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ABSTRACT

Navigating complex environments poses challenges for multi-agent systems, re-
quiring efficient extraction of insights from limited information. In this paper, we
introduce the Blackbox Oracle Information Learning (BOIL) process, a scalable
solution for extracting valuable insights from the environment structure. Leverag-
ing the Pagerank algorithm and common information maximization, BOIL facil-
itates the extraction of information to guide long-term agent behavior applicable
to problems such as coverage, patrolling, and stochastic reachability. Through
experiments, we demonstrate the efficacy of BOIL in generating strategy distribu-
tions conducive to improved performance over extended time horizons, surpassing
heuristic approaches in complex environments.

1 INTRODUCTION

Since the 1980s, the concept of employing multiple interacting agents to accomplish various tasks
has garnered significant attention in the fields of robotics, artificial intelligence, and distributed
systems. Previous research endeavors have demonstrated successful methods for utilizing multiple
robots to tackle diverse challenges such as area coverage, patrolling, and reachability 1 Bierkens
(2016); Clempner (2018); Dı́az-Garcı́a et al. (2023); Hespanha et al. (1999); Langley et al. (2021);
Rahili et al. (2017); Stern et al. (2006). These efforts have embraced a multitude of approaches
spanning game theory, genetic algorithms, greedy heuristics, and more, reflecting the multifaceted
nature of the problems at hand.

Despite this breadth of exploration, a fundamental trade-off persists between achieving optimal so-
lutions, maintaining computational tractability, and ensuring scalability concerning the number of
agents or the size of the environment. Some methodologies adopt an independence assumption
among agents to facilitate tractability for a large number of participants Dı́az-Garcı́a et al. (2023);
Langley et al. (2021), thus sacrificing potential optimality for scalability. The main objective of this
paper is fine-grained control of these trade-offs.

In this paper, we operate under the assumption of having access to an oracle whose information is
indirectly accessible, and our aim is to devise a computationally scalable approach to extract insights
from this oracle. Our focus lies in demonstrating the feasibility of extracting information from an
oracle whose behavior adapts to environmental changes. Leveraging the Pagerank algorithm Page
et al. (1998), renowned for its computational efficiency, we propose a scalable method for extracting
information from the oracle. Crucially, our approach remains independent of the number of agents
involved, and we formulate the problem as a common information maximization 2 task.

We begin by providing a comprehensive review of existing literature concerning the aforementioned
tasks, followed by an introduction to Non-reversible Markov chains and Supervised PageRank tech-
niques. Subsequently, we illustrate the construction of our proposed process within the context of
the coverage problem, termed BOIL (Blackbox Oracle Information Learning), emphasizing its abil-
ity to distill information from the oracle into learnable parameters. Many real world problems like
mobile sensor coverage Rahili et al. (2017), forest fire detection Alsammak et al. (2022), agricultural
monitoring Albani et al. (2017), traffic data collection Elloumi et al. (2018), etc. can be modeled

1Reachability can be seen as the task which creates a path for agents that allows fast reaction when an
intruder is detected.

2There are multiple ways to define common information. We use the definition given by Liu et al. (2010).
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using coverage. With the foundational structure of BOIL established, we present results that demon-
strate its efficacy, particularly in scenarios where a higher number of parameters is computationally
feasible. Furthermore, we discuss how our method can be used to address patrolling and reachability
tasks.

The primary contribution lies in showcasing the utility of extracted information from a blackbox
oracle, offering theoretical insights and practical implications for enhancing the performance and
robustness of multi-agent systems in complex environments. We run simulated experiments to sup-
port the claims about the effectiveness of the process.

2 RELATED WORKS

Several approaches have been proposed in the literature to address the challenges of coverage, pa-
trolling, and reachability in multi-agent systems. Stern et al. (2006) introduced a genetic algorithm-
based technique for coverage, optimizing a complex fitness function dependent on factors such as
distance, travel time, and visibility within a discretized space. While providing complete trajecto-
ries, this approach becomes computationally intractable for large environments or a high number
of agents due to its dependency on the number of agents. Rahili et al. (2017) presented a game-
theoretic framework for distributed coverage of mobile sensors, aiming to find equilibrium positions
for sensors using reinforcement learning to converge to Nash equilibrium. This approach incor-
porates utility functions for agents directly into transition probabilities, assuming reversible agent
movements 3 and focusing on reaching equilibrium via agent interactions. Our work generalizes to
non-reversible agent movements. In both works, the planning and control of agents is tightly cou-
pled making it hard to tweak individual components separately. In this work, we provide a way to
loosely couple planning and control allowing a fine-grained ability to deal with various trade-offs.

Mathew & Mezić (2011) showed that it is possible create control inputs for a group of agents based
on a probabilistic high level plan. Leveraging Ergodic control, they addressed the coverage problem
with a given distribution for space coverage, defining first and second-order dynamics of agents.
Their work shows that we can create a loose coupling between planning and control, the main
focus is on control. In contrast, our work focuses on the planning part of the problem. Abraham
& Murphey (2018) demonstrated a decentralized ergodic control method for coverage, focusing
on achieving a given target distribution. They claim that their work can be extended to pursuit-
evasion games but do not a give mathematical formulation. Stochastic reachability, akin to the
work of Hespanha et al. (1999), pertains to solving agent trajectories to maximize the probability of
reaching specific locations within a fixed time. We discuss how it is possible to give a mathematical
formulation for stochastic reachability with minor changes in the original formulation.

Patrolling tasks present distinct challenges, where the number of objective points may be signifi-
cantly fewer than the total environment size. Game-theoretic approaches, such as Stackelberg games
Clempner (2018); Gan et al. (2018) and Nash equilibrium strategies Langley et al. (2021), have
been widely adopted. Additionally, constraint-based methods Dı́az-Garcı́a et al. (2023) have been
explored, offering scalable solutions for multi-agent patrolling.

3 PRELIMINARIES

3.1 NON-REVERSIBLE MARKOV CHAIN

Consider a Markov chain with a finite or countable state space S, characterized by transition prob-
abilities P (u → v) for u, v ∈ S. To ensure a valid probability distribution, the following condition
must hold: ∑

v∈S

P (u→ v) = 1 ∀u ∈ S (1)

Definition 1. Let π be a probability distribution on the states S, such that
∑

u∈S π(u) = 1. A
distribution is termed the stationary distribution of the Markov chain if the following condition

3Reversible movements implies that if an agent can take action a to transition from state s to s′, then there
must exist an action a′ such that the agent can transition from s′ back to s.
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holds: ∑
u∈S

π(u)P (u→ v) = π(v) ∀u, v ∈ S (2)

The equation referenced as 2 defines the global balanced condition. It is worth noting that this
condition is weaker than the well-known detailed balanced condition presented below in equation 3:

π(u)P (u→ v) = π(v)P (v → u) ∀u, v ∈ S (3)

When the above condition holds, the Markov chain is considered reversible. Metropolis et al. (1953)
and Hastings (1970) introduce Metropolis-Hastings sampling (MH), a technique for sampling from
reversible Markov chains with convergence guarantees. However, extending it to non-reversible
Markov chains is non-trivial. Bierkens (2016) demonstrates the construction of a technique analo-
gous to MH for the non-reversible case.

Bierkens (2016) defines the non-reversible Hastings ratio as:

RΓ(u, v) :=

{
Γ(u,v)+π(v)Q(v,u)

π(u)Q(u,v) π(u)Q(u, v) ̸= 0

1 otherwise
(4)

where Γ(u, v) := π(u)P (u → v) − π(v)P (v → u). However, to ensure non-negative values of
Γ(u, v), the following constraint must hold:

−π(v)Q(v, u) ≤ Γ(u, v) ≤ π(u)Q(u, v) ∀u, v ∈ S (5)

3.2 SUPERVISED PAGERANK

Page et al. (1998) defines PageRank as a method for ranking the importance of different web pages.
At its core, the movement of a user on the World Wide Web is modeled as a Markov chain where
the state space is defined as the set of web pages. Vanilla PageRank assumes that a user will move
uniformly randomly from the current page to all pages the user can directly access. Let G(V,E) be
a graph where the vertices represent the web pages and the edges represent the links that the user
can use to move from one page to another. Then, PageRank can be mathematically defined as Page
et al. (1998):

Definition 2. Let π be a probability distribution on the vertex set V , i.e.,
∑

v∈V π(v) = 1. We need
to find π such that c is maximized with the constraints given below:

π(v) = α(v) + c
∑

{u|(u,v)∈E}

π(u)

|{w|(u,w) ∈ E}|
∀ v ∈ V α is a vector over the web pages. (6)

The vector α serves two purposes: 1) It acts as a source for the ranking process, and 2) it ensures
that the Markov chain is strongly connected, thus irreducible.

The above approach can be extended to generate a user-specific ranking of the nodes by adjusting
the transition probabilities of the Markov chain. Zhukovskiy et al. (2014) introduces a method
that formulates the process of learning personalized PageRank as an optimization problem. This
method models the transition probabilities and node vectors using functions f : X × V → R
and g : Y × E → R, where X and Y represent sets of parameters. We leverage the extension
of this technique for learning Supervised PageRank with gradient-free optimization methods and
approximate oracles Bogolubsky et al. (2016).

4 BLACKBOX ORACLE INFORMATION LEARNING (BOIL)

In this section, we will begin by formulating the problem environment. Subsequently, we will
demonstrate how information is extracted from the environment structure to address the coverage
problem utilizing movement constraints (Flow constraints) enforced by the environment. In the
coverage task, we consider a node is covered if it comes in visibility of any agent, and the agents want

3
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to cover all nodes equally as many times as possible.4. It is important to note that throughout this
work, we assume homogeneity among agents, meaning they possess identical physical capabilities
unless stated otherwise. Proofs for all Theorems are deferred to the Appendix.

4.1 COVERAGE PROBLEM FORMULATION

Similar to prior research, we represent the environment with a graph. However, a key distinction lies
in our utilization of an undirected graph G(V,E) to encode the topography or environment semantics
alongside a directed graph Gd(Vd, Ed) to model the potential movement space of the robots/agents.
Such a formulation allows a rich representation for real world settings like cases when agents can go
down a hill but cannot come up the same way because of physical constraints or model a trapdoor
like situation that arise in case of fire exits and one-ways in urban settings. It’s important to note that
all vertices v ∈ Vd possess self-loops, denoted by (v, v) ∈ Ed ∀ v ∈ Vd, indicating that Gd is not
a simple directed graph5. Additionally, we assume that Gd is strongly connected. This assumption
is made to prevent scenarios where the agent reaches states from which it cannot return to its initial
state or where certain parts of the graph are unreachable regardless of the number of steps taken.
Furthermore, we assume that the traversal time for any edge in Ed is independent of the agent’s
previous actions.

Stern et al. (2006) utilizes a visibility matrix as a map listing nodes visible from a particular node.
This matrix formally defines a fitness function for the genetic algorithm in prior research. Here, we
define visibility as a function Vs : Ed → [0, 1]|V |, where Vs((u, v))(w) represents the value for
node w ∈ V when Vs is assessed on (u, v) ∈ Ed which allows us to define unidirectional vision for
agents. This value gives the probability that node w is visible when an agent crosses edge (u, v).

Definition 3. Let Vs((ū, . . . , v̄)) denote the visibility for a path (ū, w1, w2, . . . , wl−1, v̄), where Tūv̄

denotes the time required for the agent to traverse the path. Let Vw(t) : [0, Tūv̄] → {0, 1} be an
indicator function, which is 1 if the node w is visible at time t. Then,

∀w ∈ V, Vs((ū, . . . , v̄))(w) =
1

Tūv̄

∫ Tūv̄

0

Vw(t)dt

Consider a system with n agents. Let the function hi
(u,v)(t) is 1 for all t when agent i is crossing the

edge (u, v), and otherwise 0. Essentially, these functions are generated from an oracle that provides
paths for the agents. Suppose we make a vector Yt, which represents the probability that a node in
V is visible at time t from any agent. Then we can write Yt as following:

Yt = 1−
n∏

i=1

1−
∑

(u,v)∈Ed

hi
(u,v)(t)Vs((u, v))

 (7)

where the product of vectors represents the element-wise multiplication. For the rest of the
work, consider that a direct vector of products represents the element-wise product unless oth-
erwise mentioned. We can define the node visibility probability for the time duration [0, T ] as
PV (w) =

(∫ T

0
Yt(w)dt

)
/T . The coverage problem can now be defined as maximizing the com-

mon information Liu et al. (2010) for random variables that represent the node visibility. We use
Theorem 1 given below to find a bound on the integral and reduce the problem to minimizing the
loss function L as follows:

L =
∑
w∈V

−A(w) logA(w) where A(w) =
∑

(u,v)∈Ed

P ((u, v))Vs((u, v))(w) (8)

The details of the reduction are deferred to the appendix along with proof of Theorem 1. The proof
also covers why the loss is independent of the agent count.

4In this work, we make a distinction between patrolling the area and patrolling specific areas in the environ-
ment. We call the first one coverage and the latter patrolling.

5Directed graphs without self-loops are referred to as simple directed graphs.
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Theorem 1. Suppose we define,

P ((u, v)) =
1

nT

n∑
i=1

∫ T

0

hi
(u,v)(t)dt and X i(t) =

∑
(u,v)∈Ed

Vs((u, v))(w))h
i
(u,v)(t)

then P is a probability distribution on the edges Ed and the following holds:

nT
∑

(u,v)∈Ed

P ((u, v))Vs((u, v))(w) ≥
∫ T

0

Yt(w)dt ∀w ∈ V

T
∑

(u,v)∈Ed

P ((u, v))Vs((u, v))(w) ≤
∫ T

0

Yt(w)dt ∀w ∈ V

(9)

Furthermore,

nT
∑

(u,v)∈Ed

P ((u, v))Vs((u, v))(w) ≤
∑

1≤i<j≤n

∫ T

0

X i(t)X j(t)dt+

∫ T

0

Yt(w)dt

4.2 SOLVING AS FLOW CONSTRAINT PROBLEM

Any agent can only cross the edge (u, v) ∈ Ed only if the agent is on the node u ∈ Vd. More-
over, the agent can stay at a node u only if it has reached node u. All the agents in the system
are constrained by the structure of the directed graph Gd. Following the above argument, we can
decompose P ((u, v)) into two probabilities (shown in Theorem 2): 1) Probability that the agent is
on node u represented as π(u) and 2) probability that the agent moves along the edge (u, v) given
that the agent is on the node u represented as P (u→ v). Hence,

=⇒ P ((u, v)) = π(u)P (u→ v) and
∑

{v|(u,v)∈Ed}

P (u→ v) = 1 (10)

Theorem 2. The function π : Vd → R is a probability distribution on the nodes in Vd.

Furthermore, the net flow of the probability should be balanced across the graph, implying that
P (u → v) for all (u, v) ∈ Ed and π(u) for all u ∈ Vd have values such that the global balanced
condition (Equation 2) is satisfied. Hence, the movement can be modeled as a Markov chain with
the nodes Vd as the state space. However, we do not know the transition probabilities P (u→ v).

Previous works have studied Mathew & Mezić (2011); Miller et al. (2015); Abraham & Murphey
(2018) how multiple agents can approximate a given distribution defined similarly to the definition
of P ((u, v)) as given in theorem 1. Please observe that the loss function 8 only depends on the
transition probabilities P ((u, v)), implying that we need to only find the correct values for P (u →
v) that minimizes the loss function. Hence, we can model the problem as a Supervised PageRank
3.2 optimization problem. Building on the work of Bogolubsky et al. (2016), we get Algorithm 1.

Note how we have only constrained the flow of probability as Pagerank only ensures the global
balanced condition 2. The oracle is supposed to give continuous paths but we solved for only the
softer probabilistic constraint. In essence, running Algorithm 1 allows us to access some information
from the oracle. While previous work does not require an oracle, they use hard constraints, thereby
restricting custom control over the design trade-offs. Using the oracle formulation allows us to do
fine-grained estimation.

4.3 FINE GRAINED ESTIMATION

The estimator that we used in the coverage problem uses a distribution over the node space. How-
ever, the parameters required to solve for the node space might be below optimal for the available
compute. Furthermore, increasing the resolution of the graph in the node space can lead to an in-
crease in the parameter space larger than the available compute. Moreover, it might be favorable to
get additional information about the movement of the agents along the time axis in place of spatial
information.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1: BOIL Algorithm

Require: µ > 0 step size, N ≥ 1 number of steps, p0 vector of P (u → v) ∀(u, v) ∈ Ed, Graph
Gd, Loss Function L
Begin Procedure
k ← 0, m← |p0|, x← PAGERANK(p0,Gd) ▷ Do pagerank to get values of π(u)
while k < N do

r ← Random vector on m dimensional sphere
q ← Normalize values of (pk + r) to ensure

∑
{v|(u,v)∈Ed} P (u→ v) = 1

y ← PAGERANK(pk + r,Gd)
g ← m(L(pk + r,y)− L(pk,xk))r ▷ Gradient for update
pk+1 ← Normalize values of (p− µg) to ensure

∑
{v|(u,v)∈Ed} P (u→ v) = 1

x← PAGERANK(pk+1,Gd)
k ← k + 1

end while
k ← argmink {L(pk,xk)) : k ∈ {0, . . . , N − 1}}
Output: pk,xk

End Procedure

Observe how the presented technique only requires a strongly connected state space, and the visi-
bility function depends only on the state and not on the time the state is reached. Now, we show
various methods to increase the state space, which gives more information about the system with a
relatively low increase in the parameter space.

Consider the coverage problem itself. Suppose we are given a continuous path
(ū, w1, w2, . . . , wl−1, v̄) and we want to find out the probability the agent should take this path
to minimize the loss.
Theorem 3. Given a path (ū, w1, w2, . . . , wl−1, v̄), the edge set Ed can be modified to add an
additional edge between the node ū and v̄ represented as (ū, . . . , v̄). Optimizing the loss function
L on the original edge set Ed is the same as optimizing the loss function over the modified edge set.
Furthermore, the probability that the agent takes the path is the probability for the edge (ū, . . . , v̄)
found by optimizing the loss on the modified edge set.

Observe that Theorem 3 can be applied repeatedly, and it increases only 1 parameter per path. Note
how the base formulation can be obtained by repeatedly applying Theorem 3 on the empty edge set
with paths of unit length. Adding higher length paths puts a hard continuity constraint in addition
to the soft probabilistic one thus giving a fine-grained control. Suppose we can handle twice the
number of parameters and want to get more information about the movement of the agents in the
time domain, then we can use Theorem 4.. Let P(p) represent the set of all countable partitions of
the interval [0, T ] for p ∈ (0, 1) such that:

∫ T

0

I(t) dt = pT, ∀ (t1, t2, . . . ) ∈ P(p) where I(t) =

{
1 t ∈ ti, i is odd
0 otherwise

(11)

For any partition (t1, t2, . . . ) ∈ P(p), we can split the hi
(u,v)(t)’s into two functions ĥi

(u,v)(t) and
h̄i
(u,v)(t) such that:

ĥi
(u,v)(t) =

{
hi
(u,v)(t) t ∈ ti, i is odd

0 otherwise
h̄i
(u,v)(t) =

{
hi
(u,v)(t) t ∈ ti, i is even

0 otherwise
(12)

Observe that hi
(u,v)(t) = ĥi

(u,v)(t) + h̄i
(u,v)(t).

Theorem 4. For any partition (t1, t2, . . . ) ∈ P(p), let

P̂ ((u, v)) =
1

npT

n∑
i=1

∫ T

0

ĥi
(u,v)(t)dt and P̄ ((u, v)) =

1

n(1− p)T

n∑
i=1

∫ T

0

h̄i
(u,v)(t)dt

6
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Then, P̂ and P̄ form a probability distribution over the edges Ed. Furthermore, when decomposed
in edge transition probabilities, represented as P̂ (u→ v) and P̄ (u→ v) for edge (u, v) ∈ Ed, and
a distribution over the nodes, represented as π̄(u) and π̂(u) for vertex u ∈ Vd, respectively, then the
following holds:

π(u) = pπ̂(u) + (1− p)π̄(u)

Furthermore, the following constraints are sufficient to ensure flow constraints:∑
{v|(u,v)∈Ed}

π̂(u)P̂ (u→ v) = π̂(v) and
∑

{v|(u,v)∈Ed}

π̄(u)P̄ (u→ v) = π̄(v)

To ensure that the found distributions are as different as possible, we can optimize for the following
loss instead of the original loss L:

LΛ = L − 1

2

∑
(u,v)∈Ed

Λ(u,v)

(
P̂ ((u, v))− P̄ ((u, v))

)2
(13)

where Λ : Ed → R is some fixed function.

As the theorem holds for any partition, optimizing the loss will give us the distributions that mini-
mize the loss over all partitions in P .

5 EXPERIMENTS & RESULTS

We will analyze the results obtained on a relatively complex environment while we defer the exper-
iments related to scalability to the Appendix C. All computation was done using only 19 CPU cores
without any GPU acceleration.

Our experiments model agents with unidirectional visibility and irreversible movement which is
a limitation for many previous works even though both conditions are found ubiquitously in real
world situations. Works that consider general agent movement and visibility become intractable for
the size of environment and agent count that we consider. To our knowledge, no baseline provides a
fair comparison for evaluation. Hence we select a few strategies that fit the requirements of the task.

5.1 AGENT STRATEGIES

Random Agent. As the name suggests, the agents do a random walk. The agent chooses an edge to
move along from the current position with a uniform probability.

OptRandom Agent. The difference here is that the agent will randomly sample any edge from the
set Ed uniformly and traverse it. It is possible that the agent teleports to node w after traversing edge
(u, v) because the next sampled edge is (w, x). We add this strategy to understand the distribution
the agent will reach when flow constraints are not followed6. As it is an unconstrained solution, it
also serves as a strong baseline for comparison.

Frontier Agent. Frontier agent prioritizes the unexplored regions. Originally, it is an exploration
algorithm Yamauchi (1997; 1998), and hence, we modify it for the coverage problem. The vanilla
frontier exploration technique is deterministic7, however, the agent can get stuck at an optima after
exploring the entire region. Hence, we create a randomized version that utilizes a count vector C.
C(w) gives the number of times node w was visible to the agent. We define the transition probability
as:

P (u→ v) ∝ 1

|V ((u, v))|
∑

w∈V ((u,v))

1

max(C(w), 10−6)
(14)

where w ∈ V ((u, v)) is a shorthand for iterating over the non-zero entries of the vector. The
probability is normalized and used for transition. The function motivates to cover areas uniformly.

6The flow constraint is an additional constraint on the system. So, it is possible that the agent which can
teleport can do better, which we will see quantitatively later.

7The algorithms are largely deterministic. There can be points where the algorithm gives some actions the
same score in which case it can choose randomly in those actions.

7
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Figure 1: The figure depicts the
small environment with a color en-
coding easier for understanding the
topology. The cyan-like colors are
pixels that encode the elevation, and
that extra data is supposed to be
stored for nodes representing those
pixels.

Sample Agent. The sample agent uses the probability distribution we found using BOIL over the
edges Ed to sample its path. We use the technique shown in subsection 3.1 for doing MH sampling.
However, we cannot sample directly as the proposition distribution needs to be a function of the
current position so that we can get a continuous path. This slows down the mixing process, but
we still have the guarantee that the distribution will mix. To effectively cover the area, we use a
Q-function:

Q(u, v) = 1 +
λ

|V ((u, v))|
∑

w∈V ((u,v))

1

max(C(w), 10−6)
(15)

where C(w) is the count vector similar to the Frontier agent. The parameter λ controls its preference
towards frontier exploration. We use λ = 10 for all experiments.

Comm Frontier Agent. It is similar to the frontier agent except that all the agents maintain a single
C vector. Furthermore, the probability is scaled by the number of agents.

Comm Sample Agent. It is similar to the Sample agent except that all the agents maintain a single
C vector. The number of agents scales the frontier part of Q-function.

Optimal Agent. The optimal agent is similar to the OptRandom agent. The agent does not care
about the continuity of the path and samples directly from the distribution obtained over Ed using
MH for non-reversible Markov chains. The idea is to show the long horizon behavior for Sample
agents and Sample Comm agents in simulation for analysis purposes.

5.2 EXPERIMENTS

The small environment comprises a 36 × 36 field, featuring tall walls and uneven topography il-
lustrated in Figure 1. In the depiction, red blocks denote tall walls, impassable and invisible to
the agent. Elevation levels are represented by varying shades of blue, with lighter shades indicating
lower elevation and darker shades signifying higher elevation. We run simulation with homogeneous
teams with 8 agents with unidirectional visibility.

The agent’s movement is constrained, permitted only from lighter to darker shades in sequential
order. However, it can descend directly from a darker shade to any blue-colored pixel. Elevational
differences significantly impact visibility, with higher elevations offering greater visibility and vice
versa. The cyan-like colored pixels convey an elevation in the same three levels just that we will use
these points specifically to understand the behaviors of the different agents.

We conducted simulations ten times, each spanning 105 steps, to explore the variance resulting
from randomness. Figure 2 presents quantitative visibility counts, while Figure 3 displays the total
variation distance (Definition 4 Gibbs & Su (2002)) of empirical distributions to those obtained
through the BOIL process.
Definition 4. Given two probability µ and ν on the discrete state space S,

d(µ, ν) =
1

2

∑
x∈S

|µ(x)− ν(x)|

where d is the total variation distance Gibbs & Su (2002).

In the context of the uniform coverage problem, the objective is to ensure that agents explore every
area equally. Figure 2 reveals that Optimal Agents exhibit a prominent peak, indicating effective

8
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Figure 2: The Z-axis illustrates the
counts of visible nodes correspond-
ing to values on the Y-axis, while
the X-axis denotes the types of ho-
mogeneous agents considered in the
experiment. Curves’ opacity signi-
fies variations in values, with lower
opacity indicating the upper end
of the variance and higher opacity
representing the lower end for fre-
quencies. The central divider indi-
cates the mean frequencies. BOIL
Distribution Strategies: Sample
Agent, Comm Sample Agent, Opti-
mal Agent

Figure 3: The figure depicts
Total variation distance be-
tween the approximate dis-
tribution of the agent tra-
jectories and the distribu-
tion found using the BOIL
process for the small envi-
ronment for all the time-
steps. BOIL Distribution
Strategies: Sample Agent,
Comm Sample Agent, Opti-
mal Agent

utilization of visibility across different locations. Interestingly, all strategies except for Sample and
Comm Sample agents demonstrate distributions similar to OptRandom agents, suggesting subopti-
mal coverage patterns.

Despite their similarities to Optimal agents, Sample and Comm Sample strategies fail to achieve
the optimal distribution in 105 steps, as evident from Figure 3. While the distance of the Optimal
agent converges to zero, it plateaus for the Sample and Comm Sample agents, though it continues to
decrease slowly. Furthermore, the figure illustrates significantly higher and similar distances for all
other strategies.

These observations highlight the limitations of frontier exploration techniques, particularly in com-
plex environments and over extended time horizons. Although Sample-based strategies exhibit sim-
ilar distributions to Optimal agents, they fail to achieve the desired optimal distribution.

Figure 4 provides a cumulative count of how many times a particular point was visible. It is in-
triguing to observe that the Optimal agents exhibit a pronounced preference for observing the corner
point significantly more times than others. Conversely, both Frontier and Comm Frontier agents
exhibit higher counts than Sample and Comm Sample agents in 3 out of 4 points. Notably, the
point with a higher elevation, visible more frequently from Sample and Comm Sample agents, is
surrounded by areas at higher elevations. This observation suggests that the simple sampling-based
strategy effectively leverages the distribution obtained from BOIL to prioritize high-visibility points.

9
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Figure 4: The figure shows the visibility counts for the cyan-like colored pixels in figure 1 for the
different agent strategies. The bars shows the mean and the errorbars show the variance.

6 DISCUSSION

6.1 EXTENSION TO PATROLLING AND REACHABILITY

The technique can be extended to other problems like patrolling and reachability problems. Pa-
trolling can be defined as the problem where the agents want to patrol certain points on the graph
at all times. Reachability can be defined as the problem where the agent wants to ensure that it can
reach any particular place in a certain amount of time or not.

Consider a set of vertices Vp ⊆ V that needs to be patrolled by the agents for the patrolling problem.
Keeping the same setting as in the case of coverage problem discussed before, we only need to
modify the loss function to the following:

Lp =
∑
w∈Vp

−A(w) logA(w) where A(w) =
∑

(u,v)∈Ed

P ((u, v))Vs((u, v))(w) (16)

The modified loss only minimizes the expected information from points of interest and discards the
information from other nodes. For the reachability problem, in place of a visibility function, we
define a reachability function R : Ed → (0, 1)|V | where R((u, v))(w) represents the probability
that an agent can reach the node w ∈ V if the agent is traversing the edge (u, v) within a predefined
time TR(w). We can now replace the visibility function in the formulation for the coverage problem.

6.2 CONCLUSION & FUTURE WORK

In this paper, we introduced the Blackbox Oracle Information Learning (BOIL) process as a scal-
able solution for extracting valuable insights from the environment structure in multi-agent systems.
Leveraging the Pagerank algorithm and information theory, BOIL enables the extraction of informa-
tion about long-term agent behavior. We demonstrated the flexibility of the formulation by applying
it to various problems such as coverage, patrolling, and stochastic reachability, all converted into
common information maximization problems solvable using the same technique.

An important assumption of our work is the availability of reliable information about the environ-
ment. With the entire process being offline, it is not possible to deal with dynamic changes in the
environment. To address this limitation, future work aims to extend the framework to allow for
online updates in the BOIL process, coupled with a controller capable of independently utilizing
extracted information. This direction holds promise, as BOIL is an iterative process seemingly in-
dependent of noise in control policies.
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A BOIL

Lemma 1. Given two continuous paths (ū, x1, . . . , xl−1, v̄) and (v̄, y1, . . . , ym−1, w̄) with traversal
times represented as Tūv̄ and Tv̄w̄ respectively, for all z ∈ V :

Vs((ū, . . . , v̄, . . . , w̄))(z) =
Tūv̄Vs((ū, . . . , v̄))(z) + Tv̄w̄Vs((v̄, . . . , w̄))(z)

Tūv̄ + Tv̄w̄

(17)

Proof. Let the travel time for the path (ū, . . . , v̄, . . . , w̄) be Tūw̄. It is easy to observe that Tūw̄ =
Tūv̄ + Tv̄w̄ as we assume that the traversal time is independent of previous actions of the agent.

Tv̄w̄Vs((v̄, . . . , w̄))(z) =

∫ Tv̄w̄

0

Vz(t)dt =
∫ Tūw̄

Tūv̄

Vz(t− Tūv̄)d(t− Tūv̄ =

∫ Tūw̄

Tūv̄

Vz(t)d(t) (18)

Hence, we have that,

Tūv̄Vs((ū, . . . , v̄))(z) + Tv̄w̄Vs((v̄, . . . , w̄))(z) =

∫ Tūv̄

0

Vz(t)d(t) +
∫ Tūw̄

Tūv̄

Vz(t)d(t)

=

∫ Tūw̄

0

Vz(t)d(t)
(19)

The following is proof for Theorem 2

Proof. Using the fact that we have probability distribution on the edges Ed, we have,∑
(u,v)∈Ed

P ((u, v)) =
∑

(u,v)∈Ed

π(u)P (u→ v)

=
∑
u∈Vd

∑
{v|(u,v)∈Ed}

π(u)P (u→ v)

=
∑
u∈Vd

π(u)
∑

{v|(u,v)∈Ed}

π(u)P (u→ v)

=
∑
u∈Vd

π(u)
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Theorem 5. Let us define the following for any given natural n, time 0 ≤ t ≤ T , and w ∈ V :

X i =
∑

(u,v)∈Ed

hi
(u,v)(t)Vs((u, v))(w)

Then the following holds:

n∑
i=1

X i −
∑

1≤i<j≤n

X iX j ≤ Yt(w) ≤
n∑

i=1

X i

Proof. By definition of hi
(u,v)(t), only one of them can be 1 at a given time t for any 1 ≤ i ≤ n.

That is,
∑

(u,v)∈Ed
hi
(u,v)(t) = 1

As 0 ≤ Vs((u, v)) ≤ 1 for any (u, v) ∈ Ed, we have 0 ≤ X i ≤ 1

For n = 1, it is easy to observe that the equality holds. We now prove the result using induction.
Assume that the statement is true for n.

=⇒
n∑

i=1

X i −
∑

1≤i<j≤n

X iX j ≤ 1−
n∏

i=1

(
1−X i

)
≤

n∑
i=1

X i (20)

When there are n+ 1 agents, we have the following:

1−
n+1∏
i=1

(
1−X i

)
= 1−

(
1−Xn+1

) n∏
i=1

(
1−X i

)
≤ 1−

(
1−Xn+1

)(
1−

n∑
i=1

X i

)

=⇒ 1−
n+1∏
i=1

(
1−X i

)
≤

n+1∑
i=1

X i −
n∑

i=1

X iXn+1 ≤
n+1∑
i=1

X i

(21)

LetM1 =
∑n

i=1 X i andM2 =
∑

1≤i<j≤n X iX j . Then, we have

1−
n+1∏
i=1

(
1−X i

)
= 1−

(
1−Xn+1

) n∏
i=1

(
1−X i

)
≥ 1−

(
1−Xn+1

)
(1−M1 +M2)

=⇒ 1−
n+1∏
i=1

(
1−X i

)
≥ Xn+1 +M1 −M2 +

(
Xn+1

)
(M2 −M1)

≥
(
Xn+1 +M1

)
−
(
M2 +M1Xn+1

)
≥

n+1∑
i=1

X i −
∑

1≤i<j≤n+1

X iX j

(22)

Now we prove Theorem 1 using the above result.
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Proof. We first show the relation between X i(t) and the probability values.

X i(t) =
∑

(u,v)∈Ed

hi
(u,v)(t)Vs((u, v))(w)

=⇒
∫ T

0

X i(t)dt =

∫ T

0

∑
(u,v)∈Ed

Vs((u, v))(w)h
i
(u,v)(t)dt

=
∑

(u,v)∈Ed

Vs((u, v))(w)

∫ T

0

hi
(u,v)(t)dt

=⇒
n∑

i=1

∫ T

0

X i(t)dt = nT
∑

(u,v)∈Ed

P ((u, v))Vs((u, v))(w)

(23)

Using Theorem 5, we have the following:
n∑

i=1

X i(t)−
∑

1≤i<j≤n

X i(t)X j(t) ≤ Yt(w) ≤
n∑

i=1

X i(t)

Hence, we have the following:∫ T

0

Yt(w) dt ≤ nT
∑

(u,v)∈Ed

P ((u, v))Vs((u, v))(w)

We also have the following:

nT
∑

(u,v)∈Ed

P ((u, v))Vs((u, v))(w) ≤
∑

1≤i<j≤n

∫ T

0

X i(t)X j(t) dt+

∫ T

0

Yt(w) dt

We can write Yt(w) in terms of X i(t) as follows:

Yt(w) = 1−
n∏

i=1

(
1−X i(t)

)
(24)

Using the inequality of geometric mean and arithmetic mean, we can write:(
1−

∑n
i=1 X i(t)

n

)n

≥
n∏

i=1

(
1−X i(t)

)
(25)

As 0 ≤ X i(t) ≤ 1, we have that 0 ≤ 1−
(∑n

i=1 X i(t)
)
/n ≤ 1.

=⇒ 1−
∑n

i=1 X i(t)

n
≥

n∏
i=1

(
1−X i(t)

)
=⇒

∑n
i=1 X i(t)

n
≤ Yt(w)

=⇒ T
∑

(u,v)∈Ed

P ((u, v))Vs((u, v))(w) ≤
∫ T

0

Yt(w)dt

(26)

We can define the probability that a particular node w is visible as any given time t chosen uniformly
at random in the interval [0, T ] in terms of Yt(w) as follows:

PV (w) =
1

T

∫ T

0

Yt(w)dt (27)

Let us make binary indicator variables for each node represented as Vw. Then the probability that
Vw = 1 for any time time is PV (w). Liu et al. (2010) defines the common information using an
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auxiliary random variable W which makes individual variables independent. We can now write the
common information as:

C({Vw|w ∈ V }) = inf I({Vw|w ∈ V };W ) (28)

We also have the following Wyner (1975):

I({Vw|w ∈ V };W ) = H({Vw|w ∈ V })−H({Vw|w ∈ V }|W )

=⇒ I({Vw|w ∈ V };W ) = H({Vw|w ∈ V })−
∑
w∈V

H(Vw|W ) (29)

where H is the joint entropy of the random variables.

Notice that we can select W such that P ((u, v)) for all (u, v) ∈ Ed become independent which also
implies that PV (w) for all w ∈ V become independent given W . Using Theorem 1, we have the
following:

H(Vw|W ) ≤ H(Vw|{P ((u, v))|(u, v) ∈ Ed})
=⇒ H(Vw|W ) ≤ −PV (w) logPV (w)

=⇒ H(Vw|W ) ≤ −PV (w) logA(w)
=⇒ H(Vw|W ) ≤ −nA(w) logA(w)

=⇒ I({Vw|w ∈ V }) ≥ H({Vw|w ∈ V })− n
∑
w∈V

−A(w) logA(w)

(30)

where A(w) =
∑

(u,v)∈Ed
P ((u, v))Vs((u, v))(w). This implies that minimizing∑

w∈V −A(w) logA(w) will maximize the common information.

B FINE GRAINED ESTIMATOR

We now give the proof for Theorem 3 below.

Proof. Let us define a path (ū, w1, w2, . . . , wl−1, v̄) such that (wi, wi+1) ∈ Ed for all 0 ≤ i ≤ l−1
where w0 = ū and wl = v̄. As a shorthand, we represent the path as (ū, . . . , v̄).

Let us define a modified edge set Ēd = Ed ∪ {(ū, . . . , v̄} and also have a probability distribu-
tion P̄ ((u, v)) over Ēd analogous to the distribution P ((u, v)) over Ed. The only change is that
P̄ ((ū, . . . , v̄) gives the probability that the path is being traversed. We can now define the functions
h̄i
e(t) for all e ∈ Ēd. We now define:

P̄ (e) =
1

nT

n∑
i=1

∫ T

0

h̄i
e(t)dt ∀e ∈ Ēd (31)

and, we will now show that it is indeed a proper distribution.

Define indicator functions gie(t) for all e ∈ Ed and 1 ≤ i ≤ n such that gie(t) = 1 when agent i
is traversing the edge e while the agent is traversing the path (ū, . . . , v̄). Obviously, for any edge e
that is not in the path, gie(t) = 0 for all 0 ≤ t ≤ T , 1 ≤ i ≤ n. Furthermore,

hi
e(t) = h̄i

e(t) + gie(t) ∀e ∈ Ed (32)
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=⇒ P (e) =
1

nT

n∑
i=1

∫ T

0

h̄i
e(t) + gie(t) dt ∀e ∈ Ed

=⇒ P (e) = P̄ (e) +
1

nT

n∑
i=1

∫ T

0

gie(t) dt ∀e ∈ Ed

=⇒ 1 =
∑
e∈Ed

P̄ (e) +
1

nT

n∑
i=1

∫ T

0

∑
e∈Ed

gie(t) dt

=⇒ 1 =
∑
e∈Ed

P̄ (e) +
1

nT

n∑
i=1

∫ T

0

h̄i
(ū,...,v̄)(t) dt

=⇒ 1 =
∑
e∈Ēd

P̄ (e)

Suppose that we define Te as the time spent on the edge e ∈ Ed while traversing the path once. It is
easy to observe that

∑
e∈Ed

Te = Tūv̄ . We can use the time to get the following relation:∫ T

0

n∑
i=1

gie(t) dt =
Te

Tūv̄

∫ T

0

n∑
i=1

h̄i
(ū,...,v̄)(t) dt ∀e ∈ Ed

=⇒ P (e) = P̄ (e) +
Te

Tūv̄
P̄ ((ū, . . . , v̄)) ∀e ∈ Ed

(33)

Now we show that the loss function over the probabilities on Ēd is the same for the probabilities on
Ed. It is easy to observe that the loss will be the same if we can show that

∑
e∈Ed

Vs(e)P (e) =∑
e∈Ēd

Vs(e)P̄ (e). Then, by using Lemma 1, we have,

∑
e∈Ēd

Vs(e)P̄ (e) =
∑
e∈Ed

Vs(e)P̄ (e) + Vs((ū, . . . , v̄))P̄ ((ū, . . . , v̄))

=
∑
e∈Ed

Vs(e)P̄ (e) + P̄ ((ū, . . . , v̄))
∑
e∈Ed

Te

Tūv̄
Vs(e)

=
∑
e∈Ed

Vs(e)

(
P̄ (e) +

Te

Tūv̄
P̄ ((ū, . . . , v̄))

)
=
∑
e∈Ed

Vs(e)P (e)

The following is a proof for Theorem 4.

Proof. First we need to show that P̄ and P̂ form a probability distribution over the edges. Let
q = 1− p. Notice that h̄i

(u,v)(t) = I(t)hi
(u,v)(t) for all 0 ≤ t ≤ T and (u, v) ∈ Ed.

=⇒ P̄ ((u, v)) =
1

npT

∫ T

0

I(t)hi
(u,v)(t)dt

=⇒
∑

(u,v)∈Ed

P̄ ((u, v)) =
1

npT

n∑
i=1

∫ T

0

I(t)dt

=⇒
∑

(u,v)∈Ed

P̄ ((u, v)) = 1

(34)
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From the way P̄ and P̂ is defined, it is easy to observe that,

P ((u, v)) = pP̄ ((u, v)) + qP̂ ((u, v)) ∀(u, v) ∈ Ed

=⇒ 1 = p+ q
∑

(u,v)∈Ed

P̂ ((u, v))

=⇒ P̂ ((u, v)) = 1

(35)

Hence, we have that both are probability distributions over the edges. Therefore, we can way that it is
possible to decompose P̄ ((u, v)) into π̄(u) and P̄ (u→ v), and P̂ ((u, v)) into π̂(u) and P̂ (u→ v).

For any u ∈ Vd, we have the following:

=⇒ π(u) =
∑

{v|(u,v)∈Ed}

pP̄ ((u, v)) + qP̂ ((u, v))

=⇒ π(u) = pπ̄(u) + qπ̂(u)

(36)

Let us define the matrix M of size |Vd| × |Vd| and a vector x of size |Vd| which is indexed by the
vertices in Vd such that:

M(v, u) =

{
P (u→ v) (u, v) ∈ Ed

0 otherwise

x(u) = π(u)

(37)

Similarly, let us also define the following:

M̄(v, u) =

{
P̄ (u→ v) (u, v) ∈ Ed

0 otherwise
x̄(u) = π̄(u)

M̂(v, u) =

{
P̂ (u→ v) (u, v) ∈ Ed

0 otherwise
x̂(u) = π̂(u)

(38)

Using equation 36, we have that x = px̄+ qx̂, and equation 35 implies that Mx = pM̄x̄+ qM̂x̂.

=⇒ x−Mx = p(x̄− M̄x̄) + q(x̂− M̂x̂)

=⇒ (I −M)x = p(I − M̄)x̄+ q(I − M̂)x̂
(39)

Hence, it is sufficient to constraint that M̄x̄ = x̄ and M̂x̂ = x̂ which is same as saying:∑
{v|(u,v)∈Ed}

π̂(u)P̂ (u→ v) = π̂(v) and
∑

{v|(u,v)∈Ed}

π̄(u)P̄ (u→ v) = π̄(v)

C LARGE ENVIRONMENT EXPERIMENTS

The large environment is a 70×70 grid-like structure with an uneven but smooth topology shown in
Figure 5. Two stark differences from the small environment are, 1) there are no walls that suddenly
clip the visibility, and 2) the topology does not restrict the movement of agents. We do simulations
for homogeneous teams with 30 agents with unidirectional visibility.

Figure 5: The large environment
has a variety of features that are ob-
served in real world topographies.
It has multiple different hills and
valleys resulting in a complex situ-
ation to analyze even for human ex-
perts.
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Figure 7 shows the cumulative counts and Figure 6 shows the total variation distance of the distri-
bution approximated by the trajectories and the distribution found using BOIL process.

Figure 6: The figure depicts Time steps vs. Total variation distance between the approximate dis-
tribution of the agent trajectories and the distribution found using the BOIL process for the large
environment. BOIL Distribution Strategies: Sample Agent, Comm Sample Agent, Optimal Agent

Let us initially examine Figure 6 to assess the convergence rate. It becomes evident that random
walks and frontier-based exploration strategies converge to a similar distance value. Conversely,
Sample and Comm Sample strategies struggle to achieve convergence. This disparity is further
underscored by the visibility counts depicted in Figure 7. The challenge of attaining convergence
to the desired distribution becomes apparent as the environment’s scale and complexity increase.
However, the visibility counts also suggest that coverage remains satisfactory once agents reach the
distribution obtained through the BOIL process. Thus, despite the inherent difficulty in achieving
convergence, the obtained distribution is effective for ensuring adequate coverage.

Figure 7: Similar to Figure 2, this
figure shows the same type of data
for the large environment. Z-axis il-
lustrates the counts of visible nodes
corresponding to values on the Y-
axis, while the X-axis denotes the
types of homogeneous agents con-
sidered in the experiment. Curves’
opacity signifies variations in val-
ues, with lower opacity indicat-
ing the upper end of the variance
and higher opacity representing the
lower end for frequencies. The
central divider indicates the mean
frequencies. BOIL Distribution
Strategies: Sample Agent, Comm
Sample Agent, Optimal Agent

It should be noted that despite the apparent plateauing of convergence, closer inspection of the raw
values reveals a downward gradient for both the small and large environments for Sample and Comm
Sample strategies. This observation aligns with theoretical expectations, as the sampling process
theoretically guarantees convergence to the desired distribution. Furthermore, bidirectional paths in
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the environment may contribute to oscillatory behavior, given the simplicity of the path-planning
process.

A closer look at Figure 7 suggests that the distributions of Sample and Comm Sample agents ex-
hibit a skewed peak resembling that of Optimal agents. This indicates that despite encountering
challenges in achieving full convergence, these strategies strive to emulate the optimal distribution
pattern.
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