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Abstract

We present FedSparsify, a sparsification strategy for federated training based on
progressive weight magnitude pruning, which provides several benefits. First, since
the size of the network becomes increasingly smaller, computation and commu-
nication costs during training are reduced. Second, the models are incrementally
constrained to a smaller set of parameters, which facilitates alignment/merging of
the local models, and results in improved learning performance at high sparsity.
Third, the final sparsified model is significantly smaller, which improves inference
efficiency. We analyze FedSparsify’s convergence and empirically demonstrate
that FedSparsify can learn a subnetwork smaller than a tenth of the size of the
original model with the same or better accuracy compared to existing pruning and
no-pruning baselines across several challenging federated learning environments.
Our approach leads to an average 4-fold inference efficiency speedup and a 15-fold
model size reduction over different domains and neural network architectures.

1 Introduction

Federated Learning [1, 2, 3, 4] has emerged as the standard distributed machine learning paradigm to
train neural networks without sharing data. Each data source (client) trains the model on its private
data and sends only its locally-trained model parameters (e.g., gradients, weights) to a central server.
We are interested in reducing the communication cost during federated training and obtaining small
models for fast inferences in resource-constrained devices [5].

Previous methods to speed up training and reduce model size include knowledge transfer [6], neural
architecture search [7], and quantization [8, 9]. Inspired by model pruning in centralized training [10,
11], we propose FedSparsify, an iterative federated pruning procedure that progressively sparsifies
model parameters during training. Our method simultaneously learns smaller neural networks for
faster inference (and training) and reduces training communication costs by decreasing the total
number of model parameters exchanged between the clients and the server.

We systematically compare FedSparsify to existing pruning techniques, including those that prune
the model at the pre-training/initialization stage [12, 13], or dynamically through aggressive pruning
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Figure 1: Test set accuracy for federated training with and without sparsification on the FashionMNIST
and CIFAR-10 domains with Non-IID data distribution over a federation of 10 clients (99% sparsity).

and model regrowing during training [14], as well as no-pruning baselines [2, 15, 16]. FedSparsify
learns sparsified models of similar performance to no-pruning methods and outperforms alternative
pruning methods (see Figure 1), with a 4-fold reduction in communication costs and 4-fold increase
in model throughput (see Section 5). Our main contributions can be summarized as follows:

1. Introducing iterative model pruning/sparsification in federated learning settings.
2. Reducing communication and inference costs by achieving extreme sparsification.
3. Analyzing local and global models pruning schedules.
4. A theoretical analysis of iterative pruning convergence in federated settings.

2 Related Work

Federated model pruning has been investigated in the context of enhancing privacy guarantees using
gradient sparsification [17, 18] and mitigating model poisoning attacks by pruning the top-k model
updates in conjunction with gradient clipping [19]. Other approaches have investigated gradient
compression and quantization for communication cost reduction [20, 21, 8, 22]. A recent study [23]
has also analyzed the convergence rate guarantees of pseudo-gradient sparsification on client and
server in environments with full-client participation. Most of these works focus on faster convergence
and reducing communication costs by pruning or quantizing gradients. In contrast, we aim to learn
sparse models by model pruning for faster inference while reducing communication costs. Other
works, PruneFL [14] and FedDST [24], investigate dynamic model pruning. PruneFL starts with
a pruned model and readjusts the sparsification mask by allowing the model to grow periodically.
FedDST trains with fixed sparsity budget throughout federated training by following a dynamic
schedule that allows the client model to regrow periodically pruned parameters. Our FedSparsify
strategy follows iterative cycles of pruning and fine-tuning, with a gradually increasing sparsity.

3 FedSparsify: Federated Purge-Merge-Tune

FedSparsify uses weight magnitude-based pruning at the clients and/or the federation controller
(though we can also support other model pruning approaches [5, 25]). We describe the main design
choices of FedSparsify below. A detailed algorithm appears in section B of the appendix.

Weight Magnitude-based Pruning [26]. Neural network models often have millions of parame-
ters, but not all parameters influence the outcome/predictions equally. A simple and surprisingly
effective proxy to identify weights with small effect on the final outcome is based on the weights’
magnitude [26, 11]. Weights with magnitudes lower than some threshold can be removed or set to
zero without penalizing performance. The threshold is defined based on the number of parameters to
be pruned (or prune percent, st). We prune parameters whose weight magnitude is in the bottom-st%
in an unstructured way, considering the magnitude of each parameter separately. Approaches that
prune groups of parameters (i.e., structured pruning) based on magnitude are also possible (e.g. [25]).

Pruning Schedule. A critical step in our approach is how often and how many parameters to prune
during federated training. Pruning too many parameters early in training can lead to irrecoverable
damage to the performance [11], and pruning too late leads to increased communication costs. To
balance too early and too late pruning, we prune iteratively, by gradually reducing the number of
trainable parameters. Finetuning after pruning often improves the performance, and allows pruning of
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more parameters while preserving performance [27, 11]. Therefore, model pruning at the end of each
federation round is a natural choice since clients can finetune the aggregated pruned global model
during the next federation round. Two pruning approaches are applicable, prune locally at the clients
before aggregation (FedSparsify-Local), or globally at the server after aggregation (FedSparsify-
Global). We explore both strategies. Once a parameter is pruned, it never rejoins training (i.e., no
network/weight regrowth). Motivated by [27], we apply the following pruning schedule:

st = ST + (S0 − ST )

(
1− F ⌊t/F ⌋ − t0

T − t0

)n

(1)

where t is the federation round, st is the model’s sparsification percentage, ST is the final sparsifica-
tion, S0 is the initial sparsification percentage, t0 is the round at which sparsification starts, T is the
total number of rounds, and F is the sparsification frequency (e.g., F = 1 sparsifies at every round,
while F = 5 sparsifies every 5 rounds). The exponent n controls the rate of sparsification, with a
higher n leading to aggressive sparsification at the start of training, and a smaller n leading to more
sparsification towards the end of the training. In the experiments we use n = 3.

FedSparsify-Local. Model pruning takes place at each client after local training is complete. Each
client sends its model, wk, to the server along with the associated sparsification binary masks,
mk. The server may aggregate the local models using FedAvg, However, as the number of clients
increases, it is increasingly unlikely that a given weight will be zero for all clients. This results in
slow sparsification rates. To address this, we aggregate local models based on our proposed Majority
Voting scheme, where a global model parameter is zeroed out only if less than half of local models’
masks preserve it. Otherwise, the standard weighted average aggregation rule applies. Formally:

[m]i =

{
1 if

∑N
k [mk]i ≥ N

2

0 otherwise
w = m⊙

(
N∑
k

|Dk|
|D|

wk

)
(2)

where [·]i is the corresponding value of the parameter at the ith position. w is the global model, N is
the number of clients participating in the current round, and mk is the local binary mask of client k.

FedSparsify-Global. Model pruning occurs at the server right after participating clients’ local models
have been merged and the new sparse structure is maintained throughout local training. Therefore,
all clients update the same set of model parameters and weighted aggregation of local models using
FedAvg or Majority Voting is identical, i.e., no disagreement in local/global mask.

FedSparsify-Global and FedSparsify-Local pruning differ on mask sharing. Global pruning shares
the global mask with clients at each federation round, and clients do not update the mask. In contrast,
in local pruning the clients prune the parameters and share theire local masks with the server, which
are then aggregated using the Majority Voting rule.

4 Convergence Analysis

We show the theoretical convergence rate for FedSparsify when |Dk| = |D|/N,∀k, i.e., equal weights
for each client and participation ratio is 1. These relaxations are made to simplify the analysis but
these are not critical to the proof. See [28, 18] regarding the treatment of partial participation at
each round and [28, 14] for analysis with consideration of weighted average. Our result (Thm. 1)
shows that the convergence rate for FedSparsify is O( 1

T ), which is the same as that of FedAvg [28].
However, compared to the usual federated training with FedAvg, the bound for FedSparsify has an
additional term, the magnitude of difference of weights before and after pruning. We provide proof
of the theorem and discuss this additional term in Appendix D.

Theorem 1. If assumptions D.1-D.7 hold and with learning rate, η < (4
√
2LS3/2)−1, then the

parameters obtained at the end of each federation round of FedSparsify algorithm satisfy

1

T

T∑
t=1

∥∥∥m(t) ⊙∇f(w(t))
∥∥∥2 ≤ +2ηL

((
1 + 4LηS2

)
σ2 +

(
16LηS3

)
ϵ2
)

+
4

TηS
E
[
f
(
w(1)

)
− f

(
w(∗)

)]
+

4

TηS

T∑
t=1

Lp

∥∥∥w(t+1) − w(t+1) ⊙mt
∥∥∥
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where w(t+1) ⊙ m(t) := 1
N

∑N
k=1 w

(t,S)
k , i.e., parameters right before sparsification is done and

w(∗) is the optimal parameter of sparsity ST .

5 Evaluation

We compare FedSparsify against a suite of pruning algorithms that perform model sparsification at
different stages of federated training, as well as no-pruning methods. (The code to reproduce the
experiments is publicly available; we do not share it now for anonymity.)

Baselines. We compare our FedSparsify-Global and FedSparsify-Local approaches against pruning
at initialization schemes that sparsify the global model prior to federated training (SNIP [12],
GraSP [13]), and a dynamic pruning scheme that prunes during training and performs local model
regrowth (PruneFL [14]). We also compare with a progressive sparsification scheme that iteratively
prunes the global (server-side) model weights during training at random.

Pruning at initialization schemes (SNIP [12], GraSP [13]) construct a fixed sparse model prior to
the beginning of federated training. Following previous work [14, 24], we apply the schemes in a
federated setting by randomly picking a client at the start of training to create the initial sparsification
mask, which is enforced globally throughout training.

For dynamic pruning, we compare against PruneFL [14], which tries to maximize the reduction of
empirical risk per training time unit by identifying prunable and non-prunable weights based on the
ratio of gradients magnitude over parameter execution time. We follow the training and pruning
configurations suggested in the original work. At the start of training, we randomly pick a client from
the federation and learn the initial pruning mask after completing 5 reconfigurations. We perform
global mask readjustment every 50 rounds and set the sparsification ratio for mask readjustment at
round t to s× 0.5

t
1000 with s = 0.3, which is the recommended value.

We also consider a random pruning baseline (Random) to demonstrate the importance of pruning
only weights with the smallest magnitude. We apply a progressive sparsification scheme but instead
of using weight magnitude as selection criteria, we remove parameters randomly.

For no-pruning baselines, we consider FedAvg with Vanilla SGD [2], FedAvg with Momentum
SGD [15], referred to as FedAvg (MFL), and FedProx [16]. For FashionMNIST we compare against
FedAvg with SGD and FedProx, and for CIFAR-10 against FedAvg (MFL) and FedProx. We evaluate
the efficacy of all these schemes over several degrees of sparsification.

Federated Models & Environments. We use FashionMNIST and CIFAR-10 as benchmark datasets,
with a 2-layer fully-connected network for FashionMNIST, and a 6-layer convolutional network for
CIFAR-10 (118,282 and 1,609,930 trainable parameters, respectively). We create four federated
environments for each domain based on data distribution (IID and Non-IID), and number of clients
(10 and 100 clients). For Non-IID data distributions, we assign examples from only a subset of
classes to each client [29]: 2 classes (out of 10) per client for FashionMNIST Non-IID, and 5 classes
(out of 10) per client for CIFAR-10 Non-IID. In environments with 10 clients, all clients participate
at every round. In environments with 100 clients, 10 clients are randomly selected at each round (0.1
participation rate). (See Appendix Section C for hyperparameters details).

Evaluation Criteria. We evaluate the trade-off between model sparsity and learning performance
(i.e., accuracy) for the different model pruning strategies. Our primary goal is to develop federated
training strategies that learn a global model with the highest achievable accuracy at high sparsification
rates. We measure learning performance at different degrees of sparsity (Figures 2a, 2b) and model
convergence with respect to federation rounds and global model size reduction (Figures 2c, 2d). We
do not measure convergence in terms of computation/wall-clock time speed-up, since we do not
employ any dedicated hardware accelerators to leverage sparse operations.

FashionMNIST Results. Figure 2a shows the performance of different methods at different sparsifi-
cation rates in the FashionMNIST domain for 10 clients, on both IID and Non-IID data distributions.
The more complex the learning environment is (cf. IID vs Non-IID), the lower the final accuracy of
the global model is for both pruning and no-pruning schemes. All sparsification methods have similar
performance at moderate sparsification (i.e., 0.8, 0.85) with 10 clients and IID distribution. However,
as sparsification becomes more extreme (i.e., 0.95, 0.99) and the data distribution becomes more
challenging (Non-IID), existing sparsification methods underperform and, in some cases, cannot
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learn a global model of reasonable performance (e.g., SNIP and GraSP in Non-IID). Although SNIP
and GraSP (sparsification ratio: 0.8) can learn a sparsified model by restricting the model training
to a predefined sparsified network, they suffer a substantial performance drop when compared to
our FedSparsify schemes. We attribute this performance degradation to the binary mask learned
over the local dataset of a randomly selected client, which may not necessarily follow the global
data distribution and hence lead to a large performance gap between IID and Non-IID environments.
FedSparsify outperforms alternative pruning methods at high-levels of sparsity.
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Figure 2: Sparsity vs. Accuracy (top row) and Federation Rounds vs. Accuracy (left y-axis) and
Global Model Parameters Progression (right y-axis) (bottom row) for 10 clients.

Figure 2c shows the test accuracy (left y-axis, solid lines) and global model size in terms of total num-
ber of model parameters (right y-axis, dashed lines) as different approaches train (x-axis: federation
rounds). For all sparsification schemes, the sparsity is set to 0.9 except for PruneFL, which is set to 0.3.
FedAvg and FedProx have no sparsification, i.e., these are fully-parameterized models, and hence the
global model has a constant size during training (top dashed lines). Similarly, pruning at initialization
schemes are trained based on an already sparsified initial model and hence the global model size
remains constant throughout training (bottom dashed lines). All progressive sparsification schemes
(FedSparsify, Random) have a logarithmically decreasing global model size (mid-low decreasing
dashed lines), while dynamic pruning (PruneFL) has a step-like increasing model size that is close
to no-pruning methods. Our FedSparsify strategies have faster learning convergence in terms of
federation rounds with performance comparable to or better than the fully-parameterized models.
PruneFL’s performance drops every 50 federation rounds due to the expansion of the model, with a
stronger effect in the Non-IID environment. Similar to SNIP and GraSP, we attribute the degraded
learning performance of PruneFL to the random client selection at the start of federated training to
construct the initial sparsification mask. Finally, even though the Random scheme fails to preserve its
learning performance towards the end of federated training, it is an effective pruning technique at
the early stages of federated training when the sparsities are relatively small. We observed similar
performances for all schemes in the more challenging federated environments of 100 clients for both
IID and Non-IID distributions (see Figures 5a, 5c in Appendix E).

CIFAR-10 Results. We evaluate a 6-layer CNN architecture for CIFAR-10 across all four federated
environments and five different sparsity levels (0.8, 0.85. 0.9, 0.95, and 0.99). As shown in Figures 2b
and 2d FedSparsify outperforms by a large margin existing pruning at initialization and dynamic
pruning approaches, while being able to learn sparse models at extreme sparsification rates (e.g., 0.9
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- 0.99) with a learning performance similar and in some cases better than the no-pruning FedAvg
(MFL) baseline (see Non-IID environment in Figure 2b). For all sparsifciation schemes in Figure 2b,
convergence is shown at 0.9 sparsification, except for PruneFL that had 0.3 sparsification. We attribute
the performance drop of pruning at initialization schemes to their need to remove a large proportion
of the network’s trainable weights at the beginning of training, a phenomenon which when also
combined with the randomly assigned initial learning mask, leads to a degraded learning performance.
Similarly, in the case of the dynamic PruneFL scheme that also relies on an initial randomly selected
sparsification mask, even though it performs model regrowth during federated training, it is still not
able to learn a sparse model of comparable performance. Interestingly, the Random pruning scheme
is a strong baseline with comparable and often better performance compared to existing pruning
methods. However, at extreme levels of sparsity, random pruning is not capable to learn, since at
these levels of sparsification the remaining model weights are crucial and any random pruning may
have an irreversible, negative result on the final model performance. The results on 100 clients (10%
participation rate) are similar. FedSparsify outperforms alternative pruning methods with performance
comparable to no-pruning methods. In the more challenging environment of CIFAR-10 Non-IID,
FedSparsify-Global performs slightly better than FedSparsify-Local (see Figure 5 in the Appendix).

The goal of our sparsification strategy is to improve federated models’ inference efficiency while at
the same time being equally performant as no-pruning methods. Table 1 shows a comprehensive
comparison of the performance of no-pruning (FedAvg) and sparsified models learned using our
FedSparsify-Global approach in the non-IID environments with 10 clients for CIFAR-10 . Following
previous work on benchmarking the inference efficiency of sparsified models [30, 31], we record the
total number of batches (iterations) completed by the model within an allocated execution time and
compute the number of processing items per second (throughput - items/sec), and the processing time
per batch (ms/batch). Specifically, for the final model learned through the no-pruning (FedAvg) and
FedSparsify-Global schemes we stress test its inference time by allocating a total execution time of 60
seconds with a warmup period of 10 seconds. Table 1 shows that the learned sparse CNN models can
greatly improve inference efficiency when compared to fully parameterized networks. In particular,
sparse models at 0.99 sparsity can provide a 4-fold improvement in terms of number of completed
batches/iterations, latency and throughput, with only a small penalty (∼ 7%) in model accuracy, while
having a striking 56-fold model size compression and 2-4 reduction in communication costs (total
number of parameters exchanged). The results on FashionMNIST over a fully connected network are
similar (see Table 2 in the Appendix).

Sparsity Accuracy Params Model Size (MBs) C.C. (MM) Inf.Latency Inf.Iterations Inf.Throughput

0.0 0.75 1,609,930 5.903 6,441 115 4,145 8,831
0.8 0.752 322,370 1.54 (x3.83) 2,596 (x2.48) 61 (x1.88) 7,812 (x1.88) 16,651 (x1.88)

0.85 0.755 241,874 1.178 (x5.01) 2,356 (x2.73) 51 (x2.22) 9,222 (x2.22) 19,660 (x2.22)
0.90 0.749 161,377 0.802 (x7.35) 2,116 (x3.04) 43 (x2.65) 10,975 (x2.64) 23,399 (x2.64)
0.95 0.751 80,881 0.415 (x14.19) 1,875 (x3.43) 32 (x3.54) 14,682 (x3.54) 31,306 (x3.54)
0.99 0.7 16,484 0.104 (x56.61) 1,683 (x3.82) 27 (x4.28) 17,707 (x4.27) 37,763 (x4.27)

Table 1: Comparison of sparse (FedSparsify-Global), and non-sparse (FedAvg) federated models
in the CIFAR-10 Non-IID environment with 10 clients. Values are measured based on the model
learned at the end of federated training for 200 federation rounds. Sparsified models are learned
using FedSparsify-Global. Sparsity 0.0 represents FedAvg. C.C.: communication cost in millions
(MM) of parameters exchanged. Inference efficiency is measured by the mean processing time per
batch (Inf.Latency - ms/batch), the number of iterations (Inf.Iterations), and processed examples per
second (Inf.Throughput - examples/sec). Values in parenthesis show the reduction factor (model
size, communication cost and inference latency) and increase/speedup factor (inference iterations and
throughput) compared to no-pruning.

6 Conclusion

Scaling federated training is still a challenge, and it becomes more critical when training increasingly
bigger models. In this work, we introduced FedSparsify, a novel pruning approach for federated
training that progressively sparsifies a fully parameterized network, at the server FedSparsify-Global
or at the clients FedSparsify-Local. Our iterative process of pruning and tuning produces highly
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sparse subnetworks with learning performance similar to their non-sparse counterparts. At the same
time, our process leads to a 4-fold improvement in model’s inference efficiency, 4-fold reduction
in the overall federated communication cost and a 15-fold model memory footprint reduction. In
future work, we will explore performance improvements by using structured pruning approaches or
by applying layer-specific thresholds. Recent works have also shown improved client-level privacy
guarantees during federated training through gradient pruning [17]. We also plan to analyze the
privacy gains of our federated sparsification approach and investigate whether we can improve privacy
guarantees through stochastic model pruning approaches.
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A Federated Optimization

In federated learning settings, the optimization goal is to find the set of optimal model parameters
that minimizes the global objective function:

w∗ = argmin
w

N∑
k=1

|Dk|
|D|

fk(w,Dk) (|D| =
∑
k

|Dk|) (3)

Where fk is the (local) objective function evaluated on each client’s training dataset Dk and there
are N clients. Federated learning was introduced to train a neural network without aggregating
private local data at a single location. In this work, we consider a federated learning environment [2]
consisting of a central server and N participating clients. The clients collaboratively train a machine
learning model on their local private training datasets, Dk. This federated environment is commonly
referred to as star-topology. In this paper, we focus on this common centralized federated learning
approach, even though other topologies exist as well [32, 33]. The server orchestrates the execution
of the federation. Each client receives the global model from the server, w, and trains the model
for an assigned number of local iterations. Depending on the number of participating clients and
their availability, the server may delegate learning tasks to all the clients or a subset. The ratio of
clients selected for the task out of the total number of clients is called participation ratio [34]. Upon
completion of the assigned tasks, the server aggregates clients’ local model parameters and computes
a new global model.

One of the most popular approaches to aggregate clients’ models is through a weighted model average
with weights set proportional to the training samples used by the respective client. This approach
is known as FedAvg [2] and clients train their local model using stochastic gradient descent (SGD).
However, subsequent works have applied different update strategies during local training, such as
MomentumSGD [3], also referred to as MFL, and FedProx [16], which introduces a proximal term to
penalize the deviation of the local model from the global model. The works of [35, 36] interpret the
local model updates generated by the clients as “pseudo-gradients" and propose aggregation strategies
that are very similar to adaptive optimization techniques.

B FedSparsify Algorithm

We present the execution of FedSparsify-Global and FedSparsify-Local federated pruning methods in
Algorithm 1. The server, i.e., Server procedure, is responsible to orchestrate the execution of the
federation and delegate the training/learning tasks to the clients. Clients optimize locally on their
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local dataset, i.e., Client procedure, the global model received by the server. Model purging/pruning
is handled by the purging_mask function, either globally at the server (FedSparsify-Global) or
locally at each client (FedSparsify-Local). When FedSparsify-Local is applied clients need also to
share their local masks with the server and the server merges models through Majority Voting. When
no sparsification is used FedSparsify-Global is equivalent to FedAvg.

Algorithm 1: FedSparsify. Global model w and global mask m are computed from N
participating clients, each indexed by k, at round t out of a total number of T rounds; E is the
local training epochs; st is the sparsification percentage of model weights; B is the total number
of batches per epoch; η is the learning rate; g(i)k denotes gradient of kth client’s objective with
parameters w(i)

k . If no sparsification is used FedSparsify-Global is equivalent to FedAvg.

Procedure Server(w(1),m(1)):
for t = 1 to T do

if FedSparsify-Global then
for k = 1 to N do

w
(t)
k = Client(w(t),m(t), E, null)

w(t+1) =
∑N

k=1
|Dk|
|D| w

(t)
k m(t+1) = purging_mask(w(t+1), st)

w(t+1) = w(t+1) ⊙m(t+1)

if FedSparsify-Local then
for k = 1 to N do

w
(t)
k ,m

(t)
k = Client(w(t),m(t), E, st)

(w(t+1),m(t+1)) := merge params using Eq. 2
return w(t+1)

Procedure Client(w,m,E, st):
w

(0)
k = w

S = E ∗ B
for i = 0 to S do

w
(i+1)
k = w

(i)
k − ηg

(i)
k ⊙m

if FedSparsify-Local then
mk = purging_mask

(
w

(S)
k , st

)
return

(
w

(S)
k ,mk

)
return w

(S)
k

C FedSparsify Tuning

In this section, we discuss the hyperparameters used to conduct the experiments in our study and the
difference between Majority Voting and FedAvg as aggregation rules for FedSparsify-Local.

Federated Hyperparameters. Every federated model for both FashionMNIST and CIFAR-10 is
trained for 200 rounds in total (cutoff-point) across all four federated environments. Each client trains
for 4 local epochs with a batch size of 32. The learning rate is set to 0.02 for FashionMNIST and
Vanilla SGD, and 0.005 for CIFAR-10 with the momentum attenuation factor set to 0.75. For FedProx,
the proximal term µ is kept constant at 0.001. For all FedSparsify-Local and FedSparsify-Global
experiments, sparsification starts at round 1 (t0 = 1), initial degree of sparsification is 0 (S0 = 0),
sparsification frequency is 1 (F = 1, 1 round of tuning), and exponent is 3 (n = 3). During frequency
value exploration, we observed that frequency values of F = 1, 2 behave similarly. However, for
higher values of frequency (e.g., F = 5, 10, 15, 20), i.e., more rounds of fine-tuning, there is a
big drop in the model performance when pruning takes place, since a larger number of weights is
pruned in one shot. This phenomenon is also shown at Figure 3, where we explore different pruning
frequencies. For FedSparsify-Local, we use Majority Voting as the aggregation rule of the local
models, while for Random and FedSparsify-Global, we use FedAvg. The random seed for all the
experiments is set to 1990. All experiments were run on a dedicated GPU server equipped with

10



4 Quadro RTX 6000/8000 graphics cards of 50 GB RAM each, 31 Intel(R) Xeon(R) Gold 5217 CPU
@ 3.00GHz, and 251GB DDR4 RAM.
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Figure 3: Sparsification frequency value exploration with FedSparsify-Global at 0.95 sparsity on
FashionMNIST with 10 clients over Non-IID data distribution. Left y-axis and solid lines show
accuracy, right y-axis show global model parameters progression. The higher the sparsification
frequency, F , the bigger the drop in model performance.

Majority Voting-based Aggregation. In Figure 4 we show the learning performance (left y-axis)
and global model parameters decrease (right y-axis) for the federated FashionMNIST model in a
federated environment of 10 clients trained using the FedSparsify-Local sparsification schedule when
Majority Voting and FedAvg are used as the aggregation rule of learners’ local models. As it is shown
(inset of the figure) at the beginning of training Majority Voting preserves the sparsity of the local
models enforced by clients’ local masks, while FedAvg resurrects some of these parameters.
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Figure 4: FedSparsify-Local with Majority-Voting (MV) as aggregation rule and FedSparsify-Local
with Weighted Average (FedAvg/Avg) as aggregation rule on FashionMNIST with 10 clients over
IID and Non-IID data distributions at 0.9 sparsity. Left y-axis and solid lines show accuracy, right
y-axis and dashed lines show global model parameters reduction.
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D FedSparsify Convergence

D.1 Further discussion of Thm. 1

Thm. 1 shows that the convergence bound for FedSparsify has an additional term compared to the
usual federated training with FedAvg [28]. The difference is precisely the magnitude of weights that
are pruned or removed. By noting that, m(t) describes the non-zero parameters in tth iteration and
w(t+1) ⊙m(t) := 1

N

∑N
k=1 w

(t,S)
k , i.e., it is the aggregated parameters right before sparsification is

done, we can further upper bound the difference by observing that∥∥∥w(t+1) − w(t+1) ⊙m(t)
∥∥∥ ≤

∥∥∥w(t+1) ⊙m(t)
∥∥∥

This is because w(t+1) is the sparsification outcome at the beginning of t + 1th iteration, and is
obtained by zeroing out some parameters from w(t+1) ⊙m(t). The difference term in LHS is the
magnitude of zeroed out parameters which is less than the magnitude of all parameters.

We can assume that the magnitude of neural network parameters is upper bounded by B (as assumed
in [14]). However, this naive upper bound ignores that we purge parameters with the lowest magnitude
in FedSparsify-Global. Therefore, we can compute a tighter bound for FedSparsify-Global by
observing that w(t+1) ⊙m(t) −w(t+1) will be 0 everywhere except for the indexes which are pruned
to 0, i.e., the smallest entries, before t+ 1th round. Note that exactly ⌊|w| × st+1⌋ − ⌊|w| × st⌋ will
be non zero, giving a tighter bound1.∥∥∥w(t+1) − w(t+1) ⊙m(t)

∥∥∥ ≲
∥∥∥w(t+1) ⊙m(t)

∥∥∥ (st+1 − st) ≲
∥∥∥w(t+1)

∥∥∥ st+1 − st
1− (st+1 − st)

In the case of FedSparsify-Local and majority voting, we remove parameters based on if most of
the clients agree. Thus, the pruned parameter values are not necessarily the smallest, and the above
discussed bound may not hold. In this work, we focused on removing a pre-defined percentage of
parameters with the smallest magnitude. Based on the Thm. 1 more complicated strategies can be
derived, such as removing parameters up to some threshold magnitude.

Proof of Thm. 1

Proof Sketch of Thm. 1. To derive the proof, we make the same assumptions as earlier works
of [14, 17]. Note that since we enforce sparsity or sparse structure found in previous iterations during
client training and do not allow parameters to resurrect, we only need to show convergence of the
average over

∥∥∇f(w(t))⊙m(t)
∥∥ terms.

Assumption D.1. Local objectives are smooth, i.e., ∥∇fk(w1) − ∇fk(w2)∥ ≤ L∥w1 −
w2∥, ∀ w1, w2, k and some L > 0.
Assumption D.2. Global objective is lipschitz, i.e., ∥f(w1)− f(w2)∥ ≤ Lp∥w1 − w2∥, ∀ w1, w2

and some Lp > 0.
Assumption D.3. Client’s stochastic gradients are unbiased, i.e., E[gk(w)] = ∇fk(w), ∀ k,w.
Assumption D.4. Local models have bounded gradient variance, i.e., E∥gk(w) − ∇fk(w)∥2 ≤
σ2, ∀ k,w.
Assumption D.5. The gradients from clients do not deviate much from the global model, i.e.,
∥∇f(w)−∇fk(w)∥2 ≤ ϵ2, ∀ k,w.

Assumption D.6. Time independent gradients, i.e., E
[
g
(t1)
k g

(t2)
k

]
= E

[
g
(t1)
k

]
E
[
g
(t2)
k

]
, ∀ t1 ̸= t2.

Assumption D.7. Client independent gradients, i.e., E
[
g
(t1)
k1

g
(t2)
k2

]
= E

[
g
(t1)
k1

]
E
[
g
(t2)
k2

]
, ∀ k1 ̸= k2

and any t1, t2.

Proof. The proof technique is similar to previous approaches that have demonstrated convergence for
federated learning under different scenarios [18, 14, 28]. Proceeding similar to [18] and considering

1We use ≲ to indicate approximate inequality ignoring the issues that may occur due to floor operations.
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E
[
f
(
w(t+1)

)
⊙m(t) − f

(
w(t)

)]
we get —

E
[
f(wt+1 ⊙mt)− f(wt)

]
≤ E

〈
∇f(wt), wt+1 ⊙mt − wt

〉
+

L

2
E
∥∥wt+1 ⊙mt − wt

∥∥2 (4)

Considering the first term from above,

E
〈
∇f(wt), wt+1 ⊙mt − wt

〉
= ηE

〈
∇f(wt),− 1

N

N∑
k=1

S−1∑
i=0

gt,ik ⊙mt

〉

= ηE

〈
∇f(wt)⊙mt,− 1

N

N∑
k=1

S−1∑
i=0

∇fk(w
t,s
k )⊙mt

〉

= −η
∥∥∥∇f(wt)⊙mt

∥∥∥2 − η

∥∥∥∥∥ 1

N

N∑
k=1

1

S

S−1∑
i=0

∇fk(w
t,i
k )

∥∥∥∥∥
2

+ η

∥∥∥∥∥∇f(wt)⊙mt − 1

N

N∑
k=1

1

S

S−1∑
i=0

mt ⊙∇fk(w
t,i
k )

∥∥∥∥∥
2

≤ −η
∥∥∥mt ⊙∇f(wt)

∥∥∥2 − η

NS

N∑
k=1

S−1∑
i=0

∥∥∥mt ⊙∇fk(wt,i)
∥∥∥2

+
ηL2

NS

N∑
k=1

S−1∑
i=0

∥∥∥wt − wt,i
k

∥∥∥2 (5)

For the second term in Eq. 4, we can establish by using assumptions 4-7 that,

E
∥∥wt+1⊙mt − wt

∥∥2 = E

∥∥∥∥∥ 1

N

N∑
k=1

S−1∑
i=0

mt ⊙ gt,ik

∥∥∥∥∥
2

≤ Sσ2 +
S

N

N∑
k=1

S−1∑
i=0

E
∥∥∥mt ⊙∇fk(wt,i)

∥∥∥2 (6)

By repeating analysis similar to lemma 10 from [18], we can obtain the below result.

E
∥∥wt,i − wt

∥∥2 ≤ 16η2S2
∥∥∥mt ⊙∇f(wt)

∥∥∥2
+16η2S2ϵ2 + 4η2Sσ2 (7)

Using Eq. 5, 6, and 7 and subsitituting in Eq. 4, we get

E
[
f
(
wt+1

)
⊙mt − f

(
wt
)]

≤(
−ηS

2
+ 8L2η3S4

)∥∥mt ⊙∇f(wt)
∥∥2

+

(
η2LS

2
+ 2L2η3S3

)
σ2 +

(
8L2η3S4

)
ϵ2 (8)

Above result establishes bound for the weight updates during federated training round. However,
pruning can further change the models output, but we can control / bound its affect due to the lipschitz
assumption. We can write:
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E

[
f
(
wt+1

)
− f

(
wt+1

)
⊙mt

]
≤

Lp

∥∥wt+1 − wt+1 ⊙mt
∥∥ (9)

Adding the two, we get —

E
[
f
(
wt+1

)
− f

(
wt
)]

≤(
−ηS

2
+ 8L2η3S4

)∥∥mt ⊙∇f(wt)
∥∥2

+

(
η2LS

2
+ 2L2η3S3

)
σ2

+
(
8L2η3S4

)
ϵ2 + Lp

∥∥wt+1 − wt+1 ⊙mt
∥∥

Summing over all the time steps, and noting that

E
[
f
(
wt+1

)
− f

(
wt
)]

≥ E
[
f (w∗)− f

(
wt
)]

gives the desired result.

E FedSparsify Evaluation

We show the evaluation of FedSparsify to other pruning and no-pruning schemes in the federated
environments with 100 clients in Figure 5. In Figure 6 we show federated models convergence
in terms of cumulative transmission (communication) cost across all four federated environments,
i.e., 10 and 100 clients at IID and Non-IID environments with a sparsification rate of 0.9 for all
sparsification schemes except for PruneFL, which is shown at 0.3 (recommended sparsity). In Table 2
we show a holistic comparison of sparse and non-sparse federated models’ throughput, inference,
size and communication cost for the FashionMNIST sparse and non-sparse federated models in the
environment of 10 learners. To measure all reported inference times we used the publicly available
DeepSparse library, https://github.com/neuralmagic/deepsparse.

Federated Environments with 100 Clients. In these environments, at every federation round the
server randomly selected 10 clients (participation ratio 0.1) to participate in the next training round.
The execution results for these environments for FashionMNIST are shown in Figures 5a and 5c,
and for CIFAR-10 in Figures 5b and 5d. In both domains, Figures 5a and 5b, FedSparsify is able
to learn highly performant models at extreme sparsification rates (e.g., 0.95, 0.99 sparsity) that
greatly outperform other sparsified models learned through other sparsification baseline schemes,
cf. FedSparsify to GraSP and SNIP at 0.99 sparsity in the Non-IID learning environments. An
interesting outcome of this evaluation is the performance of FedSparsify in the CIFAR-10 Non-IID
environment. There, models learned using FedSparsify perform slightly better when compared to their
non-sparse counterparts. We attribute this phenomenon to the regularization effect that sparsifcation
may have on fully parameterized neural network models [5]. When comparing model convergence
with respect to federation rounds and global model size reduction, as it expected, the no-pruning
methods (FedAvg, FedProx) can learn models of improved learning performance at the expense
though of fully parameterized final models. On the contrary though, through FedSparify we can learn
sparsified federated models of similar or comparable performance with an extremely reduced number
of model parameters. Moreover, when comparing other pruning schemes to FedSparsify we can see
that the rest of the schemes plateau during federated training, whereas FedSparsify’s learning curve is
increasing, e.g., FashionMNIST IID and CIFAR-10 Non-IID learning environments.

Transmission Cost. We measure transmission cost in terms of Megabits (Mbit) exchanged for all
federated training rounds. For both FashionMNIST and CIFAR-10 all federated models were trained
for a total number of 200 rounds, hence the partially completed lines. We plot the total transmission
cost of each scheme for the 200 rounds. The transmission cost at each round is computed as the total
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Figure 5: Evaluation for 100 clients with participation rate of 0.1 in terms of Sparsity vs. Accuracy
(top row) and Federation Rounds vs. Accuracy (left y-axis) and Global Model Parameters Progression
(right y-axis) (bottom row).

0 5K 10K 15K
0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

Te
st

 To
p-

1 
Ac

cu
ra

cy

IID

0 5K 10K 15K0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Non-IID

Transmission Cost (Mbit)
FedAvg
FedProx
SNIP

GraSP
PruneFL
Random

FedSparsify - Global (ours)
FedSparsify - Local (ours)

(a) FashionMNIST (FC) - 10 Clients

0 50K 100K 150K 200K
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 To
p-

1 
Ac

cu
ra

cy

IID

0 50K 100K 150K 200K
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Non-IID

Transmission Cost (Mbit)
FedAvg (MFL)
FedProx
SNIP

GraSP
PruneFL
Random

FedSparsify - Global (ours)
FedSparsify - Local (ours)

(b) CIFAR-10 (CNN) - 10 Clients
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(c) FashionMNIST (FC) - 100 Clients
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Figure 6: Transmission Cost vs. Accuracy for 10 clients (top row) and 100 clients (bottom row) over
the federated training course of 200 federation rounds.

15



Sparsity Accuracy Params Model Size (MBs) C.C. (MM) Inf.Latency Inf.Iterations Inf.Throughput

0.0 0.7489 118,282 0.434 473 0.607 755,817 403,096
0.8 0.74 23,657 0.109 (x3.97) 190 (x2.48) 0.601 (x1.01) 763,298 (x1.01) 407,085 (x1.01)

0.85 0.735 17,743 0.082 (x5.24) 173 (x2.73) 0.594 (x1.02) 772,976 (x1.02) 412,251 (x1.02)
0.90 0.749 11,829 0.056 (x7.75) 155 (x3.04) 0.588 (x1.03) 781,005 (x1.03) 416,532 (x1.03)
0.95 0.735 5,915 0.029 (x14.68) 137 (x3.43) 0.587 (x1.03) 783,000 (x1.03) 417,596 (x1.03)
0.99 0.687 1,183 0.008 (x53.95) 123 (x3.82) 0.58 (x1.04) 792,332 (x1.04) 422,569 (x1.04)

Table 2: Federated models comparison for FashionMNIST in the Non-IID environment of 10 clients.
All recorded values are measurements from the model learned at the end of federated training for
a total number of 200 federation rounds. All sparsified models represent the execution results of
FedSparsify-Global and sparsity 0.0 of FedAvg. C.C. is an abbreviation for communication cost and
captures the total number of exchanged parameters, expressed in millions (MM). Models inference
efficiency is measured by mean processing time per batch (Inf.Latency - ms/batch), the number of
iterations (Inf.Iterations), and processed items per second (Inf.Throughput - items/sec). Values in
parenthesis show x-times reduction (for model size, communication cost and inference latency) and
x-times increase/speedup (for inference iterations and throughput) compared to no-pruning.

number of clients participating at each round, multiplied by the total number of non-zero parameters
received by the server at the beginning of the round (i.e., global model size), plus the total number
of non-zero parameters uploaded to the server by all clients at the end of the round. We multiply
this aggregated quantity by 32; we assume each parameter to be of 32-bits size. If the sparsification
scheme exchanges binary masks with the server during federated training (e.g., FedSparsify-Local)
then we also add to this quantity the total number of parameters of the original model, i.e., the size of
the binary mask (1-bit parameters) is equal to the original model size without any sparsification. As
it is also shown in Figures 6a and 6b for the FashionMNIST and CIFAR-10 domains, respectively,
for the same number of Mbits exchanged between the clients and the server, FedSparsify is able
to reach a higher learning performance when compared to other no-pruning (FedAvg) and pruning
baselines (PruneFL). On the contrary though, pruned federated models learned through SNIP and
GraSP schemes have a significantly reduced number of exchanged model parameters compared
to the rest of the schemes, but they will require many more synchronization rounds to reach the
performance of the other schemes. However, the same outcome does not hold for SNIP and GraSP
in the CIFAR-10 domain where even with a small number of transmitted Mbits (e.g., 30k) they
underperform all other pruning and no-pruning baselines. In both FashionMNIST and CIFAR-10
domains with 100 clients, Figures 6c and 6d, FedSparsify successfully learns a highly performant
model that greatly outperforms all other approaches for the same number of exchanged Mbits (e.g.,
5k Mbit in FashionMNIST, 50k Mbit in CIFAR-10).
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes]
• Did you include the license to the code and datasets? [Yes] Apache License v.2.0.
• Did you include the license to the code and datasets? [Yes]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [No]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [No]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [No]
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