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ABSTRACT

Recent advances in table understanding have focused on instruction-tuning large
language models (LLMs) for table-related tasks. However, existing research has
overlooked the impact of hyperparameter choices and lacks a comprehensive eval-
uation of the out-of-domain table understanding ability and the general capabili-
ties of these table LLMs. In this paper, we evaluate these abilities in existing table
LLMs, and reveal significant declines in both out-of-domain table understand-
ing and general capabilities compared to their base models. Through systematic
analysis, we show that hyperparameters, such as learning rate, can significantly
influence both table-specific and general capabilities. Contrary to the existing ta-
ble instruction-tuning works, we demonstrate that smaller learning rates and fewer
training instances can enhance table understanding while preserving general ca-
pabilities. Based on our findings, we introduce TAMA, a TAble LLM instruction-
tuned from LLaMA 3.1 8B Instruct, which achieves performance on par with,
or surpassing GPT-3.5 and GPT-4 on table tasks, while maintaining strong out-
of-domain generalization and general capabilities. Our findings highlight the po-
tential for reduced data annotation costs and more efficient model development
through careful hyperparameter selection.

1 INTRODUCTION

TableLlama
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Figure 1: Performance comparison be-
tween our proposed model TAMA and
the existing table LLMs on out-of-
domain table understanding and general
benchmarks.

Recent years have witnessed a paradigm shift to data-
driven methods for table understanding. Researchers
have instruction-tuned various LLMs, particularly the
open-source models from LLaMA family (Touvron et al.,
2023; Dubey et al., 2024) to improve their ability on han-
dling table-related tasks, such as table question answer-
ing (Table QA) (Nan et al., 2022), and table fact verifica-
tion (Chen et al., 2019), and pushing the state-of-the-art
performance on various table benchmarks (Zhang et al.,
2024a;b).

However, existing research has been influenced by the
lack of transparency in closed-source LLMs, which often
claim to be trained on large-scale datasets without reveal-
ing the detailed training process. As a result, open-source
efforts have tended to follow these closed-source mod-
els by focusing primarily on large-scale datasets (Zhang
et al., 2024a), while overlooking the crucial influence of
hyperparameter choices. In addition, existing works lack
the discussion of how these table LLMs perform on out-
of-domain table understanding tasks, and how they com-
promise their general ability when specializing on table
tasks. We argue that out-of-domain table understanding is crucial for table LLMs, as it reflects how
well these models generalize to unseen table tasks. In addition, the general capabilities of these
models are still important for handling table-related tasks. For instance, instruction following is cru-
cial in real-world applications where end-users may request specific input-output formats (e.g., The
user may request the model to return the answer in JSON). Additionally, stronger reasoning capa-
bilities and comprehensive general knowledge can enhance these models’ ability to handle diverse
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Table 1: Information of existing table instruction tuned models. For “Data Source”, “S” and “R”
represent synthesized data and real data, respectively. †: a variant based on the LLaMA 2 7B model.

Model Base Model
Learning

Rate
Epochs

Data
Size

Data
Source

Open-
Source?

TableGPT (Zha et al., 2023) - - - - - ✗

Table-GPT (Li et al., 2023) GPT-3.5 - - 13K S ✗

TableLLaMA (Zhang et al., 2024a) LongLoRA 7B† 2e-5 6 2M R ✓

TableLLM (Zhang et al., 2024b) CodeLLaMA 7B & 13B Instruct 2e-5 6 309K R + S ✓

TableBenchLLM (Wu et al., 2024) LLaMA 3.1-8B & others 2e-5 3 20K S ✓

scenarios, such as interpreting user queries and reasoning over complex data. Therefore, having an
understanding of these table LLMs’ general capabilities gives us a comprehensive understanding of
these models’ limitations in our practical usage.

In this paper, we first evaluate the existing table LLMs in terms of their out-of-domain table un-
derstanding ability and their general abilities. We reveal that existing table LLMs suffer from a
significant decline in terms of these abilities compared to their base models. Sometimes, the perfor-
mance decline on general reasoning benchmarks, such as AI2ARC, can be up to 20 percentage.

We then select the latest LLaMA 3.1 8B Instruct model, and proceed to explore how hyperparameter
choices influence the model’s performance. Our analysis reveals that learning rate plays a crucial
role in shaping the model’s table understanding ability and influencing the model’s general ability. A
large learning rate, as seen in the existing table LLMs, compromises the model’s general capabilities
and leads to suboptimal table understanding performance. On the other hand, a small learning rate,
while effectively preserving the model’s general capabilities, fails to sufficiently improve its table
understanding ability. In addition, we find that it is possible to achieve strong table understanding
ability with a much smaller amount of training data – for instance, 2,600 in Section 4. Our training
size is significantly smaller compared to the two million instances used by TableLLaMA (Zhang
et al., 2024a), and ten times smaller than that of TableBenchLLM (Wu et al., 2024), highlighting
the potential to reduce annotation costs in future model development. We also explore the effects of
epoch numbers and the task synergy, and discuss our findings in Section 3.

Based on our findings, we carefully select the hyperparameters and instruction-tune the LLaMA 3.1
8B Instruct model, resulting in TAMA, which demonstrates strong table understanding ability and
general capabilities (Figure 1).

In summary, our contributions are three folds:

• We examine the existing table LLMs and reveal that these table LLMs do not generalize to out-
of-domain table tasks and show compromised general capabilities compared to their base model.

• We reveal the impacts of the often-ignored hyperparameter selection such as the learning rate,
number of training instances, etc. We find that the commonly-adopted learning rate can be too
large, and may lead to suboptimal table understanding performance and compromises the model’s
general capabilities. In addition, we can achieve strong table understanding ability with a much
smaller amount of training data compared to the existing works.

• Based on our findings, with careful hyperparameter selection, we instruction-tune LLaMA 3.1
8B Instruct model with 2,600 table instruction data. As an 8B size model, our resulting model,
TAMA achieves performance on par with, or even exceeding GPT-3.5 in table understanding
tasks, and in some cases surpasses GPT-4, while retaining the general capabilities of its base
model. Moreover, TAMA exhibits strong out-of-domain table understanding and general capabil-
ities (Figure 1).

In the following sections, Section 2 evaluates the existing table LLMs in terms of their out-of-domain
table understanding ability and general capabilities. Section 3 explores how the hyperparameter
choices shape the model’s ability. Based on our findings in Section 3, we build our model, TAMA in
Section 4.
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Table 2: Details of the benchmarks upon which we evaluate the existing table LLMs. We report the
performance on the main set for GPQA and the challenge set for AI2ARC.

Evaluation Datasets Category # Shots Task Type Metrics

Table-Syn2 (Li et al., 2023) Table understanding - Generation Acc
IFEval (Zhou et al., 2023) Instruction Following - Generation Instance-level Acc
MMLU (Hendrycks et al., 2021) General 5-shot Multi-Choice Acc
MMLU Pro(Wang et al., 2024) General 5-shot Multi-Choice Acc
AI2ARC (Clark et al., 2018) Reasoning 0-shot Multi-Choice Acc
GPQA (Rein et al., 2023) Reasoning 0-shot Multi-Choice Acc

Table 3: Performance comparison between the existing table LLMs (second row) and their base
models (first row). †: A variant of LLaMA 2 7B model.

Table-Syn IFEval MMLU MMLUPro AI2ARC GPQA

LongLoRA 7B† 2.40 31.41 44.22 17.51 42.24 23.66
TableLLaMA 0.00 25.78 30.27 12.33 30.89 23.44

∆ ↓ 2.40 ↓ 5.63 ↓ 13.95 ↓ 5.18 ↓ 11.35 ↓ 0.22

CodeLLaMA 13B Instruct 33.40 48.32 44.69 19.66 48.72 24.78
TableLLM 18.40 30.46 35.90 15.36 34.81 24.11

∆ ↓ 15.00 ↓ 17.86 ↓ 8.79 ↓ 4.30 ↓ 13.91 ↓ 0.67

LLaMA 3.1-8B 13.40 32.13 62.08 13.86 74.40 28.12
TableBenchLLM 9.00 32.85 52.67 17.84 53.50 27.01

∆ ↓ 4.40 ↑ 0.72 ↓ 9.41 ↑ 3.98 ↓ 20.90 ↓ 1.11

2 EVALUATION OF EXISTING TABLE LLMS

2.1 EXPERIMENTAL SETUP

Models to Evaluate. Table 1 provides a comprehensive overview of the existing table LLMs. As
we do not have access to the closed-source table LLMs, we focus on the evaluation of the open-
source ones, including TableLLaMA (Zhang et al., 2024a), TableLLM (Zhang et al., 2024b), and
TableBenchLLM (Wu et al., 2024). All of these open models are fine-tuned with all parameters
being updated.

Evaluation Datasets. Table 2 provides the datasets on which we test these table LLMs in terms of
their out-of-domain table understanding ability and their general capabilities. We choose Table-Syn
(Li et al., 2023) to test these table LLMs’ out-of-domain table understanding ability, as none of them
has been fine-tuned on this dataset.

2.2 FINDINGS

Existing Table LLMs possess limited out-of-domain table understanding ability. In Table 3, all the
existing table LLMs suffer from performance drops on Table-Syn compared to their base mod-
els. Though these table LLMs achieve SOTA performance on various benchmarks (Zhang et al.,
2024a;b), such a performance decline reveals their limited out-of-domain table understanding capa-
bilities, which aligns with the findings by Zheng et al. (2024).

Existing Table LLMs demonstrate poor instruction-following ability. In Table 3, both TableLLaMA
and TableLLM show significant drops in performance on IFEval (Zhou et al., 2023), with accuracy
declines of 5.63 and 17.86, resulting in a score of 25.78 and 30.46, respectively. While TableBench-
LLM maintains a similar score to its base model (32.85 compared to 32.13 for LLaMA 3.1-8B), this
performance is still limited compared to 83.57 by GPT-4 reported by Zhou et al. (2023). At such
low instruction following scores, existing table LLMs cannot consistently follow instructions such
as “return the answer in JSON format” as shown in Table 6 in Section 4.3 and Tables 17 to 19 in
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Appendix E, limiting the model’s usage if the end users need data extraction that requires certain
answer format.

Existing table instruction tuning compromises models’ general capabilities. Existing table
instruction-tuning methods lead to significant drops in accuracy on general benchmarks such as
MMLU, AI2ARC, GPQA as shown in Table 3. For instance, compared to their base models, TableL-
LaMA experiences a decline of 13.95 accuracy score on MMLU, while TableLLM and TableBench-
LLM lose 8.79 and 9.41, respectively. Appendix B provides further discussion of the model’s perfor-
mance corresponding to each category in MMLU benchmark. On the general reasoning benchmarks
such as AI2ARC, the drop can be as large as 20.90 for TableBenchLLM, showing that the existing
table instruction tuning hurts their base model’s reasoning ability. This limits the existing table
LLMs’ usage if there are general knowledge or reasoning involved in end users’ request.

3 HYPERPARAMETER EXPLORATION

Table 1 reports the hyperparameters used in the existing table instruction tuning works. Although
hyperparameter selection is often treated as technical detail and receives little attention, we demon-
strate that these choices are crucial. The impact of factors such as learning rate, and number of
epochs should not be underestimated, as they significantly influence both the table understanding
and general ability. In the following subsections, Section 3.1 introduces the model and datasets used
in our analysis experiments, Section 3.2 provides the findings and the choices we make that lead to
our model in Section 4.

3.1 EXPERIMENTAL SETUP

Models. We conduct table instruction tuning with full parameter tuning using the 8B version of
the LLaMA 3.1 Instruct model (Dubey et al., 2024) because of its superior general capabilities,
especially its strong instruction following ability. Appendix C.1 provides detailed reasons for our
model choice.

Datasets. We draw training data from three representative table understanding datasets in this
section, FeTaQA (Nan et al., 2022), a free-form table question answering (Table QA) dataset; HiTab
(Cheng et al., 2022), a short-answer Table QA dataset; TabFact (Chen et al., 2019), a table fact
verification dataset. In Figure 2, we also report the model’s performance on FEVEROUS (Aly et al.,
2021), another table fact checking dataset, and on two general benchmarks, MMLU and IFEval
introduced in Table 2.

3.2 ANALYSIS

Learning Rate. In Figure 2, we fine-tune the LLaMA 3.1 8B Instruct model using instruction data
from TabFact, HiTab, and FeTaQA.

We find that the learning rate plays a crucial role in determining model performance, as well as
how well the model preserves its general capabilities. In general, LLaMA 3.1 8B Instruct achieves
the best performance when the learning rate is around 1.0e-6 and 5.0e-7. For instance, on TabFact,
LLaMA 3.1 8B Instruct achieves its best performance (73.10) at a learning rate of 1.0e-6 with
1500 examples. Moreover, there is little to no decline in LLaMA 3.1 8B Instruct’s performance on
MMLU and IFEval with such learning rates. With a smaller learning rate such as 1.0e-7, though
the model’s performance on MMLU and IFEval can be well-preserved, the model’s performance on
table tasks such as FEVEROUS is suboptimal under the same setup (66.86 compared to 74.63 at a
learning rate of 5.0e-6). In contrast, when the learning rate is too large, such as 1.0e-5, we observe a
significant decline in the model’s performance on both MMLU and IFEval, suggesting that a larger
learning rate may hurt the model’s general capabilities. We note that all the existing table LLMs
use a large learning rate of 2e-5 (Table 1), which explains their compromised out-of-domain table
understanding ability and general capabilities compared to their base models in Table 3.

Number of Examples. As the number of training instances increases, we find that there is a period
of quick learning followed by a period of marginal performance improvement.
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Figure 2: LLaMA 3.1 8B Instruct’s performance (y-axis) with respect to the number of training
instances (x-axis). We fine-tune the model for three epochs. We note that the learning rate plays
a crucial role in shaping the model’s capabilities, and the performance improvement beyond 200
examples seems marginal.

HiTab
FeTaQA

TabFact
FEVEROUS

IFEval
MMLU

1 2 3 4 5 630

40
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Figure 3: LLaMA 3.1 8B In-
struct model’s performance (y-
axis) across different numbers of
epochs (x-axis). We fine-tune the
model on the 1,500 instruction
pairs, with 500 pairs each from Fe-
TaQA, HiTab, and TabFact, at a
learning rate of 1.0e-6.

We observe in Figure 2 that on table tasks such as FeTaQA
and HiTab, there is a period where the model’s performance
boosts up quickly, typically happening when tuning on the first
200 examples. Later, the performance improvement seems
marginal. This aligns with the findings from Zhou et al. (2024)
that the foundational LLM’s performance can be improved
with a limited amount of high-quality data in the instruction
tuning stage. We hypothesize that with the first few hundred
examples, the model is able to enhance its table reasoning abil-
ity quickly. After this point, the model’s performance increase
may primarily come from fitting the nuanced patterns in these
datasets. Therefore, unlike the existing table LLMs which may
involve up to two million training instances as seen in Table 1,
we choose to train on 200 instances for each dataset in Sec-
tion 4.

In addition, we can achieve competitive or even SOTA per-
formance with limited data. On HiTab, with a learning rate
of 1.0e-6 and 1,500 examples, we achieve an accuracy score
of 66.29, outperforming the previous SOTA performance of
64.71 by TableLLaMA. On FEVEROUS, with 1,500 exam-
ples, we achieve a better score of 74.63 compared to 73.77 by
TableLLaMA. Though the credit also comes from the LLaMA
3.1 Instruct model, which is much stronger compared to the
LLaMA 2 model that TableLLaMA is tuned from, we high-
light that TableLLaMA has used two million data points in its
table instruction tuning stage, including the entire training set
of TabFact, FeTaQA, and HiTab, while here we use around 7%
of the entire training data for HiTab. Our analysis demonstrates that with a strong foundational model
and a good choice of learning rate, we can achieve competitive performance on table understanding
tasks with limited training instances.
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Effects of Epochs. Figure 3 illustrates the relationship between the performance of LLaMA 3.1 8B
Instruct model and the number of epochs when we fine-tune the model on the 1,500 instruction pairs
at a learning rate of 1.0e-6. The model demonstrates a decent performance on these table tasks within
just one or two epochs. In the meantime, the model mostly preserves its performance on MMLU and
IFEval, indicating that its general capabilities are not compromised too much while acquiring table
reasoning ability. Beyond this point, there is no significant performance improvement, suggesting
that extending training for more epochs yields diminishing returns or may even lead to overfitting.
Therefore, we choose to train our model for two epochs in Section 4 instead of the commonly
adopted six epochs by existing table LLMs as seen in Table 1.

Effects of Multi-Task. In Figure 4, we present the heatmap of model performance when fine-
tuning the LLaMA 3.1 8B Instruct model on a single dataset (one of the datasets among FeTaQA,
HiTab, and TabFact). We fine-tune the model for two epochs at a learning rate of 1.0e-6 with
500 instruction pairs, and then test it against the six datasets. Additionally, Figures 7 and 8 in
Appendix C.4 present heatmaps across varying learning rates (from 1.0e-7 to 1.0e-5) and number of
epochs (from one to six).

FEVEROUS FeTaQA HiTab IFEval MMLU TabFact
Test
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HiTab

TabFact
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n

0.14 35.12 1.77 76.62 65.75 0.00
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Figure 4: Heatmap when we fine-tune the LLaMA
3.1 8B Instruct model on a single dataset (y-axis)
and test against the others (x-axis). In this plot, we
fine-tune the model for two epochs at a learning
rate of 1.0e-6 with 500 instruction pairs.

There are synergy effects on these tasks.
The model achieves better performance when
trained on the instruction pairs combined from
all three datasets, compared to being trained on
each of them separately. For instance, the accu-
racy on HiTab increases to 66.29, compared to
64.84 when trained only on HiTab as shown in
Figure 7.

There are inter-connections between different
tasks. In Figure 4, we note that fine-tuning
solely on HiTab leads to a performance of 67.80
on TabFact, and fine-tuning solely on TabFact
leads to a performance of 55.62 on HiTab,
demonstrating a transfer of learned capabilities
between these two tasks. However, this rela-
tionship is not universal as training on HiTab
yields poor performance on FeTaQA, indicating that the overlap between certain tasks may be lim-
ited.

Based on these observations, we choose to fine-tune our model on a diverse range of tasks and
datasets in Section 4. We provide further analysis across LLMs in Appendix C.2, and analysis in
terms of LoRA and QLoRA in Appendix C.3. We provide further analysis regarding how the data
features affect the model’s performance degradation on general benchmarks in Appendix C.5.

4 TAMA

Based on our findings from Section 3, we start building our general table understanding model,
TAMA by instruction tuning the LLaMA 3.1 8B Instruct model.

4.1 EXPERIMENTAL SETUP

Hyperparameter Selection. In Section 3, we find that with 200 instruction pairs, the model has
already achieved competitive table understanding ability, and the performance gain after such a point
is marginal. Moreover, tuning the model at a learning rate of 1.0e-6 for two epochs would enhance
the model’s table understanding ability while still maintaining its general ability. Therefore, we
select 200 instruction pairs in the training set from each of the datasets in Table 4, and train the
model at the learning rate of 1.0e-6 for two epochs.

Dataset Splits. As we use FeTaQA, HiTab, TabFact, FEVEROUS, MMLU, and IFEval in Sec-
tion 3 for hyperparameter selection, we report their scores under the “Dev” category. In the test
time, we test our model on the additional nine table understanding datasets in Table 4. Moreover,
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Table 4: Datasets where we sample the instruction pairs to fine-tune the LLaMA 3.1 8B Instruct
model. We randomly select 200 data points from each of these datasets in our table instruction
tuning stage. We denote these datasets by their shorthands in Table 5.

Task Category Task Name Dataset Shorthand #Size Data Split Metrics(Table/Sample)

Question
Answering

Table QA WikiTQ (2015) W-T 0.4K/4K Test Acc
Table QA WikiSQL (2017) W-S 5K/16K Test Acc
Hybrid Table QA HybridQA (2020) Hyb 3K/3K Test Acc
Table QA TATQA (2021) TAT 0.2K/0.7K Test Acc
Highlighted Cells QA FeTaQA (2022) FeT 2K/2K Dev BLEU
Hierarchical Table QA HiTab (2022) HiT 1K/1K Dev Acc
Hierarchical Table QA AIT-QA (2022) AIT 0.1K/0.3K Test Acc
Table QA TABMWP (2023) TAB 7K/7K Test Acc

Table Fact
Verification Fact Verification

TabFact (2019) TaF 2K/12K Dev Acc
InfoTabs2 (2020) Inf 0.06K/0.5K Test Acc
FEVEROUS (2021) FEV 4K/7K Dev Acc

Dialogue
Generation

Table Grounded
Dialogue Generation KVRET (2017) KVR 0.3K/0.8K Test Micro F1

Data-to-Text Highlighted
Cells Description ToTTo (2020) ToT 7K/8K Test BLEU

Table 5: Evaluation results on the datasets listed in Table 4. “Base” denotes the LLaMA 3.1 8B
Instruct model. We make the number bold if it is the best among the four, we underline the number
if it is at the second place. † indicates the performance reported by Gou et al. (2023); Srivastava
et al. (2024); Zhang et al. (2024a).

Models Dev Test
FeT HiT TaF FEV W-T W-S Hyb TAT AIT TAB Inf KVR ToT

GPT-3.5 26.49† 43.62† 67.41† 60.79† 53.13† 41.91† 40.22† 31.38† 84.13 46.30† 56.00 54.56† 16.81†

GPT-4 21.70† 48.40† 74.40† 71.60† 68.40† 47.60† 58.60† 55.81† 88.57 67.10† 58.60 56.46† 12.21†

base 15.33 32.83 58.44 66.37 43.46 20.43 32.83 26.70 82.54 39.97 48.39 50.80 13.24
TAMA 35.37 63.51 73.82 77.39 52.88 68.31 60.86 48.47 89.21 65.09 64.54 43.94 37.94

we test our model on the two synthesized table understanding datasets from Table-Syn (Li et al.,
2023) and from Wu et al. (2024) (denoted as S1 and S2 in Table 7, respectively) to assess its out-of-
domain table understanding ability. To assess the model’s general ability, apart from reporting the
model’ scores on the MMLU and IFEval, we test our model on MMLUPro, AI2ARC, and GPQA
introduced in Table 2.

Appendix A provides more details of our experimental setup including the information of GPU
server, generation hyperparameters, data processing, and our evaluation setup. Appendix F provides
examples from datasets that we evaluate upon.

4.2 RESULTS AND ANALYSIS

Table 5 shows TAMA’s performance on datasets listed in Table 4. Table 7 shows TAMA’s perfor-
mance on the two out-of-domain table benchmarks and TAMA’s performance on the general bench-
marks.

TAMA demonstrates strong table understanding ability. We notice that there is a significant
performance boost for TAMA compared to its base model, LLaMA 3.1 8B Instruct, on almost every
dataset. For instance, on Table QA tasks such as HybridQA, TAMA achieves an accuracy of 60.86
compared to LLaMA 3.1 8B Instruct’s 32.83. When compared to the commercial closed-source
LLMs such as GPT-3.5 and GPT-4, TAMA surpasses the performance of GPT-3.5 model on almost

1https://machinelearning.apple.com/research/introducing-apple-foundatio
n-models

2Due to budget limit for prompting GPT models, we uniformly sample 500 data points from the original
test set as our test set.
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Table 7: Evaluation results on the out-of-domain table understanding benchmarks and general
benchmarks. For the two out-of-domain table understanding datasets, we make the number bold
if it is the best among the four, we underline the number if it is at the second place. † indicates
results reported by Achiam et al. (2023); Zhou et al. (2023); Rein et al. (2023); Wang et al. (2024);
Wu et al. (2024), and the report from Apple1.

Models
Out-of-Domain Table General

Test Dev Test
S12 (2023) S2 (2024) MMLU IFEval MMLUPro GPQA AI2ARC

Acc ROUGE-L Acc Acc Acc Acc Acc
GPT-3.5 54.80 27.75† 70.00† 74.80† - 29.80† -
GPT-4 80.20 40.38† 86.40† 92.00† 63.71† 32.10† -
base 53.60 23.47† 66.04 79.62 22.10 32.14 80.89

TAMA 64.93 28.60 66.99 74.70 31.84 31.92 81.23

every table task in Table 5 except for KVRET and WikiTQ. And on WikiTQ, the two yields a similar
performance (TAMA achieves 52.81 and GPT-3.5 achieves 53.13).

On tasks such as WikiSQL, HybridQA, InfoTabs, FEVEROUS, TAMA yields a superior performance
than GPT-4. Notably, on two out-of-domain synthesized table understanding datasets in Table 7,
TAMA surpasses the performance of GPT-3.5 (on S1, TAMA yields 64.93 while GPT-3.5 yields
54.80, on S2, TAMA yields 28.60 while GPT-3.5 yields 27.75). These two datasets are comprised
of diverse table understanding tasks, and the domain distribution is significantly different from all
the in-domain training data we use. The competitive performance TAMA demonstrates on these two
datasets indicates its strong general table understanding ability. This suggests that while pre-training
imparts a foundational understanding of table-related knowledge, table-specific fine-tuning plays a
crucial role in further enhancing the model’s capability in handling table data.

Table 6: Table LLMs’ predictions on the prompts
from IFEval and Table-Syn (S1 in Table 5). We
omit parts of the examples for readability. Ap-
pendix E provides the complete examples.

PROMPT: Please provide ... in JSON format. Correct?

TableLLaMA <Mommy>, <Dad> ... </s> ✗

TableLLM ...df = pd.read csv(’data.csv’)... ✗

TableBenchLLM ...1. Sarah Palin... ✗

TAMA (ours) {“famous moms”: [{“name”: ... } ✓

PROMPT:
# Task Description: determine the se-
mantic type ... Return in JSON format... Correct?
[Table]
[Candidates]...

TableLLaMA <Blue Blazer (mask)>,...</s> ✗

TableLLM {“chosen semantic type”: “Film”} ✗

TableBenchLLM ...Loser (wager)*Let’s consider... ✗

TAMA (ours) {“chosen semantic type”: “Wrestler”} ✓

TAMA preserves the general capabilities.
In Table 7, we note that TAMA preserves the
original LLaMA 3.1 8B Instruct’s performance
on almost every general benchmark. For in-
stance, on MMLU, TAMA yields an accuracy
of 66.99 compared to the base model’s 66.04;
on AI2ARC, TAMA yields an accuracy of 81.23
compared to the base model’s 80.89. We leave
the discussion of the slight performance im-
provements on these general benchmarks to
Section 4.3. On IFEval, TAMA preserves most
of its instruction following ability compared to
the base model (74.70 compared to the base
model’s 79.62). Thanks to the strong instruc-
tion following ability of the original LLaMA
3.1 8B Instruct model, TAMA even yields a sim-
ilar instruction following score on IFEval to
GPT-3.5 (74.70 for TAMA compared to 74.80
for GPT-3.5). Table 6 provides two examples
from TAMA’s predictions versus existing table
LLMs’ on IFEval and Table-Syn (S1 in Ta-
ble 5). Existing table LLMs fail to return their
answers in JSON formats in most cases, while TAMA successfully returns the correct format.

TAMA is data efficient. We highlight that for each dataset, we use 200 training instances, which
is less than 5% of the size of the original training dataset. For instance, on HiTab, we use 2.67% of
the original 7,417 training instances, and on TabFact, we use 0.21% of the original 92,283 training
instances. In total, we use 2,600 table instruction-answer pairs. When tuned on such a limited

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1.0e-05 5.0e-06 1.0e-06 5.0e-07 1.0e-07

1 2 3 4 5 6

550

600

650

700

750

800

(a) All table tasks

1 2 3 4 5 6

16

18

20

22

24

26

28

(b) S2 (ROUGE-L)

1 2 3 4 5 6

56

58

60

62

64

66

68

(c) MMLU (Acc)

1 2 3 4 5 6
40

50

60

70

80

(d) IFEval (Acc)

1 2 3 4 5 6

66

68

70

72

74

76

78

80

82

(e) AI2ARC (Acc)

Figure 5: Performance scores (y-axis) with respect to the number of epochs (x-axis) and learning
rates. In Figure 5a, we aggregate the performance scores for all the datasets listed in Table 4.

number of training instances, with carefully selected hyperparameters, the model can still advance
its table understanding ability while maintaining its general capabilities.

4.3 HINDSIGHT ANALYSIS

Table 8: Performance breakdown in terms of
the four categories in the MMLU benchmark.
The performance corresponds to the learning
rate of 1.0e-6 and two training epochs.

STEM
Social

Science
Human-

ities
Others Overall

base 56.03 76.15 61.57 72.27 66.04
TAMA 58.25 76.37 62.42 72.86 66.99

In hindsight, we want to validate that our selected
hyperparameters indeed work the best. Therefore,
we run the experiments on the same training set with
the learning rate ranging from 1.0e-7 to 1.0e-5, and
the number of epochs from one to six. Figure 5 re-
ports part of the results, and Figure 9 in Appendix D
reports the complete results and provide further dis-
cussion.

As shown in Figure 5a, on the table understanding
tasks, the learning rate of 1.0e-6 and 5.0e-7 yield
the best overall performance, which coincides with
our findings in Section 3. In addition, the model
achieves its best aggregated performance around two to three epochs for both learning rate.

On S2, one of the out-of-domain table understanding datasets, the learning rate of 1.0e-6 maintains
an overall best ROUGE-L score (around 28 to 29), and the learning rate of 5.0e-7 underperforms
1.0e-6, with the best ROUGE-L score of 23.64 achieved at the second epoch.

For MMLU, both 1.0e-6 and 5.0e-7 maintains their performance, sometimes even slightly better than
the original LLaMA 3.1 8B Instruct model. As revealed in Table 8, the performance boost is most
pronounced on STEM category. We hypothesize that this is because table-related tasks typically
involves data analysis that requires math reasoning, which belongs to the STEM category. Therefore,
training on table-related tasks would lead to better STEM performance. This also explains the
performance boost for MMLUPro in Table 7.

For IFEval, AI2ARC, the smaller the learning rate is, the less it affects the model’s general capabil-
ities. For instance, on IFEval, at the smallest learning rate of 1.0e-7, the model maintains the base
model’s performance, while 5.0e-7 and 1.0e-6 maintain most of the base model’s performance.

Generally, the trends we observe here follow the trends we have observed in Section 3. A learning
rate that is too large or too small would lead to suboptimal performance on table understanding tasks,
and fine-tuning the model with one or two epochs would result in a competitive model without the
risk of sacrificing its general capabilities. Moreover, we demonstrate here that with preliminary
experiments, we can find a set of good or even the best hyperparameters to train the final model.
Therefore, we highly recommend researchers to be mindful about the hyperparameter selection and
conduct preliminary experiments when they start building their own models.
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5 RELATED WORKS

Table-Related Tasks. Tasks involving structured data, especially in the form of tables, have at-
tracted interests from diverse communities (Deng et al., 2022a; Chen et al., 2022; Deng et al., 2022b).
These tasks address diverse applications with different input-output formats. For instance, table
question answering (Table QA) answers the question given the table, either in the form of natural
sentences (Nan et al., 2022) or concise responses such as entities mentioned in the table, or numbers
(Pasupat & Liang, 2015; Zhong et al., 2017). Table fact verification verifies a claim given the table
(Chen et al., 2019; Gupta et al., 2020). Dialogue generation generates the response to the end user
given the table, and the dialogue history information (Eric & Manning, 2017) Table-to-text generates
a description based on the table content (Parikh et al., 2020).

Table Understanding Methods. The past decade has witnessed a paradigm shift in approaches
to table understanding. Before the advent of LLMs, researchers typically adapt model structures
to better interpret table data (Lebret et al., 2016; Liu et al., 2018; Yang et al., 2022). As language
models demonstrate promising performance on various tasks (Devlin et al., 2019), researchers grad-
ually shift their attention towards data-driven methods for table understanding. For instance, Yin
et al. (2020); Herzig et al. (2020) pre-train BERT (Devlin et al., 2019) or BERT-derived model on
large-volume of table data from sources such as Wikipedia to acquire better table representations.
Xie et al. (2022) reveal the synergy effects of various structured tasks, including many table tasks,
laying foundations to build a generalist model for structured data. In the era of LLMs, as LLMs pos-
sess innate table-understanding abilities, researchers also explore prompt engineering techniques to
optimize LLMs for table tasks (Chang & Fosler-Lussier, 2023; Deng et al., 2024).

Table Instruction Tuning. Building on the advances in data-driven methods, researchers have in-
creasingly focused on instruction tuning to enhance LLMs’ table understanding ability. As demon-
strated by Touvron et al. (2023); Dubey et al. (2024); Chung et al. (2024), instruction-tuning can
improve model performance and generalization to unseen tasks. Meanwhile, models from the
open-source LLaMA family (Touvron et al., 2023) demonstrate strong capabilities, leading re-
searchers to instruction-tune these models for better table understanding. For instance, TableL-
LaMA (Zhang et al., 2024a) is instruction-tuned from a variant of LLaMA 2 model (Touvron et al.,
2023), TableLLM (Zhang et al., 2024b) is instruction-tuned from CodeLLaMA, Wu et al. (2024)
instruction-tune various foundational models such as LLaMA 3.1 (Dubey et al., 2024), resulting in
their TableBenchLLM model. Moreover, Zheng et al. (2024) treat tables as images and instruction-
tune Vicuna (Chiang et al., 2023), a vision model that is originally fine-tuned from the LLaMA
model, for table understanding. However, as revealed by Zheng et al. (2024); Deng et al. (2024),
treating tables as texts rather than images yields better performance. In this paper, we focus on table
instruction tuning with tables fed as texts.

6 CONCLUSION

In this paper, we reveal the limited out-of-domain table understanding ability and general capabil-
ities of the existing table LLMs. From our analysis, we find that the commonly-adopted hyperpa-
rameters in existing table LLMs are suboptimal, and hyperparameter choices in table instruction
tuning are crucial in shaping the model’s capabilities. We select hyperparameters from our analysis,
and fine-tune our own model, TAMA. Notably, as an 8B model, TAMA demonstrates strong table
understanding ability, outperforming GPT-3.5 on most of the table understanding benchmarks, even
achieving performance on par or better than GPT-4. Moreover, TAMA preserves strong general capa-
bilities. We hope our findings as well as our model TAMA can facilitate future research on structured
data.
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Rémi Lebret, David Grangier, and Michael Auli. Neural text generation from structured data with
application to the biography domain. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), Pro-
ceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp.
1203–1213, Austin, Texas, November 2016. Association for Computational Linguistics. doi:
10.18653/v1/D16-1128. URL https://aclanthology.org/D16-1128.

Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge, Haidong Zhang, Danielle Rifinski Fainman,
Dongmei Zhang, and Surajit Chaudhuri. Table-gpt: Table-tuned gpt for diverse table tasks. arXiv
preprint arXiv:2310.09263, 2023.

Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang, and Zhifang Sui. Table-to-text generation by
structure-aware seq2seq learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay Rajpurohit, Peter
Clark, and Ashwin Kalyan. Dynamic prompt learning via policy gradient for semi-structured
mathematical reasoning. In International Conference on Learning Representations (ICLR), 2023.

Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Victoria Lin, Neha Verma, Rui Zhang, Wojciech
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Table 9: Temperature and top p value for table LLMs.

Model Temperature Top p

TableLLaMA 0.6 0.90
TableLLM 0.8 0.95

TableBenchLLM 0.0 0.95

TAMA (ours) 0.01 0.95

A EXPERIMENT DETAILS

A.1 GPU DETAILS

We run our experiments on 1 server node with 4 A40, each with 48 GB GPU memory, and 1 server
node with 8 A100, each with 48 GB GPU memory.

A.2 GENERATION DETAILS.

Table 9 shows the generation hyperparameters for table LLMs.

A.3 DETAILS OF PROMPTING GPT MODELS

We prompt the GPT-3.5-turbo and GPT-4-turbo model and set the temperature to 0.

A.4 DETAILS OF DATA PROCESSING

We follow the format of the dataset if the dataset is used by Zhang et al. (2024a). We add instructions
for the datasets used by Xie et al. (2022). For datasets not used by Zhang et al. (2024a); Xie et al.
(2022), we process them from their original source, and add an instruction per dataset.

A.5 DETAILS OF EVALUATION

For datasets such as WikiTQ, TATQA, we follow their original evaluation scripts. For datasets such
as WikiSQL, we follow Xie et al. (2022); Zhang et al. (2024a) to evaluate the exact match accuracy.
For datasets such as ToTTo and FeTaQA, we follow Xie et al. (2022) and use the SacreBLEU
loaded from the Hugging Face library to calculate the BLEU-4 score. For ToTTo, following Xie
et al. (2022), we calculate the BLEU-4 score given all the references in the test set. For S2, we
report the ROUGE-L following Wu et al. (2024) loaded from the Hugging Face library.

For MMLU, MMLUPro, AI2ARC and GPQA, our objective is to select the most appropriate comple-
tion among a set of given options based on the provided context. Following Touvron et al. (2023),
we select the completion with the highest likelihood given the provided context. As we evaluate
the model based on their selection of choice “A”, “B”, etc. We do not normalize the likelihood by
the number of characters in the completion. We note that our setup for MMLUPro is different from
the chain-of-thought (CoT) (Wei et al., 2022) setup in the original LLaMA 3.1 report, as many of
the existing table LLMs exhibit poor instruction-following ability, making it challenging to evaluate
their performance through generation-based tasks. For IFEval, we report the instance-level strict
accuracy defined by Zhou et al. (2023), which reports the percentage of verifiable instructions that
are followed.

B EVALUATION OF THE EXISTING TABLE LLMS.

MMLU Performance Breakdown in Terms of Categories. We provide the performance break-
down in terms of the category for MMLU in Table 10.

On STEM subjects, TableLLaMA experiences a decline of 7.05, while TableLLM and TableBench-
LLM drop by 5.40 and 7.36, respectively. STEM subjects, including abstract algebra and math-
ematics at various levels (elementary, high school, and college), typically require strong logical
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Table 10: Performance (accuracy scores) comparison between existing table LLMs (second row) and
their base models (first row) with respect to the four categories in MMLU (e.g. “STEM” column)
and their overall MMLU performance (“Overall” column). †: A variant of LLaMA 2 7B model.

STEM Social Science Humanities Others Overall

LongLoRA 7B† 35.65 50.70 40.66 51.20 44.22
TableLLaMA 28.60 31.49 29.59 31.65 30.27

∆ ↓ 7.05 ↓ 19.21 ↓ 11.07 ↓ 19.55 ↓ 13.95

CodeLLaMA 13B Instruct 37.57 50.24 42.64 49.05 44.69
TableLLM 32.17 39.52 34.77 37.57 35.90

∆ ↓ 5.40 ↓ 10.72 ↓ 7.87 ↓ 11.48 ↓ 8.79

LLaMA 3.1-8B 52.85 73.94 55.43 69.06 62.08
TableBenchLLM 45.49 62.56 46.18 59.38 52.67

∆ ↓ 7.36 ↓ 11.38 ↓ 9.25 ↓ 9.68 ↓ 9.41
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Figure 6: LLaMA 3.1 8B’s accuracy scores (y-axis) on TabFact, MMLU, and IFEval with respect to
the number of training instances (x-axis). We fine-tune the model for three epochs.

reasoning and analytical capabilities, which are highly relevant to data analysis in table tasks. The
drop in performance across these models indicates that current table instruction tuning compromises
such reasoning abilities of their base models, limiting their application in table analytical scenarios.

There is even more pronounced performance degradation in other categories. Though these cate-
gories may not directly align with table understanding, they assess model capabilities that are still
critical for end-user applications. For instance, the “Others” category includes subjects like global
facts, which are essential for users seeking reliable information during queries. The decline in per-
formance across these broader categories suggests that the current table instruction tuning methods
may compromise the model’s ability to handle general knowledge tasks effectively, which limits its
practical usefulness for diverse real-world applications.

C MODEL AND HYPERPARAMETER EXPLORATION

C.1 MODEL SELECTION

Reasons to Select LLaMA 3.1. LLaMA 3.1 (Dubey et al., 2024) provides a set of foundational
models for language. Compared to the prior LLaMA models, LLaMA 3.1 claims to improve both
the quantity and the quality of the data used for pre-training and post-training (15T multilingual pre-
training tokens for LLaMA 3.1 compared to 1.8T tokens for LLaMA 2). Such an enormous amount
of training makes LLaMA 3.1 one of the most advanced open-source LLMs.

Reasons to Select the Instruct Version Rather than the Base Version. Currently, there are
two kinds of model selections for table instruction tuning, instruction-tuning the base version of
the model, as seen in works like TableLLaMA(Zhang et al., 2024a) and TableBenchLLM(Wu
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et al., 2024), or continuing instruction-tuning an already instruction-tuned version, as done with
TableLLM(Zhang et al., 2024b) as listed in Table 1.

As the end user may come up with their own set of instructions, we expect table instruction-tuned
models to possess a strong general instruction-following ability. Imparting general instruction-
following ability through table instruction-tuning to the base model is challenging, as there is a
lack of diversity in the table instruction-tuning data. For instance, TableLLaMA employs six spe-
cific instruction templates across two million data points, which pales in comparison to the diverse
instruction datasets in broader instruction tuning efforts such as those by Chung et al. (2024), which
include 1,836 tasks, each with a set of instruction templates. As shown in Figure 6c, when tuning
the base version of the LLaMA 3.1 8B model on instruction pairs on FeTaQA, HiTab, and TabFact,
the instruction following ability of the model does not improve significantly. Moreover, with a large
learning rate such as 1.0e-5, the model’s instruction following ability drops significantly when there
is more training data coming in.

We argue that the instruction-tuned version possesses strong general instruction-following capabili-
ties, eliminating the need to repeat the general instruction-tuning stage. Therefore, a more effective
strategy is to table instruction-tune an already instruction-tuned model, focusing on enhancing its ta-
ble understanding ability while preserving its general instruction-following capabilities. As shown
in Figure 2f, with proper hyperparameter selection, we can maintain the inherent strong instruction
following ability of the LLaMA 3.1 8B Instruct model.

In terms of specific table understanding tasks, tuning LLaMA 3.1 8B Instruct model yields better
performance than its base version on TabFact (73.10 in Figure 2a v.s. 71.10 in Figure 6a) under the
same experimental setup. Therefore, we select the LLaMA 3.1 8B Instruct model as our starting
model.

C.2 HYPERPARAMETER EXPLORATION ACROSS MODELS

Table 13: Recommended learning rate across dif-
ferent LLMs on table-specific tasks.

Model Learning Rate

Llama 2 7B Instruct 1.0e-6 / 5.0e-7
Llama 3.1 8B Instruct 1.0e-6 / 5.0e-7
QWen 2.5 7B Instruct 1.0e-6 / 5.0e-7
Mistral v0.3 7B Instruct 5.0e-7 / 1.0e-7
Phi 3 small 8K Instruct (7B) 5.0e-6 / 1.0e-6

We conduct experiments to validate our find-
ings across different models in the full-
parameter setup, including Llama 2 7B Instruct
(Touvron et al., 2023), QWen 2.5 7B Instruct
(Bai et al., 2023), Mistral v0.3 7B Instruct
(Jiang et al., 2023), and Phi 3 small 8K Instruct
(7B) (Abdin et al., 2024).

Learning Rate. We train each model on 500
examples from HiTab, FeTaQA, and TabFact
(1,500 examples total) to explore the effects of
the learning rate. Table 11 presents our results.

We observe a significant performance drop hap-
pens for every model on the two general bench-
marks. Interestingly, for models such as QWen 2.5, when we increase the learning rate from 1.0e-6
to 5.0e-6, it would primarily affect the IFEval dataset rather than MMLU, suggesting that the com-
promises may happen at different speeds with respect to different aspects of the model’s general
capability.

The Phi model shows a pronounced performance drop from 1.0e-5 to 5.0e-5, in contrast to Llama,
Mistral and QWen models, where the “breakdown point” on the learning rate is slightly smaller,
especially for Mistral model, where we see 5 points lose on IFEval from 5.0e-7 to 1.0e-6.

Table 13 lists the learning rate we would suggest for practitioners to use if they would fine-tune the
LLMs on table-specific tasks.

Number of Examples. We further experiment with various training sizes for each model to ob-
serve its impact on performance. Table 12 reports the results for Llama 2 7B, QWen 2.5, Mistral
v0.3, and Phi 3 8K models at one of the learning rates we select based on our results in Table 11.

Across all models, performance improvement becomes marginal from 600 to 1500 examples, sug-
gesting diminishing returns with larger datasets.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 11: LLMs’ performance scores correspond-
ing to different learning rate. In this experiment,
we train each model on 500 examples from HiTab,
FeTaQA, and TabFact (1,500 examples total) for
three epochs.

Learning Rate FeTaQA TabFact MMLU IFEval

Llama 2 7B Instruct
5.0e-7 26.54 52.63 47.12 47.84
1.0e-6 29.03 53.80 47.07 47.84
5.0e-6 33.86 51.05 46.58 35.25
1.0e-5 34.77 53.79 45.99 39.93

QWen 2.5 7B Instruct
5.0e-7 33.14 71.09 73.66 76.02
1.0e-6 34.50 72.66 73.52 75.78
5.0e-6 34.04 72.81 73.81 49.28
1.0e-5 33.84 71.51 73.49 41.61

Mistral v0.3 7B Instruct
1.0e-7 31.91 64.32 61.32 62.83
5.0e-7 36.44 70.35 60.76 57.79
1.0e-6 36.99 71.88 60.45 52.28
5.0e-6 35.71 53.64 34.96 33.09
1.0e-5 32.14 50.87 24.93 27.70

Phi 3 8K Instruct (7B)
1.0e-6 33.10 72.04 70.48 71.22
5.0e-6 37.26 73.82 74.89 68.71
1.0e-5 38.13 73.92 73.30 62.95
5.0e-5 34.46 50.90 49.08 28.78
1.0e-4 30.66 50.33 49.17 23.02

Table 12: LLMs’ performance scores
corresponding to different sizes of the
training data. We specify the learn-
ing rate we use for each model in the
bracket next to the model names. Here
we train each model for three epochs.

# Size FeTaQA TabFact MMLU IFEval

Llama 2 7B Instruct (1.0e-6)
30 13.32 31.68 47.07 45.08
90 13.86 49.51 46.96 46.16

150 14.79 46.24 47.09 47.48
300 14.47 50.27 47.09 45.56
600 24.12 50.74 47.11 45.56
1500 29.03 53.80 47.07 47.84
QWen 2.5 7B Instruct (1.0e-6)

30 14.2 8.42 73.91 70.43
90 16.45 8.47 73.76 70.43

150 21.14 69.66 73.83 69.5
300 22.1 69.65 73.72 68.95
600 32.12 70.86 73.71 68.21
1500 34.5 72.66 73.52 66.73
Mistral v0.3 7B Instruct (5.0e-7)

30 23.84 0.28 61.39 49.72
90 10.67 60.29 61.34 51.76

150 19.79 49.82 61.34 52.87
300 33.93 61.91 61.13 51.02
600 34.28 66.34 61.12 52.31
1500 36.44 70.35 60.76 47.69
Phi 3 8K Instruct (7B) (5.0e-6)

30 17.19 9.62 75.43 52.31
90 24.01 67.32 75.43 63.96

150 24.67 68.00 75.43 62.11
300 34.81 71.30 75.61 62.85
600 37.74 72.91 75.50 61.18
1500 37.26 73.82 75.26 59.70

In addition, we find that given the same number of training instances, Llama 3.1 8B Instruct achieves
better performance than Llama 2 7B Instruct. For instance, when trained with the same 1,500 ex-
amples at the learning rate of 1.0e-6, Llama 3.1 8B Instruct yields 73.10 on TabFact (Section 3)
while Llama 2 7B Instruct only yields 53.80 (Table 12). Therefore, models with stronger general
capabilities require less tuning data in our fine-tuning process.

C.3 HYPERPARAMETER EXPLORATION FOR LORA AND QLORA

We conduct experiments using LoRA (Hu et al., 2021) and QLoRA (Dettmers et al., 2024) based
on Llama 3.1-8B-Instruct. Specifically, we use hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-
INT4 1 as the base model for our QLoRA experiments.

We replicate the experiments we conduct in Appendix C.2, and here we present our results in two
aspects, the learning rate and the number of examples.

1https://huggingface.co/hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ
-INT4
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Table 14: Performance scores corresponding to
using LoRA and QLoRA. In this experiment, we
train each model on 500 examples from HiTab,
FeTaQA, and TabFact (1,500 examples total) for
three epochs.

Learning Rate FeTaQA TabFact MMLU IFEval

LoRA
1.0e-6 16.63 63.21 66.06 80.22
5.0e-6 23.69 66.80 65.97 80.94
1.0e-5 29.66 68.58 66.03 80.58
5.0e-5 35.33 73.80 67.04 76.98
1.0e-4 35.81 75.63 67.42 71.22
5.0e-4 36.04 73.88 66.36 60.67
1.0e-3 35.54 73.64 59.02 38.73

QLoRA
1.0e-7 20.36 63.06 64.56 80.22
5.0e-7 19.07 66.42 64.68 80.46
1.0e-6 27.44 67.18 64.68 79.98
5.0e-6 34.64 70.98 64.76 78.66
1.0e-5 36.86 73.20 65.22 77.58
5.0e-5 36.52 74.11 65.82 76.02
1.0e-4 35.94 74.91 65.76 74.22
5.0e-4 33.72 50.50 42.76 32.85
1.0e-3 0.01 50.16 22.95 23.86

Table 15: Performance scores corre-
sponding to different sizes of the train-
ing data for LoRA and QLoRA. We
specify the learning rate we use for
LoRA and QLoRA in the bracket next
to the method names.

# Size FeTaQA TabFact MMLU IFEval

LoRA (5.0e-5)
30 17.36 63.89 66.14 71.90
90 19.83 66.50 66.03 70.98
150 14.69 68.62 66.10 73.01
300 26.01 67.96 66.20 72.09
600 34.08 72.13 66.65 70.61

1500 35.33 73.80 67.04 68.39
QLoRA (5.0e-5)

30 18.02 66.55 64.78 72.46
90 35.33 68.44 65.08 69.32
150 33.50 69.78 65.36 74.31
300 35.95 69.46 65.63 71.72
600 36.25 73.68 65.80 69.13

1500 36.52 74.11 65.82 65.62

Learning Rate. Table 14 presents the results. We find that there is still a “breakdown point” where
further increasing the learning rate causes a sharp decline in overall performance for both LoRA and
QLoRA. However, such “breakdown point” for LoRA and QLoRA (around 5.0e-5) is larger than
the full parameter tuning (usually around 1.0e-6). When the learning rate does not surpass such a
“breakdown point”, both methods demonstrate competitive in-domain performance on table tasks.

Number of Examples. Table 15 presents the results. Similar to what we have found for full pa-
rameter fine-tuning, both LoRA and QLoRA show diminishing returns as the number of training ex-
amples increases. While performance improves with more examples, the rate of improvement slows
beyond 600 examples for LoRA. For QLoRA, the rate of improvement slows beyond 90 examples.
We find that with 1,500 examples, QLoRA and LoRA perform similarly on the in-domain table
tasks, and on FeTaQA, QLoRA even outperforms LoRA by 1 point. This suggests that practitioners
may leverage such parameter-efficient fine-tuning methods like QLoRA in practice, especially when
they have limited table data.

C.4 INDIVIDUAL TASK’S INFLUENCE ON MODEL PERFORMANCE

Figures 7 and 8 present heatmaps across varying learning rates (from 1.0e-7 to 1.0e-5) and epochs
(from one to six). We can see that the patterns coincide with what we have discussed in Section 3,
that a learning rate that is too large such as 1.0e-5 or too small such as 1.0e-7 leads to suboptimal
table understanding ability, and the large learning rate also compromises the model’s general capa-
bilities. Moreover, we do not observe significant performance gain when we fine-tune the model for
more epochs. Across these hyperparameters, we can observe the inter-connections between tasks
such as HiTab and TabFact, as training solely on one often leads to good performance on the other.
But this is not universally true, as tasks such as FeTaQA and FEVEROUS seem to not have strong
inter-connections.

In addition, we observe that the learning rate works the best for an individual task does not nec-
essarily work the best for other tasks. For instance, in Figures 7 and 8, the learning rate of 5.0e-6
yields the best performance for FeTaQA, but is suboptimal for HiTab and TabFact. This highlights
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Figure 7: Heatmap when we fine-tune LLaMA 3.1 8B Instruct model on a single dataset (y-axis)
and test against the others (x-axis). We fine-tune the model for one to three epochs (horizontal
directions) at a learning rate of 1.0e-5, 5.0e-6, 1.0e-6, 5.0e-7, 1.0e-7 (vertical direction) with 500
instruction pairs.

Table 16: Llama 3 8B Instruct’s performance on the general benchmarks MMLU and IFEval corre-
sponding to different learning rates (Numbers in the bracket). We train the model for three epochs
using 500 examples on each dataset, respectively. “Dnum, tab” represents the density of the number
cells in the table. “No. Cells : Num. Cells” denotes the cells containing no number versus cells
containing numbers. “TT tokens”, “Tab tokens”, “Q tokens” represent the total number of input
tokens, table tokens, and question tokens.

Dnum, tab

(%)
No. Cells

: Num. Cells
TT tokens Tab tokens Q tokens

Tab tokens
: Q tokens

MMLU
(1e-6)

MMLU
(5e-6)

MMLU
(1e-5)

IFEval
(1e-6)

IFEval
(5e-6)

IFEval
(1e-5)

TabFact 73.03 1.34 : 1 292,822 264,520 19,286 13.72 : 1 66.74 64.51 29.95 77.70 49.40 25.66
FeTaQA 57.99 1.68 : 1 309,624 251,697 42,492 5.92 : 1 65.79 65.66 63.73 77.82 53.36 31.41
HiTab 80.60 1.19 : 1 452,149 424,941 11,030 38.53 : 1 66.37 66.77 62.91 78.18 49.40 29.74

that when multiple tasks are involved in the training process, researchers need to consider beyond a
single task to decide their hyperparameters.

C.5 TRADE-OFF ANALYSIS FOR DATA PROPERTIES

We expand our analysis to assess how features in the training data may influence model performance.
To investigate this, we train the Llama 3.1 8B Instruct model for three epochs using 500 examples
on each dataset, respectively.

Table 16 presents the results. We find that the performance degradation is most significant on Tab-
Fact. Interestingly, despite TabFact having intermediate numeric density and table-to-question token
ratios, it still shows the fastest performance decline.
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Figure 8: Heatmap when we fine-tune LLaMA 3.1 8B Instruct model on a single dataset (y-axis) and
test against the others (x-axis). We fine-tune the model for four to six epochs (horizontal directions)
at a learning rate of 1.0e-5, 5.0e-6, 1.0e-6, 5.0e-7, 1.0e-7 (vertical direction) with 500 instruction
pairs.

We hypothesize that this is due to the nature of the task rather than the table-specific features ex-
amined. Since FeTaQA and HiTab are table QA tasks, they may possess similar QA form that the
model has encountered in its general instruction tuning stage, this may ease the decay of the model’s
general capabilities in our fine-tuning stage. However, TabFact is about fact-checking, the input
form includes both the table and the claim to be verified, which we suspect may not be as common
as the QA data in its general instruction tuning stage. Therefore, the model suffers a more significant
performance decay because it needs to update more of its internal knowledge to handle such a task.

D HINDSIGHT ANALYSIS

Figure 9 provides the complete results of the model performance versus the learning rate and the
number of epochs.

Apart from what we have discussed in Section 4.3, we find that on S1, the learning rate of 5.0e-
7 yields a consistent good accuracy scores (around 64 to 65) across all the epochs, while 1.0e-6
maintains a good accuracy score (around 64 to 65) for the first two epochs, but starting from the
third epoch, it experiences a performance decline (from 64.93 to 52.56).

In terms of the general benchmarks, GPQA resembles similar trends as the trends for IFEval and
AI2ARC that the smaller the learning rate is, the less it affects the model’s general capabilities.

E MODEL PREDICTION EXAMPLES

Table 17 provides an example for table LLMs’ generation on IFEval dataset. Tables 18 and 19
provide two examples for table LLM’s generation on Table-Syn dataset. Apart from the limited out-
of-domain table reasoning ability, we find that existing table LLMs also exhibit limited instruction-

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

1.0e-05 5.0e-06 1.0e-06 5.0e-07 1.0e-07

1 2 3 4 5 6

550

600

650

700

750

800

(a) All table tasks

1 2 3 4 5 6

0

10

20

30

40

50

60

(b) S1 (Acc)

1 2 3 4 5 6

16

18

20

22

24

26

28

(c) S2 (ROUGE-L)

1 2 3 4 5 6

56

58

60

62

64

66

68

(d) MMLU (Acc)

1 2 3 4 5 6

40

50

60

70

80

(e) IFEval (Acc)
1 2 3 4 5 6

22

24

26

28

30

32

34

36

(f) MMLUPro (Acc)

1 2 3 4 5 6

26

27

28

29

30

31

32

33

(g) GPQA (Acc)

1 2 3 4 5 6

66

68

70

72

74

76

78

80

82

(h) AI2ARC (Acc)

Figure 9: Performance scores (y-axis) with respect to the number of epochs (x-axis) and learning
rates. In Figure 9a, we aggregate the performance scores for all the datasets listed in Table 4.

following capabilities, and often struggle with consistently returning answers in specified formats,
such as JSON. Such a limitation poses challenges in the practical use cases, where the end-users
may request specific output formats to extract answers from the model’s predictions.

F DATASET EXAMPLES

F.1 WIKITQ

Input:
[TAB] col: | description losses | 1939/40 | 1940/41 | 1941/42 | 1942/43 |
1943/44 | 1944/45 | total | [SEP] | direct war losses | 360,000 | | | |

| 183,000 | 543,000 | [SEP] | murdered | 75,000 | 100,000 | 116,000 |
133,000 | 82,000 | | 506,000 | [SEP] | deaths in prisons & camps | 69,000
| 210,000 | 220,000 | 266,000 | 381,000 | | 1,146,000 | [SEP] | deaths

outside of prisons & camps | | 42,000 | 71,000 | 142,000 | 218,000 | |
473,000 | [SEP] | murdered in eastern regions | | | | | | 100,000 |
100,000 | [SEP] | deaths other countries | | | | | | | 2,000 | [SEP] |
total | 504,000 | 352,000 | 407,000 | 541,000 | 681,000 | 270,000 |
2,770,000 |\n\nhow many people were murdered in 1940/41?

Instruction:
This is a table QA task. The goal of this task is to answer the question
given the table.

Output:
100,000
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Table 17: Table LLMs’ predictions on the prompt in IFEval. For TableBenchLLM, it starts to
repeat itself and we omit the repeated part for better readability. †: We note that IFEval checks the
instruction following ability rather than the correctness of the answer.

PROMPT: Please provide the names of 5 famous moms in JSON format.
Follow

Instruction?†

TableLLaMA <Mommy>, <Dad>, <Baby>, <Baby>, <Dad>, <Mommy></s> ✗

TableLLM

import pandas as pd
# Load the data
df = pd.read csv(’data.csv’)
# Select the first 5 rows
df first 5 rows = df.head(5)
# Convert the dataframe to JSON
json output = df first 5 rows.to json()
# Print the JSON output
print(json output)

✗

TableBenchLLM
Here are the names of 5 famous moms in JSON format: 1. Sarah Palin 2. Jill
Biden 3. Michelle Obama 4. Amy Schumer 5. Madonna... ✗

TAMA (ours)
{“famous moms”: [{“name”: “Oprah Winfrey”}, {“name”: “Michelle
Obama”}, {“name”: “Angelina Jolie”}, {“name”: “Madonna”}, {“name”:
“J.K. Rowling”}]}

✓

Table 18: An example of table LLMs’ predictions on Table-Syn.

Task Description: Please check the following table, there is one and exactly one
cell in the table that is missing. When you find this missing cell, please point it
out using the row id shown in the first column. Return the final result as JSON
in the format {“row id”: “<row id of the row with missing cell>”}.

## Input:
|row id|Date|Sales|Cost of Sales|Expenses|
|—|—|—|—|—|
|1|35428|177911|80685|28668|
|2||133281|73456|26892|
|3|36406|164055|88108|28457|
|4|36418|151118|70952|29138|
|5|37141|168833|77020|23798|

Return the final result as JSON in the format {“row id”: “<row id of the row
with missing cell>”}.

PROMPT: ## Output: Correct?

TableLLaMA <177911.0>, <133281.0>, <164055.0>, <151118.0>, <37141.0></s> ✗

TableLLM {“row id”: 2} ✓

TableBenchLLM Final Answer: 2 // 2php2://... ✗

TAMA (ours) {“row id”: 2} ✓

F.2 FETAQA

Input:

[TLE] The Wikipedia page title of this table is Gerhard Bigalk. The
Wikipedia section title of this table is Ships attacked. [TAB] | Date |
Name | Nationality | Tonnage (GRT) | Fate | [SEP] | 14 June 1941 | St.
Lindsay | United Kingdom | 5,370 | Sunk | [SEP] | 21 December 1941 | HMS
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Table 19: An example of table LLMs’ predictions on Table-Syn. We omit part of the prompt for
better readability.

# Task Description: Please look at the input column and determine the semantic
type that can describe *every single* instance the input column. Please only
choose one semantic type from the candidate list, and remember that the type
you choose has to accurately describe every single entity in the column. If
no candidate column type can suitably describe every single instance in the
column, please return ’None’. Please only choose one type from the candidate
list below, and *do not* create new types. Return the final result as JSON
in the format {“chosen semantic type”: “<an entry from the candidate list or
None>”}.

## Input:
**Column:**
|Loser (wager)|
|—|
|Ultratumba (mask)|
|Ultratumba (hair)|
|El Noruego (hair)|
|El Destroyer (mask)|
|Dory Dixon (hair)|
|Humberto Garza (hair)|
|CÃ©sar Valentino (hair)|
|La Momia (mask)|
...
**Candidate column type:**
AcademicJournal, AdministrativeRegion, Airport...Film, Wrestler...
Return the final result as JSON in the format {“chosen semantic type”: “<an
entry from the candidate list or None>”}.

PROMPT: ## Output: Correct?

TableLLaMA <Blue Blazer (mask)>, <Don Corleone (mask)>...</s> ✗

TableLLM {“chosen semantic type”: “Film”} ✗

TableBenchLLM ...Loser (wager)*Let’s consider the new type “Loser (wager)” to be a role... ✗

TAMA (ours) {“chosen semantic type”: “Wrestler”} ✓

Audacity | Royal Navy | 11,000 | Sunk | [SEP] | 2 February 1942 | Corilla
| Netherlands | 8,096 | Damaged | [SEP] | 4 February 1942 | Silveray |

United Kingdom | 4,535 | Sunk | [SEP] | 7 February 1942 | Empire Sun |
United Kingdom | 6,952 | Sunk | [SEP] | 16 May 1942 | Nicarao | United
States | 1,445 | Sunk | [SEP] | 19 May 1942 | Isabela | United States |
3,110 | Sunk |\n\nThe highlighted cells of the table are: [
HIGHLIGHTED_BEGIN] [11,000], [Sunk], [8,096], [Damaged] [HIGHLIGHTED_END]
What happened to the two heaviest ships Gerhard Bigalk attacked?

Instruction:

This is a free-form table question answering task. The goal for this task
is to answer the given question based on the given table and the

highlighted cells.

Output:

Gerhard Bigalk damaged one ship of 8,096 GRT, and sunk one warship of
11,000 tons.
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F.3 TABFACT

Input:
[TLE] The table caption is about tony lema. [TAB] | tournament | wins |
top - 5 | top - 10 | top - 25 | events | cuts made [SEP] | masters
tournament | 0 | 1 | 2 | 4 | 4 | 4 | [SEP] | us open | 0 | 2 | 3 | 4 | 6
| 5 | [SEP] | the open championship | 1 | 2 | 2 | 2 | 3 | 3 | [SEP] | pga
championship | 0 | 0 | 1 | 2 | 5 | 4 | [SEP] | totals | 1 | 5 | 8 | 12 |
18 | 16 |\n\nThe statement is: <tony lema be in the top 5 for the master
tournament , the us open , and the open championship>. Is it entailed or
refuted by the table above?

Instruction:
This is a table fact verification task. The goal of this task is to
distinguish whether the given statement is entailed or refuted by the
given table.

Output:
entailed

F.4 KVRET

Input:
col : event | time | date | room | agenda | party\n\nThe dialogue history
is: <remind me to take my pills || >. Please generate the response based
on the given table and the given dialogue history.

Instruction:
This is a dialogue response generation task grounded on tables. The goal
of this task is to generate response based on the given dialogue history
and the given table. The dialogues are grounded through underlying tables
and span three distinct tasks in the in-car personal assistant space:

calendar scheduling, weather information retrieval, and point-of-interest
navigation.

Output:
what time do you need to take your pills ?

F.5 TOTTO

Input:
<page_title> List of Governors of South Carolina </page_title> <
section_title> Governors under the Constitution of 1868 </section_title>
<table> <cell> 76 <col_header> # </col_header> <col_header> 74 </
col_header> <col_header> 75 </col_header> </cell> <cell> Daniel Henry
Chamberlain <col_header> Governor </col_header> <row_header> 76 </
row_header> </cell> <cell> December 1, 1874 <col_header> Took Office </
col_header> <row_header> 76 </row_header> </cell> </table>\n\nPlease
generate one natural language description to describe the given
highlighted table cells.

Instruction:
This is a highlighted cells description task. The goal of this task is to
generate the language description given table cells.

Output:
Daniel Henry Chamberlain was the 76th Governor of South Carolina from
1874.
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F.6 S1

Input:
# Task Description: Please determine whether Citation A and Citation B
refer to the same entity or not. Your final answer should be ’Yes’ or ’No
’. Return the final result as JSON in the format {\"answer\": \"<Yes or
No>\"}. Let’s think step by step and show your reasoning before showing
the final result.\n\n## Input:\nCitation A is:\n|title|authors|venue|year
|\n|---|---|---|---|\n|algorithms for mining distance-based outliers in
large datasets|e knorr , r ng|vldb|1998|\n\nCitation B is:\n|title|
authors|venue|year|\n|---|---|---|---|\n|algorithms for mining
association rules in bag databases|py hsu , yl chen , cc ling|information
sciences\u00e2 ?? informatics and computer science : an & hellip ;

,|2004.0|\n\nLet’s think step by step and show your reasoning before
showing the final result. Return the final result as JSON in the format
{\"answer\": \"<Yes or No>\"}.\n## Output:\n

Instruction:
You are a helpful assistant that specializes in tables.

Output:
{\"answer\": \"No\"}

F.7 S2

Input:
You are a table analyst. Your task is to answer questions based on the
table content.\n\n\nThe answer should follow the format below:\n[Answer
Format]\nFinal Answer: AnswerName1, AnswerName2...\n\nEnsure the final
answer format is the last output line and can only be in the \"Final
Answer: AnswerName1, AnswerName2...\" form, no other form. Ensure the \"
AnswerName\" is a number or entity name, as short as possible, without
any explanation.\n\n\nGive the final answer to the question directly
without any explanation.\n\nRead the table below in JSON format:\n[TABLE]
\n{\"columns\": [\"season\", \"tropical lows\", \"tropical cyclones\",

\"severe tropical cyclones\", \"strongest storm\"], \"data\": [[\"1990 -
91\", 10, 10, 7, \"marian\"], [\"1991 - 92\", 11, 10, 9, \"jane - irna
\"], [\"1992 - 93\", 6, 3, 1, \"oliver\"], [\"1993 - 94\", 12, 11, 7, \"
theodore\"], [\"1994 - 95\", 19, 9, 6, \"chloe\"], [\"1995 - 96\", 19,
14, 9, \"olivia\"], [\"1996 - 97\", 15, 14, 3, \"pancho\"], [\"1997 -
98\", 10, 9, 3, \"tiffany\"], [\"1998 - 99\", 21, 14, 9, \"gwenda\"],
[\"1999 - 00\", 13, 12, 5, \"john / paul\"]]}\n\nLet’s get start!\
nQuestion: What is the average number of tropical cyclones per season?\n

Instruction:
You are a helpful assistant that specializes in tables.

Output:
10.6

F.8 MMLU

Input:
{5-shot examples}
Find the degree for the given field extension Q(sqrt(2), sqrt(3), sqrt
(18)) over Q.
\nA. 0\nB. 4\nC. 2\nD. 6\nAnswer:
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Instruction:
The following are multiple choice questions (with answers) about abstract
algebra.\n\n

Output:
B

F.9 IFEVAL

Input:
Can you help me make an advertisement for a new product? It’s a diaper
that’s designed to be more comfortable for babies and I want the entire
output in JSON format.

Instruction:
You are a helpful assistant.

Output:
[JSON formatted answer]
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