the output verifier respectively.299

Specifically, we report input generator strategies for buggy programs that are mostly wrong (pass300

less than 25% of test cases), medium (pass 25% to 75% of test cases), and mostly correct (pass301

greater than 75% of test cases). As can be observed, when the buggy program is mostly wrong and302

has obvious bugs, the model generates more hardcoded inputs. When the buggy program is more303

correct and contains bugs hard to identify, the model generates more dynamic inputs to increase test304

coverage.305

Similarly, when the problem is easy, the model more often implements a reference solution for306

validation;2 and when the problem becomes difficult, the model generates more hardcoded expected307

outputs. The observations demonstrate that the model can adapt its testing strategies to specific308

problems. Figure 7 shows an example where the model combines multiple strategies for output309

validation.310

5 Conclusion311

We propose HarnessLLM, a pipeline for training LLMs for test harness generation. Through two-stage312

training of SFT followed by RLVR, we demonstrate that HarnessLLM outperforms its counterpart313

that generates input-output pairs. Additional experiments show that HarnessLLM exhibits better314

generalizability and benefits the code generation performance with test-time scaling.315

2An output verifier can use a combination of strategies, so the numbers do not add up to 100.

8



𝒒: You are given an integer array nums. Select a subarray of nums such that: (1) All elements in the subarray are unique. (2) The 
sum of the elements in the subarray is maximized. Return the maximum sum of such a subarray.

def generate_input_1():
"""Hardcoded test case"""

    return [{"nums": [-5,-3]}]

def generate_input_2():
"""Dynamically generates test cases"""
input_list = []
for _ in range(3):

length = random.randint(1, 10)
nums = [random.randint(-100, -1)

for _ in range(length)]
input_list.append({"nums": nums})

return input_list

def check_output(input: Dict[str, Any], output: Any):
"""Validates output for all cases"""

    nums = input["nums"]
if nums == [-5,-3]:

assert output == -3
    else:

all_negative = all(n < 0 for n in nums)
if all_negative:

expected = max(nums)
        assert output == expected

Figure 7: An example of model output that uses a combination of strategies for input generators and
output verifier.

References316

[1] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,317

Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul318

Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke319

Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad320

Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias321

Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex322

Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,323

William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,324

Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,325

Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech326

Zaremba. Evaluating large language models trained on code, 2021.327

[2] OpenAI. Openai o1 system card, 2024.328

[3] DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement329

learning, 2025.330

[4] Hongwei Li, Yuheng Tang, Shiqi Wang, and Wenbo Guo. Patchpilot: A cost-efficient software331

engineering agent with early attempts on formal verification. In Forty-second International332

Conference on Machine Learning, 2025.333

[5] Archiki Prasad, Elias Stengel-Eskin, Justin Chih-Yao Chen, Zaid Khan, and Mohit Bansal.334

Learning to generate unit tests for automated debugging, 2025.335

[6] Shiven Sinha, Shashwat Goel, Ponnurangam Kumaraguru, Jonas Geiping, Matthias Bethge,336

and Ameya Prabhu. Can language models falsify? evaluating algorithmic reasoning with337

counterexample creation, 2025.338

[7] Zhongmou He, Yee Man Choi, Kexun Zhang, Jiabao Ji, Junting Zhou, Dejia Xu, Ivan Bercovich,339

Aidan Zhang, and Lei Li. Hardtests: Synthesizing high-quality test cases for llm coding, 2025.340

[8] Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu341

Chen. Codet: Code generation with generated tests, 2022.342

[9] Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xiaotong Chen, and Wenhu Chen.343

Acecoder: Acing coder rl via automated test-case synthesis, 2025.344

[10] Zi Lin, Sheng Shen, Jingbo Shang, Jason Weston, and Yixin Nie. Learning to solve and verify:345

A self-play framework for code and test generation, 2025.346

[11] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-347

mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination348

9



free evaluation of large language models for code. In The Thirteenth International Conference349

on Learning Representations, 2025.350

[12] Guilherme Penedo, Anton Lozhkov, Hynek Kydlíček, Loubna Ben Allal, Edward Beeching,351

Agustín Piqueres Lajarín, Quentin Gallouédec, Nathan Habib, Lewis Tunstall, and Leandro von352

Werra. Codeforces. https://huggingface.co/datasets/open-r1/codeforces, 2025.353

[13] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,354

Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang,355

Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang,356

Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin357

Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin358

Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin,359

Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang360

Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng361

Zhou, and Zihan Qiu. Qwen3 technical report, 2025.362

[14] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,363

Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of364

mathematical reasoning in open language models, 2024.365

[15] Llama. The llama 3 herd of models, 2024.366

[16] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David367

Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis368

with large language models, 2021.369

[17] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,370

Collin Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge371

competence with apps. arXiv preprint arXiv:2105.09938, 2021.372

[18] TD Puspitasari, AA Kurniasari, and PSD Puspitasari. Analysis and testing using boundary373

value analysis methods for geographic information system. In IOP Conference Series: Earth374

and Environmental Science, volume 1168, page 012051. IOP Publishing, 2023.375

[19] István Forgács and Attila Kovács. Modern software testing techniques. Springer, 2024.376

[20] Xiujing Guo, Hiroyuki Okamura, and Tadashi Dohi. Optimal test case generation for boundary377

value analysis. Software Quality Journal, 32(2):543–566, 2024.378

[21] Stuart C Reid. An empirical analysis of equivalence partitioning, boundary value analysis and379

random testing. In Proceedings fourth international software metrics symposium, pages 64–73.380

IEEE, 1997.381

[22] Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen, and Xin382

Peng. No more manual tests? evaluating and improving chatgpt for unit test generation, 2024.383

[23] Yinghao Chen, Zehao Hu, Chen Zhi, Junxiao Han, Shuiguang Deng, and Jianwei Yin. Chatu-384

nitest: A framework for llm-based test generation, 2024.385

[24] Alexandru Guzu, Georgian Nicolae, Horia Cucu, and Corneliu Burileanu. Large language386

models for c test case generation: A comparative analysis. Electronics, 14(11):2284, 2025.387

[25] Weimin Xiong, Yiwen Guo, and Hao Chen. The program testing ability of large language388

models for code. arXiv preprint arXiv:2310.05727, 2023.389

[26] Yinjie Wang, Ling Yang, Ye Tian, Ke Shen, and Mengdi Wang. Co-evolving llm coder and unit390

tester via reinforcement learning. arXiv preprint arXiv:2506.03136, 2025.391

[27] Yuhan Cao, Zian Chen, Kun Quan, Ziliang Zhang, Yu Wang, Xiaoning Dong, Yeqi Feng,392

Guanzhong He, Jingcheng Huang, Jianhao Li, Yixuan Tan, Jiafu Tang, Yilin Tang, Junlei Wu,393

Qianyu Xiao, Can Zheng, Shouchen Zhou, Yuxiang Zhu, Yiming Huang, Tian Xie, and Tianxing394

He. Can llms generate reliable test case generators? a study on competition-level programming395

problems, 2025.396

10

https://huggingface.co/datasets/open-r1/codeforces


[28] Zihan Wang, Siyao Liu, Yang Sun, Hongyan Li, and Kai Shen. Codecontests+: High-quality397

test case generation for competitive programming, 2025.398

[29] Team Kimi. Kimi k1.5: Scaling reinforcement learning with llms, 2025.399

[30] Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,400

Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming401

Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze402

Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou,403

Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan404

Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025.405

[31] Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.406

Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. arXiv preprint407

arXiv: 2504.01296, 2025.408

[32] Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven C. H. Hoi. Coderl:409

Mastering code generation through pretrained models and deep reinforcement learning. arXiv410

preprint arXiv: 2207.01780, 2022.411

[33] Ahmed El-Kishky, Alexander Wei, Andre Saraiva, Borys Minaiev, Daniel Selsam, David412

Dohan, Francis Song, Hunter Lightman, Ignasi Clavera, Jakub Pachocki, et al. Competitive413

programming with large reasoning models. arXiv preprint arXiv:2502.06807, 2025.414

[34] Jiawei Liu and Lingming Zhang. Code-r1: Reproducing r1 for code with reliable rewards. 2025.415

[35] Kun Chu, Xufeng Zhao, Cornelius Weber, Mengdi Li, and Stefan Wermter. Accelerating416

reinforcement learning of robotic manipulations via feedback from large language models.417

arXiv preprint arXiv:2311.02379, 2023.418

[36] Jiabao Ji, Yongchao Chen, Yang Zhang, Ramana Rao Kompella, Chuchu Fan, Gaowen Liu, and419

Shiyu Chang. Collision- and reachability-aware multi-robot control with grounded llm planners.420

arXiv preprint arXiv: 2505.20573, 2025.421

[37] Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze422

Brahman, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya423

Malik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris424

Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh425

Hajishirzi. Tulu 3: Pushing frontiers in open language model post-training, 2025.426

[38] Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang427

Shi, Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion428

Stoica. Deepcoder: A fully open-source 14b coder at o3-mini level, 2025. Notion Blog.429

[39] Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin,430

and Ge Li. Taco: Topics in algorithmic code generation dataset, 2023.431

[40] Prime Intellect. Synthetic-1: Scaling distributed synthetic data generation for verified reasoning.432

https://www.primeintellect.ai/blog/synthetic-1, 2025.433

[41] Yunhui Xia, Wei Shen, Yan Wang, Jason Klein Liu, Huifeng Sun, Siyue Wu, Jian Hu, and434

Xiaolong Xu. Leetcodedataset: A temporal dataset for robust evaluation and efficient training435

of code llms, 2025.436

[42] MatrixStudio. Codeforces python submissions. https://huggingface.co/datasets/437

MatrixStudio/Codeforces-Python-Submissions, 2025.438

[43] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun439

Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men, Fei440

Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xuancheng441

Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024.442

[44] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and LINGMING ZHANG. Is your code443

generated by chatGPT really correct? rigorous evaluation of large language models for code444

generation. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.445

11

https://www.primeintellect.ai/blog/synthetic-1
https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions
https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions
https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions


[45] Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua446

Peng, Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. 2024.447

[46] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,448

Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas449

Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,450

Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony451

Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian452

Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut453

Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,454

Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,455

Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-456

qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng457

Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien458

Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation459

and fine-tuned chat models, 2023.460

[47] Kexun Zhang, Danqing Wang, Jingtao Xia, William Yang Wang, and Lei Li. Algo: Synthesizing461

algorithmic programs with llm-generated oracle verifiers, 2023.462

12



A Dataset Construction463

A.1 Training Data464

To train LLMs for test case generation, we collect data in the triplets of problem description q, buggy465

program f , and ground-truth program g. We consider Python programs in this paper. We source such466

triplets from existing coding datasets, including TACO [39], SYNTHETIC-1 [40], LeetCode [41],467

and Codeforces [42]. These datasets come with the problem description, a ground-truth program, and468

a list of ground-truth test cases. We use the following three steps to collect data:469

Table 4: Statistics of our training data.

Statistic
# triplets for RL 12,043
# unique problems for RL 7,748
# triplets for SFT 6,805
# unique problems for SFT 4,383
# responses for SFT 15,619

∂ Filter ground-truth programs: We run the given470

ground-truth program g on all test cases and only471

keep problems where g passes all test cases.472

∑ Generate buggy programs: We sample candidate473

programs from Qwen2.5-Coder 1.5B, 3B, 7B [43],474

and DeepSeek-R1-Distill-Qwen-1.5B [3]. We475

sample 8 programs from each model and run the476

programs on all ground-truth test cases. We only keep477

programs that pass at least one test case but not all test478

cases, resulting partially correct programs. If there479

are multiple candidates that satisfy the requirement,480

we use the two that pass the most test cases, which makes it harder to find bugs.481

∏ Decontamination: We decontaminate training data against all evaluation benchmarks based on the482

problem description.483

We use all collected data for RL training and a subset of data for SFT, ensuring that models see new484

data during RL training. Table 4 shows the statistics of our training set. Specifically, the dataset485

contains two types of problems: standard input/output problems that read from stdin and return to486

stdout, as well as functional problems that implement a function in Python. Since the number of487

functional problems is small, we create two versions for each functional problem where one contains488

a few example input-output pairs in the description, and the other does not.489

SFT Data. To collect SFT data, we use the rejection sampling technique [46]. Specifically, we490

prompt Qwen3-32B to generate 6 responses for each pair of description and buggy program. Figures 8491

and 9 show the prompt we use for input-output testing and test harnesses respectively. Particularly,492

for harness generation, we encourage the model to use diverse strategies to validate outputs, such493

as checking specific invariants and comparing with a brute-force solution, which is similar to the494

strategy used in prior works [47]. We run generated test cases on both ground-truth program g and495

buggy program f and only keep responses where g passes the test but f does not. We keep the496

amount of SFT data the same for input-output testing and harness testing.497

A.2 Evaluation Data498

Table 5: Statistics of evaluation datasets.

# data
MBPP+FIX (HARD) 141
LIVECODEBENCH SEEN 76
LIVECODEBENCH UNSEEN 93
CODEFORCES SEEN 100
CODEFORCES UNSEEN 84

We evaluate on three popular code generation499

datasets: MBPP+ [16, 44], LIVECODEBENCH [11],500

and CODEFORCES [12]. Although these datasets are501

designed for code generation tasks, we convert them502

into bug-find tasks following the procedure in Section503

A.1.504

Specifically, for LIVECODEBENCH, we use prob-505

lems from 2024/10 to 2025/4. For CODEFORCES, we506

use samples in the test split. For both datasets, we use507

correct public submissions as the ground-truth pro-508

gram, after rerunning and filtering the submissions509

on all test cases.510

For MBPP+, we directly use the split MBPP+FIX (HARD) in UTGen-32B [5], which is collected511

similar to the above procedure. Particularly, we notice the problem descriptions in MBPP+ are overly512

simplified and without clear input specifications (e.g., ‘Write a function to find the length of the513

13



Table 6: True bug rate (higher is better) of input-
output-based testing with Qwen3-32B when only
evaluating the first k generated test cases. We
use the SEEN version of LIVECODEBENCH and
CODEFORCES.

MBPP+ LIVECODEBENCH CODEFORCES

k = 1 49.3 54.8 67.1
k = 3 59.0 54.6 53.2
k = 5 57.4 53.6 42.5
k = 10 54.6 51.3 39.5

Table 7: True bug rate (higher is better) of test
harnesses with Qwen3-32B when only evaluating
the first k generated test cases. We use the SEEN
version of LIVECODEBENCH and CODEFORCES.

MBPP+ LIVECODEBENCH CODEFORCES

k = 3 66.6 48.5 57.9
k = 5 68.6 55.1 54.8
k = 10 67.7 53.8 48.6
k = 20 67.3 53.3 44.2

longest palindromic subsequence in the given string’, without specifying that input string should be514

non-empty). We thus use Qwen3-32B to add an input specification to the problem (detailed prompt515

in Figure 10). To make sure the ground-truth program g matches the description after modification,516

we further prompt Qwen3-32B to adapt the original g to the new description (detailed prompt in517

Figure 11). Finally, we filter the modified ground-truth programs and only keep those that pass the518

original ground-truth test cases.519

Table 5 lists the statistics of all evaluation benchmarks.520

B Implementation Details521

B.1 Number of Test Cases522

For the teacher model and SFT models, we observe that the number of test cases in a response523

significantly affects the final performance. For example, although we allow models to generate524

multiple test cases in each response, Tables 6 and 7 show that the performance of Qwen3-32B can525

vary significantly if we only evaluate the first k test cases. Both methods’ performance improves526

as we evaluate on less test cases, especially for input-output-based testing. This confirms with527

the observations in Figure 4, where the performance of input-output testing quickly drops when528

generating more test cases. Based on these results, for the teacher model and SFT models of input-529

output testing, we report the performance when k = 1. For test harnesses, we report the performance530

when k = 5.531

For the RL models, we observe that the models automatically find a good number of test cases to532

generate. For instance, the RL trained Qwen3-4B model for input-output testing generates 1.96 test533

cases in each response on average. Thus, we allow the model itself to determine the number of test534

cases, and we only restrict the maximum test cases at 20.535

B.2 Training Hyperparameters536
Table 8: Training hyperparame-
ters. The same hyperparameters
are used for all models.

SFT Training
# Epochs 15
Batch size 96
Learning rate 1e�5
LR scheduler cosine

RL Training
# Steps 500
Batch size 128
# Rollouts 8
Learning rate 1e�6
LR scheduler None
Max response length 16,384

We run all experiments on 16 NVIDIA H100 GPUs. The RL537

training for our model takes around 1,500 GPU hours. The RL538

training for the input-output baseline takes around 1,150 GPU539

hours. Table 8 lists the hyperparameters for SFT and RL training.540

Note that we use the same hyperparameters for all models.541

B.3 Classifying Testing Strategies542

We prompt Qwen3-32B to identify specific testing strategies used543

by our model. Specifically, given the generated harness code, we544

ask the model to identify strategies used in each input generator545

and output verifier. The detailed prompts are listed in Figures 12546

and 13.547

14



MBPP+FIX (HARD) LCB SEEN CF SEEN LCB UNSEEN CF UNSEEN
GI " ITR # TBR " GI " ITR # TBR " GI " ITR # TBR " GI " ITR # TBR " GI " ITR # TBR "

RL (I/O) 71.3 37.3 45.3 47.0 42.3 30.3 67.6 53.9 32.8 21.0 61.8 8.3 37.4 66.2 10.1
RL (Har) 77.9 37.3 42.6 76.5 33.9 31.4 81.4 43.8 29.9 59.9 39.9 17.7 73.4 43.3 21.6

Table 9: Performance of Llama3.2-3B on finding bugs (average of 8 runs). I/O: input-output testing.
Har: test harnesses.

C Additional Results548

Table 9 shows the performance when training on Llama3.2-3B model. As can be observed, our549

model for test harnesses achieves comparable performance with input-output testing on the SEEN550

version of the datasets. However, it significantly outperforms the input-output testing when evaluated551

on the UNSEEN version, e.g., a relative improvement over 110% in TBR on LIVECODEBENCH. The552

results indicate that input-output testing has the risk of overfitting to a particular distribution of bugs,553

whereas test harnesses has better generalizability.554

Given a problem statement and a Python program that aims to solve it, your
task is to **write test cases** that uncover any potential bugs.

### **Task Overview**

You should output a JSON object that contains a list of test cases for the
provided program. Each test case should include:
1. **input_str**: The exact text to feed into stdin.
2. **expected_output**: The exact text the program should print.

We will run each test by feeding �input_str� into the program and comparing
its stdout against �expected_output�.

### **Required Format**

���json
[
{
"input_str": "input 1",
"expected_output": "output 1"

},
{
"input_str": "input 2",
"expected_output": "output 2"

}
// ... up to 20 test cases total

]
���

### **Constraints**

* Generate **1−20** test cases.
* Don't include comments or extra fields in the JSON.
* Each input_str and expected_output must be a valid JSON string.

The problem is as follows:
{description}

And the program is as follows:
���python
{target_code}
���

555

Figure 8: Prompt used for input-output-based testing. Note that this prompt assumes the program
reads input from stdin.

15



Given a problem statement and a Python program that aims to solve it, your
task is to **write a test harness** that uncovers any potential bugs.

### **Task Overview**

You will deliver **a single** code block to define functions that can be run
by our framework to generate inputs, run the program, and validate its
outputs.
Consider two categories of test cases:
− **Hardcoded cases**: Manually crafted input−output pairs that expose known
or likely bugs.
− **Dynamic cases**: Programmatically generated inputs that stress−test the
implementation (e.g., randomized, combinatorial, large or edge−case inputs).

### **Required Functions**

���python
from typing import List

def generate_input_1() −> List[str]:
"""
Return between 1 and 4 valid input strings, each a complete stdin
payload for the target program.
Consider the following strategies:

− Manually craft inputs that expose bugs.
− Dynamically generate randomized, combinatorial, large, or edge−case
inputs for stress testing.

"""
# Your code here
return input_list

def generate_input_2() −> List[str]:
"""
Another function to return between 1 and 4 valid input strings.
Employ a different strategy than previous input generation functions.
"""
# Your code here
return input_list

# You may add up to 3 more functions named generate_input_3(),
generate_input_4(), etc.

def check_output(generated_input: str, captured_output: str) −> None:
"""
Validate the output for a single generated input.
Inputs:

− generated_input: The input string passed to the target program.
− captured_output: The exact stdout produced by the target program.

Hints: When exact outputs are hard to predict, avoid asserting them.
Instead, consider:

− Check key properties or invariants, e.g., output is sorted, has
correct length, matches a pattern, has correct value ranges, etc.
− Compare against a simple brute−force implementation

"""
# Your code here

���

### **Execution Flow**

1. The framework calls generate input functions to obtain a list of test
strings.
2. For each string:

* It runs the target program with that string on stdin.
* Captures stdout into �captured_output�.
* Calls �check_output(generated_input, captured_output)�.

3. If any assertion fails, the test suite reports an error.

556

16



### **Constraints**

* Provide one contiguous block of Python code that defines all required/
optional functions. Do not invoke the functions yourself−only define them.
* Define up to 5 input generation functions, each returning between 1 and 4
inputs.
* The dynamic input functions must employ diverse strategies to generate
inputs. Avoid generating inputs with the same logic or from the same
distribution.
* Runtime limit per check_output call: 5 seconds.

The problem is as follows:
{description}

And the program is as follows:
���python
{target_code}
���

557

Figure 9: Prompt used for test harnesses generation. Note that this prompt assumes the program reads
input from stdin.

17



Given the following coding problem and a corresponding solution, improve the
problem description by adding input specifications. Include details such as
:
− Valid input types (e.g. "integer", "string", "list of floats").
− Reasonable value ranges (e.g. "0 <= n <= 1000").
− Format constraints (e.g. "no empty strings", "no null/None values").

Do not change the original requirements or add example cases, just append
the specifications.

Problem:
{problem}

Code:
���python
{code}
���

558

Figure 10: Prompt used for adding input specifications on MBPP+.

Given the following coding problem and a corresponding solution, decide
whether the solution contains a bug or not. If yes, rewrite the code to fix
the bug. Remember to look for edge cases where the code fails to handle.

Problem:
{problem}

Code:
���python
{code}
���

Output your answer in the following format:
���python
fixed_code
���
where fixed_code is the rewritten code that fixes the bug. If the code is
correct, just return the original code without any changes.

559

Figure 11: Prompt used for adapting the ground-truth programs to the new descriptions on MBPP+.

18



Given the following code snippet for a test harness, determine the strategy
used in each �generate_input� function.

Code:
���python
{code}
���

Select from the following options:
− hardcoded: the function returns hardcoded inputs.
− dynamic: the function generates inputs dynamically, e.g., random sampling,
or combinatorial generation.

Think about the code step by step and then output your final answer in the
following format:
���json
<used strategies>
���
where <used strategies> is a list of the strategies used in each function.

Notes:
− The list should have the same length as the number of �generate_input�
functions in the code.
− If a function uses a combination of the above strategies, select the
dominant strategy.

560

Figure 12: Prompt used for identifying strategies in input generators.

Given the following code snippet for a test harness, determine the
strategies used in the �check_output� function.

Code:
���python
{code}
���

Select from the following options:
− reference implementation: the function compares the output with a
reference implementation, e.g., a brute−force solution, or a correct
implementation.
− invariant checking: the function checks whether the output satisfies
certain invariants or properties, e.g., whether the output is sorted, or
whether the output has valid types and lengths.
− hardcoded: the function compares the output with hardcoded expected
outputs.

Think about the code step by step and then output your final answer in the
following format:
���json
<used strategies>
���
where <used strategies> is a list of the strategies used in the function.

Notes:
− If the function uses a combination of the above strategies, return a list
containing all the strategies used, e.g., ["reference implementation", "
invariant checking"].
− If the function does not contain any of the above strategies, return an
empty list [].

561

Figure 13: Prompt used for identifying strategies in the output verifier.

19


	Introduction
	Related Works
	Methodology
	Problem Formulation
	Generating Test Harness for Debugging
	Improving Test Harness via RLVR
	Data Collection

	Experiments
	Experiment Setting
	Main Results
	Additional Analyses

	Conclusion
	Dataset Construction
	Training Data
	Evaluation Data

	Implementation Details
	Number of Test Cases
	Training Hyperparameters
	Classifying Testing Strategies

	Additional Results

