© ® N O o A~ W N =

N = o

HarnessLLM: Automatic Testing Harness Generation
via Reinforcement Learning

Anonymous Author(s)
Affiliation
Address

email

Abstract

Existing LLM-based automatic test generation methods mainly produce input and
expected output pairs to categorize the intended behavior of correct programs.
Although straightforward, these methods have limited diversity in generated tests
and cannot provide enough debugging information. We propose HarnessLLM, a
two-stage training pipeline that enables LLMs to write harness code for testing.
Particularly, LLMs generate code that synthesizes inputs and validates the observed
outputs, allowing complex test cases and flexible output validation such as invariant
checking. To achieve this, we train LLMs with SFT followed by RLVR with a
customized reward design. Experiments show that HarnessLLM outperforms input-
output-based testing in bug finding and testing strategy diversity. HarnessLLM
further benefits the code generation performance through test-time scaling with our
generated test cases as inference-phase validation.

1 Introduction

Large language models (LLMs) have demonstrated remarkable proficiency in code-related tasks,
including code generation, completion, and even resolving software engineering issues through tool
use [[1H4]. Compared to these code generation tasks, automatic testing and debugging Al-generated
programs have received comparatively little attention, even though comprehensive test suites are
critical for ensuring the correctness and robustness of the Al-generated code [5H7].

Existing works in automatic testing mainly prompt the model to directly generate input—output pairs
that characterize the intended behavior of the correct programs [5 8HI0]. As depicted in Figure[] the
model produces examples of inputs alongside their expected outputs, which are executed against the
target program. When the observed outputs diverge from expectations, a bug is exposed. Although
straightforward, input—output pair testings only give binary judgments of whether the program’s
result differs from the expected one; they offer no context of why the program makes mistakes, which
are critical for bug fixing. In addition, this strategy provides limited testing cases, making it difficult
to find non-trivial bugs lying deep in the program’s paths, especially for complex programs.

To address these limitations, we propose a novel debugging paradigm with richer context and more
diverse testing cases: LLM-based test harness generation. Instead of restricting the model to input-
output pairs, we prompt it to write executable code that @ synthesizes richly structured inputs, and
@ programmatically validates the corresponding outputs. As shown in Figure [1, for a program
that sorts a list of input integers, the LLM first writes an input generator, generate_input_1, to
generate random lists, which are fed to the target program for execution. The returned outputs are
then validated by an LLM-defined function, check_output, which checks that the result is sorted
and preserves the original integers. With programmatic input generation and output validation, testing
harnesses can support complex invariant checking and stress testing, enabling more comprehensive
testing and detection of deep logical bugs.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38
39
40
41
42
43
44
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68
69

70

71
72
73

A
. .. . Bu Input/Output ~ == Harness
q: Sort an input list in ascending order _</ >] X Bugey _
= Program LiveCodeBench Codeforces

(Input-output Testing |\ 722

-
=)

N

=

72 69.9
{"input":[1,5], "expected_output":[1,5]}, 68 671
;\3 65.1
{"input":[2], "expected_output":[2]} (:) > 64
\ J S 60 595
h
56
fde‘F generate_input_1(): @ § i =
return [random.randint(1, 100) @ 52
for _ in range(100) 48 60
] 44 429,51 I
40 L
def check_output(input_list, output_list): 328 SFT-4B RL-4B 328 SFT-4B RL-4B
input_count = Counter(input_list)
output_count = Counter(output_list) Figure 2: Percentage of found bugs (average of
assert Input_count == output_count €| 8 runs, higher is better) for two strategies with
for i, x in enumerate(output_list[:-1]): .
assert x <= output_list[i + 1] different models.

- J

Figure 1: Comparison between input-output
pairs (top) and test harness (bottom).

However, off-the-shelf LLMs struggle to write correct test harnesses. Our initial experiment com-
pares the bug-finding rates of the input—output strategy versus test harness generation on the LIVE-
CODEBENCH and CODEFORCES datasets [[11} [12]], using a strong reasoning model Qwen3-32B
[L3]. Surprisingly, direct prompting for test harnesses does not yield better bug finding capabilities
(Figure [2). We believe the gap arises from the different skills involved in testing harness versus
code generation. Debugging requires understanding the given program’s logic, control and data flow,
designing proper stress tests, and writing validation logic, while code generation is mainly about
writing code to fulfill the required functionality. Closing this gap will therefore require models with
specific reasoning abilities tailored to test-harness generation.

Motivated by this observation, we propose HarnessLLM, a two-stage training pipeline combining
supervised fine-tuning (SFT) with reinforcement learning (RL) with customized reward functions.
First, we collect SFT data by prompting Qwen3-32B and filtering for harnesses that successfully
expose a bug. We warm up a smaller model (e.g., Qwen3-4B) with SFT on collected data. The
purpose of this stage is to train the model to understand instructions, as well as provide a reasonable
starting point for reinforcement learning, which improves RL’s training efficiency. Second, we
further train the SFT model using RL with our customized verifiable outcome reward. Here, we
assume access to a ground-truth program during training. To encourage the model to generate valid
harnesses, we first give a zero reward to generated harnesses that trigger compilation or runtime
errors on the ground-truth program. Then, we design rewards to incentivize the model to generate
effective tests that crash the target programs. Specifically, a positive reward is assigned when the
ground-truth program can pass the generated tests but the target program fails, indicating that the test
harness correctly identifies bugs in the target program. We train the model to maximize the expected
total reward using the GRPO algorithm [14]. The RL training can further strengthen the model’s
capabilities to generate effective test harnesses, as well as improve the model’s generalizability.

We train on two base models (Qwen3-4B and L1ama3.2-3B [[15]) and evaluate on three benchmarks
containing buggy programs. Experiments show that our model outperforms all baselines, including
the off-the-shelf Qwen3-32B and another model that is also trained with RL but only generates input-
output pairs (Figure[2 presents an overview). Moreover, the learned harness generator generalizes
to code produced by unseen models and can be used for improving code generation performance.
Specifically, using the execution results of generated test cases to select the best out of 8 responses
improves Qwen3-32B’s performance from 63.5% to 69.5% on LIVECODEBENCH [11]. To the best
of our knowledge, HarnessLLLM is the first LLM-based testing harness generation that enables
comprehensive testing and benefits general code generations.

‘We summarize our contributions as follows:

* We propose harness-based automatic program testing, a new debugging paradigm with richer
context and more diverse testing cases beyond input-output checks.
* We design a pipeline with SFT and RL to train LLMs to write effective test harnesses.

74
75

77
78
79
80
81
82
83
84
85
86
87
88

89
90
91
92
93
94

95

96

97
98
99
100
101
102
103

104
105
106
107
108
109
110

111
112
113
114
115
116

117

118
119
120

» We trained specialized reasoning models using HarnessLLM, comparing their effectiveness
with SOTA LLMs, and demonstrating their utility in code generation.

2 Related Works

Automatic Test Case Synthesis. Test cases are crucial in evaluating code correctness. While many
established benchmarks rely on manually written test cases [[1} 116, |17], this process is labor-intensive
and does not scale well. To address this limitation, a variety of automatic test case synthesis methods
have been proposed. Traditional approaches leverage programming language techniques to explore
the input space and cover diverse execution paths [18-21]. Although these techniques improve input
coverage, they often fall short in capturing code semantic relationships and complex control flows,
which can lead to undetected failures during runtime. Recently, LLMs have been used to synthesize
test cases by prompting them to generate both inputs and expected outputs [22-28]]. Despite their
strong code understanding capabilities, LLMs still struggle to consistently generate correct outputs,
especially when the code is complex. In this work, we propose a novel paradigm that shifts from
output prediction to execution-based validation. Our HarnessLLM programmatically generates inputs
and validates outputs, expanding the design space of test cases.

Reinforcement Learning with Verifiable Rewards. Reinforcement learning has shown great
potential in improving LLLM abilities in many domains requiring heavy reasoning, such as math
problem solving [13} 14}, [29-31]], code generation [32H34], and robotic control [35,[36]]. In this work,
we use RL to improve LLMs’ test case generation abilities. By designing a customized reward that
judges whether the generated test cases can differentiate between correct and buggy programs, we
train LLMs to learn the reasoning skills required to write effective test cases.

3 Methodology

3.1 Problem Formulation

Formally, let q be the description of a programming problem with input space Z and output space
O. Denote f,g : T — O as two programs for this problem, where f is a potentially buggy
implementation that is under testing, and g is a ground-truth implementation for the problem. We
say f has logical bugs if for some x € Z, f(x) # g(x). In other words, x triggers the divergent
behaviors of the buggy and reference programs. Therefore, an automatic debugging method generally
contains two steps: generating inputs that can potentially trigger the bug and comparing the target
program’s output with the reference output.

However, in most real-world situations, the ground-truth implementation g is not available, which
necessitates an approximate verifier to validate the output of f. Denote this verifierasv : Z x O —
{0,1}, where v(z,y) = 1 indicates that output y on input = is deemed correct. Our goal in this
paper is to train an LLM for automatic debugging that, given g and f, emits both a set of inputs
{z;}¥, and a corresponding verifier v. Note that we mainly focus on finding logical bugs in a target
program, i.e., deviations from a program’s intended behavior, and leave security vulnerability to
future work.

Challenge of Input-Output Testing. The input-output testing can be considered as having a
simple verifier that compares the program’s output with the expected output. Specifically, the model
generates a set of pairs {(z;,9;)}Y.,, where ¥, is the expected output for input ;. The verifier is
then an indicator function v(x;, f(x;)) = 1(f(x;) = y;). However, this simple verifier requires the
model itself to come up with a correct expected output, which limits the complexity of test cases. In

the following, we propose a framework that generates test harnesses to address this challenge.

3.2 Generating Test Harness for Debugging

We propose instead that the LLM writes a test harness code that synthesizes inputs and programmati-
cally checks outputs. Having harnesses can help produce more diverse testing cases and provide more
valuable feedback when the program crashes. Specifically, our framework consists of three steps.

121
122
123

124

125
126
127
128
129

130
131

132

133
134
135

136
137
138
139
140
141
142

143
144
145
146

147
148
149
150
151
152
153
154
155

1
: Filtering: !
' f fail and g pass SFT data i

Figure 3: Overview of our training pipeline.

Step 1: Generate Input. The model implements a set of input generators, e.g.,
generate_input_1(), each returning a list of inputs for the program. By leveraging loops or
random functions, the LLM can craft rich test inputs, which would be difficult to get if hardcoding.

Step 2: Execute. Each generated input is fed to the program f, and the resulting output is captured.

Step 3: Validate Output. A model-implemented function check_output (input,output) is used
to validate the correctness of each captured output. The model can use various ways for validation,
such as checking specific invariants or comparing with output from a brute-force implementation.
This output checker uses assertions to check correctness, and a bug is reported if the assertions fail
for any pair of generated input and captured output.

Figure[7 shows a complete example of model generation for this process, and Figure [shows the
detailed prompt we use.

3.3 Improving Test Harness via RLVR

Despite the promise, we found off-the-shelf LLMs struggle to generate effective harnesses. To
remedy this, we design a two-stage training pipeline to improve their performance. Figure [3|depicts
an overview of our pipeline.

Stage 1: SFT Warm-Up. We prompt Qwen3-32B to generate test harnesses as described in Section
[3.2] The model response contains a long reasoning chain and a final code block. We execute the
harnesses against both the target program f and the ground-truth program g and retain only responses
for which g passes but f fails. We then fine-tune a smaller model (e.g., Quen3-4B) with SFT on
the filtered dataset. The SFT model has a basic understanding and skills for test harness generation.
Using it as an initialization for RL can improve the learning efficiency of RL, as the early training
stage can receive some meaningful positive rewards.

Stage 2: RL with Verifiable Outcome Reward. To further improve the generalizability of the
warmed-up model, we follow recent works to train the model with RL against a verifiable outcome
reward [3,37]. Specifically, for each rollout o the model generates, let {z; }}, be the corresponding
inputs, we define the following reward function based on the execution results on f and g:

1, if g passes and f fails;

r(o; f,9) =40.1, ifg faild’br f passes, and Jx; : f(x;) # g(x;);)
0, otherwise

In other words, a reward of 1 is given only when the ground-truth program can pass the test, but not

the buggy program, indicating a correct test case. Otherwise, if all inputs are valid (i.e., they do not
trigger runtime errors on g) and at least one input can trigger different outputs for f and g, we assign
a partial reward of 0.1, which encourages the model to generate bug-exposing inputs. Note that in this
case, the input generators work well, but the output verifier generates ineffective assertions, which
either fail the correct code g or do not crash the buggy code f. Nevertheless, we still assign a partial
reward to incentivize the model to generate good inputs. Finally, a reward of 0 is given when no input
can expose the bug. Importantly, the requirement that g has to pass the generated test cases reduces
false rejection of correct programs. We maximize the expected reward using GRPO.

! Assertion errors in output verifier. All inputs still need to be valid, i.e., do not trigger runtime errors on g.

156

157
158
159
160
161
162

163
164
165
166
167
168
169

170
171
172

173

174
175

176
177

178

179
180
181
182
183
184

186
187
188

189
190
191
192

194
195
196

197
198
199

200
201
202

204
205

3.4 Data Collection

Both training stages in Section [3.3|require data in the format of a problem description g, a buggy
implementation f, and a ground-truth implementation g. To collect such data, we follow prior works
[38] to source from existing datasets of coding problems, including TACO [39], SYNTHETIC-1 [40],
LeetCode [41], and Codeforces [42]. The original solution in the datasets is used as ground-truth
program g, after an additional round of filtering to make sure g passes all provided test cases of the
problem.

To collect the buggy programs f, we prompt a series of LLMs to solve the problem, including
Qwen2.5-Coder 1.5-7B [43] and DeepSeek-R1-Distill-Qwen-1.5B [3]]. We only keep programs
that satisfy both of the following conditions: @ The program passes the demo test cases in the problem
description; and @ The program fails on at least one test case of the problem. This makes sure the
retained programs are partially correct but still have bugs. We retain at most two buggy programs
per problem and select the two that pass the most test cases if multiple programs satisfy the two
conditions.

After decontamination against all evaluation data in Section the resulting training set contains
12,043 unique (q, f, g) triplets. We use all samples for RL training and a subset of 6,805 samples to
generate SFT data. Appendix details the procedure for our data collection process.

4 Experiments

We conduct experiments to verify the effectiveness of our framework. Specifically, we aim to answer
two questions:

* Does our two-stage training pipeline enhance models’ ability to write test harnesses?
* Does harness-based testing outperform input-output testing in identifying bugs?

4.1 Experiment Setting

Evaluation Benchmarks. We evaluate on three widely used code generation datasets: MBPP+
[L6l 144], LIVECODEBENCH [11], and CODEFORCES [12]. We repurpose these datasets for the
bug detection task by collecting triplets of problem description, buggy program, and ground-truth
program. For MBPP+, we directly use the split MBPP+F1xX (HARD) in UTGen-32B [5)]. For
L1vECODEBENCH and CODEFORCES, we follow the procedure described in Section Par-
ticularly, we create two dataset variants: @ SEEN version contains buggy programs generated by
DeepSeek-R1-Distill-Qwen-1.5B, which is also used to generate our training data. & UNSEEN
version contains buggy programs generated by Qwen3-14B, which is never seen during training, and
evaluates the generalizability of our models to different code generators. Please see Appendix [A.2 for
details of evaluation data.

Metrics. Each model response contains multiple test cases. Three metrics are reported based on
the execution results of generated test cases on the buggy and ground-truth programs. @ Good
input (GI) calculates the percentage of responses that have at least one bug-exposing input, i.e.,
Jx; : f(x;) # g(x;). This metric purely measures the ability of the input generator. @ Invalid test
rate (ITR) measures the percentage of responses where the ground-truth program fails, e.g., tests
that have invalid inputs or incorrect assertions. ® True bug rate (TBR) measures the percentage of
responses that correctly expose the bug, i.e., the ground-truth program passes the tests but the buggy
program fails. This metric assesses the overall performance.

For each input pair of problem and buggy program, we sample 8 responses and report the average
performance of 8 runs. We follow the official settings to set the temperature at 0.6 and add a presence
penalty of 1.5 [13]]. The maximum generation length is set at 32,000.

Baselines. We mainly compare with the baseline that generates input-output pairs for testing. For
fair comparison, we conduct the same two-stage training as our method. Particularly, we use the same
teacher model to generate an equal amount of SFT data, and we use the same reward in Eq. [T|for RL
training. We additionally report the performance of directly prompting Qwen3-32B with both testing
strategies. Finally, we compare with UTGen-32B 3], which also generates input-output pairs but is
trained with only SFT without RL.

206
207

209
210
211
212
213
214

215

216
217
218
219
220
221
222
223
224
225

244

Table 1: Performance on finding bugs (average of 8 runs). *: The model and training set are not
released, so we compare with the number reported in the original paper. “-” means the corresponding
result is not available. Note that the results of Qwen3-32B come from the original model without any
fine-tuning.

MBPP+Fi1x (HARD) LIVECODEBENCH CODEFORCES

GItT ITR] TBRT | GIT ITR), TBR7 | GIT ITR] TBR?Y
UTGen-32B* [5] 56.1 - 34.7 - - - - - -
Qwen3-32B (Input/Output) | 564 10.1 49.3 56.7 5.1 54.8 799 216 67.1
Qwen3-32B (Harness) 78.7 119 68.6 69.1 15.5 55.1 804 339 54.8

Qwen3-4B

SFT (Input/Output) 521 113 44.6 45.7 8.2 429 75.1 23.6 59.5
SFT (Harness) 78.1 17.7 62.9 604 237 42.1 825 469 46.0
RL (Input/Output) 82,5 139 72.7 68.4 9.9 65.1 89.8 21.0 722
RL (Harness) 844 13.0 74.1 79.1 9.5 69.9 91.8 19.1 74.4

Implementation Details. We demonstrate the effectiveness of our framework on Qwen3-4B and
Llama3.2-3B. For SFT, we train all models for 15 epochs and select the best checkpoint based on the
validation performance. For RL, we leverage the Verl training framework [45] and train all models
for 500 steps with a batch size of 128. We sample 8 rollouts per query during training. Please see
Appendix [B.2 for detailed training hyperparameters. For the teacher model and SFT models, we
observe that the number of test cases in each response significantly affects the performance (details
in Appendix [B.)), so we report the performance of the best number of test cases. For RL models, we
allow the model to generate 1 to 20 test cases, and the model learns the optimal number of test cases
through training.

4.2 Main Results

Ability to Find Bugs. Table|l shows the performance of Quen3-4B on finding bugs generated
by models that have been seen during training. There are two observations from the table. First,
our RL-trained model for test harness generation consistently outperforms the counterpart that
generates input-output pairs. Specifically, it achieves better performance on all metrics across all
benchmarks, demonstrating the benefits of test harness generation for both input generation and
output verification. Second, both RL-trained small models surpass the 32B teacher models, which
illustrates the effectiveness of our proposed two-stage training. Interestingly, although test harnesses
initially underperform input-output generation on the teacher model and SFT models, our RL training
unlocks their advantage and leads to better final performance. Appendix [C|shows the results on
Llama3.2-3B, which suggest that our method has better generalizability than input-output testing.

Generalizability to Unseen Models. We next Table 2: Generalization to unseen models. The

evaluate our models’ ability to debug for mod- buggy code is sampled from Qwen3-14B, which is
els that have never been seen during training. pot seen during training.

Specifically, we collect buggy programs gener-
ated by Qwen3-14B. These buggy programs are L1VECODEBENCH CODEFORCES
different from those in Table|l in two ways: @ ‘ GIT ITRJ TBRT|GIT ITRy TBRYT
They are from an unseen model and thus may Quen3-32B

have different distributions for the bugs in the I/0 ‘ 250 83 230 ‘ 432 201 315
code. @ They are from a stronger model and ~_farmess | 368 204 224 | 616 363 323
pass more test cases, so they contain deeper Uwen3-4B

logical bugs. Performance shown in Table Z ~ SFT (I/0) | 194 124 173 ‘ 357 254 231
illustrates similar observations as Table[[, Par- -~ (ar) | 341 345 163 |91 452 253
ticularly, our RL-trained test harness generators glﬂ EII{QS; ‘ g;;(l) }gfg gg; ‘ Z;g ;2;; gg;g
substantially outperform the model that gener-

ates input-output pairs. Moreover, our method

achieves larger improvements than Table[I] For instance, the relative improvement on CODEFORCES
increases from 3.0% to 17.0%. The results show that our models can better generalize to unseen
models. It also verifies that the improvements of our method are not overfitting to a particular
distribution of bugs.

245
246
247
248
249
250
251
252
253
254
255
256
257
258

260
261

262
263
264
265
266
267

269
270
271
272
273
274
275
276
277

278

279
280
281
282
283

MBPP+Fix LiveCodeBench Seen LiveCodeBench Unseen Codeforces Seen Codeforces Unseen
75 °

o—o—o 75 o —o—o e o—o—o 40 o —e—o

o— ./
70 70 -/ a0 / 70
« « « L « « 35
o
« 65 Z 65 Z 35 & 65 «
= = = = 30
60 T Harness 60 60
Input/Output 30
55 25
22 23 24 25 26 21 22 23 24 25 21 22 23 24 28 21 22 23 24 28 21 22 23 24 25
Test Cases # Test Cases # Test Cases # Test Cases # Test Cases
MBPP+Fix LiveCodeBench Seen LiveCodeBench Unseen Codeforces Seen Codeforces Unseen
30 35 40
25 30 50
25 35
- - 20 - - -
-4 o< x 25 x 30 x 40
E 20 E E = =
15 ——8 25
20 -
o 30 —e—e
15 o o—o—a 10 e 5 * 20 o —a—te—e — T
22 23 24 25 26 21 22 23 24 25 21 22 23 24 5 21 22 23 24 25 21 22 23 24 25
Test Cases # Test Cases # Test Cases # Test Cases # Test Cases

Figure 4: True bug rate (TBR) and invalid test rate (ITR) as the number of test cases increases.

Scaling Number of Test Cases. So far, we have limited each response to at most 20 test cases. We
next investigate if we can further improve the performance by increasing the number of test cases
in each response. Specifically, we employ different strategies to scale up the number of test cases
for baselines and our method. For the baseline that generates input-output pairs, we directly change
the instruction to the LLM to ask it to generate more test cases. For our method, since many of the
input generators use random functions to generate inputs, we simply run the input generators multiple
times to get more test cases. Figure] shows the performance of the RL-trained models with respect
to the number of test cases. As can be observed, when generating more test cases for the baseline
method, the percentage of correctly identified bugs (TBR) drops significantly, and the amount of
invalid tests (ITR) quickly increases, leading to a much worse performance. The observation confirms
the limitations of hardcoded input-output pairs, since the probability of getting all test cases correct
decays exponentially when the number of test cases increases. On the contrary, for our method that
generates test harnesses, TBR consistently increases for three datasets and maintains the original
value for the other two datasets, and ITR also demonstrates only a marginal increase. The results
illustrate one of the benefits of programmatically verifying outputs: so long as the output checker is
correct, we can easily generate more inputs to increase the test coverage and find more bugs,
thus reliably improving the performance.

Using Feedback for Test-time Scaling. Table 3: Best-of-8 performance on LIVE-
Given the superior bug-finding performance CoODEBENCH where the code is selected based

of our rpodel, we now explore whether it can on the execution results of the generated test cases.
be applied to improve code generation tasks

through test-time scaling. Specifically, given ‘ Code Generator
a coding problem, we sample 8 candidate Qwen3-4B Qwen3-14B Qwen3-32B

solutions from an LLM. We then feed each Original pass@1 52.60 60.23 63.53
solution to the test case generator to generate ~ RL (1/0) 60.12 65.40 67.45
RL (Harness) 60.70 66.57 69.50

corresponding test cases. We run all generated
test cases on each candidate solution and select
the solution that passes the most test cases as the final program. Table [3 shows the results on
three code generators. As can be observed, scaling with both test case generators significantly
improves the performance of the original LLM (original pass@1). Furthermore, our model with test
harnesses outperforms the input-output testing, demonstrating its superior performance in judging
code correctness. The results also confirm that our model’s improvements on finding bugs can be
transformed into improvements on code generation.

4.3 Additional Analyses

Performance across Difficulty Levels. Section [4.2] reports aggregated performance across all
problems in a dataset. We next investigate if the improvement of our method is consistent across
problems with different difficulty levels. Figure [5]shows the detailed performance breakdown of the
baseline and our method. Specifically, on LIVECODEBENCH, we use the original difficulty categories.
On CODEFORCES, we split problems based on their ratings (HARD corresponds to problems with

284
285

287
288

289
290
291
292

294
295
296
297

298
299
300
301
302
303
304
305

306
307
308
309
310

311

312
313
314
315

Input Generator Split by Buggy Code Quality

—e— Harness Input/Output
. A) 56.20 56.31
LiveCodeBench LiveCodeBench 2 53.19
S

80 80 eX $ 50 26.81
- o, - % 43.80 43.69
e 60 | N\ - . 2 —
& 60 \ © 60 —l 40)
= — Mostly Wrong Medium Mostly Correct

40 Hardcoded = Dynamic

Basy ~Medium Hard Basy Medium Hard Output Checker Split by Problem Difficulty
. 61.14
Codeforces Codeforces L 60 54.92
a o. g 45.49
_ 60 _ 80 \ @ 40 3429 39.09
« -— o = 27.25 25.91

o4 _ &L 21.76
= s 9970 20

50 Easy Medium Hard

Hardcoded mmm Compare reference Check invariant
Easy Medium Hard Easy Medium Hard

. . Fi 6: Distributi f testi trategies.
Figure 5: Performance across difficulty levels. 1gure 1stribution ot festing strategies

ratings greater than 2400 and MEDIUM corresponds to problems with ratings greater than 1800). As
can be observed, while the performance of both methods degrades when problems become harder,
our method better maintains the performance compared to the baseline. The results indicate that
test harnesses can better generalize to difficult problems, verifying our motivation that input-output
testing is limited for complex problems.

Distribution of Testing Strategies. By programmatically generating inputs and validating outputs,
test harnesses allow models to have broader strategies for debugging. For example, we identify
two main ways models use to generate inputs, which are explicitly emphasized in our SFT data: ®
Hardcoded: models return a list of hardcoded inputs. @ Dynamic: models dynamically generates
inputs with code (e.g., randomized inputs through random functions). Similarly, we identify three
ways models employ to validate a captured output: © Hardcoded: models compare the output with a
hardcoded expected output. @ Compare reference: models implement a reference solution (e.g., a
brute-force solution) and compare the output with that obtained from the reference solution. ® Check
invariant: models check if the output satisfies specific invariants such as the length and range.

We prompt Qwen3-32B to classify the strategies used in each model response (details in Appendix
[B.3). Figure[6 shows the distributions of the input generator and the output verifier respectively.
Specifically, we report input generator strategies for buggy programs that are mostly wrong (pass
less than 25% of test cases), medium (pass 25% to 75% of test cases), and mostly correct (pass
greater than 75% of test cases). As can be observed, when the buggy program is mostly wrong and
has obvious bugs, the model generates more hardcoded inputs. When the buggy program is more
correct and contains bugs hard to identify, the model generates more dynamic inputs to increase test
coverage.

Similarly, when the problem is easy, the model more often implements a reference solution for
Validation and when the problem becomes difficult, the model generates more hardcoded expected
outputs. The observations demonstrate that the model can adapt its testing strategies to specific
problems. Figure[7 shows an example where the model combines multiple strategies for output
validation.

5 Conclusion

We propose HarnessLLLM, a pipeline for training LLMs for test harness generation. Through two-stage
training of SFT followed by RLVR, we demonstrate that HarnessLLM outperforms its counterpart
that generates input-output pairs. Additional experiments show that HarnessLLLM exhibits better
generalizability and benefits the code generation performance with test-time scaling.

2An output verifier can use a combination of strategies, so the numbers do not add up to 100.

3

6

317
318
319
320
321
322
323
324
325
326
327

329
330

331
332
333

335

336
337
338

339
340

341
342

343
344

345
346

347
348

Vs

N

[

q: You are given an integer array nums. Select a subarray of nums such that: (1) All elements in the subarray are unique. (2) The
sum of the elements in the subarray is maximized. Return the maximum sum of such a subarray.

d

d

ef generate_input_1()
"""Hardcoded test case"""
return [{"nums": [-5,-3]}]

def check_output(input: Dict[str, Any], output: Any):
"""Validates output for all cases"""
nums = input["nums"]
if nums == [-5,-3]:
assert output == -3
else:
all_negative = all(n < @ for n in nums)
if all_negative:
expected = max(nums)
assert output == expected

ef generate_input_2():
"""Dynamically generates test cases"""
input_list = []
for _ in range(3):
length = random.randint(1, 10)
nums = [random.randint(-100, -1)
for _ in range(length)]
input_list.append({"nums": nums})
return input_list

J

Figure 7: An example of model output that uses a combination of strategies for input generators and
output verifier.

References

[1] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,

(2]
(3]

(4]

(5]

(6]

(71

(8]

(9]

Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code, 2021.

OpenAl. Openai ol system card, 2024.

DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement
learning, 2025.

Hongwei Li, Yuheng Tang, Shiqi Wang, and Wenbo Guo. Patchpilot: A cost-efficient software
engineering agent with early attempts on formal verification. In Forty-second International
Conference on Machine Learning, 2025.

Archiki Prasad, Elias Stengel-Eskin, Justin Chih-Yao Chen, Zaid Khan, and Mohit Bansal.
Learning to generate unit tests for automated debugging, 2025.

Shiven Sinha, Shashwat Goel, Ponnurangam Kumaraguru, Jonas Geiping, Matthias Bethge,
and Ameya Prabhu. Can language models falsify? evaluating algorithmic reasoning with
counterexample creation, 2025.

Zhongmou He, Yee Man Choi, Kexun Zhang, Jiabao Ji, Junting Zhou, Dejia Xu, Ivan Bercovich,
Aidan Zhang, and Lei Li. Hardtests: Synthesizing high-quality test cases for llm coding, 2025.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. Codet: Code generation with generated tests, 2022.

Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xiaotong Chen, and Wenhu Chen.
Acecoder: Acing coder rl via automated test-case synthesis, 2025.

[10] Zi Lin, Sheng Shen, Jingbo Shang, Jason Weston, and Yixin Nie. Learning to solve and verify:

A self-play framework for code and test generation, 2025.

[11] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-

mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination

349
350

351
352
353

354
355
356
357
358
359
360
361
362

363
364
365

366

367
368
369

370
371
372

373
374
375

376

377
378

379
380
381

382
383

385

386
387

388
389

390
391

392
393

395
396

free evaluation of large language models for code. In The Thirteenth International Conference
on Learning Representations, 2025.

[12] Guilherme Penedo, Anton Lozhkov, Hynek Kydlicek, Loubna Ben Allal, Edward Beeching,
Agustin Piqueres Lajarin, Quentin Gallouédec, Nathan Habib, Lewis Tunstall, and Leandro von
Werra. Codeforces. https://huggingface.co/datasets/open-ri1/codeforces, 2025.

[13] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang,
Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin
Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin
Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin,
Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng
Zhou, and Zihan Qiu. Qwen3 technical report, 2025.

[14] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024.

[15] Llama. The llama 3 herd of models, 2024.

[16] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis
with large language models, 2021.

[17] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,
Collin Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge
competence with apps. arXiv preprint arXiv:2105.09938, 2021.

[18] TD Puspitasari, AA Kurniasari, and PSD Puspitasari. Analysis and testing using boundary
value analysis methods for geographic information system. In JOP Conference Series: Earth
and Environmental Science, volume 1168, page 012051. IOP Publishing, 2023.

[19] Istvan Forgics and Attila Kovécs. Modern software testing techniques. Springer, 2024.

[20] Xiujing Guo, Hiroyuki Okamura, and Tadashi Dohi. Optimal test case generation for boundary
value analysis. Software Quality Journal, 32(2):543-566, 2024.

[21] Stuart C Reid. An empirical analysis of equivalence partitioning, boundary value analysis and

random testing. In Proceedings fourth international software metrics symposium, pages 64-73.
IEEE, 1997.

[22] Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen, and Xin
Peng. No more manual tests? evaluating and improving chatgpt for unit test generation, 2024.

[23] Yinghao Chen, Zehao Hu, Chen Zhi, Junxiao Han, Shuiguang Deng, and Jianwei Yin. Chatu-
nitest: A framework for llm-based test generation, 2024.

[24] Alexandru Guzu, Georgian Nicolae, Horia Cucu, and Corneliu Burileanu. Large language
models for c test case generation: A comparative analysis. Electronics, 14(11):2284, 2025.

[25] Weimin Xiong, Yiwen Guo, and Hao Chen. The program testing ability of large language
models for code. arXiv preprint arXiv:2310.05727, 2023.

[26] Yinjie Wang, Ling Yang, Ye Tian, Ke Shen, and Mengdi Wang. Co-evolving 1lm coder and unit
tester via reinforcement learning. arXiv preprint arXiv:2506.03136, 2025.

[27] Yuhan Cao, Zian Chen, Kun Quan, Ziliang Zhang, Yu Wang, Xiaoning Dong, Yeqi Feng,
Guanzhong He, Jingcheng Huang, Jianhao Li, Yixuan Tan, Jiafu Tang, Yilin Tang, Junlei Wu,
Qianyu Xiao, Can Zheng, Shouchen Zhou, Yuxiang Zhu, Yiming Huang, Tian Xie, and Tianxing
He. Can llms generate reliable test case generators? a study on competition-level programming
problems, 2025.

10

https://huggingface.co/datasets/open-r1/codeforces

397
398

399

400
401
402
403
404
405

406
407
408

409
410
411

412
413
414

415

416
417
418

419
420
421

422
423
424
425
426

427
428
429

430
431

432
433

434

436

437
438

439
440
441
442

443
444
445

[28] Zihan Wang, Siyao Liu, Yang Sun, Hongyan Li, and Kai Shen. Codecontests+: High-quality
test case generation for competitive programming, 2025.

[29] Team Kimi. Kimi k1.5: Scaling reinforcement learning with llms, 2025.

[30] Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming
Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze
Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou,
Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan
Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025.

[31] Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of 1lms via reinforcement learning. arXiv preprint
arXiv: 2504.01296, 2025.

[32] Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven C. H. Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. arXiv
preprint arXiv: 2207.01780, 2022.

[33] Ahmed El-Kishky, Alexander Wei, Andre Saraiva, Borys Minaiev, Daniel Selsam, David
Dohan, Francis Song, Hunter Lightman, Ignasi Clavera, Jakub Pachocki, et al. Competitive
programming with large reasoning models. arXiv preprint arXiv:2502.06807, 2025.

[34] Jiawei Liu and Lingming Zhang. Code-rl: Reproducing r1 for code with reliable rewards. 2025.

[35] Kun Chu, Xufeng Zhao, Cornelius Weber, Mengdi Li, and Stefan Wermter. Accelerating
reinforcement learning of robotic manipulations via feedback from large language models.
arXiv preprint arXiv:2311.02379, 2023.

[36] Jiabao Ji, Yongchao Chen, Yang Zhang, Ramana Rao Kompella, Chuchu Fan, Gaowen Liu, and
Shiyu Chang. Collision- and reachability-aware multi-robot control with grounded Ilm planners.
arXiv preprint arXiv: 2505.20573, 2025.

[37] Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze
Brahman, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya
Malik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris
Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh
Hajishirzi. Tulu 3: Pushing frontiers in open language model post-training, 2025.

[38] Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang
Shi, Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion
Stoica. Deepcoder: A fully open-source 14b coder at 03-mini level, 2025. Notion Blog.

[39] Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin,
and Ge Li. Taco: Topics in algorithmic code generation dataset, 2023.

[40] Prime Intellect. Synthetic-1: Scaling distributed synthetic data generation for verified reasoning.
https://www.primeintellect.ai/blog/synthetic-1, 2025.

[41] Yunhui Xia, Wei Shen, Yan Wang, Jason Klein Liu, Huifeng Sun, Siyue Wu, Jian Hu, and
Xiaolong Xu. Leetcodedataset: A temporal dataset for robust evaluation and efficient training
of code 1lms, 2025.

[42] MatrixStudio. Codeforces python submissions. https://huggingface.co/datasets/
MatrixStudio/Codeforces-Python-Submissions, 2025.

[43] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men, Fei
Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xuancheng
Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024.

[44] Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and LINGMING ZHANG. Is your code
generated by chatGPT really correct? rigorous evaluation of large language models for code
generation. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

11

https://www.primeintellect.ai/blog/synthetic-1
https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions
https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions
https://huggingface.co/datasets/MatrixStudio/Codeforces-Python-Submissions

446
447

448
449
450
451
452
453
454
455
456
457

459
460

461
462

[45]

[46]

[47]

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua
Peng, Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models, 2023.

Kexun Zhang, Danqing Wang, Jingtao Xia, William Yang Wang, and Lei Li. Algo: Synthesizing
algorithmic programs with llm-generated oracle verifiers, 2023.

12

463

464

465
466
467
468

470
471
472

473
474
475
476
477
478
479

481

482

484
485

487
488
489

490
491
492
493
494
495

497

498

500
501
502
503
504

505
506
507

509
510

511
512
513

A Dataset Construction

A.1 Training Data

To train LLMs for test case generation, we collect data in the triplets of problem description g, buggy
program f, and ground-truth program g. We consider Python programs in this paper. We source such
triplets from existing coding datasets, including TACO [39], SYNTHETIC-1 [40], LeetCode [41]],
and Codeforces [42]]. These datasets come with the problem description, a ground-truth program, and
a list of ground-truth test cases. We use the following three steps to collect data:

® Filter ground-truth programs: We run the given Table 4: Statistics of our training data.
ground-truth program g on all test cases and only

keep problems where g passes all test cases. Statistic
0 Generate buggy programs: We sample candidate # triplets for RL 12.043

programs from Qwen2.5-Coder 1.5B, 3B, 7B [43],

and DeepSeek-R1-Distill-Quen-1.58 [3]. We ' unique problemsforRL 7,748

sample 8 programs from each model and run the # triplets for SFT 6,805
programs on all ground-truth test cases. We only keep # unique problems for SFT 4,383
responses for SFT 15,619

programs that pass at least one test case but not all test
cases, resulting partially correct programs. If there
are multiple candidates that satisfy the requirement,
we use the two that pass the most test cases, which makes it harder to find bugs.

® Decontamination: We decontaminate training data against all evaluation benchmarks based on the
problem description.

We use all collected data for RL training and a subset of data for SFT, ensuring that models see new
data during RL training. Table i shows the statistics of our training set. Specifically, the dataset
contains two types of problems: standard input/output problems that read from stdin and return to
stdout, as well as functional problems that implement a function in Python. Since the number of
functional problems is small, we create two versions for each functional problem where one contains
a few example input-output pairs in the description, and the other does not.

SFT Data. To collect SFT data, we use the rejection sampling technique [46]. Specifically, we
prompt Qwen3-32B to generate 6 responses for each pair of description and buggy program. Figures|§]
and[9 show the prompt we use for input-output testing and test harnesses respectively. Particularly,
for harness generation, we encourage the model to use diverse strategies to validate outputs, such
as checking specific invariants and comparing with a brute-force solution, which is similar to the
strategy used in prior works [47]. We run generated test cases on both ground-truth program g and
buggy program f and only keep responses where g passes the test but f does not. We keep the
amount of SFT data the same for input-output testing and harness testing.

A.2 Evaluation Data

We evaluate on three popular code generation Table 5: Statistics of evaluation datasets.
datasets: MBPP+ [[16,144]], LIVECODEBENCH [11],

and CODEFORCES [12]. Although these datasets are # data
designed for code generation tasks, we convert them

into bug-find tasks following the procedure in Section MBPP+Fi1x (HARD) 141
Al LIVECODEBENCH SEEN 76
Specifically, for LIVECODEBENCH, we use prob- EIVECODEBEI;CH UNSEEN 930
lems from 2024/10 to 2025/4. For CODEFORCES, we ODEFORCES SEEN !
CODEFORCES UNSEEN 84

use samples in the test split. For both datasets, we use
correct public submissions as the ground-truth pro-
gram, after rerunning and filtering the submissions
on all test cases.

For MBPP+, we directly use the split MBPP+F1X (HARD) in UTGen-32B [3]], which is collected
similar to the above procedure. Particularly, we notice the problem descriptions in MBPP+ are overly
simplified and without clear input specifications (e.g., ‘Write a function to find the length of the

13

514
515
516
517
518

520

521

522

523
524
525
526
527

529
530
531

532
533
534
535

536

537
538
539
540
541

542

543
544

546
547

Table 6: True bug rate (higher is better) of input- Table 7: True bug rate (higher is better) of test
output-based testing with Qwen3-32B when only harnesses with Qwen3-32B when only evaluating
evaluating the first k£ generated test cases. We the first k£ generated test cases. We use the SEEN
use the SEEN version of LIVECODEBENCH and version of LIVECODEBENCH and CODEFORCES.

CODEFORCES. MBPP+ LIVECODEBENCH CODEFORCES
MBPP+ LIVECODEBENCH CODEFORCES k=3 66.6 48.5 579
k=1 493 54.8 67.1 k=35 68.6 55.1 54.8
k=3 590 54.6 532 k=10 677 538 48.6
k=5 574 53.6 495 k=20 67.3 53.3 44.2
k=10 54.6 51.3 39.5

longest palindromic subsequence in the given string’, without specifying that input string should be
non-empty). We thus use Qwen3-32B to add an input specification to the problem (detailed prompt
in Figure[I0). To make sure the ground-truth program g matches the description after modification,
we further prompt Qwen3-32B to adapt the original g to the new description (detailed prompt in
Figure[IT). Finally, we filter the modified ground-truth programs and only keep those that pass the
original ground-truth test cases.

Table [3]lists the statistics of all evaluation benchmarks.

B Implementation Details

B.1 Number of Test Cases

For the teacher model and SFT models, we observe that the number of test cases in a response
significantly affects the final performance. For example, although we allow models to generate
multiple test cases in each response, Tables [6 and [7 show that the performance of Quen3-32B can
vary significantly if we only evaluate the first & test cases. Both methods’ performance improves
as we evaluate on less test cases, especially for input-output-based testing. This confirms with
the observations in Figure [, where the performance of input-output testing quickly drops when
generating more test cases. Based on these results, for the teacher model and SFT models of input-
output testing, we report the performance when k& = 1. For test harnesses, we report the performance
when k = 5.

For the RL models, we observe that the models automatically find a good number of test cases to
generate. For instance, the RL trained Qwen3-4B model for input-output testing generates 1.96 test
cases in each response on average. Thus, we allow the model itself to determine the number of test
cases, and we only restrict the maximum test cases at 20.

. Table 8: Training hyperparame-
B.2 Training Hyperparameters ters. The same hyperparameters
are used for all models.

We run all experiments on 16 NVIDIA H100 GPUs. The RL
training for our model takes around 1,500 GPU hours. The RL SFT Training
training for the input-output baseline takes around 1,150 GPU

hours. Table [§]lists the hyperparameters for SFT and RL training. Eftgﬁcstil;e ég
Note that we use the same hyperparameters for all models. Learning rate le—5
LR scheduler cosine
B.3 Classifying Testing Strategies RL Training
Steps 500
: : : : : Batch size 128
We prompt Qwen3-32B to identify specific testing strategies used # Rollouts 3

by our model. Specifically, given the generated harness code, we .

. . . ; . Learning rate le—6
ask the model to identify strategies used in each input generator | o poqjar None
and output verifier. The detailed prompts are listed in Figures[I2 pax response length 16,384
and -

14

MBPP+F1x (HARD) LCB SEEN CF SEEN LCB UNSEEN CF UNSEEN
GI1+ ITR| TBR?T | GIt ITR| TBR{ |GIt ITR] TBR{ |GIt ITR|, TBRf | GIt ITR| TBR?

RL (I/0) | 713 373 453 | 470 423 303 | 67.6 539 328 | 210 618 8.3 374 66.2 10.1
RL (Har) 779 373 426 | 765 339 314 | 814 438 299 599 399 17.7 | 734 433 21.6

Table 9: Performance of L1ama3.2-3B on finding bugs (average of 8 runs). I/0: input-output testing.
Har: test harnesses.

sas C Additional Results

540 Table [0 shows the performance when training on Llama3.2-3B model. As can be observed, our
s50 model for test harnesses achieves comparable performance with input-output testing on the SEEN
s51 version of the datasets. However, it significantly outperforms the input-output testing when evaluated
s52 on the UNSEEN version, e.g., a relative improvement over 110% in TBR on LIVECODEBENCH. The
553 results indicate that input-output testing has the risk of overfitting to a particular distribution of bugs,
s54 whereas test harnesses has better generalizability.

Given a problem statement and a Python program that aims to solve it, your
task 1s to **write test cases*x that uncover any potential bugs.

*xTask Overviewsx

You should output a JSON object that contains a list of test cases for the
provided program. Each test case should include:

1. xxinput_strxx: The exact text to feed into stdin.

2. *xexpected_output*x: The exact text the program should print.

We will run each test by feeding “input_str® into the program and comparing
its stdout against ‘expected_output’.

xRequired Formatx

*gson
[
{
"input_str": "input 1",
"expected_output": "output 1"

"input_str": "input 2",
"expected_output": "output 2"

// ... up to 20 test cases total

*+Constraintsx*x

* Generate *x%x1-20%% test cases.
* Don't include comments or extra fields in the JSON.
* Each input_str and expected_output must be a valid JSON string.

The problem is as follows:
{description}

And the program is as follows:
' 'python
{target_code}

555 \ =%

Figure 8: Prompt used for input-output-based testing. Note that this prompt assumes the program
reads input from stdin.

15

Given a problem statement and a Python program that aims to solve it, your
task is to **write a test harness** that uncovers any potential bugs.

*+xTask Overviewxx

You will deliver *xa singlexx code block to define functions that can be run
by our framework to generate inputs, run the program, and validate its
outputs.

Consider two categories of test cases:

- x*Hardcoded cases**: Manually crafted input-output pairs that expose known
or likely bugs.

- x*Dynamic cases*x: Programmatically generated inputs that stress-test the
implementation (e.g., randomized, combinatorial, large or edge-case inputs) .

*xRequired Functionsx*x
' 'python
from typing import List

def generate_input_1() -> List[str]:

mnn

Return between 1 and 4 valid input strings, each a complete stdin

payload for the target program.

Consider the following strategies:
- Manually craft inputs that expose bugs.
- Dynamically generate randomized, combinatorial, large, or edge-case
inputs for stress testing.

nmwn

Your code here

return input_list

def generate_input_2() -> List[str]:
nmwn
Another function to return between 1 and 4 valid input strings.
Employ a different strategy than previous input generation functions.
nmwn
Your code here
return input_list

You may add up to 3 more functions named generate_input_3(),
generate_input_4 (), etc.

def check_output (generated_input: str, captured_output: str) -> None:
Validate the output for a single generated input.
Inputs:
- generated_input: The input string passed to the target program.
— captured_output: The exact stdout produced by the target program.

Hints: When exact outputs are hard to predict, avoid asserting them.
Instead, consider:
— Check key properties or invariants, e.g., output is sorted, has
correct length, matches a pattern, has correct value ranges, etc.
— Compare against a simple brute-force implementation

LLRIR1]

Your code here

xxExecution Flowx*x

1. The framework calls generate input functions to obtain a list of test
strings.
2. For each string:
« It runs the target program with that string on stdin.
x Captures stdout into ‘captured_output’.
* Calls “check_output (generated_input, captured_output)
3. If any assertion fails, the test suite reports an error.

16

557

*+Constraintsx*x*

*+ Provide one contiguous block of Python code that defines all required/
optional functions. Do not invoke the functions yourself-only define them.
* Define up to 5 input generation functions, each returning between 1 and 4
inputs.

* The dynamic input functions must employ diverse strategies to generate
inputs. Avoid generating inputs with the same logic or from the same
distribution.

* Runtime limit per check_output call: 5 seconds.

The problem is as follows:
{description}

And the program is as follows:
**'python
{target_code}

[NENIN

Figure 9: Prompt used for test harnesses generation. Note that this prompt assumes the program reads

input from stdin.

17

558

559

Given the following coding problem and a corresponding solution, improve the
problem description by adding input specifications. Include details such as

— Valid input types (e.g. "integer", "string", "list of floats").
— Reasonable value ranges (e.g. "0 <= n <= 1000").
- Format constraints (e.g. "no empty strings", "no null/None values").

Do not change the original requirements or add example cases, Jjust append
the specifications.

Problem:
{problem}

Code:
*“python
{code}

[NENN

Figure 10: Prompt used for adding input specifications on MBPP+.

Given the following coding problem and a corresponding solution, decide
whether the solution contains a bug or not. If yes, rewrite the code to fix
the bug. Remember to look for edge cases where the code fails to handle.

Problem:
{problem}

Code:
**python
{code}

Output your answer in the following format:

' 'python

fixed_code

where fixed_code is the rewritten code that fixes the bug. If the code is
correct, just return the original code without any changes.

Figure 11: Prompt used for adapting the ground-truth programs to the new descriptions on MBPP+.

18

560

561

Given the following code snippet for a test harness, determine the strategy
used in each ‘generate_input® function.

Code:
**“python
{code}

Select from the following options:

— hardcoded: the function returns hardcoded inputs.

— dynamic: the function generates inputs dynamically, e.g., random sampling,
or combinatorial generation.

Think about the code step by step and then output your final answer in the
following format:

' json

<used strategies>

where <used strategies> is a list of the strategies used in each function.

Notes:

- The list should have the same length as the number of ‘generate_input’
functions in the code.

— If a function uses a combination of the above strategies, select the
dominant strategy.

Figure 12: Prompt used for identifying strategies in input generators.

Given the following code snippet for a test harness, determine the
strategies used in the ‘check_output’' function.

Code:
** “python
{code}

[NENN

Select from the following options:

— reference implementation: the function compares the output with a
reference implementation, e.g., a brute-force solution, or a correct
implementation.

— invariant checking: the function checks whether the output satisfies
certain invariants or properties, e.g., whether the output is sorted, or
whether the output has valid types and lengths.

— hardcoded: the function compares the output with hardcoded expected
outputs.

Think about the code step by step and then output your final answer in the
following format:

' json

<used strategies>

where <used strategies> is a list of the strategies used in the function.

Notes:
— If the function uses a combination of the above strategies, return a list
containing all the strategies used, e.g., ["reference implementation", "

invariant checking”].
— If the function does not contain any of the above strategies, return an
empty list [].

Figure 13: Prompt used for identifying strategies in the output verifier.

19

	Introduction
	Related Works
	Methodology
	Problem Formulation
	Generating Test Harness for Debugging
	Improving Test Harness via RLVR
	Data Collection

	Experiments
	Experiment Setting
	Main Results
	Additional Analyses

	Conclusion
	Dataset Construction
	Training Data
	Evaluation Data

	Implementation Details
	Number of Test Cases
	Training Hyperparameters
	Classifying Testing Strategies

	Additional Results

