
Published as a conference paper at ICLR 2025

SKILL EXPANSION AND COMPOSITION IN
PARAMETER SPACE

Tenglong Liu1∗ , Jianxiong Li2∗ , Yinan Zheng2, Haoyi Niu2, Yixing Lan1† , Xin Xu1† ,
Xianyuan Zhan2,3,4†
1 National University of Defense Technology, 2 Tsinghua University,
3 Shanghai Artificial Intelligence Laboratory, 4 Beijing Academy of Artificial Intelligence
ltl@nudt.edu.cn,li-jx21@mails.tsinghua.edu.cn,
{xinxu,lanyixing16}@nudt.edu.cn,zhanxianyuan@air.tsinghua.edu.cn

ABSTRACT

Humans excel at reusing prior knowledge to address new challenges and devel-
oping skills while solving problems. This paradigm becomes increasingly pop-
ular in the development of autonomous agents, as it develops systems that can
self-evolve in response to new challenges like human beings. However, previ-
ous methods suffer from limited training efficiency when expanding new skills
and fail to fully leverage prior knowledge to facilitate new task learning. In this
paper, we propose Parametric Skill Expansion and Composition (PSEC), a new
framework designed to iteratively evolve the agents’ capabilities and efficiently
address new challenges by maintaining a manageable skill library. This library
can progressively integrate skill primitives as plug-and-play Low-Rank Adapta-
tion (LoRA) modules in parameter-efficient finetuning, facilitating efficient and
flexible skill expansion. This structure also enables the direct skill compositions
in parameter space by merging LoRA modules that encode different skills, lever-
aging shared information across skills to effectively program new skills. Based on
this, we propose a context-aware module to dynamically activate different skills
to collaboratively handle new tasks. Empowering diverse applications including
multi-objective composition, dynamics shift, and continual policy shift, the results
on D4RL, DSRL benchmarks, and the DeepMind Control Suite show that PSEC
exhibits superior capacity to leverage prior knowledge to efficiently tackle new
challenges, as well as expand its skill libraries to evolve the capabilities. Project
website: https://ltlhuuu.github.io/PSEC/.

1 INTRODUCTION

Humans excel at using existing skills and knowledge to tackle new tasks efficiently, while continu-
ally evolving their capabilities to rapidly adapt to new tasks. (Driscoll et al., 2024; Courellis et al.,
2024; Eppe et al., 2022; Eichenbaum, 2017). This fundamental approach to problem-solving high-
lights a key aspect of human intelligence that is equally crucial for autonomous agents. However,
most current decision-making algorithms adhere to a tabula rasa paradigm, where they are trained
from scratch without utilizing any prior knowledge or resources (Akkaya et al., 2019; Berner et al.,
2019; Silver et al., 2016), leading to severe sample inefficiency and elevated cost when the agent
encounters new tasks (Agarwal et al., 2022; Peng et al., 2019; Du & Kaelbling, 2024). Therefore, in
this paper, we aim to explore the capability of autonomous agents to leverage and expand upon their
existing knowledge base in novel situations to enhance learning efficiency and adaptability.

While some existing studies, such as continual learning (Liu et al., 2024a; Gai & Wang, 2024),
compositional policies (Peng et al., 2019; Janner et al., 2022; Ajay et al., 2023), or finetuning-based
methods (Agarwal et al., 2022), aim to replicate this process, they jointly failed to tackle several key
limitations. 1) Catastrophic forgetting: these approaches typically lack a fundamental mechanism
to guarantee continuous improvement when acquiring new skills, making the autonomous agents
very susceptible to overfitting on new tasks while forgetting previously learned skills without proper
regularization (Liu et al., 2023c; 2024a; Gai & Wang, 2024); 2) Limited efficiency in learning new
tasks: Some methods avoid the catastrophic forgetting problem by adopting a parameter-isolation

*Equal contribution.
†Corresponding Authors.

1

https://ltlhuuu.github.io/PSEC/

Published as a conference paper at ICLR 2025

LoRA
adaptation

Offline
RL/IL Skill library Π

Given a new task with limited data

...

Skill Library Π

Each skill is encoded as distinct LoRA module

Solve the new task

α1

× × ××
α2 α3 αn

+ + + +...

St
at

e

Offline
RL/IL

Add to the library Adaptively composing different skills to program new skills

(c) Diverse applications of PSEC framework

Flat ground

Multi-objective composition

Previous skills
Target skill

Dynamics shift
Uneven ground

Continual policy shift
Stage1: stand

Stage3: run
Stage2: walk

(a) Skill Expansion (b) Skill Composition

Figure 1: PSEC framework and its application in diverse scenarios. (a) We maintain a skill library that
contains many skills primitives and can progressively expand by adding new LoRA modules. (b) Then we train
a context-aware compositional network to adaptively compose different elements in the skill library to solve
new tasks. (c) PSEC framework is versatile to diverse applications where reusing prior knowledge is crucial.

approach via encoding new skills in independent new parameters. However, they typically do not
fully utilize prior knowledge from old skills to enhance training in current tasks, lacking an efficient
way to learn new skills in terms of both parameters and training samples (Peng et al., 2019; Zhang
et al., 2023a), leading to tremendous costs as the number of skills progressively grows.

In order to deal with the above problems, we propose Parametric Skill Expansion and Composi-
tion (PSEC), a framework that facilitates efficient self-evolution of autonomous agents by maintain-
ing a skill library that progressively integrates new skills, facilitating rapid adaptation to evolving
demands. The key mechanism of PSEC is to utilize the primitives in the skill library to tackle new
challenges by exploiting the shared information across different skills within the parameter space.
As shown in Figure 1 (a), we adopt the Low-Rank Adaptation (LoRA) (Hu et al., 2021) approach,
which encodes skills as trainable parameters injected into existing frozen layers. This parameter-
isolation approach naturally resolves the catastrophic forgetting problem, and significantly reduces
computational burden due to the low-rank decomposition structure. This efficient modular design
allows for managing skills as plug-and-play modules, and thus can directly blend different abilities
within the parameter space to interpolate new skills (Clark et al., 2024), as shown in Figure 1 (b).
The proposed PSEC approach can leverage more shared or complementary structures across skills
for optimal compositions. Based on this insight, a context aware module is designed to adaptively
compose skills and each primitive is modeled by diffusion models to ensure both flexibility and ex-
pressiveness in composition. Through iterative expansion and composition, PSEC can continually
evolve and efficiently tackle new tasks, offering one promising pathway for developing human-level
autonomous agents.

Empowering diverse settings including multi-objective composition, continual policy shift and dy-
namics shift, PSEC demonstrates its capacity to evolve and effectively solve new tasks by leveraging
prior knowledge, evaluated on the D4RL (Fu et al., 2020), DSRL (Liu et al., 2023a) and DeepMind
Control Suite (Tassa et al., 2018), showcasing significant potential for real-world applications.

2 RELATED WORKS

Compositional Policies. Some previous methods try to leverage prior knowledge relying on pre-
trained primitive policies. More specifically, these methods used compositional networks in a hier-
archical structure to adaptively compose primitives to form complex behaviors (Peng et al., 2019;
Qureshi et al., 2020; Pertsch et al., 2021; Merel et al., 2019; 2020). However, their expressiveness is
limited by the expressiveness of simple Gaussian primitives. Recently, due to the strong expressive-
ness of the diffusion models and its inherent connection with Energy-Based Models (LeCun et al.,

2

Published as a conference paper at ICLR 2025

2006), many compositional policies have been approached by diffusion model. Diffusion models
learn the gradient fields of an implicit energy function, which can be combined at inference time
to generalize to new complex distribution readily (Janner et al., 2022; Wang et al., 2024b; Du &
Kaelbling, 2024; Liu et al., 2022; Luo et al., 2024b). However, these approaches rely on indepen-
dently trained policies with fixed combination weights, which lack the flexibility to adapt to complex
scenarios. Moreover, most previous methods can only combine skills after the policy distribution
generation of each skill. Therefore, they fail to fully utilize the shared features of different skills
to achieve optimal compositions. We systematically investigate the advantages of skill composition
within the parameter space, and compose skills in a context-aware manner with each skill mod-
eled as a diffusion model. This ensures both flexibility and expressiveness in composing complex
behaviors.

Continual Learning for Decision Making. Current continual learning methods for decision mak-
ing, including continual reinforcement learning (RL) and imitation learning (IL), primarily focus
on mitigating catastrophic forgetting of prior knowledge when learning new tasks. They can be
roughly classified into three categories: structure-based (Smith et al., 2023; Wang et al., 2024d),
regularization-based (Kessler et al., 2020), and rehearsal-based methods (Liu et al., 2024a; Peng
et al., 2023). Different from previous continual RL and IL approaches, our study focuses on lever-
aging existing skills to facilitate efficient new task learning and enables the extension of skill sets.
In addition, it naturally solves the catastrophic forgetting challenge due to the parameter isolation
induced by the LoRA module (Liu et al., 2023c), directly bypassing the key challenges of existing
continual learning methods.

3 METHODS

We propose PSEC, a generic framework that can efficiently reuse prior knowledge and self-evolve
to address emerging new tasks. Next, we will elaborate on our problem setup and technical details.

3.1 PRELIMINARY

Diffusion Model for Policy Modeling. Recently, diffusion models have become popular for policy
modeling because of their superior expressiveness to model complex distributions (Wang et al.,
2023; Chen et al., 2022; Lu et al., 2023; Zheng et al., 2024). Considering a policy distribution π(a|s)
and a sample (s, a) drawn from an empirical dataset D of π(a|s), the diffusion process (Ho et al.,
2020) progressively introduces Gaussian noise to the sample over T steps, producing a sequence of
noisy samples a0, a1, ..., aT with a0 = a following the forward Gaussian kernel:

q(at|at−1) = N (at;
√

1− βtat−1, βtI), q(at|a0) = N (at;
√
ρ̄ta0, (1− ρ̄t)I), (1)

where ρt := 1 − βt, ρ̄t =
∏t

t=1 ρt, and the noise is controlled by a variance schedule β1, ..., βt to
ensure p(aT) = N (0, I). The denoise process aims to recover the sample from p(aT) by learning a
conditional distribution pθ(at−1|at, s). The policy πθ(a|s) is typically modeled as:

πθ(a|s) = p(at)

T∏
t=1

pθ(at−1|at, s); pθ(at−1|at, s) = N (at−1;µθ(at, t, s),Σθ(at, t, s)), (2)

where Σθ = βtI is set as untrained time-dependent constants and µθ(at, t, s) = 1√
ρt
(at −

βt√
1−ρ̄t

ϵθ(at, t, s)) is reparameterized by ϵθ. The trainable parameter θ, modeled by deep networks,
can be optimized via minimizing the following objective by predicting the noise:

Ldiff(θ) = Et∼U,ϵ∼N (0,I),(s,a)∼D

[
w(s, a)

∥∥∥ϵ− ϵθ

(√
ρ̄ta+

√
1− ρ̄tϵ, t, s

)∥∥∥2] . (3)

where U is uniform distribution over the discrete set {1, ..., T}. w(s, a) is a flexible weight function
that encodes human preference (Zheng et al., 2024). For example, w(s, a) ∝ f(A(s, a)), f ≥ 0
with A(s, a) as the advantage function leads to weighted behavior cloning (BC) in offline reinforce-
ment learning (RL) (Zheng et al., 2024; Kostrikov et al., 2022; Xu et al., 2023), and w(s, a) := 1
degenerates to traditional BC (Chen et al., 2023). After obtaining the approximated µθ and Σθ, we
can substitute them into Eq. (2) to iteratively denoise and obtain actions conditioned on the state.

Problem Setups. We consider a Markov Decision Process with s ∈ S and a ∈ A are state and
action space, P : S × A → ∆(S) is transition dynamics, and r : S × A → R is reward function.

3

Published as a conference paper at ICLR 2025

(a) Learning new skills using LoRA modules. (b) Interpolation in LoRA modules.

Figure 2: (a) Each skill is encoded in separate LoRA modules respectively. (b) By adjusting the composing
weights αi, different LoRA modules can merge together to interpolate new skills.

We assume the state space S and action space A remain unchanged during training, which is a mild
assumption in many relevant works (Peng et al., 2019; Ajay et al., 2023; Nair et al., 2020; Liu et al.,
2024b). We consider an agent with π0 as its initial policy and then is progressively tasked with new
tasks Ti, i = 1, 2, ..., with differences in the rewards r or dynamics P , to mirror real-world scenarios
with non-stationary dynamics or new challenges continually emerge (Luo et al., 2024a). Each task is
provided with several expert demonstrations DTi

e := {(s, a)} or a mixed-quality dataset with reward
labels DTi

o := {(s, a, ri, s′)}. So, we can use either offline RL or imitation learning (IL) to adapt
to the new challenges (Liu et al., 2024b). Inspired by previous works (Peng et al., 2019; Barreto
et al., 2018; Zhang et al., 2023a), we maintain a policy library Π to store the policies associated
with different tasks and aim to utilize the prior knowledge to enable efficient policy learning and
gradually expand it to incorporate new abilities across training.

Π = {π0, π1, π2, π3, ...}. (4)

We aim to explore 1) Efficient Expansion: How to manage the skill library Π to learn new skills
in an efficient and manageable way, and 2) Efficient Composition: How to fully utilize the prior
knowledge from primitives in the skill set Π to tackle the emerging challenges.

3.2 EFFICIENT POLICY EXPANSION VIA LOW-RANK ADAPTATION

For the first objective, previous methods typically train each primitive from scratch in a tabula rasa
paradigm (Peng et al., 2019; Janner et al., 2022; Lu et al., 2023), failed to leverage the prior knowl-
edge in Π to efficiently obtain a good skill primitive. This presents significant issues in terms of
computational efficiency when the number of skills grows. To mitigate these challenges, we turn
to Parameter-Efficient Fine-Tuning (PEFT) (Ding et al., 2023), which has proven highly effective
in various natural language processing and computer vision applications. One of the most popular
PEFT implementations is LoRA (Hu et al., 2022). It injects trainable low-rank decomposed matrices
into the pretrained layer to avoid overfitting with limited adaptation data and significantly reduces
computational and memory burden. Inspired by this, we try to employ LoRA to efficiently learn
new skills given solely limited data for the target skill.

Policy Expansion via Low-Rank Adaptation. We consider a pretrained policy π0 and denote
W0 ∈ Rdin×dout as its associated weight matrix. Directly finetuning W0 to adapt to new skills might
be extremely inefficient (Liu et al., 2023c), instead, we introduce a tune-able LoRA module ∆W
upon W0, i.e., W0+∆W = W0+BA to do the adaptation and keep W0 frozen, where B ∈ Rdin×n,
A ∈ Rn×dout and n ≪ min(din, dout). Specifically, he input feature of the linear layer is denoted
as hin ∈ Rdin , and the output feature of the linear layer is hout ∈ Rdout , the final output of a LoRA
augmented layer can be calculated through the following forward process:

hout = (W0 + α∆W)hin = (W0 + αBA)hin = W0hin + αBAhin, (5)

where α is a weight to balance the pre-trained model and LoRA modules. This operation naturally
prevents catastrophic forgetting in a parameter isolation approach, and the low-rank decomposi-
tion structure of A and B significantly reduces the computational burden. Benefiting from this
lightweight characteristic, we can manage numerous LoRA modules {∆Wi = BiAi|i ∈ 1, 2, ..., k}
to encode different skill primitives πi, respectively, as shown in Figure 2a. This flexible approach
allows us to easily integrate new skills based on existing knowledge, while also facilitating library

4

Published as a conference paper at ICLR 2025

Figure 3: Comparison between parameter-, noise-, and action-level composition. Parameter-level composition
offers more flexibility to leverage the shared or complementary structure across skills to compose new skills.
Noise- and action-level composition, however, is too late to benefit from this information.

management by removing suboptimal primitives and retaining the effective ones. More importantly,
by adjusting the value of α, it holds the potential to interpolate the pretrained skill in W0 and other
primitives in ∆Wi (Clark et al., 2024) to generate novel skills, as shown in Eq. (6) and Figure 2b.

W = W0 +

k∑
i=1

αi∆Wi = W0 +

k∑
i=1

αiBiAi, (6)

where αi is the weight to interpolate pre-trained weights and LoRA modules. This interpolation
property has been explored in fields like text-to-image generation (Clark et al., 2024) and language
modeling (Zhang et al., 2023b), but its application in decision-making scenarios remains highly un-
derexplored, despite LoRA has proven efficacy in skill acquisition (Liu et al., 2023c). Next, we will
elaborate on how to effectively combine LoRA modules to adapt to decision-making applications.

3.3 CONTEXT-AWARE COMPOSITION IN PARAMETER SPACE

Effectively combining skills encoded as different LoRA modules to solve new tasks is crucial. Pre-
vious methods (Du & Kaelbling, 2024; Ajay et al., 2023; Janner et al., 2022) typically rely on fixed
combinations of skills, resulting in limited compositional flexibility. This approach may be accept-
able in static domains like language models, but it falls short in decision-making applications where
dynamic skill composition is crucial. For example, in autonomous driving, the ability to dynamically
prioritize skills of obstacle avoidance in potential collision scenarios, or acceleration when speeds
are suboptimal, is essential. Naively adopting a fixed set of αi like previous approaches (Du & Kael-
bling, 2024; Ajay et al., 2023; Janner et al., 2022; Clark et al., 2024), however, cannot adequately
support such flexible deployment of skills based on real-time environmental demands.

Context-aware Composition. We propose a simple yet effective context-aware composition
method that adaptively leverages pretrained knowledge to optimally address the encountering tasks
according to the agent’s current context. Specifically, we introduce a context-aware modular
α(s; θ) ∈ Rk with αi as its i-th dimension. The composition method can be expressed by Eq. (7):

W (θ) = W0 +

k∑
i=1

αi(s; θ)∆Wi = W0 +

k∑
i=1

αi(s; θ)BiAi. (7)

Here, α(s; θ) adaptively adjusts output weights based on the agent’s current situation s with the
parameter θ optimized via minimizing the diffusion loss in Eq. (3). Note that the trainable parameter
θ lies solely in the composition network αθ with the pretrained weights W0 and all LoRA modules
∆Wi being kept frozen, thus θ can be efficiently trained in terms of both samples and parameters.

Parameter-level v.s. Action-level Composition. Careful readers may notice that our context-aware
composition is similar to previous works that adaptively compose Gaussian primitive skills to create
complex behaviors (Peng et al., 2019; Qureshi et al., 2020), such as the one shown in Eq. (8) (Peng
et al., 2019):

5

Published as a conference paper at ICLR 2025

Figure 4: t-SNE projections of samples from different skills in parameter, noise, and action space. The
parameter space exhibits a good structure for skill composition, where skills share common knowledge while
retaining their unique features to avoid confusion. Noise and action spaces are either too noisy to clearly
distinguish between skills or fail to capture the shared structure across them. See Appendix C.4 for details.

π(a|s) = 1

Z(s)

k∏
i=1

πi(a|s)αi(s;θ), πi(a|s) = N (µi(s),Σi(s)) , (8)

where α(s; θ) is optimized to combine the policy distributions πi, i = 0, ..., k to collaboratively
build a new policy distribution π to solve the new task.

However, these two methods differ fundamentally in their stages of composition, mirroring the ad-
vantages of early fusion over late fusion across various domains (Gadzicki et al., 2020; Wang et al.,
2024e). PSEC employs a parameter-level composition, where different skills are seamlessly in-
tegrated within the parameter space. By contrast, Eq. (8) represents an action-level composition
that explicitly combines the output distributions of various skills. In comparison, parameter-level
composition will be more efficient, as it can leverage more shared or complementary information
between different skills to enhance compositionality and overall performance before generating the
final policy distribution (Shazeer et al., 2016; Wang et al., 2024d). Conversely, action-level compo-
sition only merges skills after the action generation, which is too late to effectively leverage features
across skills for optimal composition. Besides, previous action-level methods typically employ sim-
ple Gaussian primitives to construct their skill library, significantly limiting its expressiveness.

Parameter-level v.s. Noise-level Composition. Some approaches use diffusion models for policy
modeling and exhibit remarkable compositionality by identifying its connections to Energy-Based
Models (Du & Kaelbling, 2024; Wang et al., 2024b; Janner et al., 2022; Ajay et al., 2023; Lu et al.,
2023). Specifically, the noise predicted by diffusion models can be regarded as the gradient field
of some energy functions. It thus can be directly merged to form new skills during sampling in a
noise-level composition, as shown in Eq. (9). This is equivalent to doing a logical operation on the
energy functions to form complex behaviors (Du et al., 2023; Liu et al., 2022; LeCun et al., 2006).

ϵ(at, t, s) =

k∑
i=0

αiϵi(at, t, s). (9)

Here, ϵi represents the predicted noise derived from various skills, while ϵ is the aggregated noise re-
sulting from their composition. Utilizing ϵ for denoising in Eq. (2) allows for the generation of a joint
distribution of skills, thereby facilitating the effective composition of these diverse capabilities (Ajay
et al., 2023; 2024; Janner et al., 2022). However, these methods employ fixed weights αi for policy
composition, limiting their flexibility and adaptability in dynamical scenarios where real-time ad-
justment on the compositional weights is required. In our paper, PSEC not only employs diffusion
models to enhance the expressiveness of primitives, but also adaptively adjusts the context-aware
compositional weights to enhance compositional flexibility. Additionally, this noise-level composi-
tion also tends to be less effective than parameter-level composition, as the latter integrates different
skills at an earlier stage, leading to improved performance, as shown in Figure 3.

Empirical Observations. To evaluate the advantages of parameter-level composition over other
levels of composition, we employ t-SNE (Van der Maaten & Hinton, 2008) to project the output
features of LoRA modules into a 2D space, alongside the noise and generated actions of various
skills. Figure 4 illustrates that in the parameter space, different skills not only share common knowl-
edge, but also retain their unique features to avoid confusion. In contrast, noise and action spaces

6

Published as a conference paper at ICLR 2025

Table 1: Normalized DSRL (Liu et al., 2023a) benchmark results. Costs below 1 indicates safety. ↑: the higher
the better. ↓: the lower the better. Results are averaged over 20 evaluation episodes and 4 seeds. Bold: Safe
agents with costs below 1. Blue: Safe agents achieving the highest reward.

BC CDT CPQ COptiDICE FISOR ASEC NSEC PSEC
Task

reward ↑cost ↓reward ↑cost ↓reward ↑cost ↓reward ↑cost ↓reward ↑cost ↓reward ↑cost ↓reward ↑cost ↓reward ↑cost ↓
easysparse 0.32 4.73 0.05 0.10 -0.06 0.24 0.94 18.21 0.38 0.53 0.95 5.8 0.55 0.08 0.55 0.02
easymean 0.22 2.68 0.27 0.24 -0.06 0.24 0.74 14.81 0.38 0.25 0.63 0.75 0.39 0.54 0.37 0.00
easydense 0.20 1.70 0.43 2.31 -0.06 0.29 0.60 11.27 0.36 0.25 0.85 5.28 0.76 1.45 0.51 0.01

mediumsparse 0.53 1.74 0.26 2.20 -0.08 0.18 0.64 7.26 0.42 0.22 0.93 2.52 0.60 0.08 0.76 0.03
mediummean 0.66 2.94 0.28 2.13 -0.08 0.28 0.73 8.35 0.39 0.08 0.74 1.00 0.82 2.87 0.61 0.01
mediumdense 0.65 3.79 0.29 0.77 -0.08 0.20 0.91 9.52 0.49 0.44 0.81 0.52 0.76 0.27 0.66 0.02

hardsparse 0.28 1.98 0.17 0.47 -0.04 0.28 0.34 7.34 0.30 0.01 0.30 0.41 0.34 1.21 0.34 0.04
hardmean 0.34 3.76 0.28 3.32 -0.05 0.24 0.36 7.51 0.26 0.09 0.46 1.05 0.38 0.32 0.39 0.07
harddense 0.40 5.57 0.24 1.49 -0.04 0.24 0.42 8.11 0.30 0.34 0.36 0.82 0.19 0.03 0.34 0.07

MetaDrive
Average

0.40 3.21 0.25 1.45 -0.06 0.24 0.63 10.26 0.36 0.25 0.67 2.02 0.53 0.76 0.50 0.03

AntRun 0.73 11.73 0.70 1.88 0.00 0.00 0.62 3.64 0.45 0.03 0.74 4.97 0.79 6.81 0.59 0.33
BallRun 0.67 11.38 0.32 0.45 0.85 13.67 0.55 11.32 0.18 0.00 0.35 4.35 0.58 7.46 0.15 0.95
CarRun 0.96 1.88 0.99 1.10 1.06 10.49 0.92 0.00 0.73 0.14 0.93 0.39 0.93 0.66 0.83 0.00

DroneRun 0.55 5.21 0.58 0.30 0.02 7.95 0.72 13.77 0.30 0.55 0.57 2.29 0.62 7.3 0.47 0.87
AntCircle 0.65 19.45 0.48 7.44 0.00 0.00 0.18 13.41 0.20 0.00 0.46 5.55 0.36 2.08 0.20 0.00
BallCircle 0.72 10.02 0.68 2.10 0.40 4.37 0.70 9.06 0.34 0.00 0.54 1.58 0.58 2.08 0.34 0.22
CarCircle 0.65 11.16 0.71 2.19 0.49 4.48 0.44 7.73 0.40 0.11 0.41 2.86 0.40 2.62 0.36 0.20

DroneCircle 0.82 13.78 0.55 1.29 -0.27 1.29 0.24 2.19 0.48 0.00 0.65 3.60 0.71 4.93 0.33 0.07

BulletGym
Average

0.72 10.58 0.63 2.09 0.32 5.28 0.55 7.64 0.39 0.10 0.58 3.20 0.62 4.24 0.41 0.33

are either too noisy to clearly distinguish between skills or fail to capture the shared structure across
them, making the compositions in noise and action space less effective than the parameter space.

4 EXPERIMENTS

PSEC enjoys remarkable versatility across various scenarios since many problems can be resolved
by reusing pre-trained policies and gradually evolving its capabilities during training. Thus, we
present a comprehensive evaluation across diverse scenarios, including multi-objective composition,
policy learning under policy shifts and dynamics shifts, to answer the following questions:

• Can the context-aware modular effectively compose different skills?
• Can our parameter-level composition outperform noise- and action-level compositions?
• Can the introduction of LoRA modules enhance training and sample efficiency?
• Can PSEC framework iteratively evolve after incorporating more skills?

4.1 MULTI-OBJECTIVE COMPOSITION

In many real-world applications, a complex task can be decomposed into simpler objectives, where
collaboratively combining these atomic skills can tackle the complex task. In this setting, we aim
to evaluate the advantages of parameter-level composition over other levels of composition in Fig-
ure 3, and the effectiveness of the context-aware modular. We consider one practical multi-objective
composition scenario within the safe offline RL domain (Zheng et al., 2024). This setting requires
solving a constrained MDP (Altman, 2021) to tackle a complex trilogy objective: avoiding distribu-
tional shift, maximizing rewards, and meanwhile minimizing costs. These objectives can conflict,
thus requiring a nuanced composition to optimize performance effectively (Zheng et al., 2024).

Setup. We evaluate on a popular safe offline RL benchmark, DSRL (Liu et al., 2023a). We set
w(s, a) = 1 in Eq. (3) to train our initial policy π0 as a behavior policy. Then, we set w(s, a) =
exp(A∗

r(s, a)) and w(s, a) = exp(−A∗
h(s, a)) with A∗

r(s, a) and A∗
h(s, a) are the optimal reward

and feasible value function learned by expectile regression (Zheng et al., 2024) to train π1 and π2

that separately consider reward and safety performance respectively. During composition, we adopt
a few filtered near-expert demonstrations that jointly consider the trilogy objective, which is too

7

Published as a conference paper at ICLR 2025

Figure 5: Output weights of context-aware modular evaluated on the MetaDrive-easymean task. The network
dynamically adjusts the weights to handle real-time demands: It prioritizes safety policies when the vehicle
approaches obstacles or navigates a turn while avoiding boundary lines. When there are no obstacles and the
task is simply to drive straight, the focus shifts to maximizing rewards and maintaining some safety insurance.

limited to imitate good policies. However, we can adopt these data to train a context-aware modular
α(s; θ) in Eq. (7) to adaptively compose π0,1,2 to handle the conflicts in an efficient way.

Baselines. To demonstrate the effectiveness of the composition in parameter space, we compare two
other composition methods: noise-level and action-level composition. We denote them as NESC and
ASEC respectively, where we control the only differences to PSEC being the composition stage as
shown in Figure 3 to ensure a fair comparison. We also compare recent state-of-the-art (SOTA) safe
offline RL methods including FISOR (Zheng et al., 2024), CDT (Liu et al., 2023b), COptiDICE (Lee
et al., 2022a), CPQ (Xu et al., 2022) and BC. These traditional safe offline RL methods typically use
human-tuned trade-offs to balance the trilogy objective, which is equivalent to using fixed compo-
sition weights compared to PSEC. All policies are trained on the full DSRL dataset to ensure a fair
comparison (see Appendix C.1 for details).

Main Results. Table 1 shows that PSEC achieves a good balance between high returns and satisfac-
tory safety performance, and simultaneously mitigates distributional shift across all tasks, enjoying
highly competitive performance. In contrast, NSEC and ASEC exhibit skewed learning behaviors,
where both of them fail to discover an effective composition to ensure both good safety performance
and high returns, resulting in relatively poor safety outcomes despite high rewards. PSEC also
outperforms all traditional safe offline RL baselines, demonstrating the necessity of context-aware
composition over fixed composition when the task requires intricate balance between different el-
ements. To further support this, we visualize the outputs of our context-aware modular α(s; θ) to
illustrate its adaptive capabilities. Figure 5 demonstrates that the network dynamically adjusts the
weightings to combine different skills, enabling a collaborative response to real-time environmental
changes. This adaptive behavior highlights the importance of dynamically adjusting the composi-
tional weights rather than relying on a fixed combination of different skills to jointly solve a new
task like previous methods (Ajay et al., 2023; Zheng et al., 2024; Janner et al., 2022).

4.2 CONTINUAL POLICY SHIFT SETTING

We evaluate another practical scenario where the agent is progressively tasked with new tasks. We
aim to continuously expand the skill libraries to test if the capabilities of agents to learn new skills
can be gradually enhanced as prior knowledge grows and test the efficiency of LoRA.

Setup. We conduct experiments on the DeepMind Control Suite (DMC) (Tassa et al., 2018) envi-
ronments, where an agent is progressively required to stand, walk, and run. We investigate whether
PSEC can leverage the standing skill to rapidly learn to walk, and then effectively combine standing
and walking skills to adapt to running. For this purpose, we pretrain π0 to learn the basic standing
skill by setting w(s, a) := 1 in Eq. (3) trained on a expert dataset DT0

e . Subsequently, we provide
small expert datasets DT1

e for walk and DT2
e for run, while maintaining w(s, a) := 1 to adapt to π1

and π2. After training π1, we integrate it into the skill library Π to assist π2 training alongside π0.
See Appendix C.2 for detailed experimental setups.

Baselines. 1) We compare NSEC and ASEC to further demonstrate the superiority of parameter-
over noise- and action-level composition. 2) We evaluate training from scratch (denoted as Scratch),
or replacing LoRA modules with multiplayer perceptions (MLP) to demonstrate the efficiency of

8

Published as a conference paper at ICLR 2025

10 30 50 100
Number of Trajectories

0

250

500

750

1000

Sc
or

es

S W with different data quantity of W task

Scratch
ASEC
NSEC
PSEC

(a) Sample efficiency.

0k 2k 4k 6k 8k 10k
Training Steps

200

400

Sc
or

es

S W without composition on W task
PSEC
PSEC(MLP)
Scratch

(b) Training efficiency.

PSEC NSEC ASEC
Methods

0

200

400

600

Sc
or

es

Performance w and w/o Context-Aware
PSEC
PSEC w/o CA
NSEC
NSEC w/o CA
ASEC
ASEC w/o CA

(c) Context-aware efficiency.

Figure 6: Comparisons on sample and training efficiency and the effectiveness of context-aware modular. S,
W, R denote stand, walk and run, respectively. Each value is averaged over 10 episodes and 5 seeds.

compositions and LoRA module. 3) We evaluate different PSEC variants without context-aware
modular (denoted as w/o CA) to further highlight the crucial role of dynamically combining skills.

Training and sample efficiency. To demonstrate the training and sample efficiency of PSEC, we
conduct extensive evaluations across varying numbers of trajectories and different methods. Fig-
ure 6(a) shows that PSEC achieves superior sample efficiency across different training sample sizes,
particularly when data is scarce (e.g., only 10 trajectories). Figure 6(b) shows that PSEC can quickly
attain excellent performance even without composition, highlighting the effectiveness of the LoRA
modules. Hence, we train less than 50k gradient steps for almost all tasks, while previous methods
typically require millions of gradient steps and data to obtain reasonable results.

Table 2: Results in policy shift setting. S,
W, R denote stand, walk and run. 10 trajec-
tories are provided for W and R tasks

S→ W S→ R S+W→ R

Scratch 58.9 25.5 25.5
ASEC 65.7 24.3 30.8
NSEC 320.9 38.5 39.4
PSEC (MLP) 424.1 143.3 194.5
PSEC 688 221 247

Continual Evolution. Table 2 shows that PSEC ef-
fectively leverages prior knowledge to facilitate effi-
cient policy learning given solely limited data. Notably,
S+W→R outperforms S→R, demonstrating that the
learning capability of PSEC gradually evolves as the
skill library grows. In contrast, training from scratch or
replacing the LoRA modules with MLP fails to learn
new skills given limited data, highlighting the effec-
tiveness of both utilizing prior knowledge and the intro-
duction of LoRA to efficiently adapt to new skills and
self-evolution. Moreover, note that even PSEC (MLP)
outperforms NSEC and ASEC, further highlighting the
advantages of parameter-level compositions.

Context-aware Composition v.s. Fixed Composition. We carefully tune the fixed composition
(w/o CA) of different skills during composition. However, Figure 6(c) shows that the context-aware
modular can consistently outperform the fixed ones across different levels of compositions. This
demonstrates the advantages of the context-aware composition network to fully leverage the prior
knowledge in the skill library to enable efficient policy adaptations.

4.3 DYNAMICS SHIFT SETTING

We evaluate PSEC in another practical setting to further validate its versatility, where the dynamics
P shift to encompass diverse scenarios such as cross-embodiment (O’Neill et al., 2024), sim-to-real
transfer (Tobin et al., 2017), and policy learning in non-stationary environments (Xue et al., 2024).

Setup. We evaluate on the D4RL environments (Fu et al., 2020) , where we modify the dynamics
and morphology of locomotive robots to reflect the dynamic changes. Specifically, we first pretrain
π0 using a dataset DP0

o collected from a modified dynamics P0 and then equip it with a new small
dataset DP1

o collected under the original D4RL dynamics P1. Friction, Thigh Size and Gravity de-
note P0 modifies the friction condition, the thigh size of cheetah/walker, and the gravity respectively.
Based on the new small dataset DP1

o , we set w(s, a) = exp(A∗
r(s, a)) with A∗

r(s, a) as the advantage
function trained by expectile regression on DP1

o (Kostrikov et al., 2022) to obtain a new policy π1

and then optimize the context-aware composition network α(s; θ) to combine π0,1 to collaboratively
work under dynamics P1. See Appendix C.3 for details.

Baselines. One branch of baselines consists in training π1 from scratch on the small dataset DP1
o ,

which may face data scarcity challenges, including BC, offline RL methods like CQL (Kumar et al.,
2020), IQL (Kostrikov et al., 2022), MOPO (Yu et al., 2020c). In addition, we evaluate some gen-

9

Published as a conference paper at ICLR 2025

Methods
0

20

40

Sc
or

es

halfcheetah-m

Methods

20

40
halfcheetah-mr

Methods
0

20

40

halfcheetah-me

Methods0

50

Sc
or

es

walker2d-m

Methods
0

20

walker2d-mr

Methods
0

50

walker2d-me

BC
MOPO

CQL
IQL

DOGE
TSRL

Joint train(Friction)
Joint train(Thigh)

Joint train(Gravity)
PSEC(Friction)

PSEC(Thigh)
PSEC(Gravity)

Figure 7: Results in the dynamics shift setting over 10 episodes and 5 seeds. -m, -mr and -me refer to DP1
o

sampling from medium, medium-replay and medium-expert-v2 data in D4RL (Fu et al., 2020), respectively.

eralizable offline RL methods including DOGE (Li et al., 2023) and TSRL (Cheng et al., 2023) that
are superior in the small sample regimes. Additionally, we evaluate the policy trained on the com-
bination of DP0

o and DP1
o , referred to as Joint train, to show the advantages of the PSEC framework

over a brute-force method of combining all data to address dynamic gaps.

Main Results. Figure 7 demonstrates that PSEC effectively utilizes transferable knowledge from
the pretrained policy π0 to enhance performance under changed dynamics. In contrast, traditional
offline RL methods perform poorly with limited data in new dynamic settings. Moreover, PSEC
surpasses specialized sample-efficient offline RL methods like TSRL and DOGE, showcasing its
superior ability to leverage prior knowledge for increased training efficiency.

4.4 ABLATION STUDY

4 8 16 32 64
Rank

400

500

600

700

Sc
or

es

S W with different LoRA ranks
MLP

Figure 8: Ablations on LoRA ranks.

We primarily ablate on different LoRA ranks n to assess
the robustness of our methods in continual policy shift
setting. Figure 8 demonstrates that under varied LoRA
n ranks, PSEC consistently outperforms the MLP variant
across various LoRA ranks, demonstrating the superior ro-
bustness of LoRA modules. Among the different rank set-
tings, we observe that n = 8 gives the best results and is
therefore chosen as the default choice for the experiments.
We hypothesize that using a rank greater than 8 degener-
ates because the training data is quite limited (e.g., only
10 demonstrations).

5 CONCLUSION

We propose PSEC, a framework that handles different skills as plug-and-play LoRA modules within
an expandable skill library. This flexible approach enables the agents to reuse prior knowledge
for efficient new skill acquisition and to progressively evolve in response to new challenges like
humans. By exploiting the interpolation property of LoRA, we propose a context-aware composi-
tional network that adaptively activates and blends different skills directly in the parameter space by
merging the corresponding LoRA modules. This parameter-level composition enables the exploita-
tion of more shared and complementary information across different skills, allowing for optimal
compositions that collaboratively generate complex behaviors in dynamical environments. PSEC
demonstrates exceptional effectiveness across diverse practical applications, such as multi-objective
composition, continual policy shift and dynamic shift settings, making it highly versatile for real-
world scenarios where knowledge reuse and monotonic policy improvements are crucial. One limi-
tation is the pretrained policy π0 may encompass diverse distributions to ensure good LoRA tuning.
However, this can be mitigated by utilizing the broad out-of-domain dataset to enhance distribution
coverage. More discussions on limitations and future works can be found in Appendix A.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENT

This work is supported by National Key Research and Development Program of China under Grant
(2022YFB2502904), National Natural Science Foundation of China under Grant 62403483, Grant
U24A20279, and Grant U21A20518, and funding from Wuxi Research Institute of Applied Tech-
nologies, Tsinghua University under Grant 20242001120.

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Reincarnating reinforcement learning: Reusing prior computation to accelerate progress. Ad-
vances in neural information processing systems, 35:28955–28971, 2022.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B Tenenbaum, Tommi S Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision making? In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

Anurag Ajay, Seungwook Han, Yilun Du, Shuang Li, Abhi Gupta, Tommi Jaakkola, Josh Tenen-
baum, Leslie Kaelbling, Akash Srivastava, and Pulkit Agrawal. Compositional foundation models
for hierarchical planning. Advances in Neural Information Processing Systems, 36, 2024.

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a
robot hand. arXiv preprint arXiv:1910.07113, 2019.

Ferran Alet, Maria Bauza, Alberto Rodriguez, Tomas Lozano-Perez, and Leslie P Kaelbling. Mod-
ular meta-learning in abstract graph networks for combinatorial generalization. arXiv preprint
arXiv:1812.07768, 2018.

Eitan Altman. Constrained Markov decision processes. Routledge, 2021.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 39–48, 2016.

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20,
2020.

Brandon Araki, Xiao Li, Kiran Vodrahalli, Jonathan DeCastro, Micah Fry, and Daniela Rus. The
logical options framework. In International Conference on Machine Learning, pp. 307–317.
PMLR, 2021.

Gasser Auda and Mohamed Kamel. Modular neural network classifiers: A comparative study.
Journal of Intelligent and robotic Systems, 21:117–129, 1998.

Gasser Auda and Mohamed Kamel. Modular neural networks: a survey. International journal of
neural systems, 9(02):129–151, 1999.

Chenjia Bai, Lingxiao Wang, Jianye Hao, Zhuoran Yang, Bin Zhao, Zhen Wang, and Xuelong Li.
Pessimistic value iteration for multi-task data sharing in offline reinforcement learning. Artificial
Intelligence, 326:104048, 2024.

Bart Bakker and Tom Heskes. Task clustering and gating for bayesian multitask learning. Journal
of Machine Learning Research, 4:83–99, 2003.

Andre Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel
Mankowitz, Augustin Zidek, and Remi Munos. Transfer in deep reinforcement learning using
successor features and generalised policy improvement. In International Conference on Machine
Learning, pp. 501–510. PMLR, 2018.

Jonathan Baxter. A bayesian/information theoretic model of learning to learn via multiple task
sampling. Machine learning, 28:7–39, 1997.

11

Published as a conference paper at ICLR 2025

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

R Caruana. Multitask learning: A knowledge-based source of inductive bias1. In Proceedings of
the Tenth International Conference on Machine Learning, pp. 41–48. Citeseer, 1993.

Rich Caruana. Multitask learning. Machine learning, 28:41–75, 1997.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
via high-fidelity generative behavior modeling. arXiv preprint arXiv:2209.14548, 2022.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
via high-fidelity generative behavior modeling. In The Eleventh International Conference on
Learning Representations, 2023.

Peng Cheng, Xianyuan Zhan, Zhihao Wu, Wenjia Zhang, Shoucheng Song, Han Wang, Youfang Lin,
and Li Jiang. Look beneath the surface: Exploiting fundamental symmetry for sample-efficient
offline rl. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Kevin Clark, Paul Vicol, Kevin Swersky, and David J. Fleet. Directly fine-tuning diffusion models
on differentiable rewards. In The Twelfth International Conference on Learning Representations,
2024.

Hristos S Courellis, Juri Minxha, Araceli R Cardenas, Daniel L Kimmel, Chrystal M Reed, Taufik A
Valiante, C Daniel Salzman, Adam N Mamelak, Stefano Fusi, and Ueli Rutishauser. Abstract
representations emerge in human hippocampal neurons during inference. Nature, pp. 1–9, 2024.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 5(3):220–235, 2023.

Laura N Driscoll, Krishna Shenoy, and David Sussillo. Flexible multitask computation in recurrent
networks utilizes shared dynamical motifs. Nature Neuroscience, pp. 1–15, 2024.

Yilun Du and Leslie Pack Kaelbling. Position: Compositional generative modeling: A single model
is not all you need. In Forty-first International Conference on Machine Learning, 2024.

Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fergus,
Jascha Sohl-Dickstein, Arnaud Doucet, and Will Sussman Grathwohl. Reduce, reuse, recycle:
Compositional generation with energy-based diffusion models and mcmc. In International con-
ference on machine learning, pp. 8489–8510. PMLR, 2023.

Long Duong, Trevor Cohn, Steven Bird, and Paul Cook. Low resource dependency parsing: Cross-
lingual parameter sharing in a neural network parser. In Proceedings of the 53rd annual meeting
of the Association for Computational Linguistics and the 7th international joint conference on
natural language processing (volume 2: short papers), pp. 845–850, 2015.

Howard Eichenbaum. Prefrontal–hippocampal interactions in episodic memory. Nature Reviews
Neuroscience, 18(9):547–558, 2017.

Manfred Eppe, Christian Gumbsch, Matthias Kerzel, Phuong DH Nguyen, Martin V Butz, and
Stefan Wermter. Intelligent problem-solving as integrated hierarchical reinforcement learning.
Nature Machine Intelligence, 4(1):11–20, 2022.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. In International Conference on Learning Representa-
tions.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

12

Published as a conference paper at ICLR 2025

Konrad Gadzicki, Razieh Khamsehashari, and Christoph Zetzsche. Early vs late fusion in multi-
modal convolutional neural networks. In 2020 IEEE 23rd international conference on information
fusion (FUSION), pp. 1–6. IEEE, 2020.

Sibo Gai and Donglin Wang. Single-task continual offline reinforcement learning. arXiv preprint
arXiv:2404.12639, 2024.

Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, and Richard Turner. Meta-
learning probabilistic inference for prediction. In International Conference on Learning Repre-
sentations, 2019. URL https://openreview.net/forum?id=HkxStoC5F7.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Bart LM Happel and Jacob MJ Murre. Design and evolution of modular neural network architec-
tures. Neural networks, 7(6-7):985–1004, 1994.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub: Effi-
cient cross-task generalization via dynamic lora composition. arXiv preprint arXiv:2307.13269,
2023.

Kaixin Huang, Li Shen, Chen Zhao, Chun Yuan, and Dacheng Tao. Solving continual offline rein-
forcement learning with decision transformer. arXiv preprint arXiv:2401.08478, 2024.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, pp. 9902–9915.
PMLR, 2022.

Samuel Kessler, Jack Parker-Holder, Philip Ball, Stefan Zohren, and Stephen J Roberts. Unclear: A
straightforward method for continual reinforcement learning. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, 2020.

Junsu Kim, Seohong Park, and Sergey Levine. Unsupervised-to-online reinforcement learning.
arXiv preprint arXiv:2408.14785, 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In International Conference on Learning Representations, 2022.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Yixing Lan, Xin Xu, Qiang Fang, Yujun Zeng, Xinwang Liu, and Xianjian Zhang. Transfer rein-
forcement learning via meta-knowledge extraction using auto-pruned decision trees. Knowledge-
Based Systems, 242:108221, 2022. doi: 10.1016/J.KNOSYS.2022.108221.

13

https://openreview.net/forum?id=HkxStoC5F7

Published as a conference paper at ICLR 2025

Daniel Lawson and Ahmed H Qureshi. Merging decision transformers: Weight averaging for form-
ing multi-task policies. In 2024 IEEE International Conference on Robotics and Automation
(ICRA), pp. 12942–12948. IEEE, 2024.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, Fujie Huang, et al. A tutorial on energy-
based learning. Predicting structured data, 1(0), 2006.

Jongmin Lee, Cosmin Paduraru, Daniel J Mankowitz, Nicolas Heess, Doina Precup, Kee-Eung Kim,
and Arthur Guez. Coptidice: Offline constrained reinforcement learning via stationary distribution
correction estimation. In International Conference on Learning Representations, 2022a.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Conference on Robot
Learning, pp. 1702–1712. PMLR, 2022b.

Borja G León, Murray Shanahan, and Francesco Belardinelli. In a nutshell, the human asked for
this: Latent goals for following temporal specifications. arXiv preprint arXiv:2110.09461, 2021.

Jianxiong Li, Xianyuan Zhan, Haoran Xu, Xiangyu Zhu, Jingjing Liu, and Ya-Qin Zhang. When
data geometry meets deep function: Generalizing offline reinforcement learning. In The Eleventh
International Conference on Learning Representations, 2023.

Siyuan Li, Rui Wang, Minxue Tang, and Chongjie Zhang. Hierarchical reinforcement learning
with advantage-based auxiliary rewards. Advances in Neural Information Processing Systems,
32, 2019.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent
for multi-task learning. Advances in Neural Information Processing Systems, 34:18878–18890,
2021.

Jinmei Liu, Wenbin Li, Xiangyu Yue, Shilin Zhang, Chunlin Chen, and Zhi Wang. Contin-
ual offline reinforcement learning via diffusion-based dual generative replay. arXiv preprint
arXiv:2404.10662, 2024a.

Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional visual
generation with composable diffusion models. In European Conference on Computer Vision, pp.
423–439. Springer, 2022.

Tenglong Liu, Yang Li, Yixing Lan, Hao Gao, Wei Pan, and Xin Xu. Adaptive advantage-guided
policy regularization for offline reinforcement learning. In International Conference on Machine
Learning, volume 235, pp. 31406 – 31424, 2024b.

Zuxin Liu, Zijian Guo, Haohong Lin, Yihang Yao, Jiacheng Zhu, Zhepeng Cen, Hanjiang Hu, Wen-
hao Yu, Tingnan Zhang, Jie Tan, et al. Datasets and benchmarks for offline safe reinforcement
learning. arXiv preprint arXiv:2306.09303, 2023a.

Zuxin Liu, Zijian Guo, Yihang Yao, Zhepeng Cen, Wenhao Yu, Tingnan Zhang, and Ding Zhao.
Constrained decision transformer for offline safe reinforcement learning. In International Con-
ference on Machine Learning, 2023b.

Zuxin Liu, Jesse Zhang, Kavosh Asadi, Yao Liu, Ding Zhao, Shoham Sabach, and Rasool Fakoor.
Tail: Task-specific adapters for imitation learning with large pretrained models. arXiv preprint
arXiv:2310.05905, 2023c.

Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy
prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In Inter-
national Conference on Machine Learning. PMLR, 2023.

Yu Luo, Tianying Ji, Fuchun Sun, Jianwei Zhang, Huazhe Xu, and Xianyuan Zhan. OMPO:
A unified framework for RL under policy and dynamics shifts. In Forty-first International
Conference on Machine Learning, 2024a. URL https://openreview.net/forum?id=
R83VIZtHXA.

14

https://openreview.net/forum?id=R83VIZtHXA
https://openreview.net/forum?id=R83VIZtHXA

Published as a conference paper at ICLR 2025

Yunhao Luo, Chen Sun, Joshua B Tenenbaum, and Yilun Du. Potential based diffusion motion
planning. In Forty-first International Conference on Machine Learning, 2024b.

Josh Merel, Leonard Hasenclever, Alexandre Galashov, Arun Ahuja, Vu Pham, Greg Wayne,
Yee Whye Teh, and Nicolas Heess. Neural probabilistic motor primitives for humanoid control. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=BJl6TjRcY7.

Josh Merel, Saran Tunyasuvunakool, Arun Ahuja, Yuval Tassa, Leonard Hasenclever, Vu Pham,
Tom Erez, Greg Wayne, and Nicolas Heess. Catch & carry: reusable neural controllers for vision-
guided whole-body tasks. ACM Transactions on Graphics (TOG), 39(4):39–1, 2020.

J Daniel Morrow and Pradeep K Khosla. Manipulation task primitives for composing robot skills. In
Proceedings of International Conference on Robotics and Automation, volume 4, pp. 3354–3359.
IEEE, 1997.

Devang K Naik and Richard J Mammone. Meta-neural networks that learn by learning. In [Proceed-
ings 1992] IJCNN International Joint Conference on Neural Networks, volume 1, pp. 437–442.
IEEE, 1992.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6892–6903. IEEE, 2024.

Pingbo Pan, Siddharth Swaroop, Alexander Immer, Runa Eschenhagen, Richard Turner, and Mo-
hammad Emtiyaz E Khan. Continual deep learning by functional regularisation of memorable
past. Advances in neural information processing systems, 33:4453–4464, 2020.

Leo Pape, Faustino Gomez, Mark Ring, and Jürgen Schmidhuber. Modular deep belief networks
that do not forget. In The 2011 International joint conference on neural networks, pp. 1191–1198.
IEEE, 2011.

Liangzu Peng, Paris Giampouras, and René Vidal. The ideal continual learner: An agent that never
forgets. In International Conference on Machine Learning, pp. 27585–27610. PMLR, 2023.

Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, and Sergey Levine. Mcp: Learning
composable hierarchical control with multiplicative compositional policies. Advances in neural
information processing systems, 32, 2019.

Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned
skill priors. In Conference on robot learning, pp. 188–204. PMLR, 2021.

Edoardo Maria Ponti, Alessandro Sordoni, Yoshua Bengio, and Siva Reddy. Combining parameter-
efficient modules for task-level generalisation. In Proceedings of the 17th Conference of the
European Chapter of the Association for Computational Linguistics, pp. 687–702, 2023.

Akshara Prabhakar, Yuanzhi Li, Karthik Narasimhan, Sham Kakade, Eran Malach, and Samy
Jelassi. Lora soups: Merging loras for practical skill composition tasks. arXiv preprint
arXiv:2410.13025, 2024.

Ahmed H Qureshi, Jacob J Johnson, Yuzhe Qin, Taylor Henderson, Byron Boots, and Michael C
Yip. Composing task-agnostic policies with deep reinforcement learning. In International Con-
ference on Learning Representations, 2020.

Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majum-
dar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimiza-
tion. arXiv preprint arXiv:2409.00588, 2024.

Mark Bishop Ring. Continual learning in reinforcement environments. The University of Texas at
Austin, 1994.

15

https://openreview.net/forum?id=BJl6TjRcY7
https://openreview.net/forum?id=BJl6TjRcY7

Published as a conference paper at ICLR 2025

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in neural information processing systems, 32, 2019.

S Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

Thomas Schmied, Markus Hofmarcher, Fabian Paischer, Razvan Pascanu, and Sepp Hochreiter.
Learning to modulate pre-trained models in rl. Advances in Neural Information Processing Sys-
tems, 36, 2024.

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for contin-
ual learning. In International conference on machine learning, pp. 4528–4537. PMLR, 2018.

AMANDA J C SHARKEY. On combining artificial neural nets. Connection science, 8(3-4):299–
314, 1996.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
International Conference on Learning Representations, 2016.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

James Seale Smith, Yen-Chang Hsu, Lingyu Zhang, Ting Hua, Zsolt Kira, Yilin Shen, and Hongxia
Jin. Continual diffusion: Continual customization of text-to-image diffusion with c-lora. arXiv
preprint arXiv:2304.06027, 2023.

Shagun Sodhani, Mojtaba Faramarzi, Sanket Vaibhav Mehta, Pranshu Malviya, Mohamed Abdel-
salam, Janarthanan Janarthanan, and Sarath Chandar. An introduction to lifelong supervised
learning. arXiv preprint arXiv:2207.04354, 2022.

Lingfeng Sun, Haichao Zhang, Wei Xu, and Masayoshi Tomizuka. Paco: Parameter-compositional
multi-task reinforcement learning. Advances in Neural Information Processing Systems, 35:
21495–21507, 2022.

Lingfeng Sun, Haichao Zhang, Wei Xu, and Masayoshi Tomizuka. Efficient multi-task and transfer
reinforcement learning with parameter-compositional framework. IEEE Robotics and Automation
Letters, 8(8):4569–4576, 2023.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In
2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23–30.
IEEE, 2017.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. nature, 575(7782):350–354, 2019.

Guan Wang, Haoyi Niu, Jianxiong Li, Li Jiang, Jianming Hu, and Xianyuan Zhan. Are expressive
models truly necessary for offline rl? arXiv preprint arXiv:2412.11253, 2024a.

16

Published as a conference paper at ICLR 2025

Lirui Wang, Jialiang Zhao, Yilun Du, Edward H Adelson, and Russ Tedrake. Poco: Policy compo-
sition from and for heterogeneous robot learning. arXiv preprint arXiv:2402.02511, 2024b.

Shenzhi Wang, Qisen Yang, Jiawei Gao, Matthieu Lin, Hao Chen, Liwei Wu, Ning Jia, Shiji Song,
and Gao Huang. Train once, get a family: State-adaptive balances for offline-to-online reinforce-
ment learning. Advances in Neural Information Processing Systems, 36, 2024c.

Yixiao Wang, Yifei Zhang, Mingxiao Huo, Thomas Tian, Xiang Zhang, Yichen Xie, Chenfeng
Xu, Pengliang Ji, Wei Zhan, Mingyu Ding, and Masayoshi Tomizuka. Sparse diffusion policy:
A sparse, reusable, and flexible policy for robot learning. In 8th Annual Conference on Robot
Learning, 2024d. URL https://openreview.net/forum?id=zeYaLS2tw5.

Zhe Wang, Siqi Fan, Xiaoliang Huo, Tongda Xu, Yan Wang, Jingjing Liu, Yilun Chen, and Ya-Qin
Zhang. Emiff: Enhanced multi-scale image feature fusion for vehicle-infrastructure cooperative
3d object detection. In ICRA, 2024e.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In The Eleventh International Conference on Learning
Representations, 2023.

Maciej Wolczyk, Michal Zajac, Razvan Pascanu, Lukasz Kucinski, and Piotr Milos. Continual
world: A robotic benchmark for continual reinforcement learning. Advances in Neural Informa-
tion Processing Systems, 34:28496–28510, 2021.

Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized q-learning for safe offline rein-
forcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp. 8753–8760, 2022.

Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and Xi-
anyuan Zhan. Offline RL with no OOD actions: In-sample learning via implicit value regulariza-
tion. In The Eleventh International Conference on Learning Representations, 2023.

Zhenghai Xue, Qingpeng Cai, Shuchang Liu, Dong Zheng, Peng Jiang, Kun Gai, and Bo An. State
regularized policy optimization on data with dynamics shift. Advances in neural information
processing systems, 36, 2024.

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with soft
modularization. Advances in Neural Information Processing Systems, 33:4767–4777, 2020.

Yongxin Yang and Timothy M Hospedales. Trace norm regularised deep multi-task learning. arXiv
preprint arXiv:1606.04038, 2016.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824–5836, 2020a.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020b.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020c.

Seniha Esen Yuksel, Joseph N Wilson, and Paul D Gader. Twenty years of mixture of experts. IEEE
transactions on neural networks and learning systems, 23(8):1177–1193, 2012.

Haichao Zhang, Wei Xu, and Haonan Yu. Policy expansion for bridging offline-to-online reinforce-
ment learning. In The Eleventh International Conference on Learning Representations, 2023a.

Jinghan Zhang, Junteng Liu, Junxian He, et al. Composing parameter-efficient modules with arith-
metic operation. Advances in Neural Information Processing Systems, 36:12589–12610, 2023b.

17

https://openreview.net/forum?id=zeYaLS2tw5

Published as a conference paper at ICLR 2025

Yinan Zheng, Jianxiong Li, Dongjie Yu, Yujie Yang, Shengbo Eben Li, Xianyuan Zhan, and Jingjing
Liu. Safe offline reinforcement learning with feasibility-guided diffusion model. arXiv preprint
arXiv:2401.10700, 2024.

Ming Zhong, Yelong Shen, Shuohang Wang, Yadong Lu, Yizhu Jiao, Siru Ouyang, Donghan Yu,
Jiawei Han, and Weizhu Chen. Multi-lora composition for image generation. arXiv preprint
arXiv:2402.16843, 2024.

18

Published as a conference paper at ICLR 2025

A LIMITATIONS AND FUTURE WORKS

In this section, we provide detailed discussions about the limitations and their potential solutions.

• Assumption on the expressiveness of the pretrain policy. The main limitation of PSEC
is the assumption that the pre-trained π0 covers a diverse distribution, which allows for
efficient fine-tuning using small add-on LoRA modules. If this assumption does not hold,
learning new skills through parameter-efficient fine-tuning may prove challenging, as sig-
nificantly more parameters might be required to acquire new skills.
Potential solutions: Note that this assumption is mild in relevant papers that utilize LoRA
to learn new skills (Hu et al., 2021; Liu et al., 2023c). To tackle this problem, one straight-
forward solution is to increase the value of LoRA ranks to increase the learning capabilities
of the newly introduced modules. Another simple solution is to leverage the cheap and
abundant out-of-domain data to enhance the distribution coverage of the pretrained π0 to
enable efficient LoRA adaptations.

• Redundant skill expansion. In this paper, PSEC includes policies for all tasks in the skill
library across its lifelong time. Although we adopt LoRA to reduce computational burden
and memory usage, maintaining an extensive library of skill primitives may still lead to
substantial computational costs.
Potential solutions: Note that not all skills should be incorporated into the skill library,
particularly those that are redundant and can be synthesized from other primitives. An
interesting direction for future research is to develop an evaluation metric to assess the
interconnections between different skills, such as the skill diversity (Pertsch et al., 2021;
Eysenbach et al.), to only include essential, non-composable atomic primitives. Such a
strategy could significantly reduce the management costs associated with maintaining the
skill library.

• Hyperparameter-tuning: Another limitation is PSEC introduces another LoRA modules
to learn new skills, which can introduce additional hyperparameters required to be tuned.
Potential solutions: This limitation is widely existed in relevant works that try to reuse prior
knowledge to learn new skills (Liu et al., 2023c; Clark et al., 2024; Wang et al., 2024d; Peng
et al., 2019; Barreto et al., 2018), since almost all papers require additional parameters or
regularization to adapt to the new skills. In this paper, we have ablated the robustness of
PSEC against varied LoRA ranks, and demonstrate consistent superiority over the naive
MLP modules in Figure 8, highlighting the robustness of PSEC for hyperparameter tuning.

• Simple context-aware compositional modular: We employ a simple context-aware mod-
ular α(s; θ) to dynamically combine different primitives. This operation is simple and may
not fully leverage the shared structure across skills for the target task.
Potential Solutions: However, in our paper, we have demonstrated the superior advantages
of this simple context-aware modular, as shown in Figure 6c. One interesting future direc-
tion is to adopt a more advanced model architecture, training objective, or more flexible
gating approach to optimize the modular.

B DISCUSSIONS ON MORE RELATED WORKS

Tabula Rasa. Tabula rasa learning is one popular paradigm for diverse existing decision-making
applications, such as robotics and games (Silver et al., 2017; Andrychowicz et al., 2020; Berner
et al., 2019; Vinyals et al., 2019). It directly learns policies from scratch without the assistance of
any prior knowledge. However, it suffers from notable drawbacks related to poor sample efficiency
and constraints on the complexity of skills an agent can acquire (Agarwal et al., 2022).

Finetune-based Methods. Some finetune-based methods aim to accelerate policy learning by lever-
aging prior knowledge. This knowledge may come from pretrained policy or offline data Liu et al.
(2024b); Wang et al. (2024a), such as Offline-to-online RL (Nair et al., 2020; Lee et al., 2022b;
Agarwal et al., 2022) and transfer RL (Barreto et al., 2018; Li et al., 2019; Lan et al., 2022). Some
methods maintain a policy library that contains pretrained policies and adaptively selects one policy
from this set to assist policy training (Kim et al., 2024; Wang et al., 2024c; Barreto et al., 2018).
However, they are generally restricted to single-task scenarios where all policies serve the same

19

Published as a conference paper at ICLR 2025

task (Zhang et al., 2023a), or only sequentially activate one policy in the pretrained sets, which
greatly limits the expressiveness of the pretrained primitives (Li et al., 2019). Our method, on the
contrary, can both leverage multi-task knowledge to fulfill the new task, and can simultaneously
activate all skills to compose more complex behaviors.

MoE in decision making. The recent SDP (Wang et al., 2024d) is particularly relevant to our
work. Specifically, SDP employs Mixture of Experts (MoE) (Shazeer et al., 2016) to encode skills
as flexible combinations of forward path gated by distinct routers, allowing for efficient adaptation
to new tasks by fine-tuning newly introduced expert tokens and task-specific routers. However, SDP
necessitates that the pretrained policy π0 be modeled with MoE layers, which imposes additional
requirements on the model architecture. In contrast, our approach does not impose any constraints on
the structure of the pretrained network and allows for the direct incorporation of new skills as plug-
and-play LoRA modules. Moreover, when we identify a skill that is underperforming, we can easily
modify the skill library by simply removing its plug-and-play LoRA modules. In contrast, using
MoE limits this flexibility in managing different skills, making it challenging to mitigate the side
effects caused by suboptimal skills. Therefore, PSEC offers a more flexible approach to managing
the skill library, making it more feasible to scale up and incorporate a larger number of skills.

LoRA in decision making. Other relevant works such as TAIL (Liu et al., 2023c), LoRA-
DT (Huang et al., 2024) and L2M (Schmied et al., 2024) also employ LoRA to encode skills.
However, they solely investigate the parameter-isolation property of LoRA to prevent catastrophic
forgetting, while overlooking the potential to merge different LoRA modules to interpolate new
skills. Moreover, TAIL only studies the IL domain, L2M and LoRA-DT only study the RL domain,
while PSEC both explore the effectiveness in RL and IL settings.

LoRA for composition in other domains. (Ponti et al., 2023; Clark et al., 2024; Huang et al.,
2023; Zhong et al., 2024; Prabhakar et al., 2024) use LoRA for multi-task learning but using a fixed
combination of LoRA modules, focusing on static settings like language model or image generation,
thus limiting its expressiveness of the pretrained LoRA modules and flexibility of composition. In
contrast, PSEC combines different LoRA via a context-aware modular, maximizing the expressive-
ness of pretrained skills to flexibly compose new skills, which is crucial for decision making since
the real-time adjustment is required to handle the dynamical problems as shown in Figure 5.

Figure 9: Illustrative comparisons between PSEC and other modularized multitask learning frameworks when
deployed to continual learning settings.

Modularized skills for multitask learning. Multitask learning methods attempt to leverage the
complementary benefits and commonalities across different tasks to enhance the cross-task gener-
alization and capabilities (Wang et al., 2024d; Yang et al., 2020; Sun et al., 2022; 2023; Ruder,
2017). To achieve effective skill sharing, two primitive paradigms are introduced, including Hard
Parameter Sharing and Soft Parameter Sharing (Ruder, 2017), as shown in Figure 9. All these
methods demonstrate a modularized structure, where separate parameters are required to solve dif-

20

Published as a conference paper at ICLR 2025

ferent tasks. Not only enjoying the benefits of multitask learning, this modularized design allows
for efficient adaptation to new tasks by exploiting the shareable knowledge stored in different mod-
ules (Happel & Murre, 1994; SHARKEY, 1996; Auda & Kamel, 1998; 1999; Sodhani et al., 2022;
Andreas et al., 2016; Alet et al., 2018; Ponti et al., 2023; Clark et al., 2024; Huang et al., 2023;
Zhong et al., 2024; Prabhakar et al., 2024).

Hard parameter sharing approaches (Caruana, 1993; Sun et al., 2022; 2023; Baxter, 1997; León
et al., 2021) aim to learn a shared feature that is strong and generalizable enough to capture the
commonalities across all different tasks. This is achieved by developing a multi-head style structure,
where different heads solve different tasks and all heads share some common layers (Sun et al.,
2022; 2023; León et al., 2021; Bakker & Heskes, 2003). In this structure, zero-shot generalization
to new tasks becomes possible if the shared layers can capture some generic features, following the
spirits of meta learning (Finn et al., 2017; Gordon et al., 2019; Naik & Mammone, 1992; Lan et al.,
2022). PSEC can be regarded as one specific type of hard parameter sharing method since different
LoRA modules exploit a shared π0. However, note that each LoRA module in PSEC is sequentially
and independently optimized, thus making it easier to capture the task-specific features and avoid
the potential gradient conflicts across different skills (Yu et al., 2020a; Liu et al., 2021). Previous
methods, however, may introduce some gradient conflicts across different tasks that impede policy
learning (Sun et al., 2022; Yang et al., 2020; Caruana, 1997), or suffer from collapsing to an entropic
state and fail to encode task-specific features (Ponti et al., 2023).

Soft parameter sharing approaches (Yang et al., 2020; Wang et al., 2024d; Liu et al., 2024a; Duong
et al., 2015; Yang & Hospedales, 2016; Ruder, 2017) are similar to the hard ones, with the differ-
ences primarily in the shared features. Instead of directly employing shared layers (Bakker & Hes-
kes, 2003; Caruana, 1993; Sun et al., 2022; León et al., 2021), soft parameter sharing approaches
adopt regularizations to enforce a “shared” feature across tasks, such as minimizing the L2 distance
or cosine similarity across the features for different tasks (Duong et al., 2015; Yang & Hospedales,
2016; Ruder, 2017), adopting flexible structures like MoE layers (Shazeer et al., 2016; Yuksel et al.,
2012; Wang et al., 2024d), soft modular (Yang et al., 2020), or resorting moving average across dif-
ferent features (Liu et al., 2024a; Lawson & Qureshi, 2024). These methods enjoy more flexibility
than hard parameter sharing but may suffer from potential instability caused by improper regular-
izations and outlier tasks. For instance, Liu et al. (2024a); Lawson & Qureshi (2024) may undergo
performance degradation without appropriate averaging weights if they are trying to combine a sub-
optimal skill learned on limited data.

Modularized skills for continual learning and compositions. More critically, the modularized
design naturally facilitates continual evolvement by absorbing new skills in new modules in a
parameter-isolation manner (Sodhani et al., 2022). This is one key advantage of modularized skills
over traditional continual learning approaches since methods like EWC (Kirkpatrick et al., 2017),
Rehearsal (Rolnick et al., 2019), Functional Regularization (Pan et al., 2020) often exhibit some
catastrophic forgetting. The modularization method, however, can address this problem fundamen-
tally by learning new parameters without disrupting pretrained ones. Along this line, numerous
works also adopt modularized structure in a hard or soft manner as we discussed earlier (Ring,
1994; Pape et al., 2011; Huang et al., 2023; Andreas et al., 2016; Alet et al., 2018; Clark et al., 2024;
Zhong et al., 2024; Prabhakar et al., 2024; Liu et al., 2024a) like PSEC. However, PSEC differs fun-
damentally in three key axes, including how to obtain different modules, how to compose modules,
and where to compose modules.

• How to obtain different modules? Many previous methods typically assume a fixed set
of modules during pretraining and jointly train all modules at once following a multitask
learning paradigm (Ring, 1994; Pape et al., 2011; Schwarz et al., 2018; Ponti et al., 2023;
Alet et al., 2018). Although this joint training approach enjoys the potential to exploit
more shared features across tasks. The learned modules may fail to capture task-specific
features, becoming general-purpose features and collapsing to highly entropic status, if the
data distribution is very diverse and many outlier tasks exist (Ruder, 2017; Ponti et al.,
2023). In contrast, PSEC independently trains each LoRA by exploiting a shared, frozen,
and general-purpose π0, avoiding lots of conflicts across different tasks and avoiding the
risks of collapsing (Yu et al., 2020a; Sun et al., 2022). We conduct empirical evaluations in
our rebuttal to demonstrate this.

21

Published as a conference paper at ICLR 2025

• How to compose modules? PSEC can iteratively expand its skill library to include more
skills and then combine them to form complex ones, which is one common advantage of all
modularized approaches. So, previous works can also iteratively expand their modules to
encode new skills and then compose the pretrained ones to tackle new tasks, such as (Ring,
1994; Morrow & Khosla, 1997; Pape et al., 2011; Ponti et al., 2023; Alet et al., 2018; Huang
et al., 2023; LeCun et al., 2006; Liu et al., 2022; Du et al., 2023). However, most previous
works typically resort to a simple fixed combination of different modules, such as manually
tuned weights (Liu et al., 2022; Du et al., 2023), thus significantly limiting the flexibility to
handle decision-making scenarios where real-time composition adjustment is required to
satisfy the dynamic demands. For instance, 2n = C0

n + C1
n + C2

n + ... + Cn
n skills could

be composed of n different (non-redundant) skills by using binary compositional weight
(0 for deactivate and 1 for activate). So, naively adopting a fixed combination of different
skills can be very suboptimal. In contrast, PSEC introduces a context-aware composition
to dynamically combine different skills, greatly enhancing the expressiveness of the skill
libraries by interpolating or extrapolating across different skills.

• Where to compose modules? Another key problem that should be investigated is where to
compose different modules. Directly in the original output space (noise space (Ren et al.,
2024; Zhang et al., 2023b) or action space (Peng et al., 2019; Qureshi et al., 2020; LeCun
et al., 2006) or the parameter space (Huang et al., 2023; Prabhakar et al., 2024; Pape et al.,
2011; Zhong et al., 2024). PSEC systematically investigates the advantages of skill compo-
sitions in parameter space over the noise space and action space, offering clear guidance for
future research to expand and compose skills in parameter spaces rather than noise/action
spaces. Also, intuitively, Figure 9 shows that PSEC holds the potential to exploit more
complementary features or commonalities across tasks than naive hard parameter sharing
or soft parameter sharing. Specifically, PSEC can fully leverage information across tasks to
facilitate new task learning by employing the compositional network to combine all avail-
able parameters. Hard/Soft parameter sharing, however, must rely on a well-performed
shared feature produced by the shared layers while discarding all other heads (Liu et al.,
2024a; Lawson & Qureshi, 2024).

Some works use logical options for skill composition (Araki et al., 2021) but require significant
human effort for skill management, limiting scalability. Additionally, Araki et al. (2021) focuses
on efficient pretraining, not on fast adaptation/continual improvement. In contrast, PSEC targets the
later setups and minimizes human effort by incorporating new skills as LoRA modules, which are
then combined through auto-learned compositional networks.

C EXPERIMENTAL SETUPS

C.1 MULTI-OBJECTIVE COMPOSITION

Training details of PSEC. In this setting, we have four networks required to train: the behavior
policy π0, the safety policy π1 that minimizes the cost, the reward policy π2 that maximizes the re-
turn, and the context-aware modular α(s; θ) ∈ R2. For each task, we first pretrain π0 parameterized
by W0 as behavior policy by minimizing the following objective on the full DSRL dataset D (Liu
et al., 2023a) to ensure a diverse pretrained distribution coverage:

Lπ0
(W0) = Et∼U,ϵ∼N (0,I),(s,a)∼D

[∥∥∥ϵ− ϵW0

(√
ρ̄ta+

√
1− ρ̄tϵ, t, s

)∥∥∥2] . (10)

Then, we equip the agent with the same dataset D but provide feasible label h and reward labels r,
forming the dataset Dh = {(s, a, h, s′)} and Dr{(s, a, r, s′)}. Then we train π1 and π2 based on
these datasets by optimizing their newly introduced LoRA modules ∆W1 and ∆W2 via minimizing
the following objectives in Eq. (11-12):

Lπ1(∆W1) = Et∼U,ϵ∼N (0,I),(s,a)∼Dh

[
wh(s, a)

∥∥∥ϵ− ϵW1

(√
ρ̄ta+

√
1− ρ̄tϵ, t, s

)∥∥∥2] , (11)

Lπ2
(∆W2) = Et∼U,ϵ∼N (0,I),(s,a)∼Dr

[
wr(s, a)

∥∥∥ϵ− ϵW2

(√
ρ̄ta+

√
1− ρ̄tϵ, t, s

)∥∥∥2] , (12)

22

Published as a conference paper at ICLR 2025

where the weights of LoRA augmented layer are W1 = W0 + 16∆W1 and W2 = W0 + 16∆W2

as defined in Eq. (5). wh(s, a) := exp(−A∗
h(s, a)) and wr(s, a) := exp(A∗

r(s, a)) are the weight-
ing function derived from the optimal feasible value function A∗

h(s, a) = Q∗
h(s, a) − V ∗

h (s) and
reward value function A∗

r(s, a) = Q∗
r(s, a) − V ∗

r (s, a), optimized via expectile regression follow-
ing (Kostrikov et al., 2022; Zheng et al., 2024), where Q∗

h(s, a) and V ∗
h (s) can be obtained via

minimizing Eq. (13-14), Q∗
r(s, a) and V ∗

r (s) can be obtained via minimizing Eq. (15-16):
LVh

= E(s,a)∼Dh [Lτ
rev (Qh(s, a)− Vh(s))] , (13)

LQh
= E(s,a,s′,h)∼Dh

[
(((1− γ)h(s) + γmax{h(s), Vh(s

′)})−Qh(s, a))
2
]
, (14)

LVr
= E(s,a)∼Dr [Lτ (Qr(s, a)− Vr(s))] , (15)

LQr
= E(s,a,s′,r)∼Dr

[
(r + γVr(s

′)−Qr(s, a))
2
]
. (16)

where Lτ (u) = |τ − I(u < 0)|u2 and Lτ
rev(u) = |τ − I(u > 0)|u2 with τ ∈ (0.5, 1). By doing so,

π1 and π2 become one safety policy that avoids unsafe outcomes and one reward policy that tries to
maximize the cumulative returns, respectively.

Then, we train our context-aware modular network α(s; θ) to combine π0,1,2 to collaboratively
tackle the safe offline RL problem. We filter the Top-30 trajectories with the highest rewards and
costs below 5 from the dataset D to form a small near-expert dataset D∗ that obtains a good balance
among distributional shift, reward maximization and safety constraint. Then, we train α(s; θ) by
minimizing the following imitation learning loss based on the D∗:

L(θ) = Et∼U,ϵ∼N (0,I),(s,a)∼D∗

[∥∥∥ϵ− ϵW

(√
ρ̄ta+

√
1− ρ̄tϵ, t, s

)∥∥∥2] , (17)

where W = W0 +
∑2

i=1 αi(s; θ)∆Wi as defined in Eq. (7).

We train π0 for 1M gradient steps with a batch size of 2048 to ensure a good performance of π0.
Then, we only train π1 and π2 for 50K gradient steps, for the efficiency of LoRA modules. For
α(s; θ), we only train it for 1K gradient steps since all decomposed policies including π0,1,2 are
ready to be composed, which can significantly reduce the computational burden leveraging these
pretrained policies. Summarized hyperparameters can be found in Table 9.

Baselines. For FISOR (Zheng et al., 2024), CDT (Liu et al., 2023b), COptiDICE (Lee et al., 2022a),
CPQ (Xu et al., 2022) and BC, we adopt the results from FISOR (Zheng et al., 2024). For NSEC
and ASEC results, we only change the compositional stages, and meanwhile keep all other training
details the same to ensure a fair comparison. Specifically, the context-aware modular for NSEC is
trained via the following reparameterization method instead of the one in Eq. (12):

ϵNSEC = ϵ0 +

2∑
i=1

αi(s; θ)ϵi, (18)

where ϵ0,1,2 is generated from networks with layers of W0, W1 = W0 + 16∆W1 and W2 = W0 +
16∆W2, respectively. We can see that the composition in Eq. (18) between skills happens in the
noise space, and thus we denote it as NSEC (noise skill expansion and composition).

For ASEC, we directly compose the generated actions of different policies:

aASEC = a0 +

2∑
i=1

αi(s; θ)ai (19)

where a0,1,2 are the actions generated from the denoising process in Eq. (2) using the predicted noise
ϵ0,1,2 generated by networks with layers of W0, W1 = W0 + 16∆W1 and W2 = W0 + 16∆W2,
respectively. The composition happens in action space, and thus we denote it as ASEC (action skill
expansion and composition).

C.2 CONTINUAL POLICY SHIFT

To evaluate PSEC’s ability to continually evolving its capabilities when tackling new challenges,
we conduct experiments on DeepMind Control Suite (DMC) (Tassa et al., 2018), where a walker

23

Published as a conference paper at ICLR 2025

agent is progressively required to stand, walk, and run, as shown in Figure 11. We use three expert
datasets including walker-stand DT0

e , walker-walk DT1
e , and walker-run DT2

e , released by Bai et al.
(2024) for the policy learning. Specifically, DT0

e , DT1
e and DT2

e contains 1000, 10 and 10 trajectories,
respectively. DT1

e and DT2
e contain only a handful of data because we aim to test if the agent can

leverage the knowledge from the standing skill to efficiently adapt to new tasks. We first pretrain π0

on the large DT0
e to obtain the basic standing policy via minimizing the following behavior cloning

loss:

Lπ0(W0) = E
t∼U,ϵ∼N (0,I),(s,a)∼DT0

e

[∥∥∥ϵ− ϵW0

(√
ρ̄ta+

√
1− ρ̄tϵ, t, s

)∥∥∥2] . (20)

Stand→ Walk (S→ W) task. Then, we can integrate the walking skill π1 into the skill library Π by
optimizing the following objective:

Lπ1
(∆W1) = E

t∼U,ϵ∼N (0,I),(s,a)∼DT1
e

[∥∥∥ϵ− ϵW1

(√
ρ̄ta+

√
1− ρ̄tϵ, t, s

)∥∥∥2] , (21)

where W1 = W0 + 16∆W1. Then, we train a context-aware modular αwalk(s; θ1) ∈ R to combine
π0 and π1 to jointly tackle the walking task:

L(θ1) = E
t∼U,ϵ∼N (0,I),(s,a)∼DT1

e

[∥∥∥ϵ− ϵWwalk

(√
ρ̄ta+

√
1− ρ̄tϵ, t, s

)∥∥∥2] , (22)

where Wwalk = W0 + αwalk(s; θ1)∆W1. In this setting, we hope the final policy parameterized
by Wwalk can outperform the naive policy that is trained from scratch on the small data DT1

e to
demonstrate the significance of utilizing the prior knowledge in π0 for efficient task adaptation.

Stand→Run (S→R) task. Here, the adaptation for the running policy π2 is similar. We can replace
W1 in Eq. (21) with W2 = W0 + 16∆W2 and DT1

e as DT2
e to train π2 parameterized by ∆W2.

Additionally, we replace Wwalk in Eq. (22) as Wrun = W0 + αrun(s; θ2)∆W2 and DT1
e as DT2

e to
train αrun(s; θ2) to combine π0 and π2 to generate the running skill.

Stand+Walk→Run (S+W→R) task. After obtaining π0, π1, and π2, the composition for the run-
ning skill becomes very simple. We can replace Wwalk in Eq. (22) as W = W0+

∑2
i=1 αi(s; θ)∆Wi

to train α(s; θ) ∈ R2 to combine π0,1,2 to generate the running skill. In this setup, we aim to prove
that utilizing the library that contains π0,1,2 (S+W→R) can outperform π0,2 (S→R) to show the
learning capability of PSEC can gradually grow after incorporating more skill primitives.

We train π0 for 1M gradient steps with a batch size of 1024 to ensure a good performance of π0.
Then, we only train π1 and π2 for 10K gradient steps with 10 trajectories thanks to the efficiency
of LoRA. For αwalk(s; θ), αrun(s; θ), α(s; θ), we only train them for 1K gradient steps since the
decomposed policies including π0,1,2 in the skill library are ready to be composed, which can sig-
nificantly reduce the computational burden leveraging these pretrained policies. The summarized
hyperparameters can be found in Table 10.

Baselines. We compare PSEC with other composition methods NSEC and ASEC, the Scratch
method, and the variant PSEC (MLP). NSEC and ASEC train the context-aware modular repre-
sented by Eq. (18) and Eq. (19), respectively. Scratch method means training a policy from scratch
by IDQL (Hansen-Estruch et al., 2023), since we build our model based on the IDQL method.
PSEC (MLP) replaces the LoRA matrices with the MLP network in PSEC.

Experimental setups for Figure 6. For Figure 6(a), we evaluate the sample efficiency of PSEC
framework. Specifically, we evaluate on the S→ W task with different data quantities of the W
dataset DT1

e , including 10, 30, 50, and 100 trajectories, trained with 10K, 30K, 50K, and 100K
training steps, respectively. We compare PSEC with other baselines to demonstrate the sample
efficiency of parameter-level composition over other composition methods.

For Figure 6(b), we visualize the training curves of PSEC, PSEC (MLP) and Scratch for the S→W
task trained solely on Eq. (21) without the composition in Eq. (22) to demonstrate the efficiency of
LoRA modules over the naive MLPs and the efficiency to leverage pretrain policies. In this setting,
DT1

e contains 10 trajectories and we train each method for 10K training steps.

24

Published as a conference paper at ICLR 2025

For Figure 6(c), w/o CA represents the compositional weight α is tuned by humans, rather than
auto-generated by our context-aware modular αθ. We compare PSEC, NSEC, ASEC with their
corresponding w/o CA variants to further demonstrate the importance of dynamical compositions.

We conduct similar experiments on the S→R task and the results are presented in Figure 12. Note
that the running skill is more difficult. PSEC shows marked superiority on this challenging setting.

10 30 50 100
Number of Trajectories

0

250

500

750

1000

Sc
or

es

S W with different data quantity of W task and w or w/o CA

ASEC w/o CA
ASEC
Scratch

NSEC w/o CA
NSEC

PSEC w/o CA
PSEC

Figure 10: Results in the policy shift setting. Each value is averaged over 10 episodes and 5 seeds.

Stand Walk Run

Figure 11: Continual evolution on DeepMind Control Suite for Continual policy shift.

10 30 50 100
Number of Trajectories

0

200

400

600

Sc
or

es

S R with different data quantity of R task
Scratch
ASEC

NSEC
PSEC

(a) Sample efficiency.

0k 2k 4k 6k 8k 10k
Training Steps

100

200

300

Sc
or

es

S R without composition on R task
PSEC
PSEC(MLP)
Scratch

(b) Training efficiency.

PSEC NSEC ASEC
Methods

0

100

200

300

Sc
or

es

Performance w and w/o Context-Aware on R task
PSEC
PSEC w/o CA
NSEC
NSEC w/o CA
ASEC
ASEC w/o CA

(c) Context-aware efficiency.

Figure 12: Comparisons on sample and training efficiency and the effectiveness of context-aware modular. S,
R denote stand, run, respectively. Each value is averaged over 10 episodes and 5 seeds.

C.3 DYNAMIC SHIFT

To further validate the versatility of PSEC, we conduct experiments in a practical and common
setting: dynamic shift. We conduct experiments on the D4RL benchmark, where we modify the
dynamics and morphology of locomotive robots to reflect the dynamics changes. Our goal is to
leverage the policies based on the source datasets DP0

o and a small amount of the target datasets
DP1

o to adapt to the target task quickly. Specifically, the datasets DP0
o contain 20K transitions with

3 types of dynamic modifications on P0: 1) Friction: the friction coefficient of the robot is modi-
fied; 2) Gravity: the gravity acceleration in the simulation environment is changed. 3) Thigh: the
thigh is enlarged to double its original size to produce a morphology gap on the embodiment. The
target datasets DP1

o are sampled from the D4RL benchmark with un-modified dynamics P1, includ-
ing 6 types: halcheetah-medium-v2, halfcheetah-medium-replay-v2, halfcheetah-medium-expert-
v2, walker2d-medium-v2, walker2d-medium-replay-v2, walker2d-medium-expert-v2, as shown in
Figure 13. Each dataset type of DP1

o contains solely 10K transitions, which are too limited to train
good policies directly on the target dynamics P1 from scratch.

We first pretrain π0 with dataset DP0
o for 20k training steps by behavior cloning via minimizing the

following objectives:

25

Published as a conference paper at ICLR 2025

×	#$

Thigh Size ×". $	

0.25 × Friction

Source domain

Target domain

Thigh Size
×". $	

0.5 × Friction

Source domain

Target domain

Halfcheetah Task Walker2d Task

Figure 13: The illustration of the source and target domains for the dynamic shift setting.

Lπ0
(W0) = E

t∼U,ϵ∼N (0,I),(s,a)∼DP0
o

[∥∥∥ϵ− ϵW0

(√
ρ̄ta+

√
1− ρ̄tϵ, t, s

)∥∥∥2] . (23)

Then, we try to use the limited P1 to adapt π0 to the target domain . PSEC uses LoRA to train a new
policy π1 with the pretrained source policy π0 by minimizing the following objectives:

Lπ1(∆W1) = E
t∼U,ϵ∼N (0,I),(s,a)∼DP1

o

[
wr(s, a)

∥∥∥ϵ− ϵW1

(√
ρ̄ta+

√
1− ρ̄tϵ, t, s

)∥∥∥2] , (24)

where W1 = W0 + 16∆W1. Finally, PSEC uses the context-aware modular α(s; θ) to integrate
policy π0, π1 using the target dataset DP1

o to transfer to the target dynamics P1. The context-aware
modular α(s; θ) is trained for only 1k training steps by minimizing the following objectives:

L(θ) = E
t∼U,ϵ∼N (0,I),(s,a)∼DP1

o

[∥∥∥ϵ− ϵW

(√
ρ̄ta+

√
1− ρ̄tϵ, t, s

)∥∥∥2] , (25)

where W = W0 + α(s; θ)∆W1 as defined in Eq. (7).

We train π0 for 1M gradient steps with a batch size of 1024 to ensure a good performance of π0.
Then, we only train π1 for 20k gradient steps, for the efficiency of LoRA modules. For α(s; θ),
we only train it for 1K gradients steps since all decomposed policies including π0,1 are ready to be
composed, which can efficiently adapt to the target domain leveraging the pretrained source policies.
Summarized hyperparameters can be found in Table 11.

Baselines. We compare PSEC with other methods in dynamic shift settings, including behavioral
cloning (BC), offline RL approaches like CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2022),
and model-based methods such as MOPO (Yu et al., 2020c). Additionally, we evaluate more gen-
eralizable offline RL methods, specifically DOGE (Li et al., 2023) and TSRL (Cheng et al., 2023),
which have demonstrated superiority in small sample regimes. The baseline results for comparison
are sourced from the TSRL paper (Cheng et al., 2023), which reports state-of-the-art performance in
these regimes. Furthermore, we assess policies trained on combinations of the offline datasets DP0

o
and DP1

o under various dynamics settings, referred to as Joint train (Gravity), Joint train (Friction),
and Joint train (Thigh). These combinations involve training with one source dataset under dy-
namic shifts (e.g., changes in gravity, friction, or thigh size) and target datasets such as halfcheetah-
medium-v2, halfcheetah-medium-replay-v2, halfcheetah-medium-expert-v2, walker2d-medium-v2,
walker2d-medium-replay-v2, and walker2d-medium-expert-v2. In order to maintain fairness, the
joint train method is trained in the same way as PSEC is trained on the source datasets. The results
and training curves of PSEC across these settings are presented in Table 8 and Figure 20, respec-
tively. These comparisons showcase the effectiveness of PSEC under dynamic shifts and small
sample conditions.

26

Published as a conference paper at ICLR 2025

C.4 T-SNE EXPERIMENTAL SETUPS FOR FIGURE 4

To provide empirical support of the advantages of parameter-level composition over other levels of
composition, we visualize the t-SNE (Van der Maaten & Hinton, 2008) projection of data samples
in different spaces. Specifically, for each dataset DT0

e , DT1
e , DT2

e in the continual policy shift setting
in Section C.2, we randomly sample 512 data samples (s, a), which forms three types of data that
encode the standing, walking and running skill, respectively. In the action space, we directly utilize
t-SNE projection to map these sampled data into a 2-dimentional space in Figure 4 (c). For the noise
space, we add 1 step of noise on the sampled actions following the forward diffusion process in
Eq. (1) and get the tuple (s, a1) for different skills. Then, we generate the noise based on this noisy
tuples and visualize their t-SNE projections in Figure 4 (b). In parameter-space, we feed the noisy
tuples (s, a1) into the trained networks and get the output features of the middle LoRA augmented
layers. Then, we project these features using t-SNE in Figure 4 (a).

D MORE EXPERIMENTAL RESULTS

Initialize Standing still Fall downStanding still

≈

0 200 400 600 800 1000
Steps

1.0

0.0

Stand
Run

Co
m

po
si

tio
na

lw
ei

gh
ts

(a) Fixed composition on S→R task

Initialize

≈

≈

Run

≈

0 200 400 600 800 1000

Co
m

po
si

tio
na

lw
ei

gh
ts

0.0

0.5

1.0

1.5 Stand
Run

Steps

(b) PSEC on S→R task

Figure 14: Outputs weights of the context-aware modular on DeepMind Control

D.1 THE EFFECTIVENESS OF THE CONTEXT-AWARE MODULAR

Context-aware modular for the continual policy shift. To further explore the effectiveness of
the context-aware module, we employ it to analyze the trajectories generated by policies composed
using fixed compositional weights. Specifically, for the S→R task in Section C.2, the fixed com-
position method denote Wrun = W0 + α∆W2, which uses a fixed α = 16 to compose π0 and
π2. Figure 14 (a) shows that naively using fixed compositional weights might accidentally stuck in
some local suboptimal behavior such as standing still or falling down. We can clearly observe that
our context-aware modular provides corresponding responses to correct these undesired behaviors.
Therefore, it is necessary to adjust the weights of different strategies to fit the current states. Fig-
ure 14 (b) presents the trajectories generated by PSEC. It clearly demonstrates that by utilizing the
context-aware modular, the agent can make subtle adjustments between skills and stably run across
the entire episodes.

D.2 THE PARAMETER EFFICIENCY OF PSEC

Parameter efficiency. To evaluate the parameter efficiency of PSEC, we compare its parameter
count and performance on various tasks against both the Scratch method and PSEC (MLP). The
parameter count for PSEC includes the LoRA parameters and context-aware parameters specific to
the walker-walk or walker-run tasks. The Scratch method represents training the policy from scratch
with standard MLP. PSEC (MLP), which substitutes the LoRA weights with a standard MLP and
retains the context-aware modular, has a higher parameter count than the Scratch method. The
parameter counts are illustrated in Figure 15. In terms of performance, the results from the Deep-
Mind Control Suite (DMC) tasks, as shown in Figures 6 (b) and 12 (b), indicate that PSEC achieves
significantly better performance despite having only 7.58% of the parameters used in the Scratch
method. This performance advantage over both the Scratch method and PSEC (MLP) demonstrates
that PSEC possesses strong parameter efficiency, effectively leveraging a smaller number of param-

27

Published as a conference paper at ICLR 2025

eters for superior task performance. In this way, PSEC can leverage and expand upon its existing
knowledge base in novel situations to enhance learning efficiency and adaptability.

0 1 2 3 4 5 6 7
Parameter Count 1e6

PSEC

Scratch

PSEC (MLP)

(7.58% of Scratch)

Comparison of model parameters

Figure 15: Comparison of Model Parameters: The parameter count for PSEC is approximately 7.58% of
Scratch, demonstrating a significantly smaller model size while maintaining strong parameter efficiency, effec-
tively leveraging a smaller number of parameters for superior task performance..

E MORE EXPERIMENTAL DETAILS

E.1 DESCRIPTION OF TASKS

We conduct experiments on 9 MetaDrive tasks and 8 Bullet-Safety-Gym tasks in the DSRL bench-
mark (Liu et al., 2023a). The visualization of the environments is shown in Figure 16. The tasks
aim to learn policy from different level datasets such that the policy satisfies a safety constraint
(normalized cost < 1) and achieves higher rewards.

MetaDrive. It leverages the Panda3D game engine to simulate realistic driving scenarios. The
tasks are categorized as {Road}{Vehicle}, where “Road” encompasses three levels of difficulty
for self-driving cars: easy, medium, and hard, while “Vehicle” represents four levels of surrounding
traffic density: sparse, mean, and dense. In MetaDrive’s autonomous driving tasks, costs are incurred
from three safety-critical scenarios: (i) collision, (ii) out of road, and (iii) over-speed.

Bullet-Safety-Gym. The environments are built on the PyBullet physics simulator. They feature
four types of agents: Ball, Car, Drone, and Ant, alongside two task types: Circle and Run. Tasks are
designated as {Agent}{Task}, combining the agent and the corresponding task type.

(a) MetaDrive (b) Bullet-Safety-Gym
Figure 16: Visualization of the simulation environments and representative tasks of MetaDrive and Bullet-
Safety-Gym. The figure is credited to Liu et al. (2023a).

E.2 ILLUSTRATION OF THE RECORDED DATA

To get a more intuitive look at the recorded data, we calculate the total reward and total cost for
each trajectory in the datasets. These values are then plotted on a two-dimensional plane, where

28

Published as a conference paper at ICLR 2025

the x-axis corresponds to the total cost and the y-axis to the total reward. The results are shown in
Figure 18 in the Appendix E of the paper. The plot highlights the dataset’s diversity, particularly
in how it captures a range of trajectory behaviors. The reward frontiers relative to cost illuminate
the task’s complexity, as the shape of these frontiers can significantly influence the challenges faced
by offline learners. Trajectories offering high rewards but incurring high costs pose an alluring
yet risky opportunity, often testing the balance between optimizing performance and maintaining
safety constraints. This duality underscores the importance of robust algorithms that can navigate
the trade-off effectively.

E.3 ADVANTAGE OF THE BENCHMARK

By generating diverse datasets across many environments with systematically varied complexities,
the DSRL benchmark creates a rich and representative evaluation suite. This diversity ensures that
our method is tested under a wide range of conditions, capturing different task structures, safety con-
straints, and levels of stochasticity. Meanwhile, the DSRL benchmark includes multiple objectives,
making it well-suited for testing the flexibility and efficiency of our method in handling new tasks.
Providing diverse datasets across varying difficulty levels and incorporating multiple optimization
goals enables a comprehensive evaluation of our method’s adaptability and performance across a
broad spectrum of scenarios.

F MORE EXPERIMENTS ON META-WORLD

To evaluate the effectiveness of PSEC on more complex experiments, we conduct experiments on
Meta-World benchmark (Yu et al., 2020b), which consists of 50 diverse tasks for robotic manipu-
lation, such as grasping, manipulating objects, opening/closing a window, pushing buttons, lock-
ing/unlocking a door, and throwing a basketball. We compare PSEC with the strong baseline
L2M (Schmied et al., 2024). Next, we will elaborate on the three experiment settings in our pa-
per.

Figure 17: Visualization of the simulation environments and representative tasks of Meta-World.

F.1 CONTINUAL LEARNING SETTING

Following Continual world (Wolczyk et al., 2021) and L2M (Schmied et al., 2024), we split the
50 tasks into 40 pre-training tasks and 10 fine-tuning unseen tasks (CW10). The training datasets
are the same as the datasets collected by L2M. We train 10K steps per task in CW10, which is
only 10% training steps of L2M, with a batch size of 1024. After every 10K update steps, we
switch to the next task in the sequence. Then we evaluate it on all tasks in the task sequence. The
results are shown in Table 3 and Table 4. We compare the performance of PSEC with L2M and
other strong baselines. Thanks to the efficiency of skill composition in parameter space, PSEC can

29

Published as a conference paper at ICLR 2025

substantially outperform all L2M variants in a large margin, demonstrating that PSEC can achieve
better performance on complex tasks.

Table 3: Success rates of different methods.

Methods Success Rate
L2M 0.65
L2M-oracle 0.77
L2P-Pv2 0.40
L2P-PreT 0.34
L2P-PT 0.23
EWC 0.17
L2 0.10
PSEC (Ours) 0.87

Table 4: Performance of PSEC on different tasks.

Tasks PSEC
peg-unplug-side-v2 0.87
window-close-v2 0.88
shelf-place-v2 0.85
push-v2 0.89
handle-press-side-v2 0.95
stick-pull-v2 0.74
push-back-v2 0.85
faucet-close-v2 0.92
push-wall-v2 0.86
hammer-v2 0.91

Mean 0.87

F.2 UNSEEN TASKS SETTING

To further evaluate the efficiency of PSEC on more challenging tasks, we pretrain on fewer (18) tasks
and evaluate it on more (12) unseen tasks than the first setting. Firstly, we pretrain and finetune 18
tasks to obtain 18 LoRA modules. The performance on the 18 pretrained tasks is reported in Table 5.
We compare the performance of PSEC with Scratch, ASEC and NSEC methods. The results show
that PSEC can achieve enhanced skill learning even when the pretrained model is combined with
one LoRA for each task if the skill is composed in parameter space. Then, we evaluate PSEC with
the obtained 18 LoRA modules on the unseen tasks. For the unseen tasks, we conduct two types of
experiments: few-shot setting and zero-shot setting.

Few-shot. We perform few-shot learning by training the context-aware modular for 1k steps using
only 10% of the total available data for unseen tasks. This setup simulates scenarios with limited data
on new tasks. The results, summarized in Table 6, demonstrate that PSEC achieves a high success
rate on unseen tasks. This indicates that PSEC can effectively adapt to new tasks, showcasing its
capability for rapid transfer learning and efficient adaptation in data-scarce environments.

Zero-shot. No data from the unseen tasks is used to train the context-aware modular. Instead,
the modular is trained for 2k steps using datasets from 18 pre-trained tasks. It is then evaluated
directly on 12 unseen tasks, utilizing 4 seeds and 10 episodes per task. The results are shown in
Table 7. Interestingly, even without access to unseen task data during training, PSEC demonstrates
strong performance on several tasks. Notably, PSEC substantially outperforms NSEC and ASEC on
this zero-shot transfer setting, highlighting the advantages of skill compositions in parameter spaces
over noise and action spaces. Overall, the results demonstrate PSEC’s ability to effectively utilize
knowledge from previously learned skills to achieve strong zero-shot transfer.

G MORE VISUALIZATION OF ADVANTAGES OF PSEC OVER NSEC AND
ASEC

To test whether the newly learned skills effectively utilize the shared knowledge of previous skills,
we evaluate the running policy obtained through context-aware modular combined with standing
and walking skills on three rewards: stand, walk, and run. If the running skill can still get a rel-
atively high stand or walk reward, this represents the final combined running skill retaining these
previous skills. We compare PSEC with other composition methods ASEC and NSEC. For each
method, we rollout 10K steps and record the three rewards. The summarized rewards can be found
in Figure 19. The results show that PSEC achieves high rewards across all tasks, whereas NSEC
and ASEC cannot, demonstrating that the PSEC’s running skill retains behaviors from walking and
standing and suggesting superior skill sharing of PSEC compared to NSEC and ASEC.

30

Published as a conference paper at ICLR 2025

Table 5: Performance comparison on 18 pretrained tasks.

Tasks Scratch ASEC NSEC PSEC
peg-insert-side-v2 0.50 0.87 0.88 0.90
peg-unplug-side-v2 0.35 0.61 0.78 0.86
button-press-topdown-v2 0.71 0.88 0.88 0.89
push-back-v2 0.26 0.61 0.76 0.88
window-close-v2 0.65 0.84 0.84 0.88
door-open-v2 0.74 0.85 0.86 0.86
handle-press-v2 0.67 0.96 0.97 0.97
plate-slide-side-v2 0.27 0.23 0.53 0.74
handle-pull-side-v2 0.76 0.94 0.94 0.95
window-open-v2 0.87 0.75 0.88 0.89
door-close-v2 0.90 0.89 0.89 0.91
reach-v2 0.89 0.95 0.95 0.95
push-v2 0.15 0.58 0.81 0.92
stick-push-v2 0.44 0.54 0.17 0.79
drawer-close-v2 0.97 0.97 0.97 0.97
plate-slide-back-v2 0.90 0.94 0.94 0.95
coffee-button-v2 0.91 0.94 0.94 0.95
hand-insert-v2 0.30 0.68 0.63 0.89
Mean 0.62 0.78 0.81 0.90

Table 6: Few-shot performance comparison on 12 unseen tasks.

Tasks ASEC NSEC PSEC
plate-slide-v2 0.14 0.66 0.89
handle-press-side-v2 0.73 0.65 0.92
button-press-wall-v2 0.09 0.03 0.72
button-press-topdown-wall-v2 0.87 0.88 0.89
push-wall-v2 0.57 0.68 0.88
reach-wall-v2 0.41 0.36 0.90
faucet-close-v2 0.41 0.49 0.90
button-press-v2 0.02 0.14 0.23
plate-slide-back-side-v2 0.17 0.19 0.92
handle-pull-v2 0.15 0.21 0.93
faucet-open-v2 0.14 0.16 0.89
stick-pull-v2 0.00 0.00 0.32

Table 7: Zero-shot performance comparison on 12 unseen tasks.

Tasks ASEC NSEC PSEC
plate-slide-v2 0.03 0.00 0.15
handle-press-side-v2 0.50 0.60 0.62
button-press-wall-v2 0.00 0.00 0.40
button-press-topdown-wall-v2 0.85 0.87 0.89
push-wall-v2 0.53 0.53 0.71
reach-wall-v2 0.34 0.05 0.90
faucet-close-v2 0.00 0.00 0.16
button-press-v2 0.00 0.00 0.15
plate-slide-back-side-v2 0.00 0.00 0.00
handle-pull-v2 0.00 0.00 0.00
faucet-open-v2 0.00 0.00 0.77
stick-pull-v2 0.00 0.00 0.00

31

Published as a conference paper at ICLR 2025

0 20 40 60 80
Costs

0
50

100
150
200
250
300
350
400

Re
wa

rd
s

Metadrive-easysparse-v0

0 20 40 60 80
Costs

50
100
150
200
250
300
350
400

Re
wa

rd
s

Metadrive-easymean-v0

0 10 20 30 40 50 60 70 80
Costs

0
50

100
150
200
250
300
350
400

Re
wa

rd
s

Metadrive-easydense-v0

0 10 20 30 40
Costs

50

100

150

200

250

Re
wa

rd
s

Metadrive-mediumsparse-v0

0 10 20 30 40
Costs

50

100

150

200

250

Re
wa

rd
s

Metadrive-mediummean-v0

0 10 20 30 40
Costs

50

100

150

200

250

Re
wa

rd
s

Metadrive-mediumdense-v0

0 20 40 60 80
Costs

0

100

200

300

400

500

Re
wa

rd
s

Metadrive-hardsparse-v0

0 20 40 60 80
Costs

0

100

200

300

400

500

Re
wa

rd
s

Metadrive-hardmean-v0

0 20 40 60 80
Costs

0

100

200

300

400

500

Re
wa

rd
s

Metadrive-harddense-v0

0 20 40 60 80 100 120 140
Costs

200

400

600

800

1000

Re
wa

rd
s

SafetyAntRun

0 5 10 15 20 25 30 35 40
Costs

200
250
300
350
400
450
500
550

Re
wa

rd
s

SafetyCarRun

0 10 20 30 40 50 60 70 80
Costs

0
200
400
600
800

1000
1200

Re
wa

rd
s

SafetyBallRun

0 20 40 60 80 100 120 140
Costs

0
100
200
300
400
500
600
700

Re
wa

rd
s

SafetyDroneRun

0 25 50 75 100125150175200
Costs

0

100

200

300

400

Re
wa

rd
s

SafetyAntCircle

0 20 40 60 80 100
Costs

0

100

200

300

400

500

Re
wa

rd
s

SafetyCarCircle

0 10 20 30 40 50 60 70 80
Costs

0

200

400

600

800

Re
wa

rd
s

SafetyBallCircle

0 20 40 60 80 100
Costs

200
300
400
500
600
700
800
900

1000

Re
wa

rd
s

SafetyDroneCircle

Figure 18: Illustration of the cost-reward plot for datasets from MetaDrive and Bullet-Safety-Gym.

32

Published as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Reward

0

1

2

3

4

5

6

De
ns

ity

Stand Reward Distributions (KDE)
ASEC
NSEC
PSEC

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Reward

0

2

4

6

8

De
ns

ity

Walk Reward Distributions (KDE)
ASEC
NSEC
PSEC

0.0 0.2 0.4 0.6 0.8 1.0
Reward

0.0

0.5

1.0

1.5

2.0

De
ns

ity

Run Reward Distributions (KDE)
ASEC
NSEC
PSEC

Figure 19: We evaluate the final running policies of PSEC, NSEC and ASEC with the “stand,” “walk,” and
“run” rewards with 10 episodes and 3 random seeds. Then we plot the reward distribution by kernel density
estimation (KDE). Each curve represents the probability density of rewards obtained for a specific reward. The
results show that PSEC achieves high rewards across all tasks, whereas NSEC and ASEC cannot, demonstrating
that the PSEC’s running skill retains behaviors from walking and standing and suggesting superior skill sharing
of PSEC compared to NSEC and ASEC.

Table 8: Results in the dynamics shift setting over 10 episodes and 5 seeds. -m, -mr and -me refer to
DP1

o sampling from medium, medium-replay and medium-expert V2 data in D4RL (Fu et al., 2020),
respectively.

Metric Halfcheetah-m Halfcheetah-mr Halfcheetah-me Walker2d-m Walker2d-mr Walker2d-me

BC 26.4 ± 7.3 14.3 ± 7.8 19.1 ± 9.4 15.8 ± 14.1 1.4 ± 1.9 21.7 ± 8.2
MOPO -1.1 ± 4.1 11.7 ± 5.2 -1.1 ± 1.4 3.1 ± 4.7 3.3 ± 2.7 0.1 ± 0.3
CQL 35.4 ± 3.8 8.1 ± 9.4 26.5 ± 10.8 18.8 ± 18.8 8.5 ± 2.19 19.1 ± 14.4
IQL 29.9 ± 0.2 22.7 ± 6.4 10.5 ± 8.8 22.5 ± 3.8 10.7 ± 11.9 26.5 ± 8.6
DOGE 42.6 ± 3.4 23.4 ± 3.6 26.7 ± 6.6 45.1 ± 10.2 13.5 ± 8.4 35.3 ± 4.1
TSRL 38.4 ± 3.1 28.1 ± 3.5 39.9 ± 21.1 49.7 ± 10.6 26.0 ± 11.3 46.4 ± 13.2
Joint train(Gravity) 2.0 ± 1.4 6.8 ± 3.9 6.8 ± 5.4 39.4 ± 3.4 15.7 ± 7.7 33.5 ± 10.5
Joint train(Friction) 15.8 ± 1.0 14.9 ± 1.2 16.5 ± 1.1 8.3 ± 1.1 7.6 ± 0.8 7.4 ± 0.5
Joint train(Thigh) 9.5 ± 5.3 9.8 ± 8.5 6.4 ± 1.3 50.6 ± 8.8 6.3 ± 3.0 54.9 ± 14.8

Dynamic shift

PSEC(Gravity) 40.8 ± 0.9 29.2 ± 1.1 42.4 ± 1.0 57.2 ± 4.5 26.8 ± 5.2 71.8 ± 8.0
PSEC(Friction) 40.1 ± 1.2 31.1 ± 1.3 42.1 ± 1.0 61.7 ± 7.5 20.9 ± 4.6 75.0 ± 12.1

Body shift

PSEC(Thigh) 41.4 ± 0.3 32.3 ± 1.4 43.9 ± 2.5 64.96 ± 4.5 25.5 ± 4.5 71.4 ± 14.3

33

Published as a conference paper at ICLR 2025

0 1 2
Training Steps (1e5)

10

20

30

40

Sc
or

es
halfcheetah-medium (F)

(a)

0 1 2
Training Steps (1e5)

10

20

30

40

Sc
or

es

halfcheetah-medium (G)

(b)

0 1 2
Training Steps (1e5)

10

20

30

40

Sc
or

es

halfcheetah-medium (T)

(c)

0 1 2
Training Steps (1e5)

10

20

30

Sc
or

es

halfcheetah-medium-replay (F)

(d)

0 1 2
Training Steps (1e5)

10

20

30

Sc
or

es

halfcheetah-medium-replay (G)

(e)

0 1 2
Training Steps (1e5)

10

20

30

Sc
or

es

halfcheetah-medium-replay (T)

(f)

0 1 2
Training Steps (1e5)

10

20

30

40

Sc
or

es

halfcheetah-medium-expert (F)

(g)

0 1 2
Training Steps (1e5)

10

20

30

40

Sc
or

es

halfcheetah-medium-expert (G)

(h)

0 1 2
Training Steps (1e5)

10

20

30

40

Sc
or

es

halfcheetah-medium-expert (T)

(i)

0 1 2
Training Steps (1e5)

30

40

50

60

Sc
or

es

walker2d-medium (F)

(j)

0 1 2
Training Steps (1e5)

30

40

50

60

Sc
or

es

walker2d-medium (G)

(k)

0 1 2
Training Steps (1e5)

30

40

50

60

Sc
or

es

walker2d-medium (T)

(l)

0 1 2
Training Steps (1e5)

10

20

Sc
or

es

walker2d-medium-replay (F)

(m)

0 1 2
Training Steps (1e5)

15

25

Sc
or

es

walker2d-medium-replay (G)

(n)

0 1 2
Training Steps (1e5)

15

25

Sc
or

es

walker2d-medium-replay (T)

(o)

0 1 2
Training Steps (1e5)

30
40
50
60
70
80

Sc
or

es

walker2d-medium-expert (F)

0 1 2
Training Steps (1e5)

30
40
50
60
70

Sc
or

es

walker2d-medium-expert (G)

0 1 2
Training Steps (1e5)

30
40
50
60
70

Sc
or

es

walker2d-medium-expert (T)

Figure 20: Results of performance conducted on dynamic shift and body shift tasks. The lines and
shaded areas indicate the averages and standard deviations calculated over 5 random seeds.

34

Published as a conference paper at ICLR 2025

Table 9: Hyperparameters for multi-objective composition tasks.

Hyper-parameters Value

shared
hyperparameters

Normalized state True
Target update rate 1e-3
Expectile τ 0.9
Discount γ 0.99
Actor learning rate 3e-4
Critic learning rate 3e-4
Number of added Gaussian noise T 5

π0

hidden dim 256
hidden layers 2
activation function ReLU
Mini-batch size 2048
Optimizer Adam (Kingma & Ba, 2014)
Training steps 1e6

π1

Q∗
r(s, a) hidden dim 256

Q∗
r(s, a) hidden layers 2

Q∗
r(s, a) activation function ReLU

V ∗
r (s) hidden dim 256

V ∗
r (s) hidden layers 2

V ∗
r (s) activation function ReLU

Actor hidden dim 256
Actor hidden layers 2
Actor Activation function ReLU
Mini-batch size 2048
Optimizer Adam
Training steps 5e4

π2

Q∗
h(s, a) hidden dim 256

Q∗
h(s, a) hidden layers 2

Q∗
h(s, a) activation function ReLU

V ∗
h (s) hidden dim 256

V ∗
h (s) hidden layers 2

V ∗
h (s) Activation function ReLU

Actor hidden dim 256
Actor hidden layers 2
Actor Activation function ReLU
Mini-batch size 2048
Optimizer Adam
Training steps 5e4

α(s; θ)

hidden dim 256
hidden layers 2
activation function ReLU
Mini-batch size 2048
Optimizer Adam
Training steps 1e3

LoRA rank n 8, 16

35

Published as a conference paper at ICLR 2025

Table 10: Hyperparameters for continual policy shift.

Hyper-parameters Value

shared
hyperparameters

Normalized state True
Target update rate 1e-3
Expectile τ 0.9
Discount γ 0.99
Actor learning rate 3e-4
Critic learning rate 3e-4
Number of added Gaussian noise T 5

π0

hidden dim 256
hidden layers 2
activation function ReLU
Mini-batch size 1024
Optimizer Adam
Training steps 1e6

π1

hidden dim 256
hidden layers 2
Activation function ReLU
Mini-batch size 1024
Optimizer Adam
Training steps 1e4

π2

Actor hidden dim 256
Actor hidden layers 2
Actor Activation function ReLU
Mini-batch size 1024
Optimizer Adam
Training steps 1e4

α(s; θ)

hidden dim 256
hidden layers 2
activation function ReLU
Mini-batch size 1024
Optimizer Adam
Training steps 1e3

LoRA rank n 8

36

Published as a conference paper at ICLR 2025

Table 11: Hyperparameters for dynamic shift.

Hyper-parameters Value

shared
hyperparameters

Normalized state True
Target update rate 1e-3
Expectile τ 0.9
Discount γ 0.99
Actor learning rate 3e-4
Critic learning rate 3e-4
Number of added Gaussian noise T 5

π0

hidden dim 256
hidden layers 2
activation function ReLU
Mini-batch size 1024
Optimizer Adam
Training steps 1e6

π1

Q∗
r(s, a) hidden dim 256

Q∗
r(s, a) hidden layers 2

Q∗
r(s, a) activation function ReLU

V ∗
r (s) hidden dim 256

V ∗
r (s) hidden layers 2

V ∗
r (s) activation function ReLU

Actor hidden dim 256
Actor hidden layers 2
Actor Activation function ReLU
Mini-batch size 1024
Optimizer Adam
Training steps 2e4

α(s; θ)

hidden dim 256
hidden layers 2
activation function ReLU
Mini-batch size 1024
Optimizer Adam
Training steps 1e3

LoRA rank n 8

37

	Introduction
	Related works
	Methods
	Preliminary
	Efficient Policy Expansion via Low-Rank Adaptation
	Context-aware Composition in Parameter Space

	Experiments
	Multi-objective Composition
	Continual Policy Shift Setting
	Dynamics Shift Setting
	Ablation Study

	Conclusion
	Limitations and Future works
	Discussions on more related works
	Experimental Setups
	Multi-objective Composition
	Continual Policy Shift
	Dynamic Shift
	T-SNE Experimental Setups for Figure 4

	More Experimental Results
	The Effectiveness of the Context-aware Modular
	The Parameter Efficiency of PSEC

	More experimental details
	Description of Tasks
	Illustration of the Recorded Data
	Advantage of the Benchmark

	More experiments on Meta-World
	Continual Learning Setting
	Unseen Tasks Setting

	More visualization of advantages of PSEC over NSEC and ASEC

