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ABSTRACT

Machine learning models trained on real-world data often inherit and amplify
biases against certain social groups, raising urgent concerns about their deployment
at scale. While numerous bias mitigation methods have been proposed, comparing
the effectiveness of bias mitigation methods remains difficult due to heteroge-
neous datasets, inconsistent fairness metrics, isolated evaluation of vision versus
multi-modal models, and insufficient hyperparameter tuning that undermines fair
comparisons. We introduce NH-Fair, a unified benchmark for fairness without
harm that spans both vision models and large vision–language models (LVLMs)
under standardized data, metrics, and training protocols, covering supervised and
zero-shot regimes. Our key contributions are: (1) a systematic ERM tuning study
that identifies training choices with large influence on both utility and disparities,
yielding empirically grounded guidelines to help practitioners reduce expensive
hyperparameter tuning space in achieving strong fairness and accuracy; (2) evi-
dence that many debiasing methods do not reliably outperform a well-tuned ERM
baseline, whereas a composite data-augmentation method consistently delivers
parity gains without sacrificing utility, emerging as a promising practical strategy.
(3) an analysis showing that while LVLMs achieve higher average accuracy, they
still exhibit subgroup disparities, and gains from scaling are typically smaller than
those from architectural or training-protocol choices. NH-Fair provides a repro-
ducible, tuning-aware pipeline for rigorous, harm-aware fairness evaluation. Code:
https://anonymous.4open.science/r/submit13349.

1 INTRODUCTION

Machine learning (ML) models increasingly shape high-stakes decisions, raising concerns that they
replicate or amplify societal biases, leading to unfair outcomes across social groups. Various metrics
have been proposed to quantify the model unfairness/bias such as risk disparity (Hashimoto et al.,
2018), demographic parity (Dwork et al., 2012), equal opportunity, equalized odds (Hardt et al.,
2016), overall accuracy parity (Berk et al., 2021), and max-min fairness (Lahoti et al., 2020), yet
each captures different notions and priorities can depend on practical considerations.

Fairness interventions span pre-processing (Qraitem et al., 2023; Sagawa* et al., 2020; Pang et al.,
2024; Jang et al., 2021), in-processing (Madras et al., 2018; Xu et al., 2021; Chuang and Mroueh,
2021; Park et al., 2022; Zafar et al., 2019), and post-processing (Hardt et al., 2016; Yin et al.,
2024; Dehdashtian et al., 2024; Jung et al., 2024) methods. But they often add complexity, require
extensive hyperparameter tuning, or degrade overall accuracy (for example, a model may degrade
performance for some groups to meet fairness criteria like demographic or accuracy parity). In safety-
critical domains such as healthcare, sacrificing performance for fairness violates ethical principles of
beneficence and non-maleficence (Beauchamp and Childress, 1994). Motivated by this, a growing
line of work seeks fairness without harm, i.e., improving group parity without materially reducing
performance for any group (Ustun et al., 2019; Martinez and Bertran, 2019; Yin et al., 2024). Instead
of solely enforcing fairness constraints across different groups, these approaches ensure that model
performance for every group does not deteriorate.

Despite significant progress, existing approaches were often designed for different problem settings
and evaluated in inconsistent, limited environments, making it difficult to assess their general
applicability. In particular, several key questions remain unanswered:
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• Comparability under a standardized protocol. In fairness research, there are usually inconsistent
experimental settings when comparing different methods, e.g., arbitrary choice of optimizer,
different hyperparameters, and insufficiently trained baselines. These inconsistencies prevent us
from accurately assessing the real utility and fairness performance of state-of-the-art debiasing
methods. How do these methods perform in utility, fairness, and overhead, under the same setting
with comprehensive hyperparameter sweeping? And can they outperform a carefully trained ERM?

• What makes ERM strong—and how far can it go? There is a practice–research gap: industrial
workflows rarely explore the full suite of fairness algorithms and instead prioritize hyperparameter
optimization (HPO), like using Ray Tune (Liaw et al., 2018) or Optuna (Akiba et al., 2019), on
incumbent models. Yet, exhaustive HPO is computationally expensive. Can we bridge this gap by
revealing which training decisions, such as optimizer, model depth, or augmentation, most impact
fairness? In addition, if we start from a powerful ERM via principled tuning and selection, can
conventional group-disparity mitigations still deliver fairness without materially compromising
accuracy? Does the scaling law also apply to AI fairness?

• Where do foundation and multimodal models stand? In the era of foundation models and large
pretrained models, are these multi-modal models already fair enough compared with specifically
trained models due to pretraining on larger training data with larger model size?

Although some benchmarks have been proposed to make the comparison of previous methods,
like MEDFAIR (Zong et al., 2023), FFB (Han et al., 2024), and ABC (Defrance et al., 2024).
They often focus on specific domains, omit recent methodological advances, or suffer from limited
hyperparameter tuning and dataset diversity. For example, MEDFAIR is restricted to medical datasets
and does not evaluate fairness in general vision or multimodal contexts. FFB includes primarily
older methods, omitting recent advances in representation learning and data-centric approaches, and
lacks sufficient hyperparameter tuning, which may result in suboptimal models. ABCFair focuses
on tabular datasets only and uses fixed hyperparameter settings, which limits scalability and may
misrepresent method performance. The questions mentioned above are not yet fully addressed.
Moreover, existing benchmarks (Xia et al., 2024; Jin et al., 2024a) generally treat classical vision and
emerging multimodal models separately, limiting our understanding of how multi-modal pretraining
affects fairness relative to other models. We introduce these benchmarks in Appendix A.4.

To bridge this gap, we propose NH-Fair, a comprehensive benchmark for fairness without harm in
complex image and multimodal settings. NH-Fair unifies evaluation across classical vision models
and vision–language models, providing broader insights into fairness comparisons of architectures,
pretraining strategies, and model scales. Beyond benchmarking both classical and recent fairness
algorithms, we systematically evaluate the role of training choices, the overhead of existing methods,
and the performance of state-of-the-art LVLMs. Our goal is to provide not just a benchmark, but
actionable insights for developing and deploying fair ML systems. We summarize contributions
and key observations with practical implications for practitioners:

1. ERM and Training Choices Matter. We investigate how training choices affect fairness.
• Observation. Prior work often overlooks hyperparameter tuning, like optimizer and learning

rate choice. We show that fixing hyperparameters across methods and datasets can yield unfair
comparisons. Our findings challenge this practice, where some papers claim “state-of-the-
art” fairness without sufficient evaluations, and underscore the need for more equitable and
transparent evaluation protocols in future research.

• Takeaway. Optimizer choice (e.g., SGD, Adam, AdamW, Adagrad) and its learning rate affect
both fairness and utility. We recommend focusing on tuning resources here, as these settings
have a clear impact. This also applies to selecting the correct pretrained weights, while model
depth, batch size, or weight decay have less impact on fairness.

2. Revisiting Mitigation Methods. We offer an extensive comparison of recent and classic bias
mitigation algorithms, assessing both fairness and accuracy to determine if current methods can
achieve equitable performance without compromise.
• Observation. Most fairness-specific algorithms do not significantly outperform a carefully tuned

ERM when utilities are accounted for. Data augmentation is a simple yet effective strategy
that often improves both fairness and utility.

• Takeaway. In practice, prioritize augmentation strategies before exploring a wide range of spe-
cialized algorithms; this pathway most often achieves fairness without utility loss or overhead.

3. LVLMs Are Not Inherently More Fair We extend evaluation to multi-modal models and LVLMs
to probe whether large-scale, diverse pretraining reduces disparities or propagates stereotypes.
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• Observation. Despite greater data diversity and larger capacity, LVLMs still exhibit fairness
issues comparable to task-specific vision models. For example, the Llama series, while achieving
strong headline accuracy, remains highly susceptible to dataset-specific biases. In addition, the
Model scale shows a weak correlation with fairness improvements.

• Takeaway. Practitioners concerned with fairness should prioritize evaluating different architec-
tures and pretraining choices rather than relying on scaling up models alone.

2 PROBLEM FORMULATION: FAIRNESS WITHOUT HARM

In this paper, we evaluate each ML model based on two criteria: 1) performance disparity across
different groups, and 2) negative impact on model performance caused by fairness interventions.
Therefore, we consider the fairness without harm problem formulation, which aligns with our goal.

Group fairness notion Consider a dataset of n samples, where sample i is represented as a triple
(xi, yi, ai) from the joint distribution P (X,Y,A). Here, xi ∈ Rd is the feature vector, yi ∈ Y is the
label, and ai ∈ A is the sensitive attribute (e.g., gender or race). We learn a model h : Rd → Y
that achieves strong predictive performance while satisfying a fairness constraint. We evaluate
performance using a risk function R : Y × Y → R+ that quantifies the discrepancy between
predictions and labels. To assess disparity across groups, we consider the following fairness criteria.

• Overall Accuracy Parity requires that the classifier’s accuracy be equal across groups:
P
[
h(X) = Y | A = a

]
= P

[
h(X) = Y | A = a′

]
, ∀ a, a′ ∈ A. (1)

We use the accuracy gap between the two groups to denote overall accuracy parity in this paper.
• Demographic Parity, also known as statistical parity, requires that the classifier’s decisions be

independent of the sensitive attribute:
P[h(X) = y | A = a] = P[h(X) = y | A = a′], ∀a, a′ ∈ A, y ∈ Y. (2)

• Equalized Odds requires conditional independence of h(X) and a given the true label, e.g., the
true positive rate and the false positive rate are equal across groups:

P[h(X) = y | Y = y,A = a] = P[h(X) = y | Y = y,A = a′], ∀a, a′ ∈ A, y ∈ Y. (3)
• Max-Min Fairness uplifts disadvantaged groups by minimizing the worst group risk:

min
h∈H

max
a∈A

EX,Y |A=a

[
R
(
h(X), Y

)]
. (4)

We do not consider individual fairness (Dwork et al., 2012) or counterfactual fairness (Kusner et al.,
2017). The former requires a well-defined similarity function between individuals, which is hard to
specify in images, while the latter usually assumes access to causal graphs, which are unavailable in
most datasets. Given these constraints, we focus on group fairness.

Fairness without harm Given group fairness notions defined in Sec. 2, enforcing these fairness
constraints inevitably harms model performance. Consider Demographic Parity (DP) as an example,
if the base rates of outcomes differ across groups (P

[
h(X) = y | A = a

]
̸= P

[
h(X) = y | A =

a′
]
,∀ a, a′ ∈ A.), enforcing independence between h(X) and A may require distorting predictions

to align with group-agnostic rates. Suppose we have two groups and the optimal unconstrained
classifier for group 0 satisfies P

[
h(X) = y | A = 0

]
= p0. To achieve DP, we must enforce

P
[
h(X) = y | A = 0

]
= P

[
h(X) = y | A = 1

]
= p for some value of p, which could force p to

deviate from the group-specific optima p0, thereby increasing overall risk. In extreme cases, this
might result in a trivial classifier (e.g. h(X) = 1 for all data) that satisfies DP but incurs maximal
risk. Thus, fairness interventions risk creating a “race to the bottom,” where fairness is not achieved
by elevating disadvantaged groups by reducing accuracy for all groups. To avoid this, we adopt the
principle of fairness without harm, which augments group fairness with a no-harm condition.Let herm
denote the baseline classifier trained via unconstrained empirical risk minimization (ERM):

herm = argmin
h∈H

n∑
i=1

R
(
h(xi), yi

)
. (5)

The no-harm criterion requires that for every group a ∈ A, the risk incurred by our fairness-enhanced
classifier does not exceed that of the baseline:

EX,Y |A=a

[
R
(
h(X), Y

)]
≤ EX,Y |A=a

[
R
(
herm(X), Y

)]
, ∀ a ∈ A. (6)
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Figure 1: Overview of NH-Fair, evaluating fairness across domains, tasks, models, and methods.

3 NH-FAIR BENCHMARK

3.1 DATASETS

We evaluate fairness algorithms on seven publicly available datasets spanning facial attributes, medical
imaging, and spurious correlation tests: CelebA, UTKFace, FairFace, Facet, HAM10000, Fitz17k,
and Waterbirds. Table 1 summarizes target tasks and sensitive attributes used in our evaluation. Due
to the huge computational resource needs, we did not exhaustively use all available sensitive attributes
(e.g., gender in UTKFace). Instead, we focused on attributes that exhibited the clear disparity in
model predictions, enabling a more effective comparison of existing fairness methods.

Criteria for Dataset Selection. By definition, fairness evaluation requires demographic information
(e.g., race, gender, or age) to measure disparities in model performance across subgroups. Therefore,
our primary selection criterion is that datasets must include explicit demographic annotations. This
ensures that fairness metrics are meaningful and grounded in socially relevant groups. Following
this principle, we include the first six datasets. In addition, we considered: application domains,
potential sources of bias, such as class imbalance or spurious correlations, and relevance to prior
fairness studies. Waterbirds represents a pragmatic exception: it lacks demographic labels but has
been widely used in fairness research due to its spurious correlations (e.g., background vs. object)
resembling biases. Including it enables consistency with prior work (Reddy et al., 2021; Dehdashtian
et al., 2024; Qiang et al., 2024) and provides a test for algorithms in non-demographic bias settings.
However, we still suggest not confusing fairness datasets with domain generalization datasets (e.g.,
Waterbirds, Colored MNIST). While DG datasets probe robustness to distribution shifts, they do
not contain socially meaningful sensitive attributes. In contrast, fairness evaluation requires explicit
demographic annotations to measure disparities across groups.

Potential Sources of Bias. We use datasets that may introduce bias from multiple sources, including
image quality, class imbalance, and spurious correlations. Importantly, each dataset often reflects
more than one of these factors simultaneously, making it difficult to attribute disparities to a single
cause. For this reason, we do not perform a dataset-level bias source analysis.

3.2 METHODS

We evaluate a diverse set of 12 baseline algorithms, spanning both fairness-specific and general-
purpose approaches. To organize them, we group methods into two broad categories: Data-Centric
and Algorithmic methods. Data-Centric methods focus on modifying the input distribution
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Table 1: Overview of the seven image datasets, detailing the number of samples, classification target,
sensitive attribute(s), and approximate imbalance ratios expressed as percentages. In this table, M
denotes Male, F denotes Female, W denotes White, B denotes Black, LH denotes Latino Hispanic,
EA denotes East Asian, SA denotes Southeast Asian, IN denotes Indian, ME denotes Middle Eastern,
N denotes the negative class, and P denotes the positive class.

Dataset # Samples Target Sensitive Target Ratio Sensitive Ratio
CelebA (Liu et al., 2015) 200k Wavy Hair Gender 68% (F) : 32% (M) 41.7% (N) : 58.3% (P)
UTKFace (Zhang and Qi, 2017) 23k Gender Race 52% (M) : 48% (F) 57.6% (W) : 42.4% (O)

FairFace (Karkkainen and Joo, 2021) 100k Ethnicity Gender
19.1% (W) : 14.1% (B) : 15.3% (LH)

: 14.2% (EA) : 12.5% (SA)
: 14.2% (IN) : 10.7% (ME)

53% (M) : 47% (F)

Facet (Gustafson et al., 2023) 30k Visible Face Gender 67% (N) : 33% (P) 76% (M) : 24% (F)
HAM10000 (Maron et al., 2019) 10k Malignant Age 86% (N) : 14% (P) 71% (Young) : 29% (Old)
Fitz17k (Groh et al., 2021) 17k Malignant Skin Type 86.5% (N) : 13.5% (P) 48% (Light) : 52% (Dark)

Waterbirds (Sagawa* et al., 2020) 11k Bird Species Background Train: 76.8% (N) : 23.2% (P)
Test: 77.8% (Water) : 22.2% (Land)

Train: 74.1% (N) : 25.9% (P)
Test: 50% (Water): 50% (Land)

through data augmentation and sampling strategies, including RandAugment (Cubuk et al., 2020),
Mixup (Zhang et al., 2018), Resampling (Buda et al., 2018; Sagawa* et al., 2020), Bias Mimicking
(BM) (Qraitem et al., 2023), and FIS (Pang et al., 2024). Algorithmic methods, by contrast, alter the
training process through adversarial training or fairness-aware objectives. These include Decoupled
Classifier (Ustun et al., 2019; Wang et al., 2020), LAFTR (Madras et al., 2018), FSCL (Park et al.,
2022), GapReg (Chuang and Mroueh, 2021), MCDP (Jin et al., 2024b), GroupDRO (Sagawa* et al.,
2020), and DFR (Kirichenko et al., 2023). Together, these methods span both established baselines
and recent state-of-the-art techniques and include pre-processing, in-processing, and post-processing
methods. Note that we do not consider causal fairness approaches since most of them assume access
to causal graphs or intervention variables. However, these assumptions are rarely feasible in our
datasets. A more detailed description of each method is provided in Appendix B.3.

Beyond supervised models, we also evaluate zero-shot predictions from multi-modal models such as
CLIP (Radford et al., 2021) and BLIP2 (Li et al., 2023), as well as LVLMs, including LLaVA v1.6
(7B, 13B, 34B) (Liu et al., 2024), Qwen2.5-VL (7B, 32B, 72B) (Bai et al., 2025), Gemma 3 (4B, 12B,
27B) (Team et al., 2025), and Llama models (3.2–11B, 3.2–90B, and 4-Scout–109B) (Grattafiori
et al., 2024; Meta, 2025) . For CLIP and BLIP2, we construct prompts for text-image matching tasks
using pairs of positive and negative labels (e.g., ”A photo of a person with non-wavy hair.” vs. ”A
photo of a person with wavy hair.”). For LVLMs, we frame image-text-to-text tasks that elicit binary
responses, using prompts such as ”Is the person in the photo wavy-haired? Answer ‘Yes’ for wavy
hair, ‘No’ for non-wavy hair.” Full prompt templates are provided in Appendix Table 8.

3.3 MODEL SELECTION

Selecting the best-performing model affects not only overall utility but also disparities across sub-
groups. Conventional selection methods, which prioritize average accuracy or loss, often reinforce
majority-group performance while neglecting minorities. This motivates model selection strategies
that explicitly balance utility and fairness. Prior work has explored approaches such as Minimax
Pareto Selection (Martinez et al., 2020) and Distance to Optimal (DTO) (Han et al., 2022) to identify
fair models. In this work, we adopt a DTO-based strategy to establish a strong ERM baseline,
considering both utility and group fairness. We then take the selected ERM model as a baseline
and introduce a fairness-without-harm (FWH) procedure to assess whether alternative methods can
improve fairness without materially degrading utility compared to the well-established ERM.

1) DTO-based selection. The DTO strategy identifies the ERM model that minimizes Euclidean
distance to utopia point, where each subgroup achieves its best observed performance. This approach
aims to find the model that maximizes overall performance while minimizing disparities across
subgroups. By establishing this model as the optimal ERM baseline, we provide a reference point for
evaluating fairness-aware models. As shown in Figure 2a, the red star denotes the utopia point, where
both subgroups reach their respective maximum performance. The model with the smallest DTO
value (the shortest distance to the utopia point) is selected as the ERM baseline.

2) Fairness-without-harm selection. Given the optimal ERM, we evaluate other methods by
comparing subgroup-specific accuracies. Based on the group accuracy of the selected ERM model,
we categorize the models from other methods into four distinct zones:
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(a) DTO-based ERM model selection
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Figure 2: Two-stage model selection. (a) First, each green dot represents a candidate ERM model’s
performance on two sensitive groups. We select the ERM model (orange circle) whose performance
is closest to the utopia point (red star) in Euclidean distance. (b) With the ERM baseline established,
we classify models trained by bias-mitigation methods into four zones based on how their subgroup
performance compares to the ERM. Starting from the Optimal Zone and moving counterclockwise,
we check whether any model is located in the shaded region, which demonstrates improved fairness.

• Optimal (Fairness Without Harm): Models here already achieve better utilities for both groups
compared with the established baseline ERM. A smaller accuracy gap is desirable to show fairness.
Thus, we select the model with the smallest accuracy gap.

• Sub-optimal (Fairness by Compromising): Models reduce disparities by decreasing the advantaged
group’s utility while improving the disadvantaged group. If no candidates exist in Optimal zone,
we select the model here with the smallest accuracy gap to evaluate how it equalizes two groups.

• Degradation (Fairness by Harming Both Groups): Models are undesirable since they degrade
performance for all groups, achieving fairness at the expense of overall utility. We select a model
with the smallest L2 distance to the optimal ERM to maintain necessary utility rather than fairness
metrics, since the models can significantly decrease utility (random guess) to equalize accuracy.

• Unwanted: Models in this zone widen disparities by benefiting the advantaged group and harming
the disadvantaged group, which exacerbate unfairness and are not considered.

When evaluating fairness-aware models against the optimal ERM, we follow the selection order:
Optimal → Sub-optimal → Degradation. This ensures fairness while minimizing performance
trade-offs. Using this strategy, we select the model that best meets the fairness-without-harm criteria.

4 RESULTS

Implementation. For all methods, we independently search for the best hyperparameters on each
dataset. Specifically, we search over optimizers (SGD and Adam), learning rates, weight decay values,
and method-specific hyperparameters. Implementation details are provided in Appendix B.4 and B.5.
In total, we spent over 10,000 A100 GPU hours to obtain these benchmarking results.

Metrics. We use Accuracy (ACC) to evaluate utility on most datasets, while AUC is adopted for
disease prediction tasks, since medical datasets often exhibit class imbalances. For fairness, we report
four metrics: Overall Accuracy Parity (Gap ↓), Max–Min Fairness (Worst ↑), Demographic
Parity (DP ↑), and Equalized Odds (EqOdd ↑). They are introduced in Appendix B.2.

4.1 HOW TO TUNE A FAIR ERM AND WHY TRAINING CHOICES MATTER

This part is motivated by two observations. First, ML practitioners rarely conduct extensive testing of
different fairness-specific algorithms and instead focus on tuning existing models. Yet exhaustive
hyperparameter search is computationally expensive, raising the question: which training choices
should be prioritized for fairness-sensitive applications? Second, many prior studies report fairness
or utility gains while keeping core training parameters fixed across baselines and datasets. But can
such practices truly yield fair and reliable comparisons?
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To answer these, we conduct a systematic study under different training setups (see Appendix
C.1). We find that some choices, most notably initialization (pretraining vs. scratch) and optimizer,
consistently impact the fairness–utility trade-off. For example, pretrained models often improve
utility without harming disadvantaged groups, and the right optimizer (e.g., SGD on CelebA, Adam
on Fitz17k) can shift both utility and subgroup performance. In contrast, factors like batch size,
weight decay, or model depth have weaker or inconsistent effects. These findings suggest that
impactful training choices could be prioritized during HPO. In addition, fixing such parameters
across baselines and datasets can lead to biased comparisons. It underscores the need for more
equitable and transparent evaluation practices in future fairness research.

4.2 REVISITING MITIGATION METHODS
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Figure 3: Comparative Analysis of Bias Mitigation Methods.

A well-tuned ERM baseline
could match or surpass fairness-
specific algorithms. Table 2
reports utility and fairness out-
comes for single-modality models
across seven datasets. For each
dataset–method pair, results are
averaged over five runs, with the
best model selected under DTO or
FWH criteria. Table 3 extends the
comparison to multimodal models.
Despite being treated as a “basic”
baseline, a well-tuned ERM, se-
lected via DTO, consistently per-
forms competitively across fairness
metrics (Gap, Worst, DP, EqOdd). Figure 3 shows that ERM performs competitively with, or some-
times outperforms, specialized fairness methods under FWH selection, and no single mitigation
approach dominates across all datasets.

Table 2: Average utility and fairness results (standard deviations are reported in Appendix Table
18). Results better than ERM are highlighted.

Dataset Metric ERM RandAug Mixup Resampling BM FIS Decoupled LAFTR FSCL GapReg MCDP GroupDRO DFR

CelebA

ACC 86.57 86.72 85.61 86.35 85.93 83.05 86.35 86.55 85.61 85.62 80.26 86.12 86.58
Worst 83.76 83.89 82.74 83.44 82.86 79.33 83.46 83.67 82.56 83.17 77.13 83.50 83.78
Gap 6.76 6.80 6.90 6.98 7.38 8.94 6.93 6.93 7.35 5.90 7.52 6.31 6.74

EqOdd 81.91 81.73 87.08 81.80 78.84 75.79 80.59 81.15 85.45 93.94 89.63 78.73 81.83
DP 67.20 67.37 70.83 67.39 66.91 66.84 66.68 66.90 69.72 75.91 93.11 66.41 67.30

UTKFace

ACC 92.75 93.19 92.62 92.70 93.33 91.97 91.68 93.17 93.52 92.53 92.49 92.45 92.73
Worst 91.78 92.19 91.55 91.60 92.27 90.91 90.84 92.05 92.62 91.70 91.63 91.41 91.60
Gap 2.26 2.34 2.50 2.56 2.47 2.48 1.97 2.61 2.10 1.91 2.00 2.44 2.63

EqOdd 97.62 97.62 97.61 97.49 97.39 97.51 97.43 97.44 97.44 98.10 98.04 97.06 97.39
DP 94.55 94.83 94.51 95.34 94.34 94.69 96.27 95.44 94.18 95.30 95.80 94.78 94.83

FairFace

ACC 66.76 68.37 65.40 65.40 65.66 65.31 67.03 66.44 65.42 65.02 66.06 65.51 63.20
Worst 66.34 67.69 64.50 64.51 65.20 64.59 66.61 65.60 64.64 64.12 65.62 65.22 62.45
Gap 0.87 1.44 1.93 1.90 0.97 1.53 0.87 1.76 1.66 1.92 0.90 0.60 1.59

EqOdd 96.22 96.14 96.55 96.83 95.70 95.88 95.14 94.73 97.05 96.15 97.85 96.31 95.81
DP 97.61 97.55 97.62 97.80 97.30 97.40 96.88 96.86 98.10 97.51 98.50 97.47 97.43

Facet

ACC 67.55 67.83 67.86 67.56 65.87 67.60 67.33 70.74 67.79 67.01 67.91 67.20 66.87
Worst 64.25 64.94 64.54 64.13 62.67 63.53 62.60 68.60 65.02 62.22 64.21 64.07 63.10
Gap 4.31 3.78 4.33 4.48 4.18 5.33 6.17 2.82 3.61 6.26 4.84 4.08 4.92

EqOdd 96.47 96.68 97.50 94.37 96.32 98.10 88.04 96.38 96.50 98.92 98.23 93.76 96.82
DP 95.40 95.91 96.71 93.96 95.09 97.84 87.30 95.00 95.66 98.73 98.46 93.16 96.09

HAM10000

AUC 88.35 89.09 86.51 87.75 89.54 85.97 87.87 85.72 86.12 84.97 82.96 87.66 87.06
Worst 84.67 84.67 82.31 84.77 86.49 82.98 84.04 76.21 78.36 82.57 80.29 83.98 82.49
Gap 4.11 4.99 4.14 3.52 3.04 3.11 5.17 13.21 10.81 3.07 3.10 4.98 5.30

EqOdd 86.79 88.43 91.14 91.84 85.65 94.05 77.52 93.28 84.57 98.15 99.52 90.94 91.25
DP 81.48 84.73 88.54 85.05 78.41 88.58 75.15 91.00 77.64 96.74 99.58 83.86 84.65

Fitz17k

AUC 89.74 91.29 90.62 90.76 91.02 88.34 89.63 91.50 90.83 89.59 91.65 90.72 89.99
Worst 88.39 90.15 89.38 88.99 89.93 87.02 88.45 90.59 89.64 88.52 90.49 90.06 88.57
Gap 2.92 2.51 2.43 3.62 2.34 3.06 2.55 2.95 3.84 1.84 2.87 1.92 2.93

EqOdd 94.92 95.61 96.20 95.27 94.99 95.17 94.09 93.68 97.45 95.47 95.68 94.36 94.30
DP 94.46 94.53 94.51 93.31 93.66 95.60 94.06 94.46 95.32 96.42 96.14 95.24 95.26

Waterbirds

ACC 85.63 86.09 87.67 87.35 88.20 83.72 74.64 85.72 86.83 86.45 85.98 85.46 89.83
Worst 84.20 84.52 85.99 84.85 85.96 82.67 64.45 83.94 86.28 85.72 84.83 84.45 89.09
Gap 2.87 3.14 3.36 4.98 4.48 2.09 20.38 3.56 1.10 1.47 2.31 2.02 1.47

EqOdd 66.53 68.99 81.42 90.87 77.21 65.89 47.31 68.22 90.00 87.48 72.97 67.31 97.79
DP 77.67 77.25 86.00 90.93 81.78 75.30 52.30 77.47 92.53 91.39 80.70 76.91 98.61

Data augmentation is a simple yet effective path to fairness without harm. Our results show that
fairness improvements do not inherently require sacrificing accuracy. Prior studies like Dutta et al.
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(2020) established the theoretical possibility of achieving both. In the paper, RandAug, though not
designed for bias mitigation, improves both fairness and accuracy across multiple datasets, empirically
demonstrating that fairness improvements do not always require a trade-off in model performance.
This suggests that increasing data variability can naturally mitigate biases, offering a lightweight and
practical strategy for fairness-aware training without the need for explicit fairness constraints.

The utility–fairness trade-offs are pronounced in regularization-based methods. Both GapReg
and MCDP account for explicit fairness constraints in the loss functions, directly penalizing subgroup
disparities. This design explains why they consistently achieve strong scores on fairness metrics
such as EqOdd and DP across datasets. However, the fairness penalty can pull decision boundaries
away from the utility-optimal surface, which often results in lower accuracy and occasionally lower
Worst-group accuracy. They highlight the classic fairness–utility trade-off: fairness comes at the
expense of overall predictive strength. In contrast, the contrastive learning method FSCL, which
encourages representations of the same class to cluster across different groups, delivers strong
fairness improvements while keeping accuracy competitive, implying that learning fair and robust
representations is also a promising path to fairness without harm.

Rethinking spurious correlation datasets for fairness evaluations. In prior studies (Dehdashtian
et al., 2024; Qiang et al., 2024; Reddy et al., 2021), datasets with spurious correlations are often used
for fairness evaluation since spurious correlations resemble the types of confounding factors that
lead to fairness issues. We noticed that, in Table 2, many methods (e.g., Mixup, Resampling, BM...)
can achieve both higher utility and fairness on Waterbirds, but it is more difficult to achieve such a
gain on fairness datasets with socially meaningful group disparities. This raises a potential concern:
spurious correlation might be easier to resolve than fairness-specific distribution shifts. Fairness
involves systematic performance gaps across protected groups, which are typically more subtle
and persistent than background–object correlations. Over-reliance on datasets like Waterbirds may
therefore underestimate the difficulty of fairness challenges and overstate algorithmic effectiveness.
While useful for studying robustness to spurious correlations, such datasets are not ideal for fairness
evaluation; fairness studies should still focus on those with clear, socially meaningful groups.

4.3 FAIRNESS IN MULTI-MODAL MODELS

We showed that even the best-tuned vision models leave non-trivial subgroup gaps. A natural
hypothesis is that these gaps reflect limited data diversity and model capacity. Here, we evaluate
pre-trained multi-modal models, which are trained on massive, diverse datasets and are expected to
generalize better. Specifically, we consider two families: (1) image–text matching models such as
CLIP, BLIP-2, and two CLIP-based debiasing variants (FairerCLIP Dehdashtian et al. (2024), SFID
Jung et al. (2024)); and (2) LVLMs such as LLaVA-1.6, Qwen2.5-VL, Gemma 3, and Llama. All
models are evaluated in zero-shot predictions. Fig. 4 visualizes the joint landscape of utility and
parity, where Qwen2.5-VL 72B lies closest to the outer envelope across datasets, indicating the best
overall balance between high accuracy and low disparity among the evaluated LVLMs.

CelebA

UTKFace

FairFaceFacet

Waterbirds
20

40

60

80

ACC
LLaVA 1.6 - 34B
Qwen2.5-VL - 72B
Gemma 3 - 27B
Llama 4 Scout - 109B

CelebA

UTKFace

FairFaceFacet

Waterbirds
20

40

60

80

100

Gap
LLaVA 1.6 - 34B
Qwen2.5-VL - 72B
Gemma 3 - 27B
Llama 4 Scout - 109B

Figure 4: LVLM performance using ACC and 100 − Gap.
Other metrics are presented in Figure 8.

Fairness persists as a challenge.
From Table 3, we found that fairness
outcomes diverge sharply between im-
age–text matchers and newer large
models. BLIP-2 and CLIP still ex-
hibit sizable subgroup gaps on CelebA
and Waterbirds. Even though debi-
asing methods like FairerCLIP and
SFID can use the validation set to
tune the model, they still don’t signif-
icantly address the fairness issue. As
for LVLMs, despite being trained on
massive, heterogeneous corpora, mul-
timodal models do not universally out-
perform carefully tuned unimodal baselines in either utility or fairness. On relatively balanced
datasets like UTKFace, LVLMs such as Qwen2.5-VL and Gemma-3 deliver strong accuracy while
keeping subgroup gaps small. However, on more challenging datasets (CelebA and Facet), they
exhibit subgroup disparities, often with worse worst-group accuracy than ERM and sometimes a
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larger accuracy gap for certain models. These results emphasize that multi-modal models still inherit
and sometimes amplify fairness challenges rather than resolving them.

Scaling is not enough. We also studied different LVLM sizes to evaluate whether the scaling law
extends to fairness (Appendix Table 15, simplified in Table 4). Increasing LVLM size improves
average accuracy but does not consistently resolve fairness gaps. Larger models (e.g., Gemma-3–27B,
Llama3.2-90B) achieve higher average accuracy compared to their smaller counterparts, yet subgroup
disparities (Gap) remain non-trivial and in some cases even widen. The fairness gains from scaling
are much smaller than those obtained by switching to a different model family, suggesting that the
training protocol plays a more decisive role in fairness. Hence, in fairness-sensitive applications, we
recommend first exploring model choice before allocating resources to scaling.

Table 3: Comparison of multi-modal models. Standard deviations are in Appendix Table 19. We
omit HAM10000 and Fitz17k for LVLMs, since they do not yield calibrated probabilities for AUC.

Dataset Metric ERM RandAug BLIP2 CLIP FairerCLIP CLIP-SFID LLaVA-1.6 34B Qwen2.5-VL 72B Gemma3 27B Llama4-Scout

CelebA

ACC 86.57 86.72 47.38 74.07 73.78 72.05 44.83 68.76 74.04 83.71
Worst 83.76 83.89 36.82 67.43 67.32 66.36 32.69 66.02 72.18 80.54
Gap 6.76 6.80 18.09 15.97 15.56 13.69 20.75 4.70 4.47 7.62

EqOdd 81.91 81.73 97.24 83.72 83.79 95.70 97.41 92.69 92.76 84.81
DP 67.20 67.37 95.90 81.32 81.06 93.23 91.92 91.71 74.53 71.52

UTKFace

ACC 92.75 93.19 94.23 96.72 96.79 96.70 97.12 96.78 97.25 97.02
Worst 91.78 92.19 94.00 95.90 96.05 96.03 96.34 95.76 96.89 96.29
Gap 2.26 2.34 0.45 1.90 1.72 1.55 1.81 2.36 0.85 1.70

EqOdd 97.62 97.62 99.24 97.96 98.17 98.36 98.16 97.59 99.20 98.27
DP 94.55 94.83 95.61 93.91 94.27 94.96 95.22 94.33 95.28 94.90

FairFace

ACC 66.76 68.37 52.57 57.36 56.81 52.73 66.91 65.57 59.40 56.52
Worst 66.34 67.69 50.74 57.20 56.41 51.59 66.04 64.73 56.71 53.53
Gap 0.87 1.44 3.46 0.34 0.86 2.40 1.84 1.79 5.71 6.35

EqOdd 96.22 96.14 93.86 97.16 96.78 97.14 96.22 96.26 95.13 96.54
DP 97.61 97.55 96.89 98.36 98.32 98.46 98.07 97.57 97.16 98.00

Facet

ACC 67.55 67.83 41.16 33.10 33.17 33.26 58.14 68.41 57.75 67.54
Worst 64.25 64.94 40.40 31.43 31.69 31.54 57.97 63.79 57.25 64.61
Gap 4.31 3.78 3.22 7.13 6.32 7.37 0.72 6.04 1.42 3.83

EqOdd 96.47 96.68 93.52 98.72 98.82 99.75 95.90 97.04 96.22 97.55
DP 95.40 95.91 94.10 98.92 99.00 99.80 93.91 96.15 94.56 96.28

Waterbirds

ACC 85.63 86.09 52.30 78.05 77.77 75.70 86.95 92.41 90.77 88.62
Worst 84.20 84.52 39.18 74.53 73.49 72.81 81.26 91.27 88.97 85.74
Gap 2.87 3.14 26.23 7.04 8.56 5.78 11.39 2.28 3.59 5.76

EqOdd 66.53 68.99 68.24 73.96 73.19 95.57 80.88 94.03 92.99 89.38
DP 77.67 77.25 63.48 78.12 76.73 94.09 80.46 94.62 93.17 89.44

HAM10000

AUC 88.35 89.09 38.87 52.15 51.88 52.53 – – – –
Worst 84.68 84.67 39.00 51.56 52.01 53.41 – – – –
Gap 4.11 4.99 6.89 4.14 3.12 2.24 – – – –

EqOdd 88.17 88.43 98.19 96.24 95.75 96.19 – – – –
DP 82.22 84.73 97.89 99.09 98.94 98.32 – – – –

Fitz17k

AUC 89.74 91.29 67.08 69.92 69.81 69.37 – – – –
Worst 88.39 90.15 66.46 69.78 69.85 69.35 – – – –
Gap 2.92 2.51 3.74 2.31 2.52 4.73 – – – –

EqOdd 94.92 95.61 97.06 89.87 87.95 85.88 – – – –
DP 94.46 94.53 98.40 95.03 93.02 92.19 – – – –

Table 4: Effect of LVLM model scale on accuracy and fairness metrics.

Dataset Metric LLaVA-1.6 Qwen2.5-VL Gemma 3 Llama
7B 13B 34B 7B 32B 72B 4B 12B 27B 3.2-11B 3.2-90B 4-Scout-109B

Average

ACC 68.156 69.872 70.79 77.364 72.718 78.386 67.332 73.484 75.842 74.54 76.006 78.682
Worst 66.104 66.546 66.86 75.65 68.184 76.314 61.58 72.604 74.4 69.322 70.51 76.142
Gap 3.894 5.698 7.302 2.89 7.656 3.434 10.532 2.088 3.208 10.082 11.002 5.052
EqOdd 87.912 89.806 93.714 94.98 95.704 95.522 89.086 93.682 95.26 88.01 91.416 93.31
DP 87.046 88.602 91.916 91.942 96.158 94.876 86.31 90.466 90.94 84.662 87.934 90.028

5 CONCLUSION

In this study, we introduce NH-Fair, a rigorously curated benchmark for evaluating fairness inter-
ventions in image models, and show that the fairness issue remains unresolved. A carefully tuned
ERM with the hyperparameter search often rivals specialized debiasing methods. It highlights the
crucial role of hyperparameter tuning and model selection in achieving fairness without harm. We
further find that utility need not be sacrificed: data augmentation can deliver simultaneous gains
in accuracy and subgroup parity. In addition, large vision–language models are not exempt from
fairness issues. Their pre-training choices can still imprint spurious correlations that widen gaps. By
releasing NH-Fair and all accompanying code, we aim to make fairness results reproducible and to
provide the community with a solid baseline on which to build more robust, bias-aware methods.
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ETHICS STATEMENT

This work focuses on evaluating fairness in vision and multimodal models. While our study does not
involve direct interaction with human subjects, it makes extensive use of publicly available datasets
with demographic information. We acknowledge that these datasets may contain label noise, spurious
correlations, or demographic imbalances, which themselves reflect broader social biases.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. All datasets used in our
experiments are publicly available, with detailed descriptions provided in Appendix B.1. Model
architectures, training procedures, and hyperparameters are documented in Appendix B.4 and Ap-
pendix B.5. The definitions and formulas of all fairness metrics are included in Section 2 and
Appendix B.2. We also provide an anonymous code repository linked in the manuscript.
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A RELATED WORK

A.1 FAIRNESS NOTIONS

Various notions have been proposed in the ML literature to measure the unfairness of ML outcomes;
they can be roughly classified into the following categories:

• Unawareness: it prohibits the use of sensitive attributes in the training and decision-making under
the principle that excluding such features avoids direct discrimination (Dwork et al., 2012).

• Parity-based fairness: it requires certain statistical measures to be equalized across different
groups. Prominent examples include Demographic Parity (predicted positive rates should be similar
across groups) (Dwork et al., 2012), Equal Opportunity (true positive rates are aligned) (Hardt et al.,
2016), Equalized Odds (both false positive and false negative rates are aligned) (Hardt et al., 2016),
Predictive Parity (predictive value measures are balanced) (Chouldechova, 2017), Accuracy Parity
(overall accuracy remains comparable across groups) (Khalili et al., 2023; Zhang et al., 2019), etc.

• Preference-based fairness: inspired by the fair-division and envy-freeness literature in economics,
it ensures that given the choice between various sets of decision outcomes, every group of users
would collectively prefer its perceived outcomes, regardless of the (dis)parity compared to the other
groups (Zafar et al., 2017; Ustun et al., 2019).

• Counterfactual fairness: this notion leverages tools from causal inference and structural causal
models to define fairness at the level of individual causal pathways. Intuitively, a model is counter-
factually fair if for any individual, the predicted outcome remains unchanged in a “counterfactual
world” where the individual belonged to a different demographic group, while all other non-sensitive
attributes and causal mechanisms remain fixed (Kusner et al., 2017).

• Individual fairness: unlike other notions that ensure fairness at the group level, individual fairness
attains fairness at the individual level, by ensuring similar individuals are treated similarly (Dwork
et al., 2012).

Our work is mostly related to parity-based fairness. Unlike most existing methods that achieve
fairness at the cost of reducing accuracy, we aim to achieve fairness without harm. By assigning
group-specific models to different groups, our goal is to reduce the accuracy gap between different
groups without sacrificing accuracy for any group (compared to the baseline classifier trained on data
collected from all groups).

A.2 APPROACHES TO MITIGATING UNFAIRNESS

A large body of research has focused on mitigating bias in ML models, which can be broadly
categorized into three strategies: pre-processing, in-processing, and post-processing interventions.

• Pre-processing methods aim to reduce unfairness at the data level. Common approaches include
re-weighting or re-sampling training examples to balance demographic groups (Kamiran and
Calders, 2012; Qraitem et al., 2023; Sagawa* et al., 2020; Pang et al., 2024), generating synthetic
data to fill representation gaps (Jang et al., 2021), or learning fair representations through data
transformations (Celis et al., 2020; Chuang and Mroueh, 2021).

• In-processing methods modify the training procedure by directly incorporating fairness constraints.
Representative approaches include adversarial training, which encourages representations to be
invariant to sensitive attributes (Madras et al., 2018; Xu et al., 2021; Jin et al., 2024b), and fairness-
based regularization terms in the loss function (Chuang and Mroueh, 2021; Park et al., 2022; Zafar
et al., 2019). More recent work has leveraged contrastive learning (Shen et al., 2021; Park et al.,
2022; Wang et al., 2022) or disentangled representations (Creager et al., 2019; Park et al., 2021;
Lee et al., 2021) to de-bias learned features.

• Post-processing methods adjust model outputs to better satisfy fairness criteria without retrain-
ing. Examples include modifying decision thresholds (Hardt et al., 2016), calibrating prediction
scores (Pleiss et al., 2017), or applying confidence-based and surrogate adjustments (Menon and
Williamson, 2018; Yin et al., 2024).

Recently, fairness in multi-modal learning has gained increasing attention, especially due to the
rising use of vision-and-language models. Several approaches (Dehdashtian et al., 2024; Jung et al.,
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2024) have also been proposed to mitigate bias in multi-modal settings. For example, FairCLIP
(Luo et al., 2024) minimizes Sinkhorn distance between the two distributions to debias pre-trained
vision-language models. (Seth et al., 2023) ensures fair representation from learning additive residual
image representations. (Gerych et al., 2024) equalizes the distances between the debiased embeddings
and images to achieve test-time fairness for VLMs.

In this paper, we mainly employ pre-processing and in-processing methods (with one post-processing
technique Kirichenko et al. (2023)). For clarity of presentation, we therefore re-group these strategies
into two broader categories: data-centric methods, which intervene at the dataset or input level, and
algorithmic methods, which modify the training process or outputs. This framing better reflects the
scope of our study and emphasizes the practical trade-offs practitioners face when choosing between
data-level and model-level interventions.

A.3 FAIRNESS WITHOUT HARM

Achieving fairness at the cost of lowering the performance of any group may be undesirable and
even prohibited in certain applications. For example, in safety-critical domains such as healthcare,
sacrificing model accuracy for fairness is undesirable, as it violates both the beneficence (i.e., doing
what is best for patients) and non-maleficence (i.e., avoiding harm) principles in healthcare ethics
(Beauchamp and Childress, 1994). Given this concern, some works aim to achieve fairness without
negatively impacting model accuracy (Dutta et al., 2020; Ustun et al., 2019; Yin et al., 2024; Pang
et al., 2024). Instead of solely enforcing fairness constraints across different groups, these approaches
ensure that model performance for every group does not deteriorate. For example, Martinez and
Bertran (2019) seeks a Pareto-optimal fair ML model that minimizes performance gaps among groups
while preventing unnecessary harm (i.e., minimal accuracy reduction for any group). Ustun et al.
(2019) leverages individuals’ sensitive attributes to train decoupled ML models, ensuring each group
receives the best possible performance from its assigned model compared to a pooled model (trained
on data from all groups) or the decoupled models of other groups. Yin et al. (2024) proposes a
method using abstention, where a pre-trained ML model selectively defers certain predictions to
human decision-makers, thus achieving group fairness without reducing accuracy.

A.4 FAIRNESS BENCHMARKS

A number of toolkits have been developed to standardize fairness evaluation and mitigation. AI
Fairness 360 (Bellamy et al., 2019) offers an extensible library of fairness metrics and bias mitigation
algorithms across datasets and tasks. Similarly, Fairlearn (Bird et al., 2020) provides practical tools
for assessing and improving fairness in machine learning pipelines, with an emphasis on industry
adoption. Beyond toolkits, early benchmarking efforts such as Reddy et al. (2021) compared bias
mitigation algorithms in representation learning, highlighting trade-offs across fairness metrics. While
these efforts established important foundations, they were largely limited to classical ML or relatively
simple datasets and did not extend to complex vision or multi-modal contexts.

Subsequent benchmarks have attempted to unify evaluation but remain limited in scope. MEDFAIR
(Zong et al., 2023) targets fairness in medical datasets, addressing sensitive healthcare applications
in vision tasks. FFB (Han et al., 2024) primarily evaluates older fairness algorithms before 2021
and omits recent advances in representation learning and data-centric strategies, while also lacking
systematic hyperparameter tuning. ABCFair (Defrance et al., 2024) focuses on tabular datasets and
adopts fixed hyperparameter settings, which restrict scalability and may misrepresent performance in
more complex domains.

With the rise of large vision–language models (LVLMs), newer benchmarks have begun to address
multimodal fairness. Xia et al. (2024); Jin et al. (2024a) investigate fairness in medical multimodal
foundation models. GenderBias-VL Xiao et al. (2025) and VLBiasBench Wang et al. (2024) explore
bias in LVLMs but typically cover smaller models, leaving out the larger LVLMs increasingly
deployed in real-world applications. VLAs (Girrbach et al., 2025) is the most recent work,, focusing
specifically on gender bias in LVLMs and corresponding mitigation strategies.

In contrast, NH-Fair is designed as a general-purpose fairness-without-harm benchmark evaluat-
ing multiple demographic attributes (e.g., gender, race, age) across diverse models, datasets, and
mitigation strategies. Its distinct contributions are: (1) unifying evaluation across classical vision

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

and multimodal models; (2) systematically analyzing the role of training settings; and (3) extend-
ing coverage to state-of-the-art LVLMs at deployment-relevant scales, ranging from 4B to 109B
parameters.

B EXPERIMENT SETUP

B.1 DATASETS DETAILS

Without additional illustration, we randomly split it into training, validation, and testing sets with a
ratio of 8:1:1.

CelebA (Liu et al., 2015): The CelebFaces Attributes Dataset, known as CelebA, is an extensive
collection featuring over 200,000 images of celebrities, with each image annotated for 40 distinct
attributes. In our research, we focus on the ”wavy hair” attribute as the classification target while
treating the ”male” attribute as a sensitive feature.

UTKFace (Zhang and Qi, 2017): The UTKFace dataset comprises more than 20,000 facial images,
each labeled with information on age, gender, and ethnicity. For our analysis, we simplify the race
attribute into two categories: ”white” and ”non-white as the sensitive attribute and take the ”gender”
as the classification target.

FairFace (Karkkainen and Joo, 2021): The FairFace dataset contains over 100,000 facial images
annotated with age, gender, and race, emphasizing balanced demographic representation. We employ
”race” prediction as the seven-class classification problem, and use ”gender” as the sensitive attribute.

Facet (Gustafson et al., 2023): The Facet dataset includes facial images annotated with Fitzpatrick
skin types, age, and gender. We utilize the binary attribute ”visible face” as the classification target.
Since a single data entry in Facet may have multiple skin type annotations, we use ”gender” as our
attribute for simplicity. Entries with incomplete gender annotations were removed.

HAM10000 (Maron et al., 2019): The HAM10000 dataset is a large collection of dermatoscopic
images used for skin lesion classification. We reclassified its 7 diagnostic categories into two broad
labels: ”benign” and ”malignant” following (Maron et al., 2019). Images missing recorded sensitive
attributes were excluded from the dataset. HAM10000 dataset includes two sensitive attributes: age
and sex. We binarized the age attribute into two categories: ”young” and ”old.” Individuals aged 0-60
years were classified as ”young,” while those aged 60 years and above were classified as ”old.”

Fitzpatrick17k (Groh et al., 2021): The Fitzpatrick17k dataset (Fitz17k) comprises dermatological
images labeled with Fitzpatrick skin types and diagnostic categories. We reclassify diagnoses into
”benign” and ”malignant” groups, following (Groh et al., 2021), and use skin type as the sensitive
attribute, binarized into ”lighter” (I-III) and ”darker” (IV-VI). Images missing skin type or diagnostic
labels were excluded.

Waterbirds (Sagawa* et al., 2020): The Waterbirds dataset contains images of waterbirds and
landbirds superimposed on either water or land backgrounds. We classify bird type (waterbird vs.
landbird) as the target, with background (water vs. land) serving as the sensitive attribute. Instances
with ambiguous background or species labels were removed. We use the train/validation/test split
provided with the dataset.

B.2 FAIRNESS METRICS

• Overall Accuracy Parity (Gap): The accuracy/AUC gap between two sensitive groups.

• Max-Min Fairness (Worst): The worst accuracy/AUC across two sensitive groups.

• Demographic Parity (DP): For binary classification, we focus only on the positive class. For
multi-class classifications such as FairFace, we follow the fairness guarantees outlined in (Denis
et al., 2024):

1− max
y∈[Y]

∣∣∣P[h(X) = y|A = a
]
− P

[
h(X) = y|A = a′

]∣∣∣.
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Table 5: Download URLs for the datasets.

Dataset Download URL License
CelebA (Liu et al., 2015) http://mmlab.

ie.cuhk.edu.hk/
projects/CelebA.html

Non-commercial research only

UTKFace (Zhang and Qi,
2017)

https://susanqq.
github.io/UTKFace/

Non-commercial research only

FairFace (Karkkainen and Joo,
2021)

https://github.com/
joojs/fairface

CC BY 4.0

Facet (Gustafson et al., 2023) https://ai.meta.
com/datasets/
facet-downloads/

Meta Images Research

HAM10000 (Maron et al.,
2019)

https://dataverse.
harvard.edu/dataset.
xhtml?persistentId=
doi:10.7910/DVN/
DBW86T

CC BY-NC 4.0

Fitzpatrick17k (Groh et al.,
2021)

https://github.
com/mattgroh/
fitzpatrick17k

CC BY-NC-SA 4.0

Waterbirds (Sagawa* et al.,
2020)

https://github.com/
kohpangwei/group_DRO

No license specified

• Equalized Odds (EqOdd): It is evaluated by ensuring parity in the probability of correct classifi-
cation:

1−
∣∣∣P[h(X) = y | Y = y,A = a

]
− P

[
h(X) = y | Y = y,A = a′

]∣∣∣.
We calculate this for all classes and take the average across classes as the final outcome.

B.3 METHODS

• Data-centric methods

– RandAugment (Cubuk et al., 2020): RandAugment (denoted as RandAug in the experiment
results) is commonly used in semi-supervised and unsupervised learning. It randomly selects and
applies a set of data augmentations—such as rotations, translations, or brightness adjustments—
to diversify the training data. In this study, we aim to evaluate whether training a model on more
diverse data, without using demographic information, can lead to improved fairness.

– Mixup (Zhang et al., 2018): It is a data augmentation technique that combines two training
samples and their corresponding labels to help models generalize better and produce smoother
predictions. We apply Mixup by blending data from different groups to evaluate its impact on
fairness and performance.

– Resampling (Buda et al., 2018; Sagawa* et al., 2020): It balances the dataset distribution by
either over-sampling underrepresented groups or under-sampling overrepresented groups. This
is done by assigning weights to each sample, helping to address class or group imbalances.

– Bias Mimicking (Qraitem et al., 2023): It introduces a sampling-based technique that mitigates
bias in models by mimicking biased distributions and adjusting them to improve fairness.

– FIS (Pang et al., 2024): It utilizes an influence-guided active sampling approach to enhance the
representation of sensitive groups while preserving overall performance.

• Algorithmic methods

– Decoupled Classifier (Ustun et al., 2019; Wang et al., 2020): It trains separate classifiers for
distinct groups and then aggregates their predictions.

– LAFTR (Madras et al., 2018): It uses an adversarial objective designed to disentangle sensitive
information from the learned representations.
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– FSCL (Park et al., 2022): Fair Supervised Contrastive Loss (FSCL) integrates fairness consider-
ations into a contrastive loss function, aiming to align group-level features without compromising
accuracy.

– GapReg (Chuang and Mroueh, 2021): It embeds fairness metrics, such as Demographic Parity,
Equal Opportunity, and Equalized Odds, directly into the training objective to balance both
accuracy and fairness.

– MCDP (Jin et al., 2024b): It introduces a fairness metric that captures the maximal local
disparity by evaluating cumulative ratio disparities across varying neighborhoods. MCDP uses a
regularization approach similar to GapReg to optimize the model.

– GroupDRO (Sagawa* et al., 2020): Distributionally Robust Optimization focuses on protect-
ing the worst-case groups through specialized regularization, thereby improving fairness for
minorities.

– DFR (Kirichenko et al., 2023): DFR is a post-processing method that retraining only the
final layer can mitigate spurious correlations, providing a lightweight and efficient approach for
achieving fairer predictions.

• Multi-modal models
– CLIP (Radford et al., 2021): CLIP (Contrastive Language–Image Pretraining) learns visual

concepts from natural language supervision by jointly training on image–text pairs. It has shown
strong zero-shot capabilities on image datasets. In this paper, we use the ViT (Dosovitskiy et al.,
2021) as the backbone for CLIP. In addition, we consider two CLIP-based post-training debias
methods: FairerCLIP (Dehdashtian et al., 2024) and SFID (Jung et al., 2024). FairerCLIP jointly
debiases CLIP’s image and text representations in reproducing kernel Hilbert spaces, and SFID
uses the selective feature imputation for debiasing.

– BLIP2 (Li et al., 2023): BLIP-2 bridges vision and language models using a lightweight Q-
Former and pre-trained frozen language models. We use BLIP2 to generate the image embeddings
and text embeddings and calculate the embedding similarities to make classifications.

– LLaVA-1.6 (Liu et al., 2024): LLaVA (Large Language and Vision Assistant) is an auto-
regressive language model that aligns vision features with a language model using instruction
tuning.

– Qwen2.5-VL (Bai et al., 2025): Qwen2.5-VL is the latest model of Qwen vision-language
series from Alibaba. It integrates a vision encoder and a language model decoder to process
multimodal inputs and achieve comparable performance with GPT-4o and Claude 3.5 Sonnet.

– Gemma 3 (Team et al., 2025): Gemma is a family of lightweight open models released by
Google, ranging from 1B to 27B parameters. As the 1B model supports only text inputs, we
evaluate the multimodal capabilities of the 4B, 12B, and 27B variants in this paper.

– Llama 3.2 (Grattafiori et al., 2024) and Llama 4 (?): Llama 4 is the latest multi-modal model
released by Meta. Due to the computation resource limitation, we only evaluate Llama 4 Scout,
a smaller variant compared with Llama 4 Maverick, alongside the Llama-3.2 multimodal series.

We present all used models and their sources in Table 6.

B.4 IMPLEMENTATION DETAILS

The experiments were conducted on a supercomputer cluster, where each node is equipped with
two AMD EPYC 7643 processors, four NVIDIA A100 GPUs (80GB memory each), and 921GB of
RAM. The code is implemented with Python 3.10.12 and PyTorch 2.5.0. All images are resized to
224× 224 pixels, and during training, we apply random horizontal flipping for data augmentation.
We use a pre-trained ResNet-18 as the backbone initialization to start the training. In addition, we
conduct experiments on pretrained weights and model size in Appendix C.

For RandAug, color-based augmentations were excluded during training, as the sensitive attributes in
our study include skin type, and such augmentations could inadvertently alter needed features.

The Fairness Influence Selection (FIS) method was originally designed for an active learning setting,
where a portion of the dataset remains unlabeled. In its original formulation, FIS selects necessary
unlabeled data using a combination of pseudo-labels and ground-truth labels. To adapt it to our
setting, we employ ground-truth labels for influence-guided selection. Specifically, the training
set is randomly partitioned into two subsets according to a predefined ratio: one subset is used for
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Table 6: Summary of multi-modal models

Model #Param URL

CLIP CLIP-ViT-B/16 150M https://github.com/openai/CLIP

BLIP-2 BLIP-2 Base 1B https://github.com/salesforce/
LAVIS

LLaVA

LLaVA-v1.6-vicuna-7b-hf 7B https://huggingface.co/LLaVA-hf/
LLaVA-v1.6-vicuna-7b-hf

LLaVA-v1.6-vicuna-13b-hf 13B https://huggingface.co/LLaVA-hf/
LLaVA-v1.6-vicuna-13b-hf

LLaVA-v1.6-34b-hf 34B https://huggingface.co/LLaVA-hf/
LLaVA-v1.6-34b-hf

Qwen

Qwen2.5-VL-7B-Instruct 7B https://huggingface.co/Qwen/
Qwen2.5-VL-7B-Instruct

Qwen2.5-VL-32B-Instruct 32B https://huggingface.co/Qwen/
Qwen2.5-VL-32B-Instruct

Qwen2.5-VL-72B-Instruct 72B https://huggingface.co/Qwen/
Qwen2.5-VL-72B-Instruct

Gemma

gemma-3-4b-it 4B https://huggingface.co/google/
gemma-3-4b-it

gemma-3-12b-it 12B https://huggingface.co/google/
gemma-3-12b-it

gemma-3-27b-it 27B https://huggingface.co/google/
gemma-3-27b-it

Llama

Llama-3.2-11B-Vision-Instruct 11B https://huggingface.
co/meta-Llama/Llama-3.
2-11B-Vision-Instruct

Llama-3.2-90B-Vision-Instruct 90B https://huggingface.
co/meta-Llama/Llama-3.
2-90B-Vision-Instruct

Llama 4 Scout (17Bx16E) 109B https://huggingface.
co/meta-Llama/Llama%
204-Scout-17B-16E-Instruct

supervised training, while during validation, the model assesses the influence of data in the second
subset and selectively incorporates a subset of these samples into the training set to achieve fairness
without harm. The split ratio is treated as a hyperparameter, as it varies across different datasets.

For Fairness-Sensitive Contrastive Learning (FSCL), training was divided into two phases: The first
60 epochs perform contrastive learning. The subsequent 40 epochs were used for classifier training.

For GapReg and MCDP, the differential privacy (DP) loss function was extended to accommodate
multi-class classification, particularly for the FairFace dataset. This extension is based on the
multi-class demographic parity formulation proposed by (Denis et al., 2024).

For CLIP and BLIP2, we use their public implementations. For LLVMs, we adopt the open-source
weights from Huggingface for all models with BF16 or FP16 precision, depending on their suggested
model loading.

B.5 HYPERPARAMETERS

We perform extensive hyperparameter optimization using Bayesian hyperparameter search via Weights
& Biases on the validation results. The default batch size is set to 256 for all experiments. For the
SGD optimizer, we deploy a StepLR scheduler and set momentum to 0.9, where the learning rate is
reduced by a factor of 0.1 every 30 epochs. The number of hyperparameter search iterations varies
with the complexity of each method–dataset combination, subject to a tuning budget of 100–200
searches per method–dataset pair. The search space includes both discrete choices and continuous
ranges, as detailed in Table 7. U denotes a uniform distribution, and logU denotes a log-uniform
distribution. The benchmarking process required a total of approximately 1.1 GPU years. All methods
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were trained for 100 epochs with early stopping to prevent overfitting. Early stopping is used if the
validation loss or validation accuracy/AUC does not improve after 10 epochs.

Table 7: Hyperparameter search space for all methods.

Category Hyperparameter Search Space

Common Hyperparameters
Learning Rate logU(10−5, 10−2)
Weight Decay {0, 10−5, 10−4, 10−3, 10−2}
Optimizer {Adam, SGD}

Mixup Mixup loss coefficient U(0.1, 10)
Resampling Resampling method {Group, Group × Class}
BM Sampling mode {none, us, uw, os}

FIS Label ratio {0.1, 0.3, 0.5}
Fairness metric {dp, eop, eod}

LAFTR Class coefficient U(0.1, 1)
Fairness coefficient U(0.1, 1)

FSCL Group normalization {0, 1}

GapReg Fairness regularization objective {dp, eop, eod}
Regularization coefficient U(0.01, 5)

MCDP Regularization coefficient U(0.01, 5)
Temperature {5, 10, 20, 50, 100}

GroupDRO Alpha U(0.01, 5)
Gamma U(0.01, 5)

DFR

Tune class weights {0, 1}
Add train data {0, 1}
Regularization {L1, L2}
C options {3, 1, 0.7, 0.3, 0.1, 0.07, 0.03, 0.01, 0.003}
Class weight options {1, 2, 3, 10, 100, 300, 1000}

FairerCLIP

τi U(0, 1)
τz,i U(0, 1)
τt U(0, 1)
τzt U(0, 1)
RFF Dim {1000, 2000, 3000, 4000, 8000}

SFID Confidence threshold U(0.5, 1)
Number of Pruned Feature {50,75,100}

B.6 PROMPTS

Table 8 lists the zero-shot prompts used throughout our study. For image–text matching models
(CLIP, BLIP-2, FairerCLIP, SFID), we use one template sentence per class and compute the im-
age–caption similarity, then pick the label of the highest-scoring caption as the prediction. For large
vision–language models, we feed the prompt with image input to the model and then parse the
model’s short text answer.
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Table 8: Prompts used across datasets for text-image matching and visual-language model (image-
text-to-text) inference.

Dataset Prompts

CelebA

Image-Text Matching:
[“A photo of a person with non-wavy hair.”,
“A photo of a person with wavy hair.”]
Image-Text-to-Text:
Is the person in the photo wavy-haired?
Only Answer ’Yes’ for wavy hair, ’No’ for non-wavy hair.

UTKFace

Image-Text Matching:
[“A photo of a male.”,
“A photo of a female.”]
Image-Text-to-Text:
Is the person in the photo male or female?
Only Answer ’Male’ or ’Female’.

FairFace

Image-Text Matching:
[“A photo of a White person.”,
“A photo of a Black person.”,
“A photo of a Latino or Hispanic person.”,
“A photo of an East Asian person.”,
“A photo of a Southeast Asian person.”,
“A photo of an Indian person.”,
“A photo of a Middle Eastern person.”]
Image-Text-to-Text:
Based on the photo, classify the race of the person into:
0: White, 1: Black, 2: Latino or Hispanic, 3: East Asian,
4: Southeast Asian, 5: Indian, 6: Middle Eastern.
Please answer with the corresponding category number only.

Facet

Image-Text Matching:
“A photo of a person with non-visible face.”
“A photo of a person with visible face.”
Image-Text-to-Text:
Does the photo show a visible face?
Only answer ’Yes’ if the face is visible, otherwise answer ’No’.

Waterbirds

Image-Text Matching:
“A photo of a landbird.”
“A photo of a waterbird.”
Image-Text-to-Text:
Is the bird in the photo a landbird or a waterbird?
Only answer ’Landbird’ or ’Waterbird’.

HAM10000 / Fitz17k
Image-Text Matching:
“A photo of a benign skin condition.”
“A photo of a malignant skin condition.”
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C ADDITIONAL EXPERIMENTS

C.1 TRAINING CHOICE EXPLORATIONS

In this paper, we argue that a carefully tuned ERM often rivals specialized debiasing methods. We
then organize the further studies to mirror the life cycle of a standard vision pipeline. We start with
initialization choices from pre-trained weights versus training from scratch, because the features a
model begins with strongly constrain downstream bias. Next, we study optimizer choice to challenge
prior work that often fixes optimizers across different settings and evaluate their influence on both
utility and fairness. We then turn to other common training choices like batch size, weight decay, and
model/checkpoint selection. Together, these investigations shed light on fairness outcomes and also
help reduce the search space for future hyperparameter optimization, providing principled guidance
on which training choices matter most.

C.1.1 IMPACT OF PRETRAINED WEIGHTS

Loading pretrained weights improves overall utility without harming fairness. In this part, we
investigate the impact of loading pretrained weights on ImageNet (Deng et al., 2009) before training
on fairness and utility on ERM. For clarity, Figure 5 extracts the most representative panels from
the full grid in Figure 6. Each panel plots models trained with pretraining (red circles, “Yes”) and
from scratch (blue circles, “No”) across our seven datasets while sweeping the same hyperparameter
grid, making the influence of weight initialization easy to see at a glance. The horizontal axis of
each plot measures subgroup performance disparity (e.g., “Gap AUC” or “Gap ACC”), while the
vertical axis measures overall utility (e.g., “Overall AUC” or “Overall ACC”). In all cases, points
closer to the top-left corner indicate both higher overall performance and smaller subgroup gaps,
which represent more favorable fairness-utility trade-offs. A general trend emerges showing that
models initialized with pretrained weights tend to achieve higher overall performance than those
trained from scratch. This benefit is especially apparent in datasets with relatively small training sets,
such as Fitz17k and Waterbirds. However, pretrained models do not consistently outperform models
trained from scratch in closing the subgroup performance gap. This observation is further supported
by other fairness metrics (such as DP, EqOdd, and Worst) reported in the Figure 6, where the full
comparison is provided. Despite this mixed impact on fairness, pretrained models improve overall
utility without harming any particular subgroup, particularly benefiting disadvantaged groups (as
seen in the Worst metric in the appendix). This aligns with our “fairness without harm” principle. As
a result, we adopt pretrained models in our benchmark for their superior overall performance while
maintaining acceptable fairness levels.

C.1.2 IMPACT OF OPTIMIZER CHOICE ON FAIRNESS AND UTILITY

Using a fixed optimizer across methods and datasets can lead to unfair comparisons. Many
prior studies use a single optimizer across datasets and methods, sometimes even without fine-tuning
learning rates. Based on this, we conducted this study on two baseline methods and two datasets to
provide empirical evidence that using a fixed optimizer across methods and datasets can lead to unfair
comparisons. Our findings in Figure 7 indicate that different datasets respond differently to various
optimizers, and selecting the right one can improve both utility and fairness. For instance, models
trained on CelebA with SGD tend to achieve better utility and smaller accuracy gaps, resulting in a
more balanced model compared to those trained with Adam. This is evident in the results, where
SGD-based models cluster around higher accuracy values with lower fairness gaps. On the other
hand, in the Fitz17k dataset, models trained with Adam perform better, achieving higher utility while
maintaining competitive fairness scores. This variation in optimizer performance highlights that a
one-size-fits-all approach can lead to suboptimal results, especially in fairness-sensitive settings. Our
findings underscore the need for more equitable and transparent evaluation practices in future
fairness research.

Further Analysis (ERM Focus). In the main text, due to computational constraints, we primarily
experimented with SGD (Bottou, 2012) and Adam (Kingma and Ba, 2015). Here, we extend the
study to include two additional optimizers, AdamW (Loshchilov and Hutter, 2019) and Adagrad
(Ward et al., 2020), in order to better understand their impact on ERM performance. Across datasets,
optimizer choice exhibits a more pronounced and consistent influence on both utility and fairness
than model size or batch size. For example, on Waterbirds, AdamW and Adagrad achieve both higher
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Figure 5: Comparison of utility gap for the pretrained weights. More left indicates greater fairness
(smaller accuracy gap), while higher values indicate better performance.

Table 9: Performance comparison across different optimizers.

Dataset Optimizer Utility (Acc or AUC) Worst Gap EqOdd DP

CelebA

SGD 86.57± 0.2 83.76± 0.2 6.76± 0.3 81.91± 0.6 67.20± 0.7
Adam 86.11± 0.4 82.85± 0.6 7.89± 0.3 80.46± 3.2 67.22± 2.8

AdamW 86.48± 0.1 83.30± 0.2 7.67± 0.1 79.27± 2.4 66.03± 1.9
Adagrad 86.65± 0.1 83.62± 0.3 7.33± 0.3 81.39± 0.9 67.90± 0.3

UTKFace

SGD 91.95± 0.0 90.51± 0.2 3.30± 0.6 96.76± 0.6 95.56± 0.3
Adam 92.75± 0.5 91.78± 0.6 2.26± 0.6 97.62± 0.5 94.55± 1.2

AdamW 92.85± 0.3 91.67± 0.4 2.72± 0.7 97.30± 0.7 95.70± 0.2
Adagrad 92.84± 0.2 91.27± 0.3 3.59± 0.2 96.45± 0.1 95.17± 0.4

FairFace

SGD 65.68± 0.4 64.64± 0.5 1.86± 0.3 95.98± 0.4 97.36± 0.2
Adam 66.76± 0.2 66.34± 0.4 0.87± 0.5 96.22± 0.6 97.61± 0.4

AdamW 67.09± 0.4 66.79± 0.4 0.64± 0.1 96.50± 0.4 97.69± 0.2
Adagrad 67.54± 0.4 66.83± 0.7 1.50± 0.6 96.07± 0.4 97.65± 0.2

Facet

SGD 67.55± 0.4 64.25± 1.0 4.31± 1.1 96.47± 1.2 95.40± 1.1
Adam 66.34± 0.9 63.09± 1.3 4.23± 0.9 94.60± 1.4 94.17± 1.2

AdamW 67.46± 0.2 62.23± 0.7 6.80± 1.1 95.67± 1.2 94.62± 0.9
Adagrad 67.62± 0.1 62.99± 0.2 6.02± 0.3 97.15± 0.9 95.95± 0.8

HAM10000

SGD 88.35± 1.8 84.68± 2.0 4.11± 2.1 88.17± 3.1 82.22± 4.8
Adam 86.47± 1.1 81.74± 1.7 4.53± 1.7 92.55± 2.4 87.69± 2.7

AdamW 88.18± 0.7 84.38± 0.7 3.40± 1.1 89.02± 6.0 80.23± 7.6
Adagrad 87.00± 0.9 81.98± 2.9 5.27± 3.2 91.33± 3.6 85.52± 1.0

Fitz17k

SGD 89.74± 1.0 88.39± 1.1 2.92± 1.1 94.92± 2.5 94.46± 1.4
Adam 89.62± 0.5 87.91± 0.5 2.34± 0.4 94.90± 0.9 91.74± 0.8

AdamW 91.37± 0.3 90.45± 0.3 2.11± 0.9 93.91± 1.6 92.32± 0.6
Adagrad 91.43± 0.3 90.40± 0.6 3.51± 1.7 96.09± 0.9 93.40± 0.5

Waterbirds

SGD 85.45± 0.9 83.72± 1.7 3.57± 1.8 68.23± 2.0 76.09± 2.0
Adam 85.63± 1.4 84.20± 0.9 2.87± 0.9 66.53± 3.3 77.67± 3.5

AdamW 87.09± 0.5 86.25± 0.3 1.68± 0.9 71.90± 0.4 81.54± 0.8
Adagrad 87.77± 0.6 87.10± 0.9 1.35± 1.5 74.00± 3.0 81.35± 2.0

overall accuracy and smaller subgroup gaps compared to SGD and Adam, indicating a more favorable
fairness–utility trade-off. These results suggest that the relative advantages of each optimizer are
highly dataset-dependent, yet their effects on utility and fairness are clearer than those of other
hyperparameters. Thus, when conducting hyperparameter optimizations, the choice of optimizer
could be prioritized for fairness-sensitive evaluations.
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Figure 6: Full comparison of fairness metrics (Gap, Worst, EqOdd, DP) across all datasets for the
pretrained weights.
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Figure 7: The effect of optimizer choice on fairness and utility trade-offs across CelebA and Fitz17k.
The points from the same color are models trained with different learning rates and weight decays.

C.1.3 IMPACT OF BATCH SIZE

Batch size has limited effect on overall utility but can affect fairness slightly. In this benchmark,
we use a batch size of 256 for all methods. We also evaluate if batch size have an influence on model
fairness. We conduct experiments on seven datasets with different batch sizes ranging from 32 to 1024
and report the results in Table 10. Across all datasets, utility remains relatively stable as batch size
increases. However, worst-case performance, which represents accuracy for the most disadvantaged
group, fluctuates more significantly. In some cases, such as CelebA and HAM10000, worst-case
performance tends to decrease slightly with larger batch sizes. This indicates that larger batch sizes
might lead to increased disparities between advantaged and disadvantaged groups. Equalized Odds
and Demographic Parity vary highly depending on specific datasets. For datasets like CelebA and
Waterbirds, EqOdd tends to decrease as batch size increases, while EqOdd and DP increase with
larger batch sizes in HAM10000 and Fitz17k. The results show that batch size can influence fairness,
but not in a consistent way. However, since its influence on fairness is relatively minor and
inconsistent, batch size can be given lower priority in future hyperparameter searches.

C.1.4 IMPACT OF WEIGHT DECAY

Weight decay is a critical hyperparameter that affects both model generalization and utility. The
results in Table 11 suggest that while weight decay influences fairness, its effects vary significantly
across different datasets. L2 regularization tends to maintain or slightly improve fairness metrics,
whereas L1 regularization can, in some cases, amplify disparities, particularly in datasets with
imbalanced subgroup distributions.

C.1.5 IMPACT OF MODEL SIZE

Increasing model size does not consistently improve fairness. We analyze the effect of model size
on fairness by comparing different ResNet architectures (ResNet-18, ResNet-34, ResNet-50, and
ResNet-101) across UTKFace, FairFace, and HAM10000 datasets in Table 12. We observe that larger
models tend to have slightly higher utility (overall accuracy or AUC), however, this improvement
is not consistent in the disadvantaged group in terms of the worst acc. For fairness metrics, larger
models exhibit varying trends across datasets without an obvious pattern. The results suggest that
increasing model size does not consistently improve fairness for single-modality classic supervised
learning.
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Table 10: Performance comparison across different batch sizes.

Dataset Batch Size Utility (Acc or AUC) Worst Gap EqOdd DP

CelebA

32 86.48± 0.3 83.59± 0.3 6.94± 0.4 80.82± 1.6 66.77± 1.2
64 86.63± 0.2 83.79± 0.4 6.82± 0.5 81.72± 1.9 67.37± 1.3
128 86.49± 0.1 83.69± 0.2 6.73± 0.6 81.80± 0.9 67.23± 1.1
256 86.57± 0.2 83.76± 0.2 6.76± 0.3 81.91± 0.6 67.20± 0.7
512 86.50± 0.1 83.60± 0.2 6.96± 0.4 81.57± 0.9 67.09± 0.8
1024 86.52± 0.1 83.67± 0.1 6.86± 0.3 81.60± 0.6 67.28± 0.7

UTKFace

32 93.07± 0.5 92.15± 0.7 2.12± 1.0 97.37± 0.4 94.21± 1.7
64 93.28± 0.2 92.53± 0.3 1.74± 0.5 98.22± 0.5 94.80± 2.0
128 91.91± 0.0 90.46± 0.0 3.40± 0.0 96.51± 0.0 96.19± 0.0
256 92.75± 0.5 91.78± 0.6 2.26± 0.6 97.62± 0.5 94.55± 1.2
512 93.30± 0.4 92.48± 0.8 1.90± 0.9 98.10± 0.9 95.84± 1.2
1024 92.80± 0.5 91.62± 0.8 2.75± 0.8 97.25± 0.8 95.13± 1.9

FairFace

32 67.49± 0.3 66.64± 0.4 1.80± 0.6 96.39± 0.4 97.80± 0.3
64 67.75± 0.5 67.43± 0.5 0.67± 0.5 96.13± 0.4 97.24± 0.3
128 66.76± 0.5 66.40± 0.7 0.76± 0.6 96.32± 0.7 97.56± 0.4
256 66.76± 0.2 66.34± 0.4 0.87± 0.5 96.22± 0.6 97.61± 0.4
512 66.63± 0.4 65.95± 0.6 1.44± 0.5 96.15± 0.6 97.59± 0.3
1024 65.77± 0.7 65.19± 0.8 1.23± 0.4 96.05± 0.5 97.41± 0.3

Facet

32 67.55± 0.3 64.11± 0.6 4.50± 0.9 96.33± 0.9 95.31± 0.9
64 67.55± 0.5 64.23± 0.8 4.35± 1.1 97.11± 1.1 96.18± 1.0
128 67.68± 0.1 63.61± 0.7 5.31± 1.0 97.08± 0.7 96.05± 0.7
256 67.55± 0.4 64.25± 1.0 4.31± 1.1 96.47± 1.2 95.40± 1.1
512 67.58± 0.1 63.85± 0.7 4.88± 1.1 97.31± 0.8 97.14± 0.9
1024 67.08± 0.3 62.71± 0.9 5.72± 1.2 98.11± 1.1 97.87± 1.2

HAM10000

32 89.35± 2.2 85.39± 3.8 4.30± 2.1 87.04± 3.6 82.25± 4.3
64 89.32± 1.4 86.08± 3.1 3.79± 3.0 88.25± 4.4 82.91± 3.4
128 89.21± 1.7 84.70± 3.6 5.82± 3.0 86.80± 4.1 81.80± 0.9
256 88.35± 1.8 84.68± 2.0 4.11± 2.1 88.17± 3.1 82.22± 4.8
512 88.21± 1.7 83.61± 2.7 5.08± 2.8 89.07± 3.9 84.73± 3.3
1024 88.17± 1.3 83.30± 2.3 5.40± 2.9 87.22± 5.6 84.91± 2.3

Fitz17k

32 90.62± 0.8 89.45± 0.8 2.80± 1.3 96.50± 2.7 94.55± 1.1
64 90.36± 0.7 89.02± 1.3 2.73± 1.6 96.13± 2.1 94.85± 1.0
128 89.92± 0.7 88.50± 0.8 3.16± 1.2 95.51± 2.5 94.54± 1.2
256 89.74± 1.0 88.39± 1.1 2.92± 1.1 94.92± 2.5 94.46± 1.4
512 88.94± 1.1 87.70± 1.2 2.61± 1.3 95.65± 2.4 95.27± 1.2
1024 86.97± 1.4 85.49± 1.6 2.82± 1.6 95.95± 1.1 96.49± 0.8

Waterbirds

32 87.29± 1.3 85.81± 1.1 2.98± 0.9 73.88± 3.1 82.33± 3.0
64 87.70± 0.6 86.36± 1.0 2.68± 1.4 74.60± 1.8 83.17± 1.8
128 88.14± 0.6 87.02± 0.8 2.24± 1.7 75.69± 2.0 84.11± 1.7
256 85.63± 1.4 84.20± 0.9 2.87± 0.9 66.53± 3.3 77.67± 3.5
512 87.11± 1.3 86.03± 0.8 2.16± 1.4 72.69± 3.7 81.45± 2.9
1024 83.68± 1.2 81.35± 2.4 4.65± 2.8 63.98± 1.6 73.77± 3.2

C.1.6 IMPACT OF MODEL SELECTIONS

We use ERM, RandAug, and GroupDRO as examples to compare the model selection methods in
Table 13 since their differences are more obvious to observe compared with others. The DTO-based
selection method prioritizes models that maximize utility for all groups, ensuring that no subgroup
is disproportionately disadvantaged. On the other hand, the FWH selection strategy emphasizes
fairness without significantly harming utility based on the DTO-based method selected ERM results,
focusing on reducing disparities without major accuracy degradation. The M in the Table denotes
using maximal overall utility. FWH selection achieves a smaller fairness gap across multiple datasets.
These results show that prioritizing fairness constraints does not necessarily mean sacrificing model
performance, as long as careful selection strategies are employed. However, since the selection is
performed on the validation set, it still faces the potential trade-offs when validation-test discrepancies
exist.
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Table 11: Performance comparison across different types of weight decay.

Dataset Method Utility (Acc or AUC) Worst Gap EqOdd DP

CelebA
No 86.52± 0.2 83.65± 0.3 6.91± 0.4 82.15± 1.4 67.69± 1.1
L1 86.52± 0.2 83.68± 0.3 6.82± 0.4 81.48± 1.1 67.10± 1.0
L2 86.57± 0.2 83.76± 0.2 6.76± 0.3 81.91± 0.6 67.20± 0.7

UTKFace
No 93.11± 0.5 91.86± 0.9 2.92± 1.0 97.22± 1.0 94.69± 1.3
L1 93.02± 0.3 91.85± 0.5 2.71± 1.2 97.21± 1.1 95.13± 1.2
L2 92.75± 0.5 91.78± 0.6 2.26± 0.6 97.62± 0.5 94.55± 1.2

FairFace
No 67.01± 0.2 66.71± 0.3 0.63± 0.5 95.99± 0.5 97.47± 0.4
L1 66.60± 0.2 66.07± 0.3 1.13± 0.6 96.20± 0.4 97.61± 0.3
L2 66.76± 0.2 66.34± 0.4 0.87± 0.5 96.22± 0.6 97.61± 0.4

Facet
No 67.60± 0.4 64.24± 0.6 4.39± 0.9 96.26± 1.1 95.39± 1.0
L1 67.85± 0.2 63.71± 0.7 5.41± 0.9 96.84± 0.8 96.12± 0.7
L2 67.55± 0.4 64.25± 1.0 4.31± 1.1 96.47± 1.2 95.40± 1.1

HAM10000
No 88.12± 1.9 84.85± 2.0 3.42± 1.5 88.14± 4.1 83.78± 3.9
L1 87.66± 1.1 83.70± 3.1 3.86± 3.5 87.75± 4.0 83.95± 5.1
L2 88.35± 1.8 84.68± 2.0 4.11± 2.1 88.17± 3.1 82.22± 4.8

Fitz17k
No 89.65± 1.0 88.30± 1.0 2.94± 1.1 95.08± 2.8 94.36± 1.3
L1 82.26± 1.7 79.79± 2.5 4.70± 2.4 97.10± 1.4 97.91± 0.4
L2 89.74± 1.0 88.39± 1.1 2.92± 1.1 94.92± 2.5 94.46± 1.4

Waterbirds
No 85.38± 0.7 83.38± 1.6 4.00± 2.0 69.10± 1.0 76.53± 1.6
L1 77.46± 0.6 76.79± 1.1 1.33± 0.9 88.83± 2.3 91.68± 2.0
L2 85.63± 1.4 84.20± 0.9 2.87± 0.9 66.53± 3.3 77.67± 3.5

Table 12: Performance comparison across different model sizes.

Dataset Batch Size Utility (Acc or AUC) Worst Gap EqOdd DP

UTKFace

ResNet-18 92.75± 0.5 91.78± 0.6 2.26± 0.6 97.62± 0.5 94.55± 1.2
ResNet-34 93.27± 0.8 92.31± 0.8 2.25± 0.4 97.66± 0.3 94.66± 1.0
ResNet-50 93.39± 0.7 92.50± 0.7 2.05± 0.8 97.85± 0.7 95.14± 1.9
ResNet-101 92.74± 0.0 91.11± 0.0 3.82± 0.0 96.23± 0.0 96.25± 0.0

FairFace

ResNet-18 66.76± 0.2 66.34± 0.4 0.87± 0.5 96.22± 0.6 97.61± 0.4
ResNet-34 68.22± 0.2 67.80± 0.2 0.90± 0.5 96.33± 0.6 97.46± 0.3
ResNet-50 67.33± 0.7 67.06± 0.6 0.58± 0.3 96.34± 0.6 97.57± 0.3
ResNet-101 68.68± 0.6 68.31± 0.6 0.79± 0.3 95.97± 0.7 97.38± 0.4

HAM10000

ResNet-18 88.35± 1.8 84.68± 2.0 4.11± 2.1 88.17± 3.1 82.22± 4.8
ResNet-34 87.44± 0.3 83.35± 1.9 4.87± 2.1 88.33± 3.0 82.08± 4.7
ResNet-50 88.35± 0.9 83.94± 2.6 5.49± 2.8 84.33± 6.8 79.63± 6.8
ResNet-101 89.01± 1.7 85.44± 3.5 4.69± 3.0 89.67± 3.3 84.84± 2.5

Table 13: Comparison of model selections. M denotes selecting models based on the maximal overall
utility.

Dataset CelebA UTKFACE FairFace Facet
ACC Worst Gap EqOdd DP ACC Worst Gap EqOdd DP ACC Worst Gap EqOdd DP ACC Worst Gap EqOdd DP

ERM-M 86.56 83.69 6.90 81.89 67.48 92.78 91.68 2.58 97.42 94.44 66.76 66.34 0.87 96.22 97.61 67.90 64.16 4.89 96.90 95.95
ERM-DTO 86.57 83.76 6.76 81.91 67.20 92.75 91.78 2.26 97.62 94.55 66.76 66.34 0.87 96.22 97.61 67.55 64.25 4.31 96.47 95.40
RandAug-M 86.73 83.89 6.82 81.16 66.90 93.31 92.17 2.64 97.32 95.11 68.50 67.70 1.70 96.17 97.57 67.97 64.55 4.46 96.81 96.02
RandAug-FWH 86.72 83.89 6.80 81.39 66.99 93.19 92.19 2.34 97.62 94.83 68.37 67.69 1.44 96.14 97.55 67.83 64.94 3.78 96.68 95.91
GroupDRO-M 86.14 83.51 6.32 78.76 66.32 92.37 91.43 2.18 97.46 94.46 65.81 65.03 1.64 96.53 97.66 67.32 64.19 4.09 93.57 93.16
GroupDRO-FWH 86.12 83.50 6.31 78.73 66.41 92.45 91.41 2.44 97.06 94.78 65.51 65.22 0.60 96.31 97.47 67.20 64.07 4.08 93.76 93.16

Dataset HAM10000 Fitz17k Waterbirds
ACC Worst Gap EqOdd DP ACC Worst Gap EqOdd DP ACC Worst Gap EqOdd DP

ERM-M 88.27 83.61 5.30 86.99 82.41 89.82 88.46 3.01 94.72 94.33 85.63 84.20 2.87 66.53 77.67
ERM-DTO 88.35 84.67 4.11 86.79 81.48 89.74 88.39 2.92 94.92 94.46 85.63 84.20 2.87 66.53 77.67

RandAug-M 89.53 85.33 4.63 86.34 79.94 91.24 90.13 2.52 95.36 94.48 87.48 85.60 3.76 72.12 80.35
RandAug-FWH 89.09 84.67 4.99 88.43 84.73 91.29 90.15 2.51 95.61 94.53 86.09 84.52 3.14 68.99 77.25

GroupDRO-M 88.96 85.23 4.33 86.12 79.45 91.04 89.66 3.55 95.22 94.43 86.78 84.76 4.05 71.88 80.88
GroupDRO-FWH 87.66 83.98 4.98 90.94 83.86 90.72 90.06 1.92 94.36 95.24 85.46 84.45 2.02 67.31 76.91

C.2 COMPUTATIONAL OVERHEAD COMPARISON

In this section, we compare the computational overhead of various methods in terms of additional
model parameters and overall computation times. Since methods like FIS perform additional
computations during validation, we measure the total computational time, including the training,
validation, and testing phases. Notably, because FIS requires computing the gradient for each
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sample, we use PyTorch’s vmap to accelerate the computation, which aligns with the official FIS
implementation in JAX.

In Table 14, we report the additional parameters required by specific methods and the average
computational times (in seconds) for the evaluated methods. Most methods use the same number
of parameters as the standard ERM baseline, so we focus only on those that introduce extra model
parameters. The reported times are averaged over 5 runs, including the training, validation, and
testing phases. For datasets with a limited number of samples, time differences are negligible and thus
omitted from this comparison. Although some methods, like LAFTR, exhibit significantly increased
computational demands, they do not outperform simpler methods. This highlights the need for easy
yet effective approaches that balance performance with computational efficiency.

Table 14: Average computation time in seconds for one round and the extra number of parameters
introduced by specific methods. DFR is not included here since it is a post-processing method.

ERM RandAug Mixup Resampling BM FIS
Parameters – – – – 1024 –

CelebA 113.06± 0.2 117.06± 1.9 112.48± 1.2 112.80± 0.4 114.08± 1.3 145.29± 0.5
UTKFace 39.33± 1.9 39.55± 1.0 38.44± 0.5 38.83± 1.1 39.79± 1.3 41.65± 0.6
FairFace 54.54± 0.3 54.53± 0.4 54.90± 0.3 54.68± 0.4 55.40± 0.4 72.07± 0.1
Facet 26.44± 0.1 26.51± 0.2 26.69± 0.2 26.53± 0.2 27.21± 0.2 35.14± 0.2

Average 58.34 59.42 58.13 58.21 59.12 73.54

Decoupled LAFTR FSCL GapReg MCDP GroupDRO
Parameters 1024 65921 – – – –

CelebA 114.24± 0.6 175.77± 0.9 119.75± 2.1 112.92± 0.7 112.94± 1.0 113.75± 1.4
UTKFace 38.69± 1.0 40.56± 1.1 47.62± 0.4 38.94± 0.4 38.97± 0.8 39.00± 1.0
FairFace 55.38± 0.6 83.76± 0.4 54.81± 0.9 55.63± 0.5 55.63± 0.4 55.31± 0.7
Facet 26.74± 0.2 39.64± 0.2 26.19± 0.2 26.85± 0.3 26.82± 0.3 26.71± 0.2

Average 58.76 84.93 62.09 58.59 58.59 58.69

C.3 LARGE VISION-LANGUAGE MODEL EXPERIMENTS

C.3.1 MODEL SCALE IMPACT ON FAIRNESS

Table 15: Effect of LVLM model scale on accuracy and fairness metrics

Dataset Metric LLaVA-1.6 Qwen2.5-VL Gemma 3 Llama
7B 13B 34B 7B 32B 72B 4B 12B 27B 3.2-11B 3.2-90B 4-Scout-109B

CelebA

ACC 50.21± 0.2 46.50± 0.1 44.83± 0.0 65.02± 0.2 42.58± 0.2 68.76± 0.1 45.08± 0.2 66.23± 0.2 74.04± 0.1 82.04± 0.2 76.23± 0.1 83.71± 0.2
Worst 46.79± 0.6 38.93± 0.3 32.69± 0.3 63.41± 0.3 27.79± 0.2 66.02± 0.4 37.15± 0.2 65.17± 0.4 72.18± 0.0 78.00± 0.4 68.79± 0.5 80.54± 0.2
Gap 5.85± 0.7 12.95± 0.4 20.75± 0.5 2.75± 0.5 25.33± 0.6 4.70± 0.7 13.57± 0.4 1.83± 0.4 4.47± 0.0 9.64± 0.6 17.89± 0.9 7.62± 0.4
EqOdd 88.81± 0.3 92.44± 0.2 97.41± 0.2 95.27± 0.8 95.26± 0.5 92.69± 0.3 92.25± 0.2 89.72± 0.5 92.76± 0.8 86.63± 0.6 94.56± 3.6 84.81± 0.9
DP 77.63± 0.2 83.16± 0.2 91.92± 0.2 81.51± 0.9 99.26± 0.1 91.71± 0.2 83.41± 0.4 73.20± 0.4 74.53± 0.8 76.33± 0.3 88.27± 1.5 71.52± 0.5

UTKFace

ACC 96.76± 0.3 97.01± 0.0 97.12± 0.2 96.12± 0.1 97.61± 0.2 96.78± 0.4 96.33± 0.3 97.25± 0.2 97.25± 0.5 96.81± 0.3 97.28± 0.1 97.02± 0.2
Worst 95.71± 0.3 96.28± 0.1 96.34± 0.1 95.03± 0.2 96.86± 0.1 95.76± 0.4 95.41± 0.2 96.70± 0.1 96.89± 0.4 96.04± 0.2 96.31± 0.0 96.29± 0.2
Gap 2.44± 0.6 1.71± 0.4 1.81± 0.2 2.51± 0.7 1.74± 0.2 2.36± 0.8 2.15± 0.5 1.29± 0.4 0.85± 0.2 1.81± 0.3 2.26± 0.4 1.70± 0.3
EqOdd 97.51± 0.6 98.31± 0.4 98.16± 0.2 97.09± 0.6 98.19± 0.2 97.59± 0.8 97.68± 0.5 98.71± 0.4 99.20± 0.2 98.03± 0.3 97.73± 0.4 98.27± 0.3
DP 95.15± 1.3 94.97± 1.6 95.22± 1.3 93.05± 1.4 93.96± 1.6 94.33± 1.6 93.54± 1.4 94.84± 1.1 95.28± 1.1 93.53± 1.1 94.18± 1.3 94.90± 1.3

FairFace

ACC 53.07± 0.0 59.59± 0.0 66.91± 0.0 66.09± 0.0 63.98± 0.0 65.57± 0.0 52.73± 0.1 57.27± 2.8 59.40± 0.1 51.70± 0.1 61.26± 0.2 56.52± 0.2
Worst 49.98± 0.0 58.54± 0.0 66.04± 0.0 65.07± 0.0 62.65± 0.0 64.73± 0.0 50.55± 0.1 55.35± 3.0 56.71± 0.0 49.73± 0.3 60.96± 0.3 53.53± 0.0
Gap 6.55± 0.0 1.97± 0.0 1.84± 0.0 2.17± 0.0 2.83± 0.0 1.79± 0.0 4.63± 0.1 4.08± 0.3 5.71± 0.1 4.18± 0.3 0.63± 0.2 6.35± 0.4
EqOdd 95.04± 0.0 94.55± 0.0 96.22± 0.0 96.04± 0.0 95.50± 0.0 96.26± 0.0 96.01± 0.1 93.07± 1.9 95.13± 0.1 95.99± 0.1 95.55± 0.2 96.54± 0.1
DP 96.34± 0.0 95.64± 0.0 98.07± 0.0 97.21± 0.0 97.23± 0.0 97.57± 0.0 97.50± 0.0 95.80± 1.1 97.16± 0.1 96.76± 0.0 96.58± 0.0 98.00± 0.1

Facet

ACC 63.50± 0.2 66.80± 0.3 58.14± 0.2 67.91± 0.5 67.80± 0.3 68.41± 0.5 66.93± 0.4 54.47± 0.2 57.75± 0.7 66.74± 0.4 67.75± 0.5 67.54± 0.4
Worst 62.41± 0.3 62.90± 1.1 57.97± 0.4 64.06± 1.2 63.16± 1.3 63.79± 1.3 62.39± 0.9 53.82± 0.5 57.25± 0.5 61.23± 0.5 63.05± 1.1 64.61± 1.0
Gap 1.42± 0.2 5.09± 1.3 0.72± 0.6 5.02± 1.0 6.06± 1.6 6.04± 1.2 5.92± 0.9 2.80± 1.8 1.42± 1.2 7.19± 0.9 6.12± 0.8 3.83± 1.0
EqOdd 94.98± 1.6 98.19± 0.9 95.90± 1.4 96.29± 0.9 97.67± 0.7 97.04± 1.2 97.88± 0.4 97.63± 0.4 96.22± 1.0 93.68± 1.8 97.23± 1.1 97.55± 1.1
DP 93.28± 1.4 96.79± 1.1 93.91± 1.5 95.81± 0.9 97.22± 0.6 96.15± 1.4 98.28± 0.9 96.13± 0.7 94.56± 0.6 95.72± 1.7 96.05± 1.1 96.28± 1.0

Waterbirds

ACC 77.24± 0.0 79.46± 0.0 86.95± 0.0 91.68± 0.0 91.62± 0.0 92.41± 0.0 75.59± 1.8 92.20± 0.0 90.77± 0.0 75.41± 0.3 77.62± 0.2 88.62± 0.1
Worst 75.63± 0.0 76.08± 0.0 81.26± 0.0 90.68± 0.0 90.46± 0.0 91.27± 0.0 62.40± 4.2 91.98± 0.0 88.97± 0.2 61.61± 0.6 63.35± 0.3 85.74± 0.2
Gap 3.21± 0.0 6.77± 0.0 11.39± 0.0 2.00± 0.0 2.32± 0.0 2.28± 0.0 26.39± 4.9 0.44± 0.1 3.59± 0.3 27.59± 0.5 28.55± 0.3 5.76± 0.2
EqOdd 63.22± 0.0 65.54± 0.0 80.88± 0.0 90.21± 0.0 91.90± 0.0 94.03± 0.0 61.61± 0.7 89.28± 0.2 92.99± 0.5 65.72± 0.6 71.54± 0.6 89.38± 0.1
DP 72.83± 0.0 72.45± 0.0 80.46± 0.0 92.13± 0.0 93.12± 0.0 94.62± 0.0 58.82± 3.2 92.36± 0.1 93.17± 0.1 60.97± 0.6 64.46± 0.4 89.44± 0.1

Average

ACC 68.156 69.872 70.79 77.364 72.718 78.386 67.332 73.484 75.842 74.54 76.006 78.682
Worst 66.104 66.546 66.86 75.65 68.184 76.314 61.58 72.604 74.4 69.322 70.51 76.142
Gap 3.894 5.698 7.302 2.89 7.656 3.434 10.532 2.088 3.208 10.082 11.002 5.052
EqOdd 87.912 89.806 93.714 94.98 95.704 95.522 89.086 93.682 95.26 88.01 91.416 93.31
DP 87.046 88.602 91.916 91.942 96.158 94.876 86.31 90.466 90.94 84.662 87.934 90.028

In this paper, we include four families of vision–language foundation models: LLaVA, Qwen-VL,
Gemma, and Llama at multiple parameter scales (from roughly 4 billion to 90 billion weights) to
probe whether the standard “bigger-is-better” rule extends to fairness (Table 15). The averaged results
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Table 16: Prompts used for evaluating LVLM sensitivity. Each dataset has the original instruction
(Origin) and two paraphrased variants.

Dataset Prompts
CelebA Origin: Is the person in the photo wavy-haired? Answer ’Yes’ for wavy hair, ’No’ for

non-wavy hair.
Variant 1: Does this person appear to have wavy hair? Reply with Yes/No only.
Variant 2: Classify hair texture as wavy or non-wavy. Output: Yes or No.

FairFace Origin: Based on the photo, classify the race of the person into: 0: White, 1: Black, 2:
Latino or Hispanic, 3: East Asian, 4: Southeast Asian, 5: Indian, 6: Middle Eastern.
Answer with the category number only.
Variant 1: Pick a single integer label (0–6) for race: 0-White, 1-Black, 2-
Latino/Hispanic, 3-East Asian, 4-Southeast Asian, 5-Indian, 6-Middle Eastern. Output
digits only.
Variant 2: Classify race using numbers: 0=White, 1=Black, 2=Latino/Hispanic,
3=East Asian, 4=Southeast Asian, 5=Indian, 6=Middle Eastern. Answer with number
only.

Facet Origin: Does the photo show a visible face? Answer ’Yes’ if the face is visible,
otherwise ’No’.
Variant 1: Is a face clearly visible? Reply Yes/No only.
Variant 2: Face visibility check: Yes or No? Output one word.

confirm that scale almost always boosts utility: mean accuracy climbs steadily within each family
(e.g., LLaVA 68 → 71 %, Gemma 67 → 76 %), and worst-group accuracy rises in the same trend.
Larger models also score better on our parity metrics like demographic parity (DP) and equalized odds
(EqOdd), which suggests that they become more confident and consistent across groups. However,
larger models do not guarantee a better accuracy gap. For example, the gap more than doubles (3.9 →
7.3 %) for LLaVA. In short, increasing size is a reliable path to higher accuracy and better parity rates,
but it does not guarantee a smaller disparity between groups; in some cases, it even amplifies it. These
mixed trends highlight that parameter count alone cannot close fairness gaps where architectural
choices, alignment strategies, and dataset biases remain decisive factors.

We further select the largest variant from each model family and present the results in Figure 8. Among
them, Qwen2.5-VL 72B demonstrates the best overall balance between fairness and utility. Notably,
Gemma 3 27B achieves comparable performance to Qwen despite its smaller model size, while
LLaMA 4-Scout, although achieving strong headline accuracy, remains susceptible to dataset-specific
biases.

C.3.2 PROMPT SENSITIVITY OF LVLMS

Fairness evaluations of LVLMs often rely on handcrafted prompts, raising concerns about robustness
to prompt variations. To examine the sensitivity of LVLMs to prompt wording, we design two
paraphrased variants for three dataset tasks (we consider those with relatively larger disparities) in
addition to the original instruction (Table 16), and evaluate whether performance holds consistent
across different formulations. Results in Table 17 show that, across most cases, models exhibit
broadly consistent fairness performance under different prompts, with only a few extreme cases (e.g.,
Qwen2.5-VL on CelebA) showing large deviations. This indicates that prompt rewording alone does
not fundamentally resolve fairness issues, LVLMs remain subject to subgroup disparities regardless
of the prompt design.
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Figure 8: Performance comparison of LVLMs across five datasets and five evaluation metrics. For
clarity, the Gap metric is shown as 100−Gap, where higher values indicate better performance.

Table 17: LVLM performance under different prompts. Each model is evaluated with the original
instruction and two paraphrased variants. For CelebA, Llama3.2 often produces non-conforming
answers under Variant 2 instead of the required categorical outputs; it is therefore omitted from the
reported results.

Dataset Metric LLaVA-1.6-13B Qwen2.5-VL-32B Gemma3-12B Llama3.2-11B
Origin Variant 1 Variant 2 Origin Variant 1 Variant 2 Origin Variant 1 Variant 2 Origin Variant 1 Variant 2

CelebA

ACC 46.50± 0.1 53.84± 0.2 50.30± 0.1 42.58± 0.2 33.47± 0.1 37.08± 0.0 66.23± 0.2 63.76± 0.2 74.77± 0.1 76.23± 0.1 81.34± 0.2 -
Worst 38.93± 0.3 46.81± 0.4 45.10± 0.4 27.79± 0.2 15.16± 0.2 18.22± 0.0 65.17± 0.4 61.51± 0.4 64.98± 0.2 68.79± 0.5 77.10± 0.4 -
Gap 12.95± 0.4 12.03± 0.4 8.89± 0.6 25.33± 0.6 31.32± 0.6 32.30± 0.0 1.83± 0.4 3.86± 0.3 23.58± 0.3 17.89± 0.9 10.20± 0.5 -
EqOdd 92.44± 0.2 94.23± 0.2 91.04± 0.3 95.26± 0.5 98.61± 0.1 93.73± 0.0 89.72± 0.5 90.24± 0.3 93.32± 0.2 94.56± 3.6 92.56± 0.4 -
DP 83.16± 0.2 87.06± 0.4 80.21± 0.2 99.26± 0.1 99.00± 0.1 94.81± 0.0 73.20± 0.4 74.62± 0.2 92.66± 0.6 88.27± 1.5 79.98± 0.6 -

FairFace

ACC 59.59± 0.0 61.57± 0.0 59.17± 0.0 63.98± 0.0 63.13± 0.0 63.00± 0.0 57.27± 2.8 57.15± 0.1 58.19± 0.1 61.26± 0.2 31.19± 0.1 40.66± 0.2
Worst 58.54± 0.0 58.98± 0.0 58.01± 0.0 62.65± 0.0 61.41± 0.0 61.43± 0.0 55.35± 3.0 54.97± 0.0 56.09± 0.1 60.96± 0.3 28.99± 0.3 38.88± 0.5
Gap 1.97± 0.0 5.49± 0.0 2.47± 0.0 2.83± 0.0 3.65± 0.0 3.33± 0.1 4.08± 0.3 4.64± 0.1 4.45± 0.1 0.63± 0.2 4.67± 0.6 3.78± 0.7
EqOdd 94.55± 0.0 97.04± 0.0 96.82± 0.0 95.50± 0.0 97.11± 0.0 95.86± 0.0 93.07± 1.9 92.13± 0.0 92.12± 0.1 95.55± 0.2 97.11± 0.2 95.15± 0.1
DP 95.64± 0.0 97.54± 0.0 97.06± 0.0 97.23± 0.0 97.75± 0.0 97.56± 0.0 95.80± 1.1 95.15± 0.1 95.38± 0.0 96.58± 0.0 98.69± 0.1 97.19± 0.1

Facet

ACC 66.80± 0.3 66.63± 0.2 55.20± 0.5 67.80± 0.3 67.19± 0.1 67.59± 0.3 54.47± 0.2 55.51± 0.3 55.88± 0.5 67.75± 0.5 63.69± 0.1 38.03± 0.0
Worst 62.90± 1.1 63.26± 0.5 54.28± 0.7 63.16± 1.3 62.40± 1.5 62.41± 1.3 53.82± 0.5 54.91± 0.1 55.08± 0.3 63.05± 1.1 60.03± 0.5 36.65± 0.2
Gap 5.09± 1.3 4.38± 0.8 3.95± 0.9 6.06± 1.6 6.24± 1.8 6.75± 1.3 2.80± 1.8 2.57± 1.1 1.41± 0.5 6.12± 0.8 4.75± 0.7 6.02± 0.8
EqOdd 98.19± 0.9 98.16± 0.5 97.19± 0.8 97.67± 0.7 97.27± 0.4 96.70± 0.0 97.63± 0.4 96.97± 1.3 95.77± 1.6 97.23± 1.1 96.24± 1.1 98.79± 0.2
DP 96.79± 1.1 96.79± 1.4 98.92± 0.3 97.22± 0.6 96.87± 0.3 95.67± 0.2 96.13± 0.7 95.60± 1.3 93.87± 1.8 96.05± 1.1 97.24± 0.9 99.48± 0.4
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D ADDING NEW DATASETS AND ALGORITHMS TO THE FRAMEWORK

Our benchmarking framework provides a flexible and extensible design for integrating new image
classification datasets. A new dataset can be inherited from FairDataset and specify image folder
location, target labels, sensitive attributes, and an indices list to split the dataset. The core dataset
class, FairDataset, is presented as below.

class FairDataset(Dataset):
def __init__(self, root, split='train', transform=None, seed=42):

# Base folder and images directory
self.root = root
self.img_dir = None

self.split = split
self.indices = [] # Indices for the split dataset
self.sensitive_attrs = np.array([]) # Sensitive attributes
self.targets = np.array([]) # Target labels

self.transform = transform # Image transformation pipeline

self.image_file_list = []

# Option to store images in memory for faster access
self.images = []

By inheriting from ERM, this new class has access to the default model, optimizer, and loss function.
A new method needs to be implemented to rewrite the training process, ensuring that it aligns
with the new algorithm’s objectives. For example, the MCDP class extends ERM and introduces a
fairness-aware loss function.

class MCDP(erm):
def __init__(self, args):

super().__init__(args)
self.fair_loss = MaxCDFdp(args.mcdp_temperature)

def train(self, train_loader, epoch, args):
self.model.train()
for batch_index, (data, target, sensitive_attr) in

enumerate(train_loader):↪→
output = self.model(data)
self.optimizer.zero_grad()
fairloss = args.mcdp_lambda * self.fair_loss(output,

sensitive_attr)↪→
loss = self.criterion(output, target) + fairloss
loss.backward()
self.optimizer.step()
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E SUPPLEMENTARY RESULTS

Here we present the standard deviation for Table 2 and Table 19 below:

Table 18: Full results on seven datasets with standard deviations for vision models.

Dataset Metric ERM RandAug Mixup Resampling BM FIS Decoupled LAFTR FSCL GapReg MCDP GroupDRO DFR

CelebA

ACC 86.57± 0.2 86.72± 0.2 85.61± 0.3 86.35± 0.2 85.93± 0.1 83.05± 0.2 86.35± 0.2 86.55± 0.2 85.61± 0.1 85.62± 0.6 80.26± 0.8 86.12± 0.2 86.58± 0.1

Worst 83.76± 0.2 83.89± 0.3 82.74± 0.4 83.44± 0.2 82.86± 0.3 79.33± 0.5 83.46± 0.2 83.67± 0.3 82.56± 0.3 83.17± 0.4 77.13± 0.8 83.50± 0.2 83.78± 0.2

Gap 6.76± 0.3 6.80± 0.4 6.90± 0.3 6.98± 0.3 7.38± 0.5 8.94± 0.7 6.93± 0.4 6.93± 0.5 7.35± 0.6 5.90± 0.9 7.52± 1.2 6.31± 0.5 6.74± 0.4

EqOdd 81.91± 0.6 81.73± 1.1 87.08± 2.2 81.80± 0.7 78.84± 1.1 75.79± 1.8 80.59± 1.3 81.15± 1.7 85.45± 1.4 93.94± 5.8 89.63± 3.3 78.73± 1.3 81.83± 0.7

DP 67.20± 0.7 67.37± 0.4 70.83± 1.8 67.39± 0.3 66.91± 1.0 66.84± 1.8 66.68± 0.9 66.90± 1.2 69.72± 1.6 75.91± 4.5 93.11± 2.2 66.41± 1.2 67.30± 0.7

UTKFace

ACC 92.75± 0.5 93.19± 0.3 92.62± 0.6 92.70± 0.5 93.33± 0.6 91.97± 0.5 91.68± 1.1 93.17± 0.3 93.52± 0.5 92.53± 0.9 92.49± 0.7 92.45± 0.4 92.73± 0.6

Worst 91.78± 0.6 92.19± 0.3 91.55± 0.7 91.60± 0.7 92.27± 0.8 90.91± 0.5 90.84± 0.9 92.05± 0.3 92.62± 0.4 91.70± 0.9 91.63± 1.1 91.41± 0.6 91.60± 0.9

Gap 2.26± 0.6 2.34± 0.6 2.50± 0.4 2.56± 0.4 2.47± 0.5 2.48± 0.4 1.97± 1.0 2.61± 0.3 2.10± 0.8 1.91± 0.6 2.00± 1.0 2.44± 1.0 2.63± 0.8

EqOdd 97.62± 0.5 97.62± 0.4 97.61± 0.4 97.49± 0.4 97.39± 0.5 97.51± 0.4 97.43± 0.4 97.44± 0.3 97.44± 1.3 98.10± 0.6 98.04± 1.0 97.06± 0.6 97.39± 0.9

DP 94.55± 1.2 94.83± 1.1 94.51± 1.5 95.34± 1.8 94.34± 1.5 94.69± 1.7 96.27± 2.4 95.44± 2.1 94.18± 2.1 95.30± 1.6 95.80± 0.6 94.78± 1.8 94.83± 1.4

FairFace

ACC 66.76± 0.2 68.37± 0.3 65.40± 0.6 65.40± 0.2 65.66± 1.1 65.31± 0.5 67.03± 0.5 66.44± 0.8 65.42± 0.5 65.02± 1.0 66.06± 1.1 65.51± 0.5 63.20± 2.1

Worst 66.34± 0.4 67.69± 0.3 64.50± 0.6 64.51± 0.4 65.20± 1.0 64.59± 0.4 66.61± 0.5 65.60± 0.9 64.64± 0.4 64.12± 1.3 65.62± 0.9 65.22± 0.5 62.45± 2.5

Gap 0.87± 0.5 1.44± 0.6 1.93± 0.3 1.90± 0.6 0.97± 0.2 1.53± 0.6 0.87± 0.5 1.76± 0.4 1.66± 0.5 1.92± 0.9 0.90± 0.5 0.60± 0.6 1.59± 0.7

EqOdd 96.22± 0.6 96.14± 0.1 96.55± 0.3 96.83± 0.3 95.70± 0.3 95.88± 0.3 95.14± 0.7 94.73± 1.0 97.05± 0.5 96.15± 0.1 97.85± 0.2 96.31± 0.7 95.81± 0.3

DP 97.61± 0.4 97.55± 0.2 97.62± 0.2 97.80± 0.2 97.30± 0.2 97.40± 0.2 96.88± 0.4 96.86± 0.6 98.10± 0.1 97.51± 0.2 98.50± 0.2 97.47± 0.4 97.43± 0.1

Facet

ACC 67.55± 0.4 67.83± 0.7 67.86± 0.4 67.56± 0.2 65.87± 1.2 67.60± 0.4 67.33± 0.7 70.74± 7.5 67.79± 0.4 67.01± 0.2 67.91± 0.4 67.20± 0.2 66.87± 0.5

Worst 64.25± 1.0 64.94± 1.0 64.54± 1.0 64.13± 0.5 62.67± 0.9 63.53± 0.9 62.60± 1.1 68.60± 8.6 65.02± 0.9 62.22± 1.4 64.21± 1.2 64.07± 0.8 63.10± 1.5

Gap 4.31± 1.1 3.78± 1.0 4.33± 1.4 4.48± 0.4 4.18± 0.6 5.33± 1.3 6.17± 0.6 2.82± 1.4 3.61± 0.8 6.26± 1.7 4.84± 1.5 4.08± 0.9 4.92± 1.9

EqOdd 96.47± 1.2 96.68± 1.0 97.50± 1.2 94.37± 0.8 96.32± 1.8 98.10± 1.3 88.04± 1.9 96.38± 2.8 96.50± 1.6 98.92± 1.0 98.23± 1.0 93.76± 1.0 96.82± 1.0

DP 95.40± 1.1 95.91± 1.0 96.71± 1.2 93.96± 0.7 95.09± 1.9 97.84± 1.2 87.30± 1.7 95.00± 3.0 95.66± 1.4 98.73± 1.4 98.46± 1.3 93.16± 1.2 96.09± 1.1

HAM10000

AUC 88.35± 1.8 89.09± 1.3 86.51± 2.4 87.75± 2.2 89.54± 1.4 85.97± 1.1 87.87± 2.0 85.72± 2.7 86.12± 2.9 84.97± 3.2 82.96± 1.8 87.66± 2.7 87.06± 0.9

Worst 84.68± 2.0 84.67± 3.3 82.31± 2.3 84.77± 3.3 86.49± 1.5 82.98± 1.6 84.04± 3.6 76.21± 4.2 78.36± 3.9 82.57± 3.7 80.29± 1.7 83.98± 3.0 82.49± 2.5

Gap 4.11± 2.1 4.99± 3.7 4.14± 2.8 3.52± 2.7 3.04± 0.9 3.11± 1.9 5.17± 2.7 13.21± 6.8 10.81± 3.9 3.07± 2.3 3.10± 2.2 4.98± 2.5 5.30± 2.2

EqOdd 88.17± 3.1 88.43± 4.0 91.14± 5.4 91.84± 3.3 85.65± 4.1 94.05± 2.3 77.52± 14.2 93.28± 6.2 84.57± 2.3 98.15± 3.7 99.52± 1.0 90.94± 5.3 91.25± 5.0

DP 82.22± 4.8 84.73± 3.4 88.54± 8.9 85.05± 2.2 78.41± 4.9 88.58± 2.7 75.15± 11.6 91.00± 6.4 77.64± 4.5 96.74± 6.5 99.58± 0.8 83.86± 5.7 84.65± 4.6

Fitz17k

AUC 89.74± 1.0 91.29± 0.5 90.62± 0.9 90.76± 0.7 91.02± 0.6 88.34± 0.8 89.63± 0.5 91.50± 0.9 90.83± 1.9 89.59± 1.1 91.65± 0.7 90.72± 0.9 89.99± 0.9

Worst 88.39± 1.1 90.15± 1.0 89.38± 1.9 88.99± 2.0 89.93± 0.8 87.02± 1.1 88.45± 1.3 90.59± 1.2 89.64± 2.2 88.52± 2.6 90.49± 0.8 90.06± 0.9 88.57± 0.5

Gap 2.92± 1.1 2.51± 1.0 2.43± 1.4 3.62± 2.2 2.34± 1.4 3.06± 2.0 2.55± 2.2 2.95± 1.1 3.84± 1.2 1.84± 2.0 2.87± 1.1 1.92± 1.1 2.93± 1.5

EqOdd 94.92± 2.5 95.61± 2.3 96.20± 3.1 95.27± 3.3 94.99± 1.9 95.17± 2.4 94.09± 3.3 93.68± 3.4 97.45± 0.8 95.47± 1.5 95.68± 2.7 94.36± 2.4 94.30± 1.1

DP 94.46± 1.4 94.53± 1.1 94.51± 1.4 93.31± 2.3 93.66± 2.1 95.60± 1.9 94.06± 1.9 94.46± 1.3 95.32± 1.4 96.42± 2.2 96.14± 2.1 95.24± 1.6 95.26± 1.2

Waterbirds

ACC 85.63± 1.4 86.09± 1.4 87.67± 1.1 87.35± 0.8 88.20± 1.0 83.72± 0.8 74.64± 3.0 85.72± 1.5 86.83± 2.1 86.45± 3.9 85.98± 0.9 85.46± 1.5 89.83± 1.4

Worst 84.20± 0.9 84.52± 2.6 85.99± 1.5 84.85± 0.7 85.96± 1.1 82.67± 2.1 64.45± 5.7 83.94± 2.1 86.28± 2.3 85.72± 4.1 84.83± 1.4 84.45± 1.7 89.09± 1.7

Gap 2.87± 0.9 3.14± 2.5 3.36± 1.7 4.98± 0.3 4.48± 0.6 2.09± 2.9 20.38± 5.6 3.56± 1.2 1.10± 0.6 1.47± 0.9 2.31± 1.4 2.02± 1.4 1.47± 0.6

EqOdd 66.53± 3.3 68.99± 2.5 81.42± 4.4 90.87± 1.3 77.21± 3.3 65.89± 2.1 47.31± 4.1 68.22± 3.0 90.00± 1.8 87.48± 8.8 72.97± 3.4 67.31± 3.8 97.79± 0.7

DP 77.67± 3.5 77.25± 3.0 86.00± 4.6 90.93± 1.0 81.78± 2.3 75.30± 1.8 52.30± 5.8 77.47± 4.1 92.53± 1.4 91.39± 7.1 80.70± 1.8 76.91± 3.6 98.61± 0.9

Table 19: Full results on seven datasets with standard deviations for multimodal models..

Dataset Metric ERM RandAug BLIP2 CLIP Fairer-
CLIP

CLIP-
SFID

LLaVA-1.6
34B

Qwen2.5-VL
72B

Gemma3
27B

Llama4
Scout

CelebA

ACC 86.57± 0.2 86.72± 0.2 47.38± 0.2 74.07± 0.4 73.78± 0.3 72.05± 0.3 44.83± 0.0 68.76± 0.1 74.04± 0.1 83.71± 0.2
Worst 83.76± 0.2 83.89± 0.3 36.82± 0.6 67.43± 0.5 67.32± 0.5 66.36± 1.0 32.69± 0.3 66.02± 0.4 72.18± 0.0 80.54± 0.2
Gap 6.76± 0.3 6.80± 0.4 18.09± 0.7 15.97± 0.4 15.56± 0.6 13.69± 1.9 20.75± 0.5 4.70± 0.7 4.47± 0.0 7.62± 0.4

EqOdd 81.91± 0.6 81.73± 1.1 97.24± 0.6 83.72± 0.6 83.79± 0.8 95.70± 1.8 97.41± 0.2 92.69± 0.3 92.76± 0.8 84.81± 0.9
DP 67.20± 0.7 67.37± 0.4 95.90± 0.7 81.32± 0.6 81.06± 0.6 93.23± 2.3 91.92± 0.2 91.71± 0.2 74.53± 0.8 71.52± 0.5

UTKFace

ACC 92.75± 0.5 93.19± 0.3 94.23± 0.4 96.72± 0.4 96.79± 0.4 96.70± 0.3 97.12± 0.2 96.78± 0.4 97.25± 0.5 97.02± 0.2
Worst 91.78± 0.6 92.19± 0.3 94.00± 0.4 95.90± 0.2 96.05± 0.3 96.03± 0.3 96.34± 0.1 95.76± 0.4 96.89± 0.4 96.29± 0.2
Gap 2.26± 0.6 2.34± 0.6 0.45± 0.3 1.90± 0.6 1.72± 0.2 1.55± 0.1 1.81± 0.2 2.36± 0.8 0.85± 0.2 1.70± 0.3

EqOdd 97.62± 0.5 97.62± 0.4 99.24± 0.4 97.96± 0.5 98.17± 0.2 98.36± 0.2 98.16± 0.2 97.59± 0.8 99.20± 0.2 98.27± 0.3
DP 94.55± 1.2 94.83± 1.1 95.61± 0.8 93.91± 1.1 94.27± 1.2 94.96± 1.1 95.22± 1.3 94.33± 1.6 95.28± 1.1 94.90± 1.3

FairFace

ACC 66.76± 0.2 68.37± 0.3 52.57± 0.0 57.36± 0.0 56.81± 0.0 52.73± 0.4 66.91± 0.0 65.57± 0.0 59.40± 0.1 56.52± 0.2
Worst 66.34± 0.4 67.69± 0.3 50.74± 0.0 57.20± 0.0 56.41± 0.0 51.59± 0.6 66.04± 0.0 64.73± 0.0 56.71± 0.0 53.53± 0.0
Gap 0.87± 0.5 1.44± 0.6 3.46± 0.0 0.34± 0.0 0.86± 0.0 2.40± 0.5 1.84± 0.0 1.79± 0.0 5.71± 0.1 6.35± 0.4

EqOdd 96.22± 0.6 96.14± 0.1 93.86± 0.0 97.16± 0.0 96.78± 0.0 97.14± 0.1 96.22± 0.0 96.26± 0.0 95.13± 0.1 96.54± 0.1
DP 97.61± 0.4 97.55± 0.2 96.89± 0.0 98.36± 0.0 98.32± 0.0 98.46± 0.1 98.07± 0.0 97.57± 0.0 97.16± 0.1 98.00± 0.1

Facet

ACC 67.55± 0.4 67.83± 0.7 41.16± 0.9 33.10± 0.2 33.17± 0.1 33.26± 0.2 58.14± 0.2 68.41± 0.5 57.75± 0.7 67.54± 0.4
Worst 64.25± 1.0 64.94± 1.0 40.40± 0.9 31.43± 0.3 31.69± 0.2 31.54± 0.2 57.97± 0.4 63.79± 1.3 57.25± 0.5 64.61± 1.0
Gap 4.31± 1.1 3.78± 1.0 3.22± 0.9 7.13± 0.9 6.32± 0.3 7.37± 1.2 0.72± 0.6 6.04± 1.2 1.42± 1.2 3.83± 1.0

EqOdd 96.47± 1.2 96.68± 1.0 93.52± 1.4 98.72± 0.2 98.82± 0.3 99.75± 0.1 95.90± 1.4 97.04± 1.2 96.22± 1.0 97.55± 1.1
DP 95.40± 1.1 95.91± 1.0 94.10± 1.2 98.92± 0.3 99.00± 0.4 99.80± 0.1 93.91± 1.5 96.15± 1.4 94.56± 0.6 96.28± 1.0

Waterbirds

ACC 85.63± 1.4 86.09± 1.4 52.30± 0.0 78.05± 0.0 77.77± 0.0 75.70± 0.3 86.95± 0.0 92.41± 0.0 90.77± 0.0 88.62± 0.1
Worst 84.20± 0.9 84.52± 2.6 39.18± 0.0 74.53± 0.0 73.49± 0.0 72.81± 0.6 81.26± 0.0 91.27± 0.0 88.97± 0.2 85.74± 0.2
Gap 2.87± 0.9 3.14± 2.5 26.23± 0.0 7.04± 0.0 8.56± 0.0 5.78± 0.5 11.39± 0.0 2.28± 0.0 3.59± 0.3 5.76± 0.2

EqOdd 66.53± 3.3 68.99± 2.5 68.24± 0.0 73.96± 0.0 73.19± 0.0 95.57± 0.2 80.88± 0.0 94.03± 0.0 92.99± 0.5 89.38± 0.1
DP 77.67± 3.5 77.25± 3.0 63.48± 0.0 78.12± 0.0 76.73± 0.0 94.09± 0.6 80.46± 0.0 94.62± 0.0 93.17± 0.1 89.44± 0.1

HAM10000

AUC 88.35± 1.8 89.09± 1.3 38.87± 3.0 52.15± 2.6 51.88± 2.9 52.53± 3.9 – – – –
Worst 84.68± 2.0 84.67± 3.3 39.00± 5.0 51.56± 4.0 52.01± 3.9 53.41± 4.6 – – – –
Gap 4.11± 2.1 4.99± 3.7 6.89± 4.4 4.14± 3.9 3.12± 2.7 2.24± 2.1

EqOdd 88.17± 3.1 88.43± 4.0 98.19± 1.1 96.24± 2.5 95.75± 2.4 96.19± 3.0 – – – –
DP 82.22± 4.8 84.73± 3.4 97.89± 1.1 99.09± 0.6 98.94± 0.7 98.32± 0.5 – – – –

Fitz17k

AUC 89.74± 1.0 91.29± 0.5 67.08± 1.7 69.92± 0.8 69.81± 0.1 69.37± 0.8 – – – –
Worst 88.39± 1.1 90.15± 1.0 66.46± 1.9 69.78± 0.6 69.85± 0.1 69.35± 1.7 – – – –
Gap 2.92± 1.1 2.51± 1.0 3.74± 1.6 2.31± 1.5 2.52± 1.7 4.73± 4.6

EqOdd 94.92± 2.5 95.61± 2.3 97.06± 1.6 89.87± 3.0 87.95± 3.7 85.88± 6.2 – – – –
DP 94.46± 1.4 94.53± 1.1 98.40± 1.7 95.03± 2.0 93.02± 1.2 92.19± 0.6 – – – –

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

F LIMITATIONS AND FUTURE DIRECTIONS

Despite its breadth, NH-Fair is only an intermediate step toward a truly comprehensive fairness
benchmark, yet several gaps remain:

• Dataset: Although we span three domains, most datasets are still for human faces, due to the
scarcity of open, well-annotated fairness datasets. Some datasets include multiple protected
attributes. Due to computational resource limitations, we did not fully use them but selected the
attribute with a clear performance gap. Future work may consider intersectional groups (e.g.,
gender × race) and more visual domains. In addition, our zero-shot evaluations cannot guarantee
that images were not used during the pretraining phase of LVLMs, which may lead to the potential
data leakage problem.

• Task scope: To bridge single-modality bias mitigation algorithms with multi-modal models, we
limited experiments to single-image classification. Segmentation, detection, and captioning could
be further explored with task-specific fairness notions.

• Fairness Notions: As we stated in Section 2, there are also other fairness notions to quantify the
model fairness, like individual fairness and counterfactual fairness, which could be used in future
experiments.

• Experiments: We evaluated LVLMs in zero-shot only. Fine-tuning them could further reveal their
fairness performance and bring more valuable insights. In the comparison, we divide the method
into data-centric and algorithmic. However, combining all algorithmic approaches with data-centric
approaches is a promising solution to achieve better fairness, which could be a future research
direction.

• Analysis of LVLM Fairness: The paper considers fairness differences across LVLMs with different
architectural or alignment choices but does not account for confounding factors like differences
in training data or finetuning protocols due to the lack of transparency and standardization in
recently released LVLMs. For example, the Gemma 3 Technical Report discloses only high-level
information, such as the number of training tokens and the fact that both SFT and RLHF were
used for alignment. Further details of implementation are unavailable, which prevents controlled
comparisons. This lack of visibility is common in current LLM and LVLM releases, making
some in-depth analysis difficult. As a result, our study intentionally focuses on aspects that are
quantifiable and reproducible.

G BROADER IMPACTS

NH-Fair provides a transparent and public benchmark that lets researchers and developers evaluate
both single-modal and vision-language models under the same fairness metrics, motivating the
community to build more fair machine learning models. However, the visibility also may lead to
“benchmark gaming”: a model can be fine-tuned to excel on the reported sub-groups while quietly
marginalizing untested or intersectional minorities, posing potential downstream AI-safety concerns.

H LLM USAGE

In accordance with the ICLR policy, we disclose the use of large language models (LLMs) in
preparing this paper. LLMs are also a part of the subjects of our research, and all experimental results
are based on our own implementations and evaluations of these models. Separately, we used LLMs
as general-purpose assistive tools for language editing, improving the clarity of writing. They were
not used for research ideation, system design, or the generation or analysis of experimental results.
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