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ABSTRACT

Machine learning models trained on real-world data often inherit and amplify
biases against certain social groups, raising urgent concerns about their deployment
at scale. While numerous bias mitigation methods have been proposed, comparing
the effectiveness of bias mitigation methods remains difficult due to heteroge-
neous datasets, inconsistent fairness metrics, isolated evaluation of vision versus
multi-modal models, and insufficient hyperparameter tuning that undermines fair
comparisons. We introduce NH-Fair, a unified benchmark for fairness without
harm that spans both vision models and large vision—language models (LVLMs)
under standardized data, metrics, and training protocols, covering supervised and
zero-shot regimes. Our key contributions are: (1) a systematic ERM tuning study
that identifies training choices with large influence on both utility and disparities,
yielding empirically grounded guidelines to help practitioners reduce expensive
hyperparameter tuning space in achieving strong fairness and accuracy; (2) evi-
dence that many debiasing methods do not reliably outperform a well-tuned ERM
baseline, whereas a composite data-augmentation method consistently delivers
parity gains without sacrificing utility, emerging as a promising practical strategy.
(3) an analysis showing that while LVLMs achieve higher average accuracy, they
still exhibit subgroup disparities, and gains from scaling are typically smaller than
those from architectural or training-protocol choices. NH-Fair provides a repro-
ducible, tuning-aware pipeline for rigorous, harm-aware fairness evaluation. Code:
https://github.com/osu-srml/NH-Fair.

1 INTRODUCTION

Machine learning (ML) models increasingly shape high-stakes decisions, raising concerns that they
replicate or amplify societal biases, leading to unfair outcomes across social groups. Various metrics
have been proposed to quantify the model unfairness/bias such as risk disparity (Hashimoto et al.,
2018), demographic parity (Dwork et al.l [2012), equal opportunity, equalized odds (Hardt et al.,
2016)), overall accuracy parity (Berk et al.,[2021)), and max-min fairness (Lahoti et al.| 2020), yet
each captures different notions and priorities can depend on practical considerations.

Fairness interventions span pre-processing (Qraitem et al., 2023 [Sagawa* et al., 2020} |Pang et al.,
2024; Jang et al., [2021])), in-processing (Madras et al.| 2018 Xu et al.,|2021} |(Chuang and Mrouehl
2021; Park et al., 2022; Zafar et al.,[2019; |Zuo et al.,|2024), and post-processing (Hardt et al., 2016;
Yin et al., [2024} |[Dehdashtian et al.,[2024; Jung et al., 2024 [Tan et al.| 2026) methods. But they often
add complexity, require extensive hyperparameter tuning, or degrade overall accuracy (for example,
a model may degrade performance for some groups to meet fairness criteria like demographic or
accuracy parity). In safety-critical domains such as healthcare, sacrificing performance for fairness
violates ethical principles of beneficence and non-maleficence (Beauchamp and Childress}, |1994]).
Motivated by this, a growing line of work seeks fairness without harm, i.e., improving group parity
without materially reducing performance for any group (Ustun et al.,[2019; Martinez and Bertran|
2019;[Yin et al.l 2024). Instead of solely enforcing fairness constraints across different groups, these
approaches ensure that model performance for every group does not deteriorate.
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Despite significant progress, existing approaches were often designed for different problem settings
and evaluated in inconsistent, limited environments, making it difficult to assess their general
applicability. In particular, several key questions remain unanswered:

* Comparability under a standardized protocol. In fairness research, there are usually inconsistent
experimental settings when comparing different methods, e.g., arbitrary choice of optimizer,
different hyperparameters, and insufficiently trained baselines. These inconsistencies prevent us
from accurately assessing the real utility and fairness performance of state-of-the-art debiasing
methods. How do these methods perform in utility, fairness, and overhead, under the same setting
with comprehensive hyperparameter sweeping? And can they outperform a carefully trained ERM?

* What makes ERM strong—and how far can it go? There is a practice-research gap: industrial
workflows rarely explore the full suite of fairness algorithms and instead prioritize hyperparameter
optimization (HPO), like using Ray Tune (Liaw et al.| 2018)) or Optuna (Akiba et al.||2019), on
incumbent models. Yet, exhaustive HPO is computationally expensive. Can we bridge this gap by
revealing which training decisions, such as optimizer, model depth, or augmentation, most impact
fairness? In addition, if we start from a powerful ERM via principled tuning and selection, can
conventional group-disparity mitigations still deliver fairness without materially compromising
accuracy? Does simply scaling model size lead to better fairness?

* Where do foundation and multimodal models stand? In the era of foundation models and large
pretrained models, are these multi-modal models already fair enough compared with specifically
trained models due to pretraining on larger training data with larger model size?

Although some benchmarks have been proposed to make the comparison of previous methods,
like MEDFAIR (Zong et al., 2023)), FFB (Han et al., 2024), and ABC (Defrance et al., |2024)).
They often focus on specific domains, omit recent methodological advances, or suffer from limited
hyperparameter tuning and dataset diversity. For example, MEDFAIR is restricted to medical datasets
and does not evaluate fairness in general vision or multimodal contexts. FFB includes primarily
older methods, omitting recent advances in representation learning and data-centric approaches, and
lacks sufficient hyperparameter tuning, which may result in suboptimal models. ABCFair focuses
on tabular datasets only and uses fixed hyperparameter settings, which limits scalability and may
misrepresent method performance. The questions mentioned above are not yet fully addressed.
Moreover, existing benchmarks (Xia et al.| [2024; Jin et al., [ 2024a) generally treat classical vision and
emerging multimodal models separately, limiting our understanding of how multimodal pretraining
affects fairness relative to other models. We introduce these benchmarks in Appendix [A.4]

To bridge this gap, we propose NH-Fair, a comprehensive benchmark for fairness without harm in
complex image and multimodal settings. NH-Fair unifies evaluation across classical vision models
and vision—language models, providing broader insights into fairness comparisons of architectures,
pretraining strategies, and model scales. Beyond benchmarking both classical and recent fairness
algorithms, we systematically evaluate the role of training choices, the overhead of existing methods,
and the performance of state-of-the-art LVLMs. Our goal is to provide not just a benchmark, but
actionable insights for developing and deploying fair ML systems. We summarize contributions and
key observations with practical implications for practitioners:

1. ERM and Training Choices Matter. We investigate how training choices affect fairness.

* Observation. Prior work often overlooks hyperparameter tuning, like optimizer and learning
rate choice. We show that fixing hyperparameters across methods and datasets can yield unfair
comparisons. Our findings challenge this practice, where some papers claim ‘“state-of-the-
art” fairness without sufficient evaluations, and underscore the need for more equitable and
transparent evaluation protocols in future research.

* Takeaway. Optimizer choice (e.g., SGD, Adam, AdamW, Adagrad) and its learning rate affect
both fairness and utility. We recommend focusing on tuning resources here, as these settings
have a clear impact. This also applies to selecting the correct pretrained weights, while model
depth, batch size, or weight decay have less impact on fairness.

2. Revisiting Mitigation Methods. We offer an extensive comparison of recent and classic bias
mitigation algorithms, assessing both fairness and accuracy to determine if current methods can
achieve equitable performance without compromise.

* Observation. Most fairness-specific algorithms do not significantly outperform a carefully tuned
ERM when utilities are accounted for. Data augmentation is a simple yet effective strategy
that often improves both fairness and utility.
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 Takeaway. In practice, prioritize augmentation strategies before exploring a wide range of spe-
cialized algorithms; this pathway most often achieves fairness without utility loss or overhead.

3. LVLMs Are Not Inherently More Fair We extend evaluation to multi-modal models and LVLMs
to probe whether large-scale, diverse pretraining reduces disparities or propagates stereotypes.

* Observation. Despite greater data diversity and larger capacity, LVLMs still exhibit fairness
issues comparable to task-specific vision models. For example, the Llama series, while achieving
strong headline accuracy, remains highly susceptible to dataset-specific biases. In addition, the
model scale shows a weak correlation with fairness improvements.

* Takeaway. Practitioners concerned with fairness should prioritize evaluating different architec-
tures and pretraining choices rather than relying on scaling up models alone.

2 PROBLEM FORMULATION: FAIRNESS WITHOUT HARM

In this paper, we evaluate each ML model based on two criteria: 1) performance disparity across
different groups, and 2) negative impact on model performance caused by fairness interventions.
Therefore, we consider the fairness without harm problem formulation, which aligns with our goal.

Group fairness notion Consider a dataset of n samples, where sample i is represented as a triple
(4, s, a;) from the joint distribution P(X,Y, A). Here, 2; € R? is the feature vector, y; € ) is the
label, and a; € A is the sensitive attribute (e.g., gender or race). We learn a model h : RY > Y
that achieves strong predictive performance while satisfying a fairness constraint. We evaluate
performance using a risk function R : ) x J — R, that quantifies the discrepancy between
predictions and labels. To assess disparity across groups, we consider the following fairness criteria.

* Overall Accuracy Parity requires that the classifier’s accuracy be equal across groups:
]P’[h(X):Y\A:a]:P[h(X):Y|A:a’], Va,a € A. 1)

We use the accuracy gap between the two groups to denote overall accuracy parity in this paper.
* Demographic Parity, also known as statistical parity, requires that the classifier’s decisions be
independent of the sensitive attribute:

Ph(X)=y|A=a =P[h(X) =y | A=d], VYa,a €A ye. 2)

* Equalized Odds requires conditional independence of h(X) and a given the true label, e.g., the
true positive rate and the false positive rate are equal across groups:

Ph(X)=y|Y =y, A=a=Ph(X)=y|Y =y, A=d], Va,d €A yel. (3)

* Max-Min Fairness uplifts disadvantaged groups by minimizing the worst group risk:
Ex yiies [R hX),Y } 4
max Fox,yja= (R(X),Y) 4

‘We do not consider individual fairness (Dwork et al.,[2012)) or counterfactual fairness (Kusner et al.,
2017). The former requires a well-defined similarity function between individuals, which is hard to
specify in images, while the latter usually assumes access to causal graphs, which are unavailable in
most datasets. Given these constraints, we focus on group fairness.

Fairness without harm Given group fairness notions defined in Sec. 2] enforcing these fairness
constraints inevitably harms model performance. Consider Demographic Parity (DP) as an example,
if the base rates of outcomes differ across groups (P[A(X) =y | A=a] #P[h(X) =y | A=
d'|,Ya,a’ € A.), enforcing independence between h(X ) and A may require distorting predictions
to align with group-agnostic rates. Suppose we have two groups and the optimal unconstrained
classifier for group 0O satisfies IE”[h(X Y=y | A= O} = po. To achieve DP, we must enforce
P[h(X) =y | A=0] =P[h(X) =y | A =1] = p for some value of p, which could force p to
deviate from the group-specific optima pg, thereby increasing overall risk. In extreme cases, this
might result in a trivial classifier (e.g. h(X) = 1 for all data) that satisfies DP but incurs maximal
risk. Thus, fairness interventions risk creating a “race to the bottom,” where fairness is not achieved
by elevating disadvantaged groups by reducing accuracy for all groups. To avoid this, we adopt the



Published as a conference paper at ICLR 2026

Datasets
Medical Natural

5

HAM10000, Fitzpatrick17k

Methods

Classification Image-Text Match

O Y N T T T T W T TN T T T T T T T = —
| ? (" Data-Centric Methods | |1 APTDEHCRTET | Itz pEran i = |
L J with non-wavy hair. g the photo male r b
I R | I “ I I or female? L I
I ( N . D "A photo of a person
M| Algorithmic Methods | | | withwawyhair.” | | g i‘- |
I M (. Il eo) ¥7p = N |
=== ==Tmng == =l== B ’ Y
I - v \(g Y \l | U CLIP / BLIP2 J 11 ava Qwen Gemma Llama |
DTO FWH
. 0 imilarity: [0.2, 0. nswer: Male.
I I similarity: [0.2, 0.8] I A Mal '
| [ Selection J{ Selection J; | |1 |
(s = = e = e e e e e s e e - )
. Evaluation .
______ Experiments _ _ _ _ " "T" 7. Meties
( n = —

Supervised Training / Zero-shot Prediction / | | - Overall N |
| Classification Multi-modal | | Sy Accuracy Parity EdbalizedlDdcs |
| o -

yperparameter Study s Model Size Study N . verhea
| Stud LVLMs Model Size study | ||| Max-Min DECEEIE Overhead |l

) | Fairness Parity )
N~ - = D —

Figure 1: Overview of NH-Fair, evaluating fairness across domains, tasks, models, and methods.

principle of fairness without harm, which augments group fairness with a no-harm condition.Let hermy
denote the baseline classifier trained via unconstrained empirical risk minimization (ERM):

hem = arg hmg?g; R(h(x;), yi)- (5)

The no-harm criterion requires that for every group a € A, the risk incurred by our fairness-enhanced
classifier does not exceed that of the baseline:

Ex,y|a=a {R(h(X)a Y)} <Exy|a=a [R(hm(X),Y)}, Vae A (©6)

3 NH-FAIR BENCHMARK

3.1 DATASETS

We evaluate fairness algorithms on seven publicly available datasets spanning facial attributes, medical
imaging, and spurious correlation tests: CelebA, UTKFace, FairFace, Facet, HAM 10000, Fitz17k,
and Waterbirds. Table[T|summarizes target tasks and sensitive attributes used in our evaluation. Due
to the huge computational resource needs, we did not exhaustively use all available sensitive attributes
(e.g., gender in UTKFace). Instead, we focused on attributes that exhibited the clear disparity in
model predictions, enabling a more effective comparison of existing fairness methods.

Criteria for Dataset Selection. By definition, fairness evaluation requires demographic information
(e.g., race, gender, or age) to measure disparities in model performance across subgroups. Therefore,
our primary selection criterion is that datasets must include explicit demographic annotations. This
ensures that fairness metrics are meaningful and grounded in socially relevant groups. Following
this principle, we include the first six datasets. In addition, we considered: application domains,
potential sources of bias, such as class imbalance or spurious correlations, and relevance to prior
fairness studies. Waterbirds represents a pragmatic exception: it lacks demographic labels but has
been widely used in fairness research due to its spurious correlations (e.g., background vs. object)
resembling biases. Including it enables consistency with prior work (Reddy et all,[2021}; [Dehdashtian|
et all}, 2024} [Qiang et al.} [2024) and provides a test for algorithms in non-demographic bias settings.
However, we suggest carefully using domain generalization datasets (e.g., Waterbirds, Colored
MNIST) in fairness evaluations since these datasets might be over-simplistic and cannot reflect the
real challenge of the ML fairness issue. We discuss this dataset in Section[4.2]
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Potential Sources of Bias. We use datasets that may introduce bias from multiple sources, including
image quality, class imbalance, and spurious correlations. Importantly, each dataset often reflects
more than one of these factors simultaneously, making it difficult to attribute disparities to a single
cause. For this reason, we do not perform a dataset-level bias source analysis.

Table 1: Overview of the seven image datasets, detailing the number of samples, classification target,
sensitive attribute(s), and approximate imbalance ratios expressed as percentages. In this table, M
denotes Male, F denotes Female, W denotes White, B denotes Black, LH denotes Latino Hispanic,
EA denotes East Asian, SA denotes Southeast Asian, IN denotes Indian, ME denotes Middle Eastern,
N denotes the negative class, and P denotes the positive class.

Dataset # Samples Target Sensitive Target Ratio Sensitive Ratio
CelebA (Liu et al.{2015) 200k Wavy Hair Gender 68% (F) : 32% (M) 41.7% (N) : 58.3% (P)
UTKFace (Zhang et al.[2017) 23k Gender Race 52% (M) : 48% (F) 57.6% (W) : 42.4% (O)

19.1% (W) : 14.1% (B) : 15.3% (LH)
FairFace (Karkkainen and Joo]2021) 100k Ethnicity Gender 1 14.2% (EA) : 12.5% (SA) 53% (M) : 47% (F)

: 14.2% (IN) : 10.7% (ME)

Facet (Gustatson et al./[2023} 30k Visible Face Gender 67% (N) : 33% (P) 76% (M) : 24% (F)
HAM10000 (Maron et al.; 2019} 10k Malignant Age 86% (N) : 14% (P) 71% (Young) : 29% (Old)
Fitz17k (Groh et al./[2021) 17k Malignant Skin Type 86.5% (N) : 13.5% (P) 48% (Light) : 52% (Dark)
Waterbirds (Sagawa* et al.||2020) 11k Bird Species  Background Train: 76.8% (N) : 23.2% (P) Train: 74.1% (N) : 25-9% (P)

Test: 77.8% (Water) : 22.2% (Land)  Test: 50% (Water): 50% (Land)

3.2 METHODS

We evaluate a diverse set of 12 baseline algorithms, spanning both fairness-specific and general-
purpose approaches. To organize them, we group methods into two broad categories: Data-Centric
and Algorithmic methods. Data-Centric methods focus on modifying the input distribution
through data augmentation and sampling strategies, including RandAugment (Cubuk et al.| [2020)),
Mixup (Zhang et al.|[2018), Resampling (Buda et al.l 2018}, |Sagawa* et al.||2020), Bias Mimicking
(BM) (Qraitem et al., [2023)), and FIS (Pang et al.,[2024). Algorithmic methods, by contrast, alter the
training process through adversarial training or fairness-aware objectives. These include Decoupled
Classifier (Ustun et al.} 2019; Wang et al.| |2020), LAFTR (Madras et al.,[2018)), FSCL (Park et al.|
2022), GapReg (Chuang and Mroueh| [2021), MCDP (Jin et al., 2024b)), GroupDRO (Sagawa* et al.,
2020), DFR (Kirichenko et al.;2023)), and OxonFair (Delaney et al.||2024). Together, these methods
span both established baselines and recent state-of-the-art techniques and include pre-processing,
in-processing, and post-processing methods. Note that we do not consider causal fairness approaches
since most of them assume access to causal graphs or intervention variables. However, these assump-
tions are rarely feasible in our datasets. A more detailed description of each method is provided in

Appendix

Beyond supervised models, we also evaluate zero-shot predictions from multi-modal models such as
CLIP (Radford et al.,[2021) and BLIP2 (Li et al.,[2023), as well as LVLMSs, including LLaVA v1.6
(7B, 13B, 34B) (Liu et al.; 2024), Qwen2.5-VL (7B, 32B, 72B) (Bai et al., 2025), Gemma 3 (4B, 12B,
27B) (Team et al., [2025)), and Llama models (3.2-11B, 3.2-90B, and 4-Scout—109B) (Grattafiori
et al., 2024; |Meta, [2025) . For CLIP and BLIP2, we construct prompts for text-image matching tasks
using pairs of positive and negative labels (e.g., “A photo of a person with non-wavy hair” vs. “A
photo of a person with wavy hair.”’). For LVLMs, we frame image-text-to-text tasks that elicit binary
responses, using prompts such as “Is the person in the photo wavy-haired? Answer ‘Yes’ for wavy
hair, ‘No’ for non-wavy hair.” Full prompt templates are provided in Appendix Table

3.3 MODEL SELECTION

Selecting the best-performing model affects not only overall utility but also disparities across sub-
groups. Conventional selection methods, which prioritize average accuracy or loss, often reinforce
majority-group performance while neglecting minorities. This motivates model selection strategies
that explicitly balance utility and fairness. Prior work has explored approaches such as Minimax
Pareto Selection (Martinez et al.,|2020) and Distance to Optimal (DTO) (Han et al., [2022) to identify
fair models. In this work, we adopt a DTO-based strategy to establish a strong ERM baseline,
considering both utility and group fairness. We then take the selected ERM model as a baseline
and introduce a fairness-without-harm (FWH) procedure to assess whether alternative methods can
improve fairness without materially degrading utility compared to the well-established ERM.
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Figure 2: Two-stage model selection. (a) First, each green dot represents a candidate ERM model’s
performance on two sensitive groups. We select the ERM model (orange circle) whose performance
is closest to the utopia point (red star) in Euclidean distance. (b) With the ERM baseline established,
we classify models trained by bias-mitigation methods into four zones based on how their subgroup
performance compares to the ERM. Starting from the Optimal Zone and moving counterclockwise,
we check whether any model is located in the shaded region, which demonstrates improved fairness.

1) DTO-based selection. The DTO strategy identifies the ERM model that minimizes Euclidean
distance to utopia point, where each subgroup achieves its best observed performance. This approach
aims to find the model that maximizes overall performance while minimizing disparities across
subgroups. By establishing this model as the optimal ERM baseline, we provide a reference point for
evaluating fairness-aware models. As shown in Figure[2a] the red star denotes the utopia point, where
both subgroups reach their respective maximum performance. The model with the smallest DTO
value (the shortest distance to the utopia point) is selected as the ERM baseline.

2) Fairness-without-harm selection. Given the optimal ERM, we evaluate other methods by
comparing subgroup-specific accuracies. Based on the group accuracy of the selected ERM model,
we categorize the models from other methods into four distinct zones:

* Optimal (Fairness Without Harm): Models here already achieve better utilities for both groups
compared with the established baseline ERM. A smaller accuracy gap is desirable to show fairness.
Thus, we select the model with the smallest accuracy gap.

* Sub-optimal (Fairness by Compromising): Models reduce disparities by decreasing the advantaged
group’s utility while improving the disadvantaged group. If no candidates exist in Optimal zone,
we select the model here with the smallest accuracy gap to evaluate how it equalizes two groups.

* Degradation (Fairness by Harming Both Groups): Models are undesirable since they degrade
performance for all groups, achieving fairness at the expense of overall utility. We select a model
with the smallest L2 distance to the optimal ERM to maintain necessary utility rather than fairness
metrics, since the models can significantly decrease utility (random guess) to equalize accuracy.

* Unwanted: Models in this zone widen disparities by benefiting the advantaged group and harming
the disadvantaged group, which exacerbate unfairness and are not considered.

When evaluating fairness-aware models against the optimal ERM, we follow the selection order:
Optimal — Sub-optimal — Degradation. This ensures fairness while minimizing performance
trade-offs. Using this strategy, we select the model that best meets the fairness-without-harm criteria.

4 RESULTS

Implementation. For all methods, we independently search for the best hyperparameters on each
dataset. Specifically, we search over optimizers (SGD and Adam), learning rates, weight decay values,
and method-specific hyperparameters. Implementation details are provided in Appendix and[B.3]
In total, we spent over 10,000 A100 GPU hours to obtain these benchmarking results.

Metrics. We use Accuracy (ACC) to evaluate utility on most datasets, while AUC is adopted for
disease prediction tasks, since medical datasets often exhibit class imbalances. For fairness, we report
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four metrics: Overall Accuracy Parity (Gap |), Max—Min Fairness (Worst 1), Demographic
Parity (DP 1), and Equalized Odds (EqOdd 7). They are introduced in Appendix

4.1 HOW TO TUNE A FAIR ERM AND WHY TRAINING CHOICES MATTER

This part is motivated by two observations. First, ML practitioners rarely conduct extensive testing of
different fairness-specific algorithms and instead focus on tuning existing models. Yet exhaustive
hyperparameter search is computationally expensive, raising the question: which training choices
should be prioritized for fairness-sensitive applications? Second, many prior studies report fairness
or utility gains while keeping core training parameters fixed across baselines and datasets. But can
such practices truly yield fair and reliable comparisons?

To answer these, we conduct a systematic study under different training setups (see Appendix
[CI). We find that some choices, most notably initialization (pretraining vs. scratch) and optimizer,
consistently impact the fairness—utility trade-off. For example, pretrained models often improve
utility without harming disadvantaged groups, and the right optimizer (e.g., SGD on CelebA, Adam
on Fitz17k) can shift both utility and subgroup performance. In contrast, factors like batch size,
weight decay, or model depth have weaker or inconsistent effects. These findings suggest that
impactful training choices could be prioritized during HPO. In addition, fixing such parameters
across baselines and datasets can lead to biased comparisons. It underscores the need for more
equitable and transparent evaluation practices in future fairness research.

4.2 REVISITING MITIGATION METHODS

A well-tuned ERM base-
line could match or sur-

pass fairness-specific algo- b W
rithms. Table 2|reports util- g

ity and fairness outcomes E 8

for single-modality models

across seven datasets. For ., .

each dataset-method pair, %’

results are averaged over T

five runs, with the best g, 6
ERM model selected under @ | Sillugman niarmn - micos mor :
DTO criteria and the best o4 EMbup WIS mrscL o
models for mitigation meth- iy worst GoP ga0%? oF
ods selected under FWH Fairness Metric

criteria. Table [3] extends
the comparison to multi-
modal models. Despite be-
ing treated as a “basic” base-
line, a well-tuned ERM, selected via DTO, consistently performs competitively across fairness metrics
(Gap, Worst, DP, EqOdd). Figure [3|shows that ERM performs competitively with, or sometimes
outperforms, specialized fairness methods under FWH selection, and no single mitigation approach
dominates across all datasets. We further conduct a Friedman test across all datasets, followed by a
Nemenyi post-hoc analysis. We visualize the results using Critical Difference (CD) plots in Figure ]
where methods connected by a horizontal bar are not significantly different under the Nemenyi test.

Figure 3: Comparative Analysis of Bias Mitigation Methods. OxonFair
is excluded from here due to missing FairFace results.

Data augmentation is a simple yet effective path to fairness without harm. Our results show that
fairness improvements do not inherently require sacrificing accuracy. Prior studies like Dutta et al.
(2020) established the theoretical possibility of achieving both. In the paper, RandAug, though not
designed for bias mitigation, improves both fairness and accuracy across multiple datasets, empirically
demonstrating that fairness improvements do not always require a trade-off in model performance.
This suggests that increasing data variability can naturally mitigate biases, offering a lightweight and
practical strategy for fairness-aware training without the need for explicit fairness constraints.

The utility—fairness trade-offs are pronounced in regularization-based methods. Both GapReg
and MCDP account for explicit fairness constraints in the loss functions, directly penalizing subgroup
disparities. This design explains why they consistently achieve strong scores on fairness metrics
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Table 2: Average utility and fairness results (standard deviations are reported in Appendix Table
[20). Results better than ERM are highlighted. We also report the number of selected models located in
each zone by the FWH selection in “Optimal|Sub-optimal|Degradation|Unwanted” on the validation
set, and further verify these findings on the test set.

Dataset Metric ERM RandAug Mixup Resampling BM  FIS |Decoupled LAFTR FSCL GapReg MCDP GroupDRO DFR OxonFair
ACC 8657 86.72 85.61 86.35 85.93 83.05 86.35 86.55 85.61 85.62 80.26 86.12 86.58  86.49
Worst  83.76  83.89 8274 83.44 82.86 79.33 83.46 83.67 8256 83.17 77.13 83.50 83.78  83.63
CelebA Gap 6.76 6.80 6.90 6.98 7.38 894 6.93 6.93 7.35 5.90 7.52 6.31 6.74 6.87
EqOdd 8191 81.73  87.08 81.80 78.84 75.79 80.59 81.15 8545 9394 89.63 78.73 81.83  78.10
DP 6720 67.37 70.83 67.39 66.91 66.84 66.68 6690 69.72 7591 93.11 66.41 67.30  65.10
ACC 9275 9319 9262 92.70 93.33 9197 | 91.68 93.17 93.52 9253 9249 92.45 9273 9236
Worst  91.78 9219  91.55 91.60 92.27 9091 90.84 92.05 92.62 91.70 91.63 91.41 91.60  91.11
UTKFace Gap 2.26 2.34 2.50 2.56 247 248 1.97 2.61 2.10 191 2.00 244 2.63 291
EqOdd 97.62 97.62 97.61 97.49 97.39 97.51 97.43 97.44 9744 98.10 98.04 97.06 97.39  96.41
DP 94.55 94.83 94.51 95.34 9434 94.69 | 96.27 9544 94.18 9530 95.80 94.78 94.83  94.68
ACC 6676 6837 6540 65.40 65.66 65.31 67.03 6644 6542 65.02 66.06 65.51 63.20 -
Worst  66.34  67.69  64.50 64.51 65.20 64.59 66.61 65.60 64.64 64.12 65.62 65.22 62.45 -
FairFace Gap 0.87 1.44 1.93 1.90 097 153 0.87 1.76 1.66 1.92 0.90 0.60 1.59 -
EqOdd 96.22 96.14  96.55 96.83 95.70 95.88 95.14 9473  97.05 96.15 97.85 96.31 95.81 -
DpP 97.61 9755 97.62 97.80 97.30 97.40 | 96.88 96.86 98.10 97.51 98.50 97.47 97.43 -
ACC 67.55 67.83 67.86 67.56 65.87 67.60 67.33 70.74 67.79 67.01 6791 67.20 66.87  68.09
Worst  64.25 6494 64.54 64.13 62.67 63.53 62.60 68.60 65.02 6222 6421 64.07 63.10 64.11
Facet Gap 4.31 3.78 4.33 4.48 4.18 533 6.17 2.82 3.61 6.26 4.84 4.08 4.92 5.21
EqOdd 9647 96.68  97.50 94.37 96.32 98.10 | 88.04 96.38 96.50 98.92 98.23 93.76 96.82  83.40
DpP 9540 9591 96.71 93.96 95.09 97.84 | 87.30 95.00 95.66 98.73 98.46 93.16 96.09  83.95
AUC  88.35 89.09 86.51 87.75 89.54 85.97 87.87 86.71 89.40 8497 8296 87.66 87.06  88.46
Worst  84.67 84.67 8231 84.77 86.49 82.98 84.04 81.68 85.89 82.57 8029 83.98 82.49 83.83
HAM10000 Gap 4.11 4.99 4.14 3.52 3.04 311 5.17 6.18 3.71 3.07 3.10 4.98 5.30 5.46
EqOdd 86.79 8843 91.14 91.84 85.65 94.05 | 77.52 9328 84.57 98.15 99.52 90.94 91.25  99.27
DP 8148 84.73 88.54 85.05 7841 88.58 | 7515 91.00 77.64 96.74 99.58 83.86 84.65 99.34
AUC  89.74 9129 90.62 90.76 91.02 88.34 89.63 90.95 90.71 89.59 91.65 90.72 89.99  89.56
Worst  88.39  90.15  89.38 88.99 89.93 87.02 | 8845 89.67 89.77 88.52 90.49 90.06 88.57 88.40
Fitz17k Gap 292 251 243 3.62 234 3.06 2.55 287 222 184 2.87 1.92 2.93 3.06
EqOdd 9492 95.61 96.20 95.27 9499 95.17 | 94.09 93.68 9745 9547 95.68 94.36 9430  99.26
DpP 9446 9453  94.51 93.31 93.66 95.60 | 94.06 9446 9532 9642 96.14 95.24 9526  99.88
ACC 85.63 86.09 87.67 87.35 88.20 83.72 74.64 85.72 86.83 8645 85.98 85.46 89.83  90.27
Worst  84.20 84.52  85.99 84.85 85.96 82.67 | 6445 8394 86.28 85.72 84.83 84.45 89.09  89.52
Waterbirds Gap 2.87 3.14 3.36 4.98 448  2.09 20.38 356 110 147 231 2.02 1.47 1.50
EqOdd 66.53 68.99  81.42 90.87 7721 6589 | 4731 6822 90.00 87.48 7297 67.31 97.79 9499
DP 77.67 7125  86.00 90.93 81.78 75.30 52.30 7747 9253 9139  80.70 76.91 98.61 97.38
FWH Validation - 710[0[0 471]2]0  3[2[2[0  3[2[2]0 2[1[4[0] 1]2]4]0  4[3]0]0 6]O[1[0 4[1]2]0 4[1[2]0  2[3]2]0  7[0[0OJ0  O[0[6]0
Selection Test - 7jojojo 3jo3[1  2[1[2[2  3[1[3[0 ofoje[t| 1]1]3]2  3[0[13 4[1[2]0 02|50 2j0[4|1 1[1]5/0 2131 1]1[]2]2
Match - 717 517 3/7 517 3/7 3/7 3/7 517 2/7 4/7 4/7 2/7 3/7
Randaug oFR Randag Resample GroupoRo | Meop
oM Mixup FscL Meop GapReg Decoupied
WFTR Meop oM oFR FscL Mixop
FscL Decoupled erm Mixop erm oFR
erm GroupORO WFTR Decoupied Randaug Fis
Resample L capreg GroupDRO Gapkeg oM .
Fis Lrs L resampie
(a) Utility (b) Worst (c) Gap
meop — weop
GapReg GapReg
Misup Mixup FTR
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L becoupiea L becoupied
(d) EqOdd (e) DP

Figure 4: Critical difference plots comparing methods across five metrics. Lower ranks indicate better
performance. OxonFair is excluded since it does not support multi-class classification on FairFace.

such as EqOdd and DP across datasets. However, the fairness penalty can pull decision boundaries
away from the utility-optimal surface, which often results in lower accuracy and occasionally lower
Worst-group accuracy. They highlight the classic fairness—utility trade-off: fairness comes at the
expense of overall predictive strength. In contrast, the contrastive learning method FSCL, which
encourages representations of the same class to cluster across different groups, delivers strong
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fairness improvements while keeping accuracy competitive, implying that learning fair and robust
representations is also a promising path to fairness without harm.

Rethinking spurious correlation datasets for fairness evaluations. In prior studies (Dehdashtian
et al., |2024; |Qiang et al. [2024} Reddy et al, |2021)), datasets with spurious correlations are often
used for fairness evaluation since spurious correlations resemble the types of confounding factors
that lead to fairness issues. We noticed that, in Table 2] many methods (e.g., Mixup, Resampling,
BM, OxonFair...) can achieve both higher utility and fairness on Waterbirds, but it is more difficult
to achieve such a gain on fairness datasets with socially meaningful group disparities. This raises a
potential concern: spurious correlation might be easier to resolve than fairness-specific distribution
shifts. Fairness involves systematic performance gaps across protected groups, which are typically
more subtle and persistent than background—object correlations. Over-reliance on datasets like
Waterbirds may therefore underestimate the difficulty of fairness challenges and overstate algorithmic
effectiveness. While useful for studying robustness to spurious correlations, such datasets are not
ideal for fairness evaluation. We recommend using datasets that provide coherent and well-justified
data groupings, preferably with clear, socially meaningful attributes (especially for readers from
social science domains), and exercising caution when incorporating other datasets with data shift
(e.g., domain generalization benchmarks) for fairness assessment.

4.3 FAIRNESS IN MULTI-MODAL MODELS

We showed that even the best-tuned vision models leave non-trivial subgroup gaps. A natural
hypothesis is that these gaps reflect limited data diversity and model capacity. Here, we evaluate
pre-trained multi-modal models, which are trained on massive, diverse datasets and are expected to
generalize better. Specifically, we consider two families: (1) image—text matching models such as
CLIP, BLIP-2, and two CLIP-based debiasing variants (FairerCLIP Dehdashtian et al.[(2024), SFID
Jung et al.[(2024)); and (2) LVLMs such as LLaVA-1.6, Qwen2.5-VL, Gemma 3, and Llama. All
models are evaluated in zero-shot predictions. Fig. [5] visualizes the joint landscape of utility and
parity, where Qwen2.5-VL 72B lies closest to the outer envelope across datasets, indicating the best
overall balance between high accuracy and low disparity among the evaluated LVLMs.

Fairness persists as a challenge.

From Table 3} we found that fairness Acc Gap

outcomes diverge sharply between im- O —LLavA 16348 985 —Liava 16348
age—text matchers and newer large 8 a3 276 <
models. BLIP-2 and CLIP still ex- i T SR
hibit sizable subgroup gaps on CelebA

and Waterbirds. Even though debi-
asing methods like FairerCLIP and
SFID can use the validation set to
tune the model, they still don’t signif-
icantly address the fairness issue. As
for LVLMs, despite being trained on Figure 5: LVLM performance using ACC and 100 — Gap.
massive, heterogeneous corpora, mul- Other metrics are presented in Figure

timodal models do not universally out-

perform carefully tuned unimodal baselines in either utility or fairness. On relatively balanced
datasets like UTKFace, LVLMs such as Qwen2.5-VL and Gemma-3 deliver strong accuracy while
keeping subgroup gaps small.

However, on more challenging datasets (CelebA and Facet), they exhibit subgroup disparities,
often with worse worst-group accuracy than ERM and sometimes a larger accuracy gap for certain
models. These results emphasize that multi-modal models still inherit and sometimes amplify fairness
challenges rather than resolving them.

Scaling is not enough. We also studied different LVLM sizes to evaluate whether larger LVLMs
could achieve better fairness on our tasks (Appendix Table [16] simplified in Table {). Increasing
LVLM size improves average accuracy but does not consistently resolve fairness gaps. Larger models
(e.g., Gemma-3-27B, Llama3.2-90B) achieve higher average accuracy compared to their smaller
counterparts, yet subgroup disparities (Gap) remain non-trivial and in some cases even widen. The
fairness gains from scaling are much smaller than those obtained by switching to a different model
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family, suggesting that the training protocol plays a more decisive role in fairness. Hence, in fairness-
sensitive applications, we recommend first exploring model choice before allocating resources to
scaling.

Table 3: Comparison of multi-modal models. Standard deviations are in Appendix Table We
omit HAM10000 and Fitz17k for LVLMSs, since they do not yield calibrated probabilities for AUC.

Fairer- CLIP- | LLaVA-1.6 Qwen2.5-VL Gemma3 Llama4

Dataset Metric ERM RandAug BLIP2 CLIP CLIP SFID 34B 728 27B Scout
ACC  86.57 86.72 4738 7407 7378  72.05 44.83 68.76 74.04 83.71
Worst ~ 83.76 83.89 36.82 6743 6732 6636 32.69 66.02 72.18 80.54
CelebA Gap 6.76 6.80 18.09 1597  15.56 13.69 20.75 4.70 4.47 7.62
EqOdd 81.91 81.73 97.24 83.72 8379 95.70 97.41 92.69 92.76 84.81
DP 67.20 67.37 9590 81.32 81.06 93.23 91.92 91.71 74.53 71.52
ACC 9275 93.19 9423  96.72  96.79  96.70 97.12 96.78 97.25 97.02
Worst  91.78 92.19 94.00 9590 96.05  96.03 96.34 95.76 96.89 96.29
UTKFace Gap 2.26 2.34 0.45 1.90 1.72 1.55 1.81 2.36 0.85 1.70
EqOdd 97.62 97.62 99.24 9796 98.17  98.36 98.16 97.59 99.20 98.27
DP 94.55 94.83 95.61 9391 9427  94.96 95.22 94.33 95.28 94.90
ACC  66.76 68.37 5257 5736  56.81 52.73 66.91 65.57 59.40 56.52
Worst  66.34 67.69 50.74 5720  56.41 51.59 66.04 64.73 56.71 53.53
FairFace Gap 0.87 1.44 3.46 0.34 0.86 2.40 1.84 1.79 5.71 6.35
EqOdd 96.22 96.14 9386 97.16 96.78  97.14 96.22 96.26 95.13 96.54
DP 97.61 97.55 96.89  98.36  98.32  98.46 98.07 97.57 97.16 98.00
ACC 6755 67.83 41.16  33.10 33.17  33.26 58.14 68.41 57.75 67.54
Worst  64.25 64.94 40.40 3143 31.69  31.54 57.97 63.79 57.25 64.61
Facet Gap 431 3.78 3.22 7.13 6.32 7.37 0.72 6.04 1.42 3.83
EqOdd 96.47 96.68 9352 98.72 98.82  99.75 95.90 97.04 96.22 97.55
DP 95.40 95.91 94.10  98.92  99.00  99.80 93.91 96.15 94.56 96.28
ACC  85.63 86.09 5230 7805 77.77  75.70 86.95 92.41 90.77 88.62
Worst ~ 84.20 84.52 39.18 7453 7349 7281 81.26 91.27 88.97 85.74
Waterbirds Gap 2.87 3.14 2623  7.04 8.56 5.78 11.39 2.28 3.59 5.76
EqOdd  66.53 68.99 6824 7396 7319 95.57 80.88 94.03 92.99 89.38
DP 77.67 77.25 6348 7812 76.73  94.09 80.46 94.62 93.17 89.44
AUC 8835 89.09 38.87 5215 51.88 5253 - - - -
Worst  84.68 84.67 39.00 5156  52.01 53.41 - - - -
HAM10000  Gap 4.11 4.99 6.89 4.14 3.12 2.24 - - - -
EqOdd 88.17 88.43 98.19 96.24 9575  96.19 - - - -
DP 82.22 84.73 97.89 99.09 9894  98.32 - - - -
AUC  89.74 91.29 67.08 69.92 69.81 69.37 - - - -
Worst ~ 88.39 90.15 6646 69.78  69.85  69.35 - - - -
Fitz17k Gap 2.92 2.51 3.74 2.31 2.52 4.73 - - - -
EqOdd 94.92 95.61 97.06 89.87 87.95 85.88 - - - -
DP 94.46 94.53 98.40 95.03 93.02  92.19 - - - -

Table 4: Effect of LVLM model scale on accuracy and fairness metrics.

Dataset  Metric LLaVA-1.6 Qwen2.5-VL Gemma 3 Llama
7B 13B 34B 7B 32B 72B 4B 12B 27B | 3.2-11B  3.2-90B  4-Scout-109B
ACC 68.16 69.87 70.79 | 77.36 7272 7839 | 67.33 7348 7584 | 74.54 76.03 78.68
Worst | 66.10 66.55 66.86 | 75.65 68.18 76.31 | 61.58 72.60 74.40 | 69.32 70.51 76.14
Average Gap 389 570 730 | 289 7.66 343 | 1053 2.09 321 10.08 11.09 5.05
EqOdd | 8791 89.81 93.71 | 9498 95.70 95.52 | 89.09 93.68 95.26 88.01 91.32 93.31
DP 87.05 88.60 9192 | 91.94 96.16 94.88 | 86.31 90.47 90.94 | 84.66 87.91 90.03

5 CONCLUSION

In this study, we introduce NH-Fair, a rigorously curated benchmark for evaluating fairness inter-
ventions in image models, and show that Al fairness issues remain challenging in computer vision
domains, even as new methods are proposed and model capacity continues to increase. A carefully
tuned ERM with the hyperparameter search often rivals specialized debiasing methods. It highlights
the crucial role of hyperparameter tuning and model selection in achieving fairness without harm.
We further find that utility need not be sacrificed: data augmentation can deliver simultaneous gains
in accuracy and subgroup parity. In addition, large vision—language models are not exempt from
fairness issues. Their pre-training choices can still imprint spurious correlations that widen gaps. By
releasing NH-Fair and all accompanying code, we aim to make fairness results reproducible and to
provide the community with a solid baseline on which to build more robust, bias-aware methods.
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ETHICS STATEMENT

This work focuses on evaluating fairness in vision and multimodal models. While our study does
not involve direct interaction with human subjects, it makes extensive use of publicly available
datasets with demographic information. We acknowledge that these datasets may contain label
noise, spurious correlations, or demographic imbalances, which themselves reflect broader social
biases. Demographic prediction tasks (e.g., gender or race classification) are used solely for academic
analysis of fairness interventions and are not intended for deployment or endorsement in real-world
applications.
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experiments are publicly available, with detailed descriptions provided in Appendix Model
architectures, training procedures, and hyperparameters are documented in Appendix [B.4|and Ap-
pendix [B.5] The definitions and formulas of all fairness metrics are included in Section [2] and
Appendix We also provide an anonymous code repository linked in the manuscript.
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A RELATED WORK

A.1 FAIRNESS NOTIONS

Various notions have been proposed in the ML literature to measure the unfairness of ML outcomes;
they can be roughly classified into the following categories:

» Unawareness: it prohibits the use of sensitive attributes in the training and decision-making under
the principle that excluding such features avoids direct discrimination (Dwork et al., 2012).

* Parity-based fairness: it requires certain statistical measures to be equalized across different
groups (Zhang and Liu| 2021;|Zhang et al.|[2020). Prominent examples include Demographic Parity
(predicted positive rates should be similar across groups) (Dwork et al.l 2012), Equal Opportunity
(true positive rates are aligned) (Hardt et al., 2016)), Equalized Odds (both false positive and false
negative rates are aligned) (Hardt et al., 2016), Predictive Parity (predictive value measures are
balanced) (Chouldechova, [2017)), Accuracy Parity (overall accuracy remains comparable across
groups) (Khalili et al., 2023} Zhang et al., [2019; Jin et al.} 2026), etc.

* Preference-based fairness: inspired by the fair-division and envy-freeness literature in economics,
it ensures that given the choice between various sets of decision outcomes, every group of users
would collectively prefer its perceived outcomes, regardless of the (dis)parity compared to the other
groups (Zafar et al.,[2017; [Ustun et al., 2019).

* Counterfactual fairness: this notion leverages tools from causal inference and structural causal
models to define fairness at the level of individual causal pathways. Intuitively, a model is counter-
factually fair if for any individual, the predicted outcome remains unchanged in a “counterfactual
world” where the individual belonged to a different demographic group, while all other non-sensitive
attributes and causal mechanisms remain fixed (Kusner et al., [2017; |Zuo et al., 2023)).

* Individual fairness: unlike other notions that ensure fairness at the group level, individual fairness
attains fairness at the individual level, by ensuring similar individuals are treated similarly (Dwork
et al., 2012)).

Our work is mostly related to parity-based fairness. Unlike most existing methods that achieve
fairness at the cost of reducing accuracy, we aim to achieve fairness without harm. By assigning
group-specific models to different groups, our goal is to reduce the accuracy gap between different
groups without sacrificing accuracy for any group (compared to the baseline classifier trained on data
collected from all groups).

A.2 APPROACHES TO MITIGATING UNFAIRNESS

A large body of research has focused on mitigating bias in ML models, which can be broadly
categorized into three strategies: pre-processing, in-processing, and post-processing interventions.

* Pre-processing methods aim to reduce unfairness at the data level. Common approaches include
re-weighting or re-sampling training examples to balance demographic groups (Kamiran and
Calders, |2012; |Qraitem et al., [2023} [Sagawa* et al., 2020; |Pang et al.,|2024)), generating synthetic
data to fill representation gaps (Jang et al.l [2021)), or learning fair representations through data
transformations (Celis et al., 2020; [Chuang and Mroueh| 2021)).

* In-processing methods modify the training procedure by directly incorporating fairness constraints.
Representative approaches include adversarial training, which encourages representations to be
invariant to sensitive attributes (Madras et al.| 2018 Xu et al.,[2021; |Jin et al.l [2024b; [Pham et al.|
2023), and fairness-based regularization terms in the loss function (Chuang and Mroueh, 2021}
Park et al.| 2022} |Zafar et al., 2019). More recent work has leveraged contrastive learning (Shen
et al., 2021} |Park et al.| 2022} Wang et al., [2022)) or disentangled representations (Creager et al.|
2019; |Park et al., 2021} Lee et al.,[2021)) to de-bias learned features.

* Post-processing methods adjust model outputs to better satisfy fairness criteria without retraining
(Khalili et al, 2021azb). Examples include modifying decision thresholds (Hardt et al.l [2016)),
calibrating prediction scores (Pleiss et al., 2017), or applying confidence-based and surrogate
adjustments (Menon and Williamson, 2018; Yin et al.| 2024).
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Recently, fairness in multi-modal learning has gained increasing attention, especially due to the
rising use of vision-and-language models. Several approaches (Dehdashtian et al.,2024; Jung et al.,
2024) have also been proposed to mitigate bias in multi-modal settings. For example, FairCLIP
(Luo et al.| 2024) minimizes Sinkhorn distance between the two distributions to debias pre-trained
vision-language models. (Seth et al.,2023) ensures fair representation from learning additive residual
image representations. (Gerych et al.,2024)) equalizes the distances between the debiased embeddings
and images to achieve test-time fairness for VLMs.

In this paper, we mainly employ pre-processing and in-processing methods (with one post-processing
technique [Kirichenko et al.|(2023))). For clarity of presentation, we therefore re-group these strategies
into two broader categories: data-centric methods, which intervene at the dataset or input level, and
algorithmic methods, which modify the training process or outputs. This framing better reflects the
scope of our study and emphasizes the practical trade-offs practitioners face when choosing between
data-level and model-level interventions.

A.3 FAIRNESS WITHOUT HARM

Achieving fairness at the cost of lowering the performance of any group may be undesirable and
even prohibited in certain applications. For example, in safety-critical domains such as healthcare,
sacrificing model accuracy for fairness is undesirable, as it violates both the beneficence (i.e., doing
what is best for patients) and non-maleficence (i.e., avoiding harm) principles in healthcare ethics
(Beauchamp and Childress}, [1994)). Given this concern, some works aim to achieve fairness without
negatively impacting model accuracy (Dutta et al., 20205 [Ustun et al.l 2019;|Yin et al.,|2024; Pang
et al.l 2024} |Cai et al., 2025} [Tan et al., [2026). Instead of solely enforcing fairness constraints
across different groups, these approaches ensure that model performance for every group does
not deteriorate. For example, Martinez and Bertran| (2019) seeks a Pareto-optimal fair ML model
that minimizes performance gaps among groups while preventing unnecessary harm (i.e., minimal
accuracy reduction for any group). [Ustun et al.| (2019) leverages individuals’ sensitive attributes
to train decoupled ML models, ensuring each group receives the best possible performance from
its assigned model compared to a pooled model (trained on data from all groups) or the decoupled
models of other groups. |Yin et al.| (2024) proposes a method using abstention, where a pre-trained
ML model selectively defers certain predictions to human decision-makers, thus achieving group
fairness without reducing accuracy.

A.4 FAIRNESS BENCHMARKS

A number of toolkits have been developed to standardize fairness evaluation and mitigation. Al
Fairness 360 (Bellamy et al., 2019) offers an extensible library of fairness metrics and bias mitigation
algorithms across datasets and tasks. Similarly, Fairlearn (Bird et al., 2020) provides practical tools
for assessing and improving fairness in machine learning pipelines, with an emphasis on industry
adoption. Beyond toolkits, early benchmarking efforts such asReddy et al.| (2021)) compared bias
mitigation algorithms in representation learning, highlighting trade-offs across fairness metrics. While
these efforts established important foundations, they were largely limited to classical ML or relatively
simple datasets and did not extend to complex vision or multi-modal contexts.

Subsequent benchmarks have attempted to unify evaluation but remain limited in scope. MEDFAIR
(Zong et al.l 2023)) targets fairness in medical datasets, addressing sensitive healthcare applications
in vision tasks. FFB (Han et al} [2024)) primarily evaluates older fairness algorithms before 2021
and omits recent advances in representation learning and data-centric strategies, while also lacking
systematic hyperparameter tuning. ABCFair (Defrance et al., 2024)) focuses on tabular datasets and
adopts fixed hyperparameter settings, which restrict scalability and may misrepresent performance in
more complex domains.

With the rise of large vision—language models (LVLMs), newer benchmarks have begun to address
multimodal fairness. Xia et al.|(2024); Jin et al.|(2024a) investigate fairness in medical multimodal
foundation models. GenderBias-VL Xiao et al.[(2025) and VLBiasBench Wang et al.| (2024)) explore
bias in LVLMs but typically cover smaller models, leaving out the larger LVLMs increasingly
deployed in real-world applications. VLAs (Girrbach et al.| [2025) is the most recent work, focusing
specifically on gender bias in LVLMs and corresponding mitigation strategies.
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In addition to benchmarking comparison on fairness, recent research has also emphasized the
importance of tailored analyses to determine appropriate mitigation strategies based on the specific
nature of bias. For instance, |Yang et al.| (2023) focuses on addressing subpopulation shifts. Jones
et al.| (2025) studied the fair representation learning method and found it not useful for performance-
sensitive tasks. Furthermore, |Schrouff et al.| (2024)) suggests considering the causal graph before
performing data balancing for fairness. [Roschewitz et al.|(2025) shows that identifying dataset shifts
is crucial for selecting the correct intervention. Matos et al.| (2025)) studies the landscape of fairness
metrics, highlighting the fragmentation in current definitions and the necessity of selecting metrics
that align with real-world utility.

In contrast, NH-Fair is designed as a general-purpose fairness-without-harm benchmark evaluat-
ing multiple demographic attributes (e.g., gender, race, age) across diverse models, datasets, and
mitigation strategies. Its distinct contributions are: (1) unifying evaluation across classical vision
and multimodal models; (2) systematically analyzing the role of training settings; and (3) extend-
ing coverage to state-of-the-art LVLMs at deployment-relevant scales, ranging from 4B to 109B
parameters.

B EXPERIMENT SETUP

B.1 DATASETS DETAILS

Unless otherwise noted, we randomly split each dataset into training, validation, and testing sets with
aratio of 8:1:1.

CelebA (Liu et al., 2015): The CelebFaces Attributes Dataset, known as CelebA, is an extensive
collection featuring over 200,000 images of celebrities, with each image annotated for 40 distinct
attributes. In our research, we focus on the “wavy hair” attribute as the classification target while
treating the “male” attribute as a sensitive feature.

UTKFace (Zhang et al.,2017): The UTKFace dataset comprises more than 20,000 facial images,
each labeled with information on age, gender, and ethnicity. For our analysis, we simplify the race
attribute into two categories: “white” and “non-white as the sensitive attribute and take the “gender”
as the classification target.

FairFace (Karkkainen and Joo, 2021): The FairFace dataset contains over 100,000 facial images
annotated with age, gender, and race, emphasizing balanced demographic representation. We employ
“race” prediction as the seven-class classification problem, and use “gender” as the sensitive attribute.

Facet (Gustafson et al., 2023): The Facet dataset includes facial images annotated with Fitzpatrick
skin types, age, and gender. We utilize the binary attribute “visible face” as the classification target.
Since a single data entry in Facet may have multiple skin type annotations, we use “gender” as our
attribute for simplicity. Entries with incomplete gender annotations were removed.

HAM10000 (Maron et al.,2019): The HAM10000 dataset is a large collection of dermatoscopic
images used for skin lesion classification. We reclassified its 7 diagnostic categories into two broad
labels: “benign” and “malignant” following (Maron et al., 2019). Images with missing recorded
sensitive attributes were excluded from the dataset. The HAM10000 dataset includes two sensitive
attributes: age and sex. We binarized the age attribute into two categories: “young” and “old.”
Individuals aged 0-60 years were classified as “young,” while those aged 60 years and above were
classified as “old.”

Fitzpatrick17k (Groh et al., 2021): The Fitzpatrick17k dataset (Fitz17k) comprises dermatological
images labeled with Fitzpatrick skin types and diagnostic categories. We reclassify diagnoses into
“benign” and “malignant” groups, following (Groh et al.,|2021)), and use skin type as the sensitive
attribute, binarized into “lighter” (I-III) and “darker” (IV-VI). Images missing skin type or diagnostic
labels were excluded.

Waterbirds (Sagawa* et al., [2020): The Waterbirds dataset contains images of waterbirds and
landbirds superimposed on either water or land backgrounds. We classify bird type (waterbird vs.
landbird) as the target, with background (water vs. land) serving as the sensitive attribute. Instances
with ambiguous background or species labels were removed. We use the train/validation/test split
provided with the dataset.
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Table 5: Download URLs for the datasets.

Dataset Download URL License

CelebA (Liu et al., 2015) http://mmlab. Non-commercial research only
ie.cuhk.edu.hk/
projects/CelebA.html

UTKFace (Zhang et al.,[2017) |https://susangqg. Non-commercial research only
github.io0/UTKFace/

FairFace (Karkkainen and Joo, |https://github.com/ CCBY 4.0

2021) joojs/fairface
Facet (Gustafson et al.,[2023) https://ai.meta. Meta Images Research
com/datasets/
facet-downloads/
HAMI10000 (Maron et all https://dataverse. CCBY-NC4.0
2019) harvard.edu/dataset.
xhtml?persistentId=
do1:10.7910/DVN/
DBWS6T
Fitzpatrick17k (Groh et al) |https://github. CCBY-NC-SA 4.0
2021) com/mattgroh/
fitzpatrickl7k
Waterbirds (Sagawa* et all https://github.com/ No license specified
2020) kohpangwei/group_DRO

B.2 FAIRNESS METRICS

* Overall Accuracy Parity (Gap): The accuracy/AUC gap between two sensitive groups.
* Max-Min Fairness (Worst): The worst accuracy/AUC across two sensitive groups.

* Demographic Parity (DP): For binary classification, we focus only on the positive class. For
multi-class classifications such as FairFace, we follow the fairness guarantees outlined in (Denis
et al.,|2024):

1 max ‘P[h(X) = y|A =a] - P[(X) = y|A = d]

* Equalized Odds (EqOdd): It is evaluated by ensuring parity in the probability of correct classifi-
cation:

1—’P[h(X):y\Y:y,A:a]—P[h(X):y|Y:y,A:a’}.

We calculate this for all classes and take the average across classes as the final outcome.

B.3 METHODS

¢ Data-centric methods

— RandAugment (Cubuk et al., 2020): RandAugment (denoted as RandAug in the experiment
results) is commonly used in semi-supervised and unsupervised learning. It randomly selects and
applies a set of data augmentations—such as rotations, translations, or brightness adjustments—
to diversify the training data. In this study, we aim to evaluate whether training a model on more
diverse data, without using demographic information, can lead to improved fairness.

— Mixup (Zhang et al.,2018): It is a data augmentation technique that combines two training
samples and their corresponding labels via linear interpolation to create new synthetic examples.
This encourages the model to learn smoother decision boundaries and reduces overconfidence on
specific group-correlated features, forcing the model to generalize beyond rigid group distinctions.
We apply Mixup by blending data from different groups to evaluate its impact on fairness and
performance.

— Mixup (Zhang et al.,|2018): This data augmentation technique combines two training samples
and their corresponding labels via linear interpolation to create new synthetic examples. We
apply Mixup by blending data from different demographic groups; this encourages the model to
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learn smoother decision boundaries and reduces overconfidence on specific group-correlated
features, effectively forcing the model to generalize beyond rigid group distinctions.

— Resampling (Buda et al.,|[2018; Sagawa* et al., 2020): It balances the dataset distribution by
either over-sampling underrepresented groups or under-sampling overrepresented groups. This
is done by assigning weights to each sample, helping to address class or group imbalances.

— Bias Mimicking (Qraitem et al.,|2023): It introduces a class-conditioned sampling technique
that breaks the correlation between labels and known attributes. It constructs a subsampled
distribution to mimic a biased distribution for all classes during training, thereby statistically
minimizing the correlation between sensitive attributes and targets.

— FIS (Pang et al., 2024): Fair Influential Sampling (FIS) mitigates group disparities without
using sensitive attributes during training. It assumes group labels are available only for the
validation set and scores each candidate by its estimated influence on both accuracy and a fairness
objective (e.g., risk disparity) evaluated on that validation set. The algorithm then actively adds
the highest-influence examples to the training data, inducing a targeted distribution shift that
reduces disparity without harm.

* Algorithmic methods

— Decoupled Classifier (Ustun et al.,[2019; |Wang et al., 2020): It trains separate classifiers for
each sensitive group, allowing group-tailored decision boundaries and then aggregates their
predictions.

— LAFTR (Madras et al.,2018): Learning Adversarially Fair and Transferable Representations
(LAFTR) trains a feature extractor (representation function) so that the learned representation is
predictive of the target while being uninformative about the sensitive attribute. Concretely, a
predictor is optimized to minimize task loss while an adversary is trained to predict sensitive at-
tribute to enforce conditional independence. Since the constraint is imposed at the representation
level, the learned feature extractor supports downstream fair prediction.

— FSCL (Park et al.,|2022): Fair Supervised Contrastive Loss (FSCL) integrates fairness consider-
ations into a contrastive loss function. It leverages contrastive learning to separate representations
from different classes and align representations of the same class from different groups to achieve
fair classification.

— GapReg (Chuang and Mroueh, 2021): Gap Regularization embeds a chosen group-fairness
metric, such as Demographic Parity, Equal Opportunity, and Equalized Odds, directly into the
training loss function to balance both accuracy and fairness.

— MCDP (Jin et al., 2024b): It introduces a fairness metric that captures the maximal local
disparity by evaluating cumulative ratio disparities across varying neighborhoods. MCDP uses
a regularization approach similar to GapReg by adding the regularization term to the task loss
function during training to optimize the model.

— GroupDRO (Sagawa* et al.,2020): GroupDRO focuses on protecting the worst-case groups. It
maintains per-group weights that are increased for groups with higher loss and forces the model
to improve the worst-off subgroup rather than overfitting to the majority, thereby improving
fairness for minorities.

— DFR (Kirichenko et al.,2023): Deep Feature Reweighting (DFR) is a post-processing method.
It freezes the feature extractor of a standard ERM model and retrains only the final linear layer
(the classifier) on a small reweighted set where the spurious correlation is broken. Following
the original setup, we use a group-balanced reweighting set (i.e., a balanced distribution across
sensitive groups) so last-layer retraining emphasizes core features over spurious cues. DFR
provides a lightweight and efficient approach for achieving better predictions.

— Oxonfair (Delaney et al.,2024): Oxonfair is an open source toolkit for enforcing fairness in
binary classification through post-processing methods. It supports multiple fairness notions
and is able to minimize degradation while enforcing fairness. Since it only supports binary
classification, we omit the FairFace dataset (the multi-class classification task) for this method.
We follow their official implementation that enforces fairness on validation data and test on the
test data. We consider five different combinations of optimization target and fairness constraints
based on our benchmark tasks and metrics. These combinations can be found in Table|6l For
datasets with AUC metrics, we change the accuracy optimization objective to balanced accuracy.

¢ Multi-modal models
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— CLIP (Radford et al., 2021): CLIP (Contrastive Language—-Image Pretraining) learns visual
concepts from natural language supervision by jointly training on image—text pairs. In this paper,
we use the ViT (Dosovitskiy et al.,[2021) as the backbone. In addition, we consider two CLIP-
based post-training debias methods: FairerCLIP (Dehdashtian et al.|2024) and SFID (Jung et al.|
2024). FairerCLIP mitigates bias by projecting image and text representations into a Reproducing
Kernel Hilbert Space (RKHS) and minimizing the Hilbert-Schmidt Independence Criterion
(HSIC), thereby statistically enforcing independence between the embeddings and sensitive
attributes. SFID (Unified Selective Feature Imputation for Debiasing) identifies features reliant
on spurious correlations and applies a selective imputation strategy to reconstruct representations
that are invariant to demographic shifts.

— BLIP2 (Li et al., 2023): BLIP-2 bridges frozen vision encoders and frozen LLMs using a
lightweight Q-Former trained in two stages to extract language-aligned visual tokens. We use
BLIP2 to generate the image embeddings and text embeddings and calculate the embedding
similarities to make classifications.

— LLaVA-1.6 (Liu et al., 2024): LLaVA (Large Language and Vision Assistant) is an auto-
regressive language model that aligns vision features with a language model using instruction
tuning.

— Qwen2.5-VL (Bai et al., 2025): Qwen2.5-VL is the latest model of Qwen vision-language
series from Alibaba. It integrates a vision encoder and a language model decoder to process
multimodal inputs and achieve comparable performance with GPT-40 and Claude 3.5 Sonnet.

— Gemma 3 (Team et al., 2025): Gemma is a family of lightweight open models released by
Google, ranging from 1B to 27B parameters. As the 1B model supports only text inputs, we
evaluate the multimodal capabilities of the 4B, 12B, and 27B variants in this paper.

— Llama 3.2 (Grattafiori et al., 2024) and Llama 4 (Metal,[2025): Llama 4 is the latest multi-
modal model released by Meta. Due to the computation resource limitation, we only evaluate
Llama 4 Scout, a smaller variant compared with Llama 4 Maverick, alongside the Llama-3.2
multimodal series.

We present all used models and their sources in Table[6] All data-centric and algorithmic methods
except RandAugment use sensitive attributes during training, while the decoupled classifier requires
access to the sensitive attribute at deployment.

B.4 IMPLEMENTATION DETAILS

The experiments were conducted on a supercomputer cluster, where each node is equipped with
two AMD EPYC 7643 processors, four NVIDIA A100 GPUs (80GB memory each), and 921GB of
RAM. The code is implemented with Python 3.10.12 and PyTorch 2.5.0. All images are resized to
224 x 224 pixels, and during training, we apply random horizontal flipping for data augmentation.
We use a pre-trained ResNet-18 as the backbone initialization to start the training. In addition, we
conduct experiments on pretrained weights and model size in Appendix [C]

For RandAug, color-based augmentations were excluded during training, as the sensitive attributes in
our study include skin type, and such augmentations could inadvertently alter needed features.

The Fairness Influence Selection (FIS) method was originally designed for an active learning setting,
where a portion of the dataset remains unlabeled. In its original formulation, FIS selects necessary
unlabeled data using a combination of pseudo-labels and ground-truth labels. To adapt it to our
setting, we employ ground-truth labels for influence-guided selection. Specifically, the training
set is randomly partitioned into two subsets according to a predefined ratio: one subset is used for
supervised training, while during validation, the model assesses the influence of data in the second
subset and selectively incorporates a subset of these samples into the training set to achieve fairness
without harm. The split ratio is treated as a hyperparameter, as it varies across different datasets.

For Fairness-Sensitive Contrastive Learning (FSCL), training was divided into two phases: The first
60 epochs perform contrastive learning. The subsequent 40 epochs were used for classifier training.

For GapReg and MCDP, the differential privacy (DP) loss function was extended to accommodate
multi-class classification, particularly for the FairFace dataset. This extension is based on the
multi-class demographic parity formulation proposed by (Denis et al., [2024).
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Table 6: Summary of multi-modal models

Model #Param URL
CLIP CLIP-ViT-B/16 150M https://github.com/openai/CLIP
BLIP-2 BLIP-2 Base 1B https://github.com/salesforce/
LAVIS
LLaVA-v1.6-vicuna-7b-hf 7B https://huggingface.co/LLaVA-hf/

LLaVA-vl.6-vicuna-"7b-hf
https://huggingface.co/LLaVA-hf/

LLaVA  LLaVA-vl.6-vicuna-13b-hf 13B TIaVA-vl 6-vieuna-13b-hf
https://huggingface.co/LLaVA-hf/
LLaVA-v1.6-34b-hf 34B TIaVA-v] €-34b-hf
https://huggingface.co/Qwen/
Qwen2.5-VL-7B-Instruct 7B OwenZ . 5-VL-7B-Instruct
https://huggingface.co/Qwen/
Qwen Qwen2.5-VL-32B-Instruct 32B OwenZ . 5-VL-32B-Instruct
https://huggingface.co/Qwen/
Qwen2.5-VL-72B-Instruct 72B OwenZ . 5-VL-72B-Instruct
gemma-3-4b-it 4B https://hugglngface.co/google/
gemma—-3—-4b-it
Gemma  gemma-3-12b-it 2B https://hugq%ngface.co/google/
gemma—-3—-12b—-it
gemma-3-27b-it 27B https://huggingface.co/google/

gemma—-3-27b-1t

https://huggingface.
co/meta-Llama/Llama-3.
2—-11B-Vision—-Instruct
https://huggingface.
co/meta-Llama/Llama-3.
2-90B-Vision-Instruct
https://huggingface.
co/meta-Llama/Llama%
204-Scout-17B-16E-Instruct

Llama-3.2-11B-Vision-Instruct 11B

Llama
Llama-3.2-90B-Vision-Instruct  90B

Llama 4 Scout (17Bx16E) 109B

For CLIP and BLIP2, we use their public implementations. For LLVMs, we adopt the open-source
weights from Huggingface for all models with BF16 or FP16 precision, depending on their suggested
model loading.

B.5 HYPERPARAMETERS

We perform extensive hyperparameter optimization using Bayesian hyperparameter search via Weights
& Biases on the validation results. The default batch size is set to 256 for all experiments. For the
SGD optimizer, we deploy a StepLR scheduler and set momentum to 0.9, where the learning rate is
reduced by a factor of 0.1 every 30 epochs. The number of hyperparameter search iterations varies
with the complexity of each method—dataset combination, subject to a tuning budget of 100200
searches per method—dataset pair. The search space includes both discrete choices and continuous
ranges, as detailed in Table[7} & denotes a uniform distribution, and log i/ denotes a log-uniform
distribution. The benchmarking process required a total of approximately 1.1 GPU years. All methods
were trained for 100 epochs with early stopping to prevent overfitting. Early stopping is used if the
validation loss or validation accuracy/AUC does not improve after 10 epochs.

B.6 PROMPTS
Table [§] lists the zero-shot prompts used throughout our study. For image—text matching models

(CLIP, BLIP-2, FairerCLIP, SFID), we use one template sentence per class and compute the im-
age—caption similarity, then pick the label of the highest-scoring caption as the prediction. For large

25


https://github.com/openai/CLIP
https://github.com/salesforce/LAVIS
https://github.com/salesforce/LAVIS
https://huggingface.co/LLaVA-hf/LLaVA-v1.6-vicuna-7b-hf
https://huggingface.co/LLaVA-hf/LLaVA-v1.6-vicuna-7b-hf
https://huggingface.co/LLaVA-hf/LLaVA-v1.6-vicuna-13b-hf
https://huggingface.co/LLaVA-hf/LLaVA-v1.6-vicuna-13b-hf
https://huggingface.co/LLaVA-hf/LLaVA-v1.6-34b-hf
https://huggingface.co/LLaVA-hf/LLaVA-v1.6-34b-hf
https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct
https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct
https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct
https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct
https://huggingface.co/google/gemma-3-4b-it
https://huggingface.co/google/gemma-3-4b-it
https://huggingface.co/google/gemma-3-12b-it
https://huggingface.co/google/gemma-3-12b-it
https://huggingface.co/google/gemma-3-27b-it
https://huggingface.co/google/gemma-3-27b-it
https://huggingface.co/meta-Llama/Llama-3.2-11B-Vision-Instruct
https://huggingface.co/meta-Llama/Llama-3.2-11B-Vision-Instruct
https://huggingface.co/meta-Llama/Llama-3.2-11B-Vision-Instruct
https://huggingface.co/meta-Llama/Llama-3.2-90B-Vision-Instruct
https://huggingface.co/meta-Llama/Llama-3.2-90B-Vision-Instruct
https://huggingface.co/meta-Llama/Llama-3.2-90B-Vision-Instruct
https://huggingface.co/meta-Llama/Llama%204-Scout-17B-16E-Instruct
https://huggingface.co/meta-Llama/Llama%204-Scout-17B-16E-Instruct
https://huggingface.co/meta-Llama/Llama%204-Scout-17B-16E-Instruct

Published as a conference paper at ICLR 2026

Table 7: Hyperparameter search space for all methods.

Category Hyperparameter Search Space
Learning Rate log(107°,1072)
Common Hyperparameters ~ Weight Decay {0,107°,107%, 1073, 1072}
Optimizer {Adam, SGD}
Mixup Mixup loss coefficient 4(0.1,10)
Resampling Resampling method {Group, Group x Class}
BM Sampling mode {none, us, uw, os}
FIS Label ratio {0.1,0.3,0.5}
Fairness metric {dp, eop, eod}
Class coefficient U(0.1,1)
LAFTR Fairness coefficient U(0.1,1)
FSCL Group normalization {0, 1}
Fairness regularization objective {dp, eop, eod}
GapReg Regularization coefficient U(0.01,5)
Regularization coefficient U(0.01,5)
MCDP Temperature {5. 10, 20, 50, 100}
Alpha 4(0.01,5)
GroupDRO Gamma U(0.01,5)
Tune class weights {0, 1}
Add train data {0, 1}
DFR Regularization {L1,L2}
C options {3,1,0.7,0.3, 0.1, 0.07, 0.03, 0.01, 0.003}
Class weight options {1, 2,3, 10, 100, 300, 1000}
{accuracy, accuracy.diff} # optimize accuracy without reducing gap
{accuracy.min, accuracy} # optimize worst without reducing overall
Oxonfair Objective and Constraint {accuracy.diff, accuracy.min} # optimize gap without reducing worst
{equalized_odds, accuracy} # optimize EqOdd without reducing overall
{demographic_parity, accuracy} # optimize DP without reducing overall
T Uu(0,1)
Tzi U(0,1)
FairerCLIP T U(0,1)
Tzt u ((), 1)
RFF Dim {1000, 2000, 3000, 4000, 8000}
SFID Confidence threshold U(0.5,1)
Number of Pruned Feature {50,75,100}

vision—language models, we feed the prompt with image input to the model and then parse the
model’s short text answer.
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Table 8: Prompts used across datasets for text-image matching and visual-language model (image-

text-to-text) inference.

Dataset

Prompts

CelebA

Image-Text Matching:

[ “A photo of a person with non-wavy hair.”,

“A photo of a person with wavy hair.” |
Image-Text-to-Text:

Is the person in the photo wavy-haired?

Only Answer ’Yes’ for wavy hair, ’No’ for non-wavy hair.

UTKFace

Image-Text Matching:

[ “A photo of a male.”,

“A photo of a female.” |
Image-Text-to-Text:

Is the person in the photo male or female?
Only Answer ’Male’ or Female’.

FairFace

Image-Text Matching:

[ “A photo of a White person.”,

“A photo of a Black person.”,

“A photo of a Latino or Hispanic person.”,

“A photo of an East Asian person.”,

“A photo of a Southeast Asian person.”,

“A photo of an Indian person.”,

“A photo of a Middle Eastern person.” ]
Image-Text-to-Text:

Based on the photo, classify the race of the person into:
0: White, 1: Black, 2: Latino or Hispanic, 3: East Asian,
4: Southeast Asian, 5: Indian, 6: Middle Eastern.

Please answer with the corresponding category number only.

Facet

Image-Text Matching:

“A photo of a person with non-visible face.”

“A photo of a person with visible face.”

Image-Text-to-Text:

Does the photo show a visible face?

Only answer ’Yes’ if the face is visible, otherwise answer 'No’.

Waterbirds

Image-Text Matching:

“A photo of a landbird.”

“A photo of a waterbird.”

Image-Text-to-Text:

Is the bird in the photo a landbird or a waterbird?
Only answer ’Landbird’ or *Waterbird’.

HAM10000 / Fitz17k

Image-Text Matching:
“A photo of a benign skin condition.”
“A photo of a malignant skin condition.”
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C ADDITIONAL EXPERIMENTS

C.1 TRAINING CHOICE EXPLORATIONS

In this paper, we argue that a carefully tuned ERM often rivals specialized debiasing methods. We
then organize the further studies to mirror the life cycle of a standard vision pipeline. We start with
initialization choices from pre-trained weights versus training from scratch, because the features a
model begins with strongly constrain downstream bias. Next, we study optimizer choice to challenge
prior work that often fixes optimizers across different settings and evaluate their influence on both
utility and fairness. We then turn to other common training choices like batch size, weight decay, and
model/checkpoint selection. Together, these investigations shed light on fairness outcomes and also
help reduce the search space for future hyperparameter optimization, providing principled guidance
on which training choices matter most.

C.1.1 IMPACT OF PRETRAINED WEIGHTS

Loading pretrained weights improves overall utility without harming fairness. In this part, we
investigate the impact of loading pretrained weights on ImageNet (Deng et al.,2009) before training
on fairness and utility on ERM. For clarity, Figure [6| extracts the most representative panels from
the full grid in Figure[/} Each panel plots models trained with pretraining (red circles, “Yes”) and
from scratch (blue circles, “No”) across our seven datasets while sweeping the same hyperparameter
grid, making the influence of weight initialization easy to see at a glance. The horizontal axis of
each plot measures subgroup performance disparity (e.g., “Gap AUC” or “Gap ACC”), while the
vertical axis measures overall utility (e.g., “Overall AUC” or “Overall ACC”). In all cases, points
closer to the top-left corner indicate both higher overall performance and smaller subgroup gaps,
which represent more favorable fairness-utility trade-offs. A general trend emerges showing that
models initialized with pretrained weights tend to achieve higher overall performance than those
trained from scratch. This benefit is especially apparent in datasets with relatively small training sets,
such as Fitz17k and Waterbirds. However, pretrained models do not consistently outperform models
trained from scratch in closing the subgroup performance gap. This observation is further supported
by other fairness metrics (such as DP, EqOdd, and Worst) reported in the Figure[/} where the full
comparison is provided. Despite this mixed impact on fairness, pretrained models improve overall
utility without harming any particular subgroup, particularly benefiting disadvantaged groups (as
seen in the Worst metric in the appendix). This aligns with our “fairness without harm” principle. As
a result, we adopt pretrained models in our benchmark for their superior overall performance while
maintaining acceptable fairness levels.

C.1.2 IMPACT OF OPTIMIZER CHOICE ON FAIRNESS AND UTILITY

Using a fixed optimizer across methods and datasets can lead to unfair comparisons. Many
prior studies use a single optimizer across datasets and methods, sometimes even without fine-tuning
learning rates. Based on this, we conducted this study on two baseline methods and two datasets to
provide empirical evidence that using a fixed optimizer across methods and datasets can lead to unfair
comparisons. Our findings in Figure [8|indicate that different datasets respond differently to various
optimizers, and selecting the right one can improve both utility and fairness. For instance, models
trained on CelebA with SGD tend to achieve better utility and smaller accuracy gaps, resulting in a
more balanced model compared to those trained with Adam. This is evident in the results, where
SGD-based models cluster around higher accuracy values with lower fairness gaps. On the other
hand, in the Fitz17k dataset, models trained with Adam perform better, achieving higher utility while
maintaining competitive fairness scores. This variation in optimizer performance highlights that a
one-size-fits-all approach can lead to suboptimal results, especially in fairness-sensitive settings. Qur
findings underscore the need for more equitable and transparent evaluation practices in future
fairness research.

Further Analysis (ERM Focus). In the main text, due to computational constraints, we primarily
experimented with SGD (Bottou, 2012) and Adam (Kingma and Bal [2015). Here, we extend the
study to include two additional optimizers, AdamW (Loshchilov and Hutter, 2019) and Adagrad
(Ward et al.,|2020), in order to better understand their impact on ERM performance. Across datasets,
optimizer choice exhibits a more pronounced and consistent influence on both utility and fairness
than model size or batch size. For example, on Waterbirds, AdamW and Adagrad achieve both higher
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Figure 6: Comparison of utility gap for the pretrained weights. More left indicates greater fairness
(smaller accuracy gap), while higher values indicate better performance.

Table 9: Performance comparison across different optimizers.

Dataset Optimizer Utility (Acc or AUC) Worst Gap EqOdd DP
SGD 86.57 £ 0.18 83.76 £ 0.23 6.76 -0.34 81.91+0.58 67.204+0.69
Adam 86.11 +0.43 82.854+0.61 7.89+0.29 80.46+3.23 67.22+2.81
CelebA AdamW 86.48 +0.14 83.30+0.19 7.67+0.12 79.27+236 66.03+1.88
Adagrad 86.65 +0.14 83.62+0.25 7.33+0.27 81.39+0.88 67.90+0.32
Std 0.21 0.35 0.43 1.00 0.67
SGD 91.95 £+ 0.03 90.514+£0.22 3.30£0.55 96.76 £0.58  95.56 £ 0.34
Adam 92.75 £ 0.54 91.78 £0.61 2.26+0.64 97.62+0.53 94.55+1.20
UTKFace AdamW 92.85 + 0.28 91.67+0.37 272+0.71 97.30+0.70 95.70+0.21
Adagrad 92.84 £ 0.22 91.27 £ 0.28 3.59 +£0.16 96.45 + 0.15 95.17 £ 0.41
Std 0.38 0.50 0.51 0.46 0.45
SGD 65.68 + 0.39 64.64+054 1.86+031 9598+0.42 97.36=+0.21
Adam 66.76 + 0.21 66.34+0.37 0.87+0.51  96.22+0.57 97.61+£0.41
FairFace AdamW 67.09 + 0.39 66.79+0.42 0.64+0.06 96.50+0.38 97.69+0.17
Adagrad 67.54 +0.43 66.83 £0.73 1.50+0.64 96.07 + 0.41 97.65 £ 0.17
Std 0.69 0.89 0.49 0.20 0.13
SGD 67.55 £ 0.37 64.25 +£0.97 431+1.13 96.47 +1.23 95.40 £1.12
Adam 66.34 4+ 0.89 63.09+1.33 4.23+0.87 94.60+1.40 94.17+1.23
Facet AdamW 67.46 +0.17 62.234+0.74 6.80+1.14 95.67+1.22 94.62+0.88
Adagrad 67.62+0.13 62.99 + 0.23 6.024+0.31 97.15+0.91 95.95+0.79
Std 0.52 0.72 1.11 0.95 0.69
SGD 88.35 +1.83 84.68 £2.02 4.114+2.08 88.17 + 3.10 82.22 £4.78
Adam 86.47 +1.13 81.74+1.72 4.53+1.66 92.55+2.43 87.69+2.69
HAMI10000 AdamW 88.18 + 0.66 84.38+0.74 3.40+1.13 89.02+6.00 80.23+7.57
Adagrad 87.00 £ 0.90 81.98 + 2.86 5.27+3.17 91.33 + 3.61 85.52 £ 1.04
Std 0.79 1.34 0.68 1.75 2.88
SGD 89.74 + 1.00 88.39+1.05 292+1.14 94.92+2.48 94.46+1.40
Adam 89.62 4+ 0.53 87.914+047 234+041 9490+0.92 91.74+0.82
Fitz17k AdamW 91.37 £ 0.26 90.45+0.32 2114+091 9391+1.59 92.32 £ 0.62
Adagrad 91.43 +£0.27 90.40 £ 0.56 3.51+1.66 96.09+0.95 93.40+0.52
Std 0.86 1.15 0.54 0.77 1.04
SGD 85.45 +0.93 83.72+1.68 357+1.82 6823+£1.97 76.09+2.03
Adam 85.63 + 1.36 84.204+0.94 287+085 66.53+3.31  77.67+3.52
Waterbirds AdamW 87.09 £+ 0.54 86.254+0.26 1.68+0.90 71.90+0.44 81.54+0.80
Adagrad 87.77 £ 0.64 87.10+0.86 1.35+1.54 74.00+3.04 81.35+2.02
Std 0.98 1.40 0.90 2.94 2.35

overall accuracy and smaller subgroup gaps compared to SGD and Adam, indicating a more favorable
fairness—utility trade-off. These results suggest that the relative advantages of each optimizer are
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Figure 7: Full comparison of fairness metrics (Gap, Worst, EQOdd, DP) across all datasets for the
pretrained weights.
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Figure 8: The effect of optimizer choice on fairness and utility trade-offs across CelebA and Fitz17k.
The points from the same color are models trained with different learning rates and weight decays.

highly dataset-dependent, yet their effects on utility and fairness are clearer than those of other
hyperparameters. Thus, when conducting hyperparameter optimizations, the choice of optimizer
could be prioritized for fairness-sensitive evaluations.

C.1.3 IMPACT OF BATCH SIZE

Batch size has a limited effect on overall utility but can affect fairness slightly. In this benchmark,
we use a batch size of 256 for all methods. We also evaluate if batch size have an influence on
model fairness. We conduct experiments on seven datasets with different batch sizes ranging from
32 to 1024. The full results are reported in Table[I0] and visualized in Figure[9] Across all datasets,
utility remains relatively stable as batch size increases. However, worst-case performance and the
accuracy gap fluctuate more significantly. In some cases, such as CelebA and HAM 10000, worst-case
performance tends to decrease slightly with larger batch sizes. This indicates that larger batch sizes
might lead to increased disparities between advantaged and disadvantaged groups. Equalized Odds
and Demographic Parity vary highly depending on specific datasets. For datasets like CelebA and
Waterbirds, EqOdd tends to decrease as batch size increases, while EQOdd and DP increase with
larger batch sizes in HAM10000 and Fitz17k. The results show that batch size can influence fairness,
but not in a consistent way. However, since its influence on fairness is relatively minor and
inconsistent, batch size can be given lower priority in future hyperparameter searches.
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Figure 9: Effect of batch size on all metrics across seven datasets derived from Table[10} Each subplot
corresponds to one evaluation metric, and curves represent different datasets. The x-axis is plotted on
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Table 10: Performance comparison across different batch sizes.

Dataset Batch Size Utility (Acc or AUC) Worst Gap EqOdd DP
32 86.48 £0.25 83.59£0.35 694+043 80.82+1.56 66.77+1.19
64 86.63 £ 0.20 83.79+035 6.82+050 81.724+1.86 67.37+1.27
128 86.49 £ 0.12 83.69+£0.23 6.73+0.59 81.80+0.87 67.23+1.14
CelebA 256 86.57 £ 0.18 83.76£0.23 6.76+0.34 81.91+0.58 67.20 £ 0.69
512 86.50 £ 0.12 83.60£0.21 6.96+0.35 81.57+0.93 67.09+0.76
1024 86.52 £+ 0.09 83.67+£0.14 6.86+0.32 81.60+0.64 67.28+0.66
Std 0.05 0.07 0.09 0.35 0.19
32 93.07 £0.47 92.15+0.68 2.12+0.98 97.37+0.42 94.21 £ 1.66
64 93.28 £0.18 9253 +£0.25 1.74+0.49 98.22+0.55 94.80+ 1.98
128 92.94 £+ 0.50 91.72+£0.56 2.844+0.65 97.16+0.63 94.73+1.23
UTKFace 256 92.75 £ 0.54 91.78 £0.61  2.26+0.64 97.62+0.53 94.55+1.20
512 93.30 £0.39 9248 +£0.78 1.90+0.89 98.10+£0.88 95.84+1.17
1024 92.80 £+ 0.54 91.62+0.79 2.754+0.81 97.25+0.82 95.13+1.88
Std 0.21 0.36 0.41 0.41 0.51
32 67.49 £0.33 66.64 £ 0.41 1.80+£0.61 96.39£0.43 97.80+0.31
64 67.75 £ 0.50 6743 +£0.50 0.67+049 96.13+044 97.24+0.27
128 66.76 £+ 0.54 66.40 £0.73 0.76 £0.59  96.32+0.66  97.56 + 0.40
FairFace 256 66.76 £ 0.21 66.34 £0.37 0.87+0.51 96.22+0.57 97.61+0.41
512 66.63 £ 0.39 65.95£0.56 1.444+0.53 96.15+£0.58 97.59+0.31
1024 65.77 £ 0.65 65.19£0.75 1.234+0.41 96.05+0.46 97.41+0.34
Std 0.64 0.68 0.40 0.12 0.17
32 67.55 £ 0.27 64.11£0.64 4.504+0.93 96.33+£0.93  95.31+0.87
64 67.55 £ 0.48 6423080 4.35+1.15 97.11+£1.05 96.18+0.99
128 67.68 £0.14 63.61£0.73 5.31+1.02 97.08+0.74  96.05+0.72
Facet 256 67.55 £ 0.37 64.25 +0.97 431+1.13 9647+1.23 9540+ 1.12
512 67.58 £0.11 63.85£0.75 4.88+1.07 9731083 97.14+0.94
1024 67.08 £0.35 62.71+£0.89 5.72+1.16 98.11+1.06 97.87+1.18
Std 0.19 0.53 0.52 0.58 0.92
32 89.35 £ 2.18 85.39£3.76 4.30+2.09 87.04+3.63 82.25+4.28
64 89.32 £ 1.44 86.08 £3.08 3.79+3.04 8825+4.44 8291+345
128 89.21 £1.73 84.70 £3.60 5.824+2.99 86.80+4.09 81.80+0.89
HAM10000 256 88.35 £1.83 84.68 £2.02 4.11+2.08 88.17+3.10 82.22+4.78
512 88.21 £ 1.69 83.61£2.71 5.08+£2.79 89.07+390 84.73+3.34
1024 88.17 £ 1.26 83.30 £2.27 540+286 87.22+560 84.91+2.35
Std 0.53 0.96 0.73 0.80 1.23
32 90.62 £ 0.82 89.45+0.83 280+1.34 96.50+2.73 94.55+1.12
64 90.36 £ 0.67 89.02+£1.34 2.73+1.58 96.13+£2.08 94.85+1.00
128 89.92 £ 0.66 88.50+£0.80 3.16+1.25 9551 +2.53 94.54+1.22
Fitz17k 256 89.74 £ 1.00 88.39+1.05 292+1.14 9492+248  94.46+1.40
512 88.94 £ 1.15 87.70 £1.18 2.61+£1.27 95.65+2.36  95.27£1.20
1024 86.97 £ 1.38 85.49+£1.63 2824156 9595+1.05 96.49+0.84
Std 1.22 1.28 0.17 0.50 0.71
32 87.29 +£1.25 85.81£1.11 2.98+0.89 73.88+3.14 82.33+295
64 87.70 £ 0.61 86.36 £1.00 2.68+145 7460+1.83 83.17+1.81
128 88.14 + 0.62 87.02+0.80 2244+1.72 7569+196 84.11+1.70
Waterbirds 256 85.63 £ 1.36 84.20£0.94 2.87+0.85 66.53+3.31 77.67 £ 3.52
512 87.11 £ 1.30 86.03£0.81 216+1.38 72.69+3.75  81.45+2.89
1024 83.68 £ 1.19 81.35£241 4.65+2.78 63.98+1.60 73.77+3.19
Std 1.52 1.89 0.83 4.38 3.60
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C.1.4 IMPACT OF WEIGHT DECAY

Weight decay is a critical hyperparameter that affects both model generalization and utility. The results
in Table[TT]suggest that while weight decay influences fairness, its effects vary significantly across
different datasets. L2 regularization tends to maintain or slightly improve fairness metrics, whereas
L1 regularization can, in some cases, amplify disparities, particularly in datasets with imbalanced
subgroup distributions. Since L2 regularization is typically the default and widely adopted choice in
hyperparameter optimization pipelines, while L1 regularization is used less frequently, we additionally
include a comparison between L2 regularization and no regularization (A5 y,) in the table. This
expanded setup provides a clearer view of the marginal effects of L2 regularization on fairness. We
observe that tuned L2 weight decay rates have only minor effects (less than 0.5% in most cases) on
fairness metrics for most datasets, suggesting that a smaller tuning budget could be allocated to this
hyperparameter.

Table 11: Performance comparison across different types of weight decay.

Dataset Method Utility (Acc or AUC) Worst Gap EqOdd DP
L1 86.52 +0.16 83.68+0.26 6.82+0.42 81.48+1.06 67.10+£1.03
CelebA L2 86.57 +0.18 83.76 +0.23 6.76 +0.34 81.91 +£0.58 67.20 + 0.69
No 86.52 £ 0.20 83.65+0.34 6.91+043 82.15+1.37 67.69+1.06
Ao No 0.05 0.11 -0.15 -0.24 -0.49
L1 93.02 £0.34 91.85+0.54 2.71+1.21 9721+1.12 9513+1.23
UTKFace L2 92.75 + 0.54 91.78 £ 0.61 2.26 £0.64 97.62+0.53 94.55+1.20
No 93.11 +0.49 91.86+0.85 2.924+1.01 97.22 +0.97 94.69 4+ 1.26
Aro—No -0.36 -0.08 -0.66 0.40 -0.14
L1 66.60 £ 0.16 66.07+0.26 1.13+0.65 96.20+0.37 97.61+0.25
FairFace L2 66.76 £ 0.21 66.34 £0.37 0.87+0.51 96.22+0.57 97.61+0.41
No 67.01 +0.17 66.71+0.31 0.63+0.54 95.99+0.52 97.47 +0.42
Ara—No -0.25 -0.37 0.24 0.23 0.14
L1 67.85+0.19 63.71 + 0.69 5.41+0.90 96.84+0.85 96.12+0.68
Facet L2 67.55 +0.37 64.25+0.97 4.31+1.13 96.47+1.23 95.40 £ 1.12
No 67.60 £+ 0.40 64.24 +0.64 4.39+0.87 96.26+1.09  95.39 +1.02
Ara_nNo -0.05 0.01 -0.08 0.21 0.01
L1 87.66 £1.11 83.70+£3.05 3.86£3.46 87.75+4.03 83.95+5.10
HAM10000 L2 88.35+1.83 84.68 +2.02 4.11+2.08 88.17+3.10 82.22+4.78
No 88.12 +£1.89 84.85+2.03 3.42+1.54 88.14+4.13 83.78 £3.87
Ao No 0.23 -0.17 0.69 0.03 -1.56
L1 82.26 + 1.68 79.79+2.52 470+239 97.10+1.45 97.91+045
Fitz17k L2 89.74+1.00 88.39+1.05 292+1.14 94.92+248 9446 £1.40
No 89.65 £ 0.96 88.30+£1.03 294+1.10 95.08+2.80 94.36 £1.31
Aro—No 0.09 0.09 -0.02 -0.16 0.10
L1 77.46 +0.64 76.79+1.09 1.334+0.93 88.83+2.35 91.68+1.99
Waterbirds L2 85.63 +1.36 84.20+0.94 2.87+0.85 66.53 +3.31 77.67 + 3.52
No 85.38 £ 0.68 83.38+1.58 4.00+£2.01 69.10+1.04  76.53 £1.56
Ara—No 0.25 0.82 -1.13 -2.57 1.14

C.1.5 IMPACT OF MODEL SIZE

Increasing model size does not consistently improve fairness. We analyze the effect of model
size on fairness by comparing different ResNet architectures (ResNet-18, ResNet-34, ResNet-50,
and ResNet-101) across all seven datasets in Table with corresponding visualizations provided
in Figure[I0] We observe that larger models tend to have slightly higher utility (overall accuracy or
AUC), however, this improvement is not consistent in the disadvantaged group in terms of the worst
accuracy/AUC. For fairness metrics, larger models exhibit varying trends across datasets without an
obvious pattern. The results suggest that increasing model size does not offer a reliable path toward
improved fairness for single-modality classic supervised learning.

C.1.6 SENSITITY ANALYSIS

While the previous sections analyzed training choices in isolation, Table 13 provides a unified
quantitative comparison of their relative impact. We aggregated the standard deviations from Table
[ 10} and [I2] to measure the model’s sensitivity to that specific choice in Table[I3] Our results
reveal that optimizer choice yields the highest standard deviations across the majority of datasets and
metrics (23 in 35). This aggregate view reinforces our earlier qualitative findings. First, optimizer
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Figure 10: Effect of model size on utility and fairness metrics across seven datasets, derived from
Table[T2] Each subplot corresponds to one evaluation metric, and curves represent different datasets.
The x-axis uses ResNet depth (18/34/50/101) as evenly spaced categorical positions for visual clarity.

choice is the most leverage-efficient knob for fairness-aware HPO: the search space is relatively small
(a few commonly used optimizers), yet it leads most of the variance in both accuracy and disparity.
In contrast, batch size does influence utility and fairness on specific datasets like Fitz17k, but the
potential search space is much larger (a wide integer range), making exhaustive tuning significantly
more expensive for a lower expected payout in fairness gains. Finally, model size generally exhibits
the lowest sensitivity, while increasing model depth significantly increases computational complexity.
For fairness-sensitive applications under resource constraints, it is therefore more effective to fix a
moderate model size and allocate tuning budget to optimization hyperparameters rather than to model
sizes.
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Table 12: Performance comparison across different model sizes.

Dataset Batch Size  Utility (Acc or AUC) Worst Gap EqOdd DP
ResNet-18 86.57 £ 0.18 83.76 £0.23 6.76 £0.34 81.91+0.58  67.20 + 0.69
ResNet-34 86.56 + 0.03 83.55+£0.11 7.23+£0.18 81.04+£0.69 66.81 £1.19
CelebA ResNet-50 86.47 £0.18 83.50+0.10 7.16+0.37 80.01+£0.40 66.44+1.25
ResNet-101 86.49 + 0.26 83.60+0.23 6.95+0.09 8255+0.92 67.22+0.87
Std 0.04 0.10 0.18 0.95 0.32
ResNet-18 92.75+ 0.54 91.78 £0.61  2.26+£0.64 97.62+£0.53  94.55 £1.20
ResNet-34 93.27 £0.79 92.31+£0.82 2.25+043 97.66+0.28  94.66 £ 1.01
UTKFace ResNet-50 93.39+0.73 9250+0.71 2.05+0.82 97.85+0.74 95.14+1.93
ResNet-101 93.70 £ 0.44 92.92+0.56 2.03+070 97.58+0.30 94.66+1.10
Std 0.34 0.41 0.11 0.10 0.23
ResNet-18 66.76 £ 0.21 66.34 £0.37 0.87+£0.51 96.22+0.57 97.61+0.41
ResNet-34 68.22 +0.17 67.80£0.18 0.90£0.54 96.33+£0.55  97.46 £0.25
FairFace ResNet-50 67.33 £0.72 67.06 £0.63 0.58+0.34 96.34+0.61 97.57+0.32
ResNet-101 68.68 + 0.64 68.31+£0.62 0.79+0.31 95.97+0.68 97.38+0.38
Std 0.75 0.75 0.12 0.15 0.09
ResNet-18 67.55+0.37 64.25+097 4.31+1.13 96.47+1.23 9540+ 1.12
ResNet-34 67.66 £ 0.20 63.33+£0.63 564+082 97.76+0.85 96.98+1.25
Facet ResNet-50 67.85+0.79 63.99£1.06 5.03£097 96.95+£1.75  96.20 £ 1.56
ResNet-101 67.60 £0.71 63.85+1.41 488+1.03 96.79+0.26  96.00 £ 0.41
Std 0.11 0.34 0.47 0.48 0.56
ResNet-18 88.35 £1.83 84.68 £2.02 4.11+2.08 88.17+3.10 82.22+4.78
ResNet-34 87.44+0.26 83.35+£1.93 487+£214 88.33+£296 82.08£4.71
HAM10000  ResNet-50 88.35 £0.89 83.94+261 549+282 84.33+6.83 79.63 £6.81
ResNet-101 89.01 +£1.74 85.44+3.52 4.69+296 89.67+3.34 84.84+2.53
Std 0.56 0.79 0.49 1.99 1.84
ResNet-18 89.74 + 1.00 88.39+1.05 2.92+1.14 94.92+2.48  94.46 +1.40
ResNet-34 88.78 £0.26 87.96 £0.16 2.60+£1.12  96.09 £1.21 95.08 £ 1.88
Fitz17k ResNet-50 89.59 + 0.50 88.77+0.88 235+1.57 96.29+1.50 9545+1.70
ResNet-101 89.89 £1.10 88.27+1.82 3.63+0.62 95.19+1.82 94.80+2.10
Std 0.43 0.29 0.48 0.58 0.36
ResNet-18 85.63 £1.36 84.20+094 2.87+0.85 66.53+3.31 77.67 +3.52
ResNet-34 89.21 + 1.02 87.29+1.68 3.85+1.62 78344247 82.91+2.13
Waterbirds  ResNet-50 90.27 +£1.28 88.51+£1.92 3.52+1.39 80.55+3.71  84.62+3.22
ResNet-101 90.09 £ 0.22 8851+0.88 3.16+1.86 80.59+1.90 84.85+1.23
Std 1.87 1.76 0.37 5.83 2.89

Table 13: Standard deviations comparison across different training choices.

Dataset Tuning Utility Worst Gap EqOdd DP
Optimizer 0.21 035 043 1.00 0.67
CelebA Batch Size 0.05 0.07 0.09 0.35 0.19
Model Size 0.04 0.10 0.18 0.95 0.32
Optimizer 0.38 0.50 0.51 0.46 0.45
UTKFace Batch Size 0.21 0.36 0.41 0.41 0.51
Model Size 0.34 0.41 0.11 0.10 0.23
Optimizer 0.69 0.89 0.49 0.20 0.13
FairFace Batch Size 0.64 0.68 0.40 0.12 0.17
Model Size 0.75 0.75 0.12 0.15 0.09
Optimizer 0.52 0.72 1.11 0.95 0.69
Facet Batch Size 0.19 0.53 0.52 0.58 0.92
Model Size 0.11 0.34 0.47 0.48 0.56
Optimizer 0.79 1.34 0.68 1.75 2.88
HAM10000 Batch Size 0.53 0.96 0.73 0.80 1.23
Model Size 0.56 0.79 0.49 1.99 1.84
Optimizer 0.86 1.15 0.54 0.77 1.04
Fitz17k Batch Size 1.22 128 0.17 0.50 0.71
Model Size 0.43 0.29 0.48 0.58 0.36
Optimizer 0.98 1.40 0.90 2.94 2.35
Waterbirds  Batch Size 1.52 1.89 0.83 4.38 3.60
Model Size 1.87 1.76 0.37 5.83 2.89
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C.1.7 IMPACT OF MODEL SELECTIONS

Table 14: Comparison of model selections. M denotes selecting based on the maximal overall utility.

Dataset CelebA UTKFACE FairFace Facet

ACC Worst Gap EqOdd DP  ACC Worst Gap EqOdd DP ACC Worst Gap EqOdd DP ACC Worst Gap EqOdd DP
ERM-M 86.56 83.69 6.90 81.89 6748 92.78 91.68 2.58 9742 9444 66.76 66.34 0.87 96.22 97.61 67.90 64.16 4.89 9690 9595
ERM-DTO 86.57 83.76 6.76 81.91 67.20 92.75 91.78 2.26 97.62 9455 66.76 6634 087 9622 97.61 6755 6425 431 9647 9540

RandAug-M 86.73 8389 6.82 8116 66.90 9331 9217 264 9732 9511 6850 67.70 1.70 9617 9757 67.97 6455 4.46 96.81 96.02
RandAug-FWH 86.72 83.89 6.80 81.39 66.99 93.19 9219 234 97.62 9483 6837 67.69 144 96.14 9755 67.83 6494 378 96.68 95.91
GroupDRO-M 86.14 8351 6.32 7876 66.32 9237 9143 218 9746 9446 6581 65.03 1.64 9653 97.66 67.32 64.19 4.09 9357 93.16
GroupDRO-FWH  86.12 83.50 6.31 78.73 66.41 9245 91.41 244 97.06 9478 65.51 6522 0.60 9631 9747 67.20 64.07 4.08 93.76 93.16

Dataset HAM10000 Fitz17k Waterbirds

ACC Worst Gap EqOdd DP ACC Worst Gap EqOdd DP ACC Worst Gap EqOdd DP
ERM-M 88.27 83.61 530 8699 8241 89.82 8846 3.01 9472 94.33 85.63 84.20 2.87 66.53 T7.67
ERM-DTO 88.35 84.67 4.11 8679 8148 89.74 8839 292 9492 9446 8563 8420 287 66.53 77.67

RandAug-M 89.53 8533 4.63 86.34 79.94 91.24 90.13 252 9536 94.48 8748 85.60 3.76 7212 8035
RandAug-FWH 89.09 84.67 4.99 8843 8473 91.29 90.15 251 9561 9453 86.09 84.52 314 68.99 77.25

GroupDRO-M 88.96 8523 433 86.12 7945 91.04 89.66 3.55 9522 9443 8678 8476 4.05 71.88 80.88
GroupDRO-FWH ~ 87.66 83.98 4.98 9094 83.86 90.72 90.06 1.92 9436 9524 8546 8445 202 6731 76.91

We use ERM, RandAug, and GroupDRO as examples to compare the model selection methods
in Table [14|since their differences are more obvious to observe compared with others. The DTO-
based selection prioritizes models that maximize utility for all groups, ensuring that no subgroup is
disproportionately disadvantaged. On the other hand, the FWH selection emphasizes fairness without
significantly harming utility based on the DTO-based method selected ERM results, focusing on
reducing disparities without major accuracy degradation. The M in the Table denotes using maximal
overall utility. FWH selection achieves a smaller fairness gap across multiple datasets. These results
show that prioritizing fairness constraints does not necessarily mean sacrificing model performance,
as long as careful selection strategies are employed. However, since the selection is performed on the
validation set, it still faces the potential trade-offs when validation-test discrepancies exist.

C.2 COMPUTATIONAL OVERHEAD COMPARISON

In this section, we compare the computational overhead of various methods in terms of additional
model parameters and overall computation times. Since methods like FIS perform additional
computations during validation, we measure the total computational time, including the training,
validation, and testing phases. Notably, because FIS requires computing the gradient for each
sample, we use PyTorch’s vmap to accelerate the computation, which aligns with the official FIS
implementation in JAX.

In Table we report the additional parameters required by specific methods and the average
computational times (in seconds) for the evaluated methods. Most methods use the same number
of parameters as the standard ERM baseline, so we focus only on those that introduce extra model
parameters. The reported times are averaged over 5 runs, including the training, validation, and
testing phases. For datasets with a limited number of samples, time differences are negligible and thus
omitted from this comparison. Although some methods, like LAFTR, exhibit significantly increased
computational demands, they do not outperform simpler methods. This highlights the need for easy
yet effective approaches that balance performance with computational efficiency.

Table 15: Average computation time in seconds for one round and the extra number of parameters
introduced by specific methods. DFR is not included here since it is a post-processing method.

| ERM RandAug Mixup Resampling BM FIS
Parameters | - - - - 1024 -

CelebA 113.06 £0.25 117.06 +£1.95 112.48+1.19 112.804+0.38 114.084+1.30 145.29 & 0.45
UTKFace 39.33£1.89  39.55+£1.09 38.44£0.53 3883+£1.12 39.79+£1.25  41.65+0.57
FairFace 54.544+0.31  54.53+0.48 54.90+0.34 54.68+0.39 55.40+0.38  72.07+0.14

Facet 26.444+0.15  26.514+0.26 26.69+0.21  26.53+0.20 27.214+0.24  35.144+0.22

Average 58.34 59.42 58.13 58.21 59.12 73.54
Decoupled LAFTR FSCL GapReg MCDP GroupDRO

Parameters | 1024 65921 - - - -

CelebA 114.24 +£0.62 175.77+0.86 119.75+2.06 112.92+0.71 112.94+£0.95 113.75+1.39
UTKFace 38.69+0.95 40.56+1.10 47.62+£0.36 38.94+0.43 3897+£0.75  39.00+ 1.00
FairFace 55.38 £0.61 83.76 £ 0.41 54.81£0.94 55.63+£0.54 55.63+£0.35  55.31 £0.66
Facet 26.74£0.18  39.64+£0.18 26.19+£0.19 26.85+£0.25 26.82+0.28  26.71+0.16

Average | 58.76 84.93 62.09 58.59 58.59 58.69

37



Published as a conference paper at ICLR 2026

C.3 LARGE VISION-LANGUAGE MODEL EXPERIMENTS

C.3.1 MODEL SCALE IMPACT ON FAIRNESS

Table 16: Effect of LVLM model scale on accuracy and fairness metrics

LLaVA-1.6 Qwen2.5-VL Gemma 3 Llama
7B 13B 34B 7B 32B 72B 4B 12B 27B 3.2-11B 3.2-90B 4-Scout-109B

ACC 50.21+£0.20  46.50+£0.13  44.83+£0.05 | 65.024+0.25 4258 +0.17 68.76 & 0.09 45.084+0.16  66.23+£0.24  74.04+£0.05 | 82.04+0.21 76.23 £ 0.11 83.71+£0.18
Worst 46.79 £ 0.61 38.93+£035  32.69+0.27 | 63.41+£027 27.79+0.17 66.02 + 0.35 37154022 6517+£0.37  7218+0.04 | 78.00+045 68.79+£049 80.54+0.21

Dataset Metric

CelebA Gap 5854071 12954045 2075051 | 2754055 25334055 470 £0.71 13574044  1.83+0.39  4.47+0.03 9.64+0.64  17.89+0.90 7.62 0.4
EqOdd | 88.8140.27 92444017 97414016 | 9527+0.76 9526 +£0.54 92694030 | 92254022  89.72+049  92.76+0.75 | 86.63+0.64 9456 +3.57  84.814+0.92
DP 77634022 8316+£024  91.92+£0.15 | 81514094 99.26+0.12 9LT1£020 | 83414040 73.204£041  T453£0.80 | 76.334£0.33 88274146 71524049

ACC 96.76 £0.26  97.01£0.04 97.12£0.19 | 96.12+0.09 97.61+0.22 96.78 £0.38 96.33 £ 0.31 97.25£0.23  97.25+046 | 96.81£0.25 97.28£0.13 97.02£0.17
Worst 95.71£0.29 9628 £0.12  96.34 £0.12 | 95.034+0.20  96.86 +£0.12 95.76 & 0.42 95414022 96.70£0.09 96.89 +£0.39 | 96.04 £+ 0.21 96.31 £ 0.04 96.29 £ 0.24

UTKFace  Gap 2,44+ 0.58 L71+40.39 1.81+0.20 2.51 +0.66 L74+0.16 2.36 + 0.81 2.15 +0.48 1294035  085+0.21 | 181+025  226+037 170 +0.27
EqOdd | 97.51+£0.62 98.31+£0.39  98.16£0.24 | 97.09+£0.63  98.19+£0.22  97.59+£0.82 | 97.68+050 98.71+037 99.20+£0.21 | 98.03+£029 97.73+0.38  98.27+0.29
DP 95154 1.28 94974164 95224133 | 93.0541.40  93.96 4+ 1.63 94.33 £ 1.63 93544+ 1.38 94844115 9528+ 1.11 | 93.53+1.15 9418 +1.29 94.90 + 1.31

ACC 53.07+£0.00  59.59+0.00 66.91+0.00 | 66.09+0.02 63.98+0.01 65.57 + 0.01 52.73+£0.07  57.27+282  5940£005 | 51.70+£0.15  61.26 £ 0.19 56.52 £ 0.17
Worst | 49.98+0.00  58.54+0.00 66.04+0.00 | 65.07+0.02 62.65+0.03  64.73+£0.01 | 50.55+0.09 55354304 56.71+0.01 | 49.73+£027  60.96+0.26  53.53+0.05

FairFace  Gap 6.55 % 0.00 1.97 £0.00 1.84 £ 0.00 2174003 2.83+0.04 1634£0.07  4.08£030  571£0.10 4184031 0.63+0.19  635+0.38
EqOdd £0.00 94554000  96.22+0.00 | 96.04+0.01  95.50 +0.02 96.014+0.10  93.07+1.93 95994012 95554018  96.54+0.11
DP 96.34 £0.00  95.64+0.00 98.07+0.00 | 97.21+£0.01  97.23+0.01 97.57 £ 0.01 97.50+0.04 9580 +1.12 96.76 £ 0.01  96.58 + 0.04 98.00 £ 0.05

ACC 63.50 = 0.21 66.80£0.25  5814£023 | 67.91+£046 67.80+0.33 68.41+£0.50 | 66.93+£0.37 5447 £0.17 66.74 £ 042 67.75+£0.47 67.54 £ 0.42

Worst | 6241+0.26 6290+ 111 57.97+0.35 | 64.06+1.20 63.16+£1.33  63.79+£1.30 | 62394094 53.82+0.50 5 +£052 | 61234049 63.05+1.05 64.61+1.04
Facet Gap 1424018 509+£129  072£056 | 502+£1.00  6.06+1.56 6.04+ 118 5.9240.91 2.80 + 1.81 1424121 7194093 6.12+0.78 3.83+0.99

EqOdd | 94.98+1.59 98194089 9590+ 1.41 | 96.2940.90  97.67+0.75 97.04 £1.16 97884040  97.63+£042 9622+ 1.00 | 93.684+1.85 97.23+1.06 97.55 4 1.09

DP 9328 +1.44  96.79+1.14 93914147 | 9581+£091  97.2240.57 96.15 + 1.42 98.28 +0.95  96.13 +0.70 95.724+ 1.70  96.05 + 1.08 96.28 4 0.97
ACC 77244000 7946000 8695000 | 91.68+£0.00 9162001 92414000 | 7550+ 179  92.20+£0.03  90.77£0.02 | 75414032  77.62+£0.19  88.62+0.09
Worst | 75.63+0.00  76.08£0.00 81.26£0.00 | 90.68+0.00 90.46+£0.02  91.27+£0.00 | 6240+4.24 91.98+0.08 88.97=0.19 | 61.61+0.56 +£030  85.74+0.17
Waterbirds ~ Gap 3214000 6774000  11.39£0.00 | 2004000 2324002 2.28 4+ 0.00 2639 +£4.90 0444007  359+035 | 27.59+£0.52 28554032 5.76 %+ 0.16
EqOdd | 63.22+0.00  65.54+0.00 80.88+0.00 | 90.2140.00  91.90 £ 0.01 94.03+£0.00 | 61.61+£0.65 89.28+0.19 92994048 | 65.72+0.63  71.54 4 0.58 89.38 +0.13
DP 7283+£0.00 7245+0.00 8046 £0.00 | 92.13+£0.00 93.124+0.02  94.62 £ 0.00 58824316 9236010  93.17£0.14 | 60.97£0.59  64.46 £+ 0.39 89.44 4 0.12

ACC | 68.16+19.18  69.87 +19.30  70.79 +21.23
Worst | 66.10 +20.09  66.55 +21.30  66.86 & 24.10

727242228 7839+ 14.93 | 67.33£20.11 7348+£19.95 7584+17.90 | 7454+ 16.85 76.03+13.61 78.68 + 16.40
68.18+£27.41  76.31+15.80 | GL5S£21.59 72.60+£20.38 74.40+18.24 | 69.32£18.01 7049+ 1472  76.14+17.04

Average Gap 3.80 +2.21 5.70 + 4.58 7.30 £ 8.67 2.89+1.23 7.66 +10.02 3.43+1.84 10.5349.84  2.09 +1.40 3.21+2.05 10.08£10.23  11.09 + 11.87 5.05+2.32
EqOdd | 87.91+14.17 89.81+13.79 93.71+7.23 | 94984274 9570+249  9552+208 89.09 41552 93.68+£4.37 95.26+2.64 | 88.01+13.18 91.32+11.13 9331 +£5.93
DP 87.054+10.97 88.60£10.58 91.92+6.78 | 91.94+6.18 96.16 +£2.55 94.88£2.19 86.31 £16.47 9047 £9.76  90.94 £9.29 | 84.66 +15.64 87.91 £13.52 90.03 £ 10.83

In this paper, we include four families of vision—language foundation models: LLaVA, Qwen-VL,
Gemma, and Llama at multiple parameter scales (from roughly 4 billion to 90 billion weights) to
probe whether the standard “bigger-is-better” rule extends to fairness (Table[I6). The averaged results
confirm that scale almost always boosts utility: mean accuracy climbs steadily within each family
(e.g., LLaVA 68 — 71 %, Gemma 67 — 76 %), and worst-group accuracy rises in the same trend.
Larger models also score better on our parity metrics like demographic parity (DP) and equalized odds
(EqOdd), which suggests that they become more confident and consistent across groups. However,
larger models do not guarantee a better accuracy gap. For example, the gap more than doubles (3.9 —
7.3 %) for LLaVA. In short, increasing size is a reliable path to higher accuracy and better parity rates,
but it does not guarantee a smaller disparity between groups; in some cases, it even amplifies it. These
mixed trends highlight that parameter count alone cannot close fairness gaps where architectural
choices, alignment strategies, and dataset biases remain decisive factors.

We further select the largest variant from each model family and present the results in Figure [TT}
Among them, Qwen2.5-VL 72B demonstrates the best overall balance between fairness and utility.
Notably, Gemma 3 27B achieves comparable performance to Qwen despite its smaller model size,
while LLaMA 4-Scout, although achieving strong headline accuracy, remains susceptible to dataset-
specific biases.

C.3.2 PROMPT SENSITIVITY OF LVLMSs

Fairness evaluations of LVLMSs often rely on handcrafted prompts, raising concerns about robustness
to prompt variations. To examine the sensitivity of LVLMs to prompt wording, we design two
paraphrased variants for three dataset tasks (we consider those with relatively larger disparities) in
addition to the original instruction (Table[T7), and evaluate whether performance holds consistent
across different formulations. Results in Table [18| show that, across most cases, models exhibit
broadly consistent fairness performance under different prompts, with only a few extreme cases (e.g.,
Qwen2.5-VL on CelebA) showing large deviations. This indicates that prompt rewording alone does
not fundamentally resolve fairness issues, LVL.Ms remain subject to subgroup disparities regardless
of the prompt design.
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Figure 11: Performance comparison of LVLMs across five datasets and five evaluation metrics. For
clarity, the Gap metric is shown as 100 — Gap, where higher values indicate better performance.

39



Published as a conference paper at ICLR 2026

Table 17: Prompts used for evaluating LVLM sensitivity. Each dataset has the original instruction
(Origin) and two paraphrased variants.

Dataset Prompts

CelebA  Origin: Is the person in the photo wavy-haired? Answer ’Yes’ for wavy hair, "No’ for
non-wavy hair.
Variant 1: Does this person appear to have wavy hair? Reply with Yes/No only.
Variant 2: Classify hair texture as wavy or non-wavy. Output: Yes or No.

FairFace Origin: Based on the photo, classify the race of the person into: 0: White, 1: Black, 2:
Latino or Hispanic, 3: East Asian, 4: Southeast Asian, 5: Indian, 6: Middle Eastern.
Answer with the category number only.
Variant 1: Pick a single integer label (0-6) for race: 0-White, 1-Black, 2-
Latino/Hispanic, 3-East Asian, 4-Southeast Asian, 5-Indian, 6-Middle Eastern. Output
digits only.
Variant 2: Classify race using numbers: 0=White, 1=Black, 2=Latino/Hispanic,
3=East Asian, 4=Southeast Asian, S=Indian, 6=Middle Eastern. Answer with number
only.

Facet Origin: Does the photo show a visible face? Answer "Yes’ if the face is visible,
otherwise 'No’.
Variant 1: Is a face clearly visible? Reply Yes/No only.
Variant 2: Face visibility check: Yes or No? Output one word.

Table 18: LVLM performance under different prompts. Each model is evaluated with the original
instruction and two paraphrased variants. For CelebA, Llama3.2 often produces non-conforming
answers under Variant 2 instead of the required categorical outputs; it is therefore omitted from the
reported results.

Dataset  Metric LLaVA-1.6-13B Qwen2.5-VL-32B Gemma3-12B Llama3.2-11B
Origin Variant 1 Variant 2 Origin Variant 1 Variant 2 Origin Variant 1 Variant 2 Origin Variant 1 Variant 2

ACC | 4650 +0.13 5384+0.17 50.30 £0.14 | 4258 +0. ATH0.11 37.08+0.03 | 66.23+0.24 TATT+0.15 | 8204+021 81.34+0.22

‘Worst 81 £0.36  45.10 £0.39 16 £0.23 65.17 £ 0.37 64.98 £0.23 | 78.00 £ 0.45 77.10 = 0.38

CelebA Gap 12.03+£0.41  8.89£0.59 3 1.83 +0.39 23.58£0.33 | 9.64+0.64 10.20 = 0.49

EqOdd | 92. 94.23+£0.21  91.04 = 0.33 93.73+£0.02 49 93.32+£0.23 92.56 + 0.41

DP 83.16 £0.24 87.06 £0.44 80.21 £0.22 99.00+0.12  94.81 £0.01 | 73.20 £ 0.41 92.66 £ 0.59 79.98 + 0.63

ACC 59.59 £0.00 61.57£0.00 59.17+0.00 | 63.984+0.01 63.13£0.02 63.00+0.01 | 57.27 £2.82 57.15£0.05 58.19+£0.08 | 51.70 £0.15 31.19+0.07 40.66 £ 0.18
Worst | 58.54£0.00 58.98+0.00 58.01+0.00 | 62.6540.03 61.41+£0.01 61.434+0.02 | 55.35+3.04 54.97+£0.01 56.09+0.06 | 49.73 £0.27 28.99+0.30 38.88+£0.51
FairFace ~ Gap 1.974+0.00 549+0.00 247+0.00 | 2.83+0.04 3.65+0.03 3.33£0.06 | 408+£0.30 4.64+£0.11  4.45+0.08 4.18 £0.31 4.67+£0.58  3.78+0.72
EqOdd | 94.55+£0.00 97.04 £0.00 96.82+0.00 | 95.5040.02 97.11£0.01 95.86+0.04 | 93.07+£1.93 92.13+0.05 92.12+0.12 | 9599 £0.12 97.11+£0.2  95.15 £ 0.09
DP 95.64 £0.00 97.54 £0.00 97.06+0.00 | 97.234+0.01 97.75+£0.01 97.56 £ 0.01 | 95.80 £ 1.12 95.1. 07  95.384+0.04 | 96.76 £0.01  98.69£0.09 97.19+0.14

ACC 66.804+0.25 66.63+0.18 55.20+£0.48 | 67.80 £0.33 67.19+0.13 67.59£0.33 | 54.47£0.17 55.51 £0.27 55.88+0.47 | 66.74 4+ 0.42 63.69 £0.08 38.03 +0.00
Worst 62,90+ 1.11  63.26 +0.55 54.28 £0.67 | 63.16 £ 1.33  62.40 = 1.53 62.41 £1.34 | 53.82£0.05 54.91+0.08 55.08+0.28 | 61.234+0.49 60.03 £0.47 36.65+0.20

Facet Gap 5.09 +1.29 4.38 £0.78 3.95 +0.90 6.06 £ 1.56 6.24 +1.84 6.75 + 1.30 2.80 £ 1.81 1.41 £ 0.50 7.19+0.93 4.75 4 0.67 6.02 £0.83
EqOdd | 98.194+0.89 98.1640.46 97.19+0.79 | 97.67 £0.75 97.27+0.44 96.70 £ 0.05 | 97.63 £ 0.42 95.77 £ 1.56 | 93.68 4+ 1.85 96.24 £1.08 98.794+0.25
DpP 96.79 4+ 1.14  96.79+1.42 98.92+0.31 | 97.22+0.57 96.87 +0.32 95.67 £0.17 | 96.13 £ 0.70 9387+ 1.82 | 95.724+ 1.70  97.24 £0.93  99.48 4+ 0.44
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C.3.3 OPEN-ENDED GENERATION WITH LVLMS

To complement the closed-set classification prompts used above, we also evaluate LVLMs on open-
ended generation tasks. We use UTKFace, FairFace, and Waterbirds, replacing the classification
prompts in Table [I8 with open-ended instructions encouraging unconstrained image description:

* UTKFace: ’Describe the person in this photo, including their apparent gender presentation and
any other observable characteristics.”

 FairFace: "Describe this person’s ethnic and cultural background, including physical features,
cultural markers, and any other relevant characteristics you can observe.”

» Waterbirds: “Describe this bird in detail, including its species characteristics, habitat preferences,
and behavioral traits you can infer from the image.”

We use the same models and evaluation splits as in previous experiments. To make the results
comparable to our classification-based evaluation, we post-process the generated text into a prediction
in the original label space with a small lexicon of label-specific keywords and common synonyms.:

ELINNY3 9% CEINNY3

e UTKFace: words such as “man”, “male”, “boy”, “gentleman” vs. “woman”, “female”, “girl”,
“lady”.

FairFace: terms such as “White/Caucasian/European”, “Black/African/African American”, “Lati-
no/Latin/Hispanic”, “East Asian/Chinese/Korean/Japanese)”, “Southeast Asian/Thai/Vietnamese/-
Filipino)”, “Indian/South Asian/Desi”, and “Middle Eastern/Arab/Persian”.

Waterbirds: class names and taxonomic descriptors used in |Sagawa* et al.[ (2020); |Wah et al.
(2011)), including albatross, auklet, cormorant, frigatebird, fulmar, gull, jaeger, kittiwake, pelican,
puffin, tern, gadwall, grebe, mallard, merganser, guillemot, and Pacific loon. We additionally use
coarse-grained keywords such as “aquatic bird” / “waterfowl” versus “landbird” / “terrestrial bird”
to supplement the class matching.

We use the same models and evaluation splits as in prior experiments. To map generated text back
into the original label space, we apply case-insensitive keyword matching using small lexicons of
class-specific terms and common synonyms; these cases constitute a small fraction of the data.

Table 19: LVLMs comparison under open-ended generation.

. LLaVA-1.6 Qwen2.5-VL Gemma 3 Llama
Dataset Metric
7B 13B 34B 7B 32B 72B 4B 12B 27B | 3.2-11B  3.2-90B  4-Scout-109B
ACC 9224 9293 9538 | 97.26 97.31 96.14 | 96.71 96.83 96.71 97.38 98.02 96.09
Worst | 91.99 91.98 94.80 | 96.94 96.87 95.07 | 9586 96.28 96.09 | 96.62 97.17 94.97
UTKFace  Gap 059 215 1.32 | 0.72 1.01 244 1.95 1.24 1.42 1.73 1.82 2.60
EqOdd | 99.09 97.41 98.57 | 98.84 9890 9732 | 97.96 98.65 98.53 | 9823 98.07 97.15
DP 9558 94.44 9540 | 9432 9487 93.69 | 9533 9531 96.13 | 97.27 92.69 92.69
ACC - - - 51.93 4196 60.88 | 51.29 51.58 5291 - - 52.92
Worst - - - 51.47 4043 60.30 | 50.86 51.32 51.26 - - 50.08
FairFace Gap - - - 0.88 294 124 | 092 055 348 - - 6.07
EqOdd - - - 96.09 9520 97.08 | 96.31 96.53 95.76 - - 96.43
DP - - - 96.16 97.85 97.76 | 97.85 97.78 97.51 - - 98.12
ACC 82.10 85.63 83.84 | 9563 95.16 95.89 | 9259 93.65 9456 | 92.90 95.23 93.35
Worst | 76.48 82.20 78.50 | 95.02 9434 95.01 | 91.07 9221 9324 | 90.70 93.86 91.76
Waterbirds ~ Gap 1159 7.02 1082 | 1.25 1.65 1.76 | 3.08 299 270 4.44 2.75 3.20
EqOdd | 80.79 81.93 79.42 | 95.11 9438 96.73 | 93.27 9222 9391 92.70 96.38 92.94
DP 7930 8212 77.61 | 9521 94.60 96.54 | 92.40 92.09 93.82 | 90.78 95.36 92.46

As shown in Table [T9] the open-ended generation exhibits utility and fairness trends that closely
mirror those observed in our LVLM classifications. Although accuracy generally increases or remains
stable with model scale, fairness metrics such as Gap, EqOdd, and DP do not improve monotonically.
For instance, on UTKFace, the Qwen2.5 sees an increase in the gap, despite high overall accuracy.

Furthermore, we observe that certain model families frequently refuse to generate descriptions for
FairFace: LLaVA-1.6 exhibits refusal rates of 31% (7B), 26% (13B), and 47% (34B). The trend
is even more pronounced in the Llama 3.2 series, where aggressive safety filters result in refusal
rates of 81.1% for the 11B model and 95.0% for the 90B model. Consequently, the remaining valid
outputs are insufficient for a robust fairness assessment, highlighting a critical trade-off: while safety
alignment is essential, its over-application can render models untestable for demographic disparities
in open-ended generations.
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D ADDING NEW DATASETS AND ALGORITHMS TO THE FRAMEWORK

Our benchmarking framework provides a flexible and extensible design for integrating new image
classification datasets. A new dataset can be inherited from FairDataset and specify image folder
location, target labels, sensitive attributes, and an indices list to split the dataset. The core dataset
class, FairDataset, is presented as below.

class FairDataset (Dataset) :

def _ _init__ (self, root, split='train', transform=None, seed=42):
# Base folder and images directory
self.root = root

self.img_dir = None

self.split = split

self.indices = [] # Indices for the split dataset
self.sensitive_attrs = np.array([]) # Sensitive attributes
self.targets = np.array([]) # Target labels

self.transform = transform # Image transformation pipeline
self.image_file_list = []

# Option to store images in memory for faster access
self.images = []

By inheriting from ERM, this new class has access to the default model, optimizer, and loss function.
A new method needs to be implemented to rewrite the training process, ensuring that it aligns
with the new algorithm’s objectives. For example, the MCDP class extends ERM and introduces a
fairness-aware loss function.

class MCDP (erm) :
def _ init_ (self, args):
super () .__init__ (args)
self.fair_loss = MaxCDFdp(args.mcdp_temperature)

def train(self, train_loader, epoch, args):
self.model.train ()
for batch_index, (data, target, sensitive_attr) in
<> enumerate (train_loader) :
output = self.model (data)
self.optimizer.zero_grad()

fairloss = args.mcdp_lambda * self.fair_loss (output,
— sensitive_attr)
loss = self.criterion (output, target) + fairloss

loss.backward ()
self.optimizer.step()
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E SUPPLEMENTARY RESULTS

Here we present the standard deviation for Table [2]and Table 21] below:

Table 20: Full results on seven datasets with standard deviations for vision models.

Dataset Metric  ERM RandAug Mixup  Resampling BM FIS Decoupled LAFTR FSCL GapReg MCDP  GroupDRO DFR Oxonfair
ACC  86.57 +0.18 86.72+0.19 85.61 +0.27 5+ 0.16 85.93 +0.14 83.05+0.23 | 86.35 £ 0.17 86.55+0.19 85.61 £0.14 85.62 +£0.59 80.26 £0.75 86.12+0.17 86.58 +0.15 86. +0.23
Worst  83.76 +0.23 83.80 +0.33 82.74 + (.36 4+0.22 82.86+0.34 79.334+0.50 | 83.46 +£0.24 83.67 +0.33 82.56 +£0.32 83.17+0.40 77.13+0.83 83.50 +0.23 83.78 +0.19 34+ 0.30
CelebA Gap 6.76 £0.34 6.80+0.44 690+0.29 698+0.33 T7.38+0.50 8.94+0.72 6.93+042 6.93+049 7354059 5904089 7524123 6.31+051 6.74+041 6.87+0.28
EqOdd 81.91+0.58 81.73+1.12 87.08 £2.24 81.80+0.71 7884+ 1.12 7579+ 1.84 | 80.59+1.26 81.15+1.66 8545+ 1.44 93.94 +5.76 89.63 +£3.27 78.73+1.30 81.83+0.71 78.10+2.53
DP 67.20+0.69 67.37+0.42 70.83+ 1.75 67.39+0.31 66.91 +1.03 66.84 + 1.84 | 66.68 + 0.88 66.90 + 1.22 69.72+ 1.61 75.91 +4.47 93.11 +2.20 66.41 +1.16 67.30 +0.69 65.10 + 1.80
ACC  92.75+0.54 93.19+0.31 92.62+0.61 92.70 +0.53 +0.61 91.97+0.46 | 91.68 £1.10 93.17+£0.27 93.52+0.50 92.53 £ 0.88 92.49+0.72 92.45+0.39 92.73 +0.58 92.36 + 0.86
Worst  91.78 +0.61 92.19+0.30 91.55+0.74 91.60 + 0.65 74081 90.91+0.54| 90.84 +0.85 92.05+0.28 92.62+0.40 91.70+0.95 91.63+1.14 91.414+0.62 91.60 +0.93 91.11 +1.00
UTKFace Gap 2.26+065 2344059 2504036 2.56+043 247+0.54 2.48+0.38 1.97+098 261+031 210+0.77 1.91+059 2.00+0.99 244+0.99 2.63+0.83 291+1.04
EqOdd 97.62+0.53 97.62+0.46 97.61 +=0.41 97.49+0.42 97.39+0.50 97.51 +0.37 3+0.44 9744 £0.33 9744+ 1.29 98.10 £ 0.61 98.04 £0.97 97.06 + 0.63 97.39 + 0.87 96.41 £ 0.67
DP 9455 +£1.20 94.83+1.12 9451 +£1.46 9534+ 1.76 94.34 £ 1.52 94.69 + 1.70 | 96.27 +£2.42 9544 +2.07 94.18 +£2.11 9530 +1.62 9580+ 0.64 94.78 + 1.85 94.83 +1.42 94.68 + 2.42
ACC  66.76 £ 0.21 68.37+0.30 65.40+£0.59 65.40+0.19 65.66 +1.08 65.31 £0.51 | 67.03+0.54 66.44 +0.78 65.42+0.50 65.02+1.02 66.06 +1.07 65.51 +0.52 63.20 + 2.15 -
Worst  66.34 = 0.37 67.69 +0.35 64.50 £0.58 64.51 +£0.41 65.20 + 1.02 64.59 + 0.37 | 66.61 +£0.54 65.60 + 0.86 64.64 +0.39 64.12+ 1.28 65.62 +0.94 65.22 + 0.46 62.45 + 2.45 -
FairFace Gap 0.87+0.51  1.44 +0.62 1.90£0.59 097+0.19 1.53+£0.57 0.87 £0.49 L764+040 1.66+0.53 1.92+094 090+048 0.60+0.58 1.59 +0.68 -
EqOdd 96.22 +0.57 96.14 + 0.08 96.83 £ 0.33 95.70 £ 0.3 95.88 £0.32| 95.144+0.75 94.73+1.04 97.05+0.45 96.15+0.12 97.85+0.25 96.31 +0.73 95.81 £0.25 -
DP 97.61 +£0.41 97.55+0.24 97.80 £0.21 97.30+0.21 97.4040.16 | 96.88 +£0.43 96.86 +0.58 98.10+0.11 97.51 +0.22 98.50 + 0.23 97.47 +0.37 97.43 +0.10 -
ACC  67.55+0.37 67.83+£0.69 67.86+0.44 67.56 £0.24 65.87+1.19 67.60+0.43 | 67.33 +£0.74 70.74 £ 7.49 67.79+0.44 67.01 £0.24 67.91 +0.35 67.20+0.24 66.87 +0.47 68.09 +0.41
Worst  64.25 +0.97 64.94 +0.96 64.54 +1.01 64.13+0.51 62.67+0.91 63.53 +0.92 | 62.60 + 1.08 68.60 £ 8.56 65.02+0.94 62.22+1.45 64.21 +1.22 64.07+0.82 63.10+ 1.51 64.11 + 1.66
Facet Gap 431+1.13 3784097 4334143 4484042 418+0.55 533+1.34 6.17+0.58 282+1.39 3.61+079 626+1.66 484+153 408+087 4924193 521+1.71
EqOdd 96.47 +1.23 96.68+1.02 97.50 £1.22 94.37+0.82 96.32+ 1.77 98.10+ 1.31 | 88.04 +£1.87 96.38 £2.81 96.50 = 1.65 98.92+ 1.01 98.23 £0.97 93.76 +£1.04 96.82+0.96 83.40 & 9.30
DP 95.40 + 1.12 9591 £0.97 96.71 £ 1.16 93.96 + 0.67 95.09 + 1.85 97.84 +1.24 | 87.30 + 1.73  95.00 £2.97 95.66 + 1.38 98.73 + 1.40 98.46 + 1.33 93.16 £ 1.17 96.09 + 1.12 83.95 + 9.32
AUC  88.35+1.83 89.09+1.26 86.51 +£2.44 87.75+2.21 89.54+1.38 8597+ 1.09 | 87.87+£2.02 86.71+1.79 89.40+2.52 84.97+3.18 82.96 + 1.84 87.66 +£2.72 87.06+0.93 88.46 + 2.01
Worst  84.68 +2.02 84.67+3.29 8231 +2.33 84.77+3.34 8649+ 1.49 8298+ 1.64 | 84.04+3.62 81.68+3.62 85.89+3.15 82.57+3.66 80.20+1.70 83.98+3.00 82.49 +2.48 83.83 +3.46
HAM10000 Gap 4.11+£208 499+3.70 4.14+275 352+2.68 3.04+£090 3.11+1.85 5.17+2.73 6.18+2.99 3.71+£1.47 3.07+234 3.10+2.25 4.98+2.51 530+2.19 546 +2.89
EqOdd 88.17+3.10 88.43+4.05 91.14 £5.43 91.84 £3.32 85.65 +4.07 94.05 +2.34 93.28 £6.23 84.57 +2.32 98.15+3.71 99.52+0.95 90.94 £5.33 91.25+4.95 99.27 + 0.60
DP 82.224+4.78 84.73+3.36 88.54 +8.88 85.05+2.22 78.41+4.89 88.58 +2.72 56 91.00+£6.42 77.64+4.51 96.74 +£6.52 99.58 + 0.85 83.86 +5.70 84.65 +4.61 99.34 + 0.58
AUC  89.74+1.00 91.29 +0.52 90.62+0.93 90.76 +0.72 91.02 + 0.58 88.34 £ 0.76 | 89.63 £0.49 90.95+0.50 90.71 £ 1.25 89.59 + 1.10 91.65 + 0.69 90.72 +0.91 89.99 + 0.86 89.56 £ 0.99
Worst  88.39+1.05 90.15+0.96 89.38+ 1.86 88.99+1.95 89.93+0.84 87.02+1.08 | 8845+ 1.31 89.67+ 112 89.77+ 110 88.52+£2.61 90.49+0.81 90.06+0.89 88.57+0.50 88.40+ 1.03
Fitz17k Gap 292+1.14 2514099 2434142 3.62+219 2344137 3.06+1.98 2.55 .15 2874202 2224091 1.844201 2874111 1.92+1.07 293+1.48 3.06+1.08
EqOdd 94924248 95.61 +£2.29 96.20£3.05 95.27+3.26 94.99+ 1.87 95174241 | 94.094+3.28 93.68£3.40 97.45+0.79 9547+ 1.48 95.68 +2.68 94.36 £2.39 94.30 + 1.11 99.26 + 0.52
DP 94.46 £1.40 9453 +1.06 94.51 +1.37 93.31 £2.28 93.66 +2.13 95.60 +1.94 | 94.06 £ 1.91 94.46 +1.32 95.32+1.40 96.42+2.21 96.14 +2.08 95.24 +1.59 95.26 +1.19 99.88 + 0.09
ACC  85.63+1.36 86.09+1.40 87.67+1.06 87.35+0.79 88.20+0.96 83.72+0.85| 74.64+£2.98 8572+ 1.48 86.83 +£2.08 86.45+3.89 8598 +0.86 85.46+ 1.48 89.83 4+ 1.44 90.27+0.17
Worst  84.20 +0.94 84.52+2.63 85.99+1.53 84.85+0.74 85.96 + 1.06 82.67+2.10 | 64.45+5.72 83.94+2.13 86.28 +2.34 85.72+4.08 84.83+1.36 8445+ 1.71 89.09+ 1.71 89.52 + 0.30
Waterbirds Gap 2874085 3144252 336+1.72 4.98+0.34 448+0.59 2.09+292 | 20.38+5.56 3.56+1.18 1.10+0.55 1474087 231+1.37 2.02+1.39 1.47+0.60 1.50+0.92
; EqOdd 68.99 +£2.52 81.42+4.38 90.87 +1.28 77.21 £3.25 65.89+2.13 | 47.31 £4.15 68.22+2.96 90.00 + 1.82 87.48 £8.82 72.97+3.35 67.31 +£3.81 97.79+£0.75 94.99 + 1.90
DP T7.25+3.02 86.00+4.59 90.93 £+ 1.01 5.30 £ 1.84 | 5230 £5.81 7747+ 4.11 9253+ 1.37 91.39+£7.13 80.70 £ 1.77 76.91 +3.62 98.61 +£0.90 97.38 £0.92
Table 21: Full results on seven datasets with standard deviations for multimodal models..
. - Fairer- CLIP- LLaVA-1.6 Qwen2.5-VL Gemma3 Llamad
Dataset Metric ERM RandAug BLIP2 CLIP CLIP SFID ‘ 4B 2 27B Scout
ACC 86.57 +0.18 86.72+0.19 47.38+0.23 74.07+£0.41 73.78 £0.34 72.05+0.27 | 44.83+0.05 68.76 £0.09 74.04 £0.05 83.71 £0.18
Worst  83.76 = 0.23 83.89 £0.33 36.82+0.59 67.43+0.54 67.32+0.55 66.36+1.01 | 32.69+£0.27 66.02+0.35 72.18+£0.03 80.54 4+ 0.21
CelebA Gap 6.76 +0.34 6.80 £0.44 18.09+0.74 15.97£0.40 15.56+0.59 13.69+1.86 | 20.75+0.51 4.70 £0.71 4.47 +0.03 7.62+£0.44
EqOdd 81.91£0.58 81.73+1.12 97.24£0.57 83.724+0.58 83.79£0.78 9570+ 1.77 | 97.41+0.16 92.69+0.30 92.76 £0.75 84.81£0.92
Dp 67.20 £0.69 67.37£0.42 95.90+0.65 81.32+0.60 81.06+0.58 93.23+£2.28 | 91.92£0.15 91.71+£0.20 74.53+0.80 71.52+0.49
ACC 92.75+£0.54 93.19£0.31 94.23+£040 96.72+0.41 96.79+0.37 96.70 £0.33 | 97.12£0.19 96.78 £0.38 97.25+0.46 97.02£0.17
Worst  91.78 £ 0.61 92.19+0.30 94.00 £0.41 95.90£0.25 96.05+0.33 96.03+0.28 | 96.34 £ 0.12 95.76 £0.42 96.89 £0.39 96.29 + 0.24
UTKFace Gap 2.26 £+ 0.65 2.34+0.59 0.45+0.28 1.90 £ 0.60 1.72+£0.22 1.55+£0.14 1.81+£0.20 2.36 +£0.81 0.85+0.21 1.70 £0.27
EqOdd 97.62+0.53 97.62+£0.46 99.24+0.36 97.96+£0.52 98.174+0.24 98.36+£0.16 | 98.16 £ 0.24 97.59+0.82 99.20 +0.21 98.27 +0.29
DP 94.55+£1.20 94.83 £1.12 95.61+£0.83 93.91+1.11 94.274+1.17 9496 +£1.12 | 95.22 +£1.33 94.33 £1.63 95.28 +1.11 94.90 &+ 1.31
ACC 66.76 £0.21 68.37 £0.30 52.57+£0.00 57.36+0.00 56.814+0.00 52.73+0.44 | 66.91 £0.00 65.57+0.01 59.40 +0.05 56.52 +0.17
Worst  66.34 +0.37  67.69 £0.35 50.74 £0.00 57.204+0.00 56.414+0.00 51.59+0.62 | 66.04 +0.00 64.73 +0.01 56.714+0.01 53.53 + 0.05
FairFace Gap 0.87 4 0.51 1.44 +0.62 3.46 £+ 0.00 0.34 £+ 0.00 0.86 + 0.00 2.40 £ 0.54 1.84 +0.00 1.79 +0.03 5.71 +0.10 6.35 4+ 0.38
EqOdd 96.22 £0.57 96.14 +0.08 93.86 +£0.00 97.16 +0.00 96.78 £0.00 97.14+0.12 | 96.224+0.00 96.26 +0.01  95.13 +0.08 96.54 + 0.11
DP 97.61 £0.41 97.55+0.24 96.89+0.00 98.36 +£0.00 98.32+£0.00 98.46+0.09 | 98.07 +£0.00 97.57+0.01 97.16 £0.06 98.00 £ 0.05
ACC 67.55+0.37 67.83+0.69 41.16+0.87 33.10+£0.25 33.17+£0.08 33.26+0.23 | 58.14 +£0.23 68.41 £0.50 57.75+0.74 67.54 +0.42
Worst  64.25+0.97 64.94+0.96 40.40+0.91 31.434+0.34 31.694+0.16 31.544+0.16 | 57.97 £0.35 63.79+£1.30 57.254+0.52 64.61 +1.04
Facet Gap 4.31+1.13 3.78 £0.97 3.22+0.91 7.13+0.94 6.32+0.34 7.37T+1.22 0.72 +0.56 6.04 +£1.18 142+1.21 3.83 +£0.99
EqOdd 96.47£1.23 96.68+1.02 93.52+1.44 98.724+0.22 98.82+£0.33 99.754+0.07 | 95.90 £ 1.41 97.04+1.16 96.22+1.00 97.55+1.09
DP 9540 +1.12 9591 +0.97 94.10+1.20 98.92+0.25 99.00£0.36 99.80+0.06 | 93.91 +£1.47 96.15+1.42 94.56 +£0.60 96.28 £+ 0.97
ACC 85.63 +1.36 86.09+1.40 52.30+0.00 78.05+0.00 77.77+£0.00 75.70+0.34 | 86.95+0.00 92.41+0.00 90.77 £0.02 88.62+0.09
Worst  84.20+0.94 84.52+2.63 39.18+0.00 74.53+0.00 73.494+0.00 72.814+0.56 | 81.26 £0.00 91.27+0.00 88.97+0.19 85.74+0.17
Waterbirds Gap 2.87+0.85 3.14+252  26.23+£0.00 7.04+0.00 8.56 = 0.00 5.78 £0.47 | 11.39 £0.00 2.28 +0.00 3.59 +0.35 5.76 £0.16
EqOdd 66.53 £3.31 68.99+2.52 68.24£0.00 73.964+0.00 73.19+£0.00 95.5740.16 | 80.88+0.00 94.03+=0.00 92.99+0.48 89.38+0.13
DpP T7T.67T+£3.52 T77.25+£3.02 63.48+0.00 78.12£0.00 76.73+£0.00 94.09+0.65 | 80.46 £0.00 94.62+0.00 93.17+0.14 89.44 £0.12
AUC 88.35+£1.83 89.09+£1.26 38.87+3.04 52.15+259 51.88+294 52.53+3.94 - - - -
Worst  84.68 £2.02 84.67 £3.29 39.00£4.98 51.56+4.02 52.01+3.88 53.41+4.65 - - - -
HAM10000 Gap 4.11 +2.08 4.99 £ 3.70 6.89 +4.41 4.14 + 3.92 3.12 + 2.66 224 £2.13
EqOdd 88.17+3.10 88.43+4.05 98.19+1.11 96.24 £2.50 95.75+2.39 96.19 £ 2.97 - - - -
DP 82.22+£4.78 84.73£3.36 97.89+£1.15 99.09+0.58 98.94+0.66 98.32+0.52 - - - -
AUC 89.74+£1.00 91.29£0.52 67.08+1.72 69.92+0.83 69.81 +0.06 69.37 +0.84 - - - -
Worst  88.39 +1.05 90.15+0.96 66.46+1.95 69.78 +0.59 69.854+0.11 69.35+ 1.71 - - - -
Fitz17k Gap 292+1.14 2.51 4+ 0.99 3.74 +£1.63 231+ 1.54 2.52 +£1.69 4.73 + 4.58
EqOdd 94.92 £2.48 95.61 £2.29 97.06 £1.56 89.87+2.96 87.95+3.74 85.88+6.23 - - - -
DP 94.46 +1.40 94.53+1.06 98.40+1.66 95.03+1.96 93.02+1.19 92.19 +0.61 - - - —
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Figure 12: Intersectional analysis on UTKFace using race x age groups under different hyperparame-
ter settings. Each point corresponds to a different configuration. Appropriate hyperparameter choices
can reduce the gap while maintaining comparable overall accuracy.

F LIMITATIONS AND FUTURE DIRECTIONS

Despite its breadth, NH-Fair is only an intermediate step toward a truly comprehensive fairness
benchmark, yet several gaps remain:

» Dataset: Although we span three domains, most datasets are still for human faces, due to the
scarcity of open, well-annotated fairness datasets. Some datasets include multiple protected
attributes. Due to computational resource limitations, we did not fully use them but selected the
attribute with a clear performance gap. Future work may consider intersectional groups (e.g., gender
x race) and more visual domains. We conducted a small-scale intersectional analysis on UTKFace,
where we formed groups by combining race and age (below 60 and above 60). The scatter plots in
Figure [I2] show that intersectional biases might also be severe, but rigorous hyperparameter tuning
can significantly mitigate intersectional disparities at comparable overall accuracy. Extending
NH-Fair to systematically cover intersectional groups (e.g., gender X race) across more datasets
and to include additional non-face visual domains is a direction for future work. In addition, our
zero-shot evaluations cannot guarantee that images were not used during the pretraining phase of
LVLMs, which may lead to potential data leakage.

Task scope: To bridge single-modality bias mitigation algorithms with multi-modal models, we
limited experiments to single-image classification. Segmentation, detection, and captioning could
be further explored with task-specific fairness notions.

Fairness Notions: As we stated in Section 2] there are also other fairness notions to quantify the
model fairness, like individual fairness and counterfactual fairness, which could be used in future
experiments.

* Experiments: We evaluated LVLMs in zero-shot only. Fine-tuning them could further reveal
their fairness performance and bring more valuable insights. In the comparison, we divide the
method into data-centric and algorithmic. However, combining all algorithmic approaches with
data-centric approaches is a promising solution to achieve better fairness. To provide preliminary
evidence, we evaluate the combination of RandAug (data-centric) with three algorithmic debiasing
methods, and we report results in Table On UTKFace, integrating RandAug with MCDP and
GroupDRO improves both utility and fairness relative to ERM, achieving fairness-without-harm.
However, this improvement does not consistently generalize; for example, on HAM 10000 the same
combinations do not yield similar benefits. These mixed outcomes suggest that pairing data-centric
and algorithmic methods is a promising direction, but its effectiveness is dataset-dependent and
requires broader validation. We consider a more systematic investigation of such combinations to
be an important avenue for future work.

Analysis of LVLM Fairness: The paper considers fairness differences across LVLMs with different
architectural or alignment choices but does not account for confounding factors like differences
in training data or finetuning protocols due to the lack of transparency and standardization in
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recently released LVLMs. For example, the Gemma 3 Technical Report discloses only high-level
information, such as the number of training tokens and the fact that both SFT and RLHF were
used for alignment. Further details of implementation are unavailable, which prevents controlled
comparisons. This lack of visibility is common in current LLM and LVLM releases, making
some in-depth analysis difficult. As a result, our study intentionally focuses on aspects that are
quantifiable and reproducible.

Table 22: Preliminary results of combining RandAug and algorithmic methods. (RA = RandAug)

GapReg \ MCDP \ GroupDRO
Base +RA Base +RA Base +RA

ACC | 92.75+£0.54 | 92.53+0.88 91.43£1.07 | 92.49+0.72 92.92+0.83 | 92.45+0.39 92.86 &= 0.40
Worst | 91.78 £0.61 | 91.70+0.95 90.73£1.14 | 91.63 £ 1.14 9220 £0.91 | 91.41 £0.62 92.17 £0.41
Gap 2.26 +0.65 1.91 4+ 0.59 1.63+£0.49 | 200£0.99 1.66+0.69 | 244+0.99 1.60 % 0.86

Dataset Metric ‘ ERM ‘

UTKF:
ace EqOdd | 97.62 £0.53 | 98.10 £ 0.61 97.88 £0.52 | 98.04 £ 0.97 98.05£0.69 | 97.06 £0.63 98.31 £0.55
DP 94.55£1.20 | 9530 +1.62 9582+ 1.55 | 9580 +0.64 96.42+1.68 | 9478 £ 1.85 95.15+0.98
AUC | 88.35+1.83 | 84.97£3.18 85.554+2.27 | 82.96 £1.84 87.33+2.12 | 87.66 £2.72 87.08+1.85
Worst | 84.68 £2.02 | 82.57+3.66 81.60+2.42 | 80.29+1.70 84.35+1.67 | 83.98 £3.00 83.96 & 2.42
HAM10000 Gap 411+£2.08 | 3.07+234 485+248 | 3.10+225 335+£239 | 498+251 3.37+£2.55

EqOdd | 88.17+£3.10 | 9815+ 3.71 9698 £1.24 | 99.52+0.95 92.84£5.89 | 90.94 £5.33 87.70 &+ 5.66
Dp 82.224+4.78 | 96.74 £6.52 97.40+2.72 | 99.58 £ 0.85 86.56+6.11 | 83.86 = 5.70 80.31 £6.96

G BROADER IMPACTS

NH-Fair provides a transparent and public benchmark that lets researchers and developers evaluate
both single-modal and vision-language models under the same fairness metrics, motivating the
community to build more fair machine learning models. However, the visibility also may lead to
“pbenchmark gaming”: a model can be fine-tuned to excel on the reported sub-groups while quietly
marginalizing untested or intersectional minorities, posing potential downstream Al-safety concerns.

H LLM USAGE

In accordance with the ICLR policy, we disclose the use of large language models (LLMs) in
preparing this paper. LLMs are also a part of the subjects of our research, and all experimental results
are based on our own implementations and evaluations of these models. Separately, we used LLMs
as general-purpose assistive tools for language editing, improving the clarity of writing. They were
not used for research ideation, system design, or the generation or analysis of experimental results.
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