
Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

NAVIGATION WITH QPHIL: QUANTIZING PLANNER
FOR HIERARCHICAL IMPLICIT Q-LEARNING

Alexi Canesse*,†,1, Mathieu Petitbois*,2, Ludovic Denoyer3, Sylvain Lamprier4, Rémy Portelas2

1ENS Lyon 2Ubisoft La Forge 3H Company 4University of Angers

ABSTRACT

Offline Reinforcement Learning (RL) has emerged as a powerful alternative to im-
itation learning for behavior modeling in various domains, particularly in complex
long range navigation tasks. An existing challenge with Offline RL is the signal-
to-noise ratio, i.e. how to mitigate incorrect policy updates due to errors in value
estimates. Towards this, multiple works have demonstrated the advantage of hier-
archical offline RL methods, which decouples high-level path planning from low-
level path following. In this work, we present a novel hierarchical transformer-
based approach leveraging a learned quantizer of the state space to tackle long
horizon navigation tasks. This quantization enables the training of a simpler
zone-conditioned low-level policy and simplifies planning, which is reduced to
discrete autoregressive prediction. Among other benefits, zone-level reasoning in
planning enables explicit trajectory stitching rather than implicit stitching based
on noisy value function estimates. By combining this transformer-based planner
with recent advancements in offline RL, our proposed approach achieves state-of-
the-art results in complex long-distance navigation environments. Project page:
https://mathieu-petitbois.github.io/projects/qphil/

1 INTRODUCTION

Navigation and locomotion in complex, long-horizon embodied environments is a long-standing
challenge within Machine Learning (Kaelbling et al., 1996; Sutton & Barto, 2018). Operating non-
trivial agents in such environments is critical in a wide range of real-world applications, such as
in robotics (Eysenbach et al., 2019) or in the video game industry (Alonso et al., 2020). A core
difficulty of navigation lies in solving long-horizon tasks that require intricate path planning (Hoang
et al., 2021; Park et al., 2024). In the Reinforcement Learning (RL) setting (Sutton & Barto, 2018),
traditional online Goal-Conditioned deep Reinforcement Learning (GCRL) methods often struggle
with such long-horizon tasks because of the sparse nature of the reward signal, leading to hard explo-
ration problems. Offline GCRL circumvents this exploration problem by leveraging large amounts
of unlabeled and diverse demonstration data to learn policies through passive learning (Prudencio
et al., 2023). A core advantage of offline RL compared to other forms of behavior extraction from
datasets, for instance imitation learning, is the ability to improve over suboptimal datasets, e.g. by
learning state value functions to bias the learned policy towards rewarding actions (Kostrikov et al.,
2021). However, offline RL is not trivial to apply for long-horizon goal-reaching tasks, which often
provide sparse reward signals, leading to a noisy value function which consequently hinders the per-
formance of the policy. Part of this issue comes from low ”signal-to-noise” ratio to learn the value
function (Park et al., 2024). Because a suboptimal action can be corrected quickly in subsequent
steps of a trajectory, its impact on the real value for faraway goals can be covered by the value
prediction noise, which can lead to the learning of suboptimal behaviors for the policy.

Hierarchical architectures have shown considerable advantages in goal-conditioned navigation to
solve such issues (Vezhnevets et al., 2017; Pertsch et al., 2021; Park et al., 2024). These approaches
effectively decompose the problem into two distinct components: high-level path planning and low-
level path following. Among these, Hierarchical Implicit Q-Learning (HIQL) (Park et al., 2024) has
recently emerged as the state-of-the-art method. HIQL leverages a hierarchical structure to learn

*Denotes equal contribution. Correspondance to mathieu.petitbois@ubisoft.com
†Work done during an internship at Ubisoft La Forge

1

https://mathieu-petitbois.github.io/projects/qphil/

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

both a high-level policy for generating subgoals and a low-level policy for achieving these subgoals,
all within an offline reinforcement learning framework.

Although introducing a hierarchical structure enhances performance by improving the signal-to-
noise ratio at each level, it only partially alleviates the issue. For long-distance tasks, the signal-to-
noise ratio still degrades during subgoal generation, which can result in a noisy high-level policy and,
consequently, reduced performance. In this paper, we propose to shift the learning paradigm of the
high-policy towards discrete space planning. Towards this, we first train a Vector Quantized Varia-
tional Autoencoder (VQ-VAE) (Van Den Oord et al., 2017) on the state-space from which we extract
its quantized representation, namely leading to a clustering of the state space into what we propose to
refer to as landmarks. We ensure the temporal consistency of the obtained landmarks through a con-
trastive regularization of the VQ-VAE loss. Then, we leverage a transformer architecture (Vaswani
et al., 2017) to extract a discrete high-level policy, enabling consistent landmark-level planning in the
discrete space representation. Finally, we train a combination of a low-level landmark-conditioned
policy and a low-level goal conditioned policy to solve the subgoal and last-goal navigation tasks
respectively.

Our main contribution is to introduce Quantizing Planner for Hierarchical Implicit Learning
(QPHIL), a novel approach that addresses long-range navigation by combining the strengths of
VQ-VAE, transformers, and offline reinforcement learning. We first evaluate QPHIL on the estab-
lished AntMaze navigation tasks (Fu et al., 2020; Jiang et al., 2022), then introduce a novel, more
challenging variant, AntMaze-Extreme, along with two associated datasets, better suited to study
long-distance navigation. In both settings we demonstrate that QPHIL matches or outperforms prior
offline goal-conditioned RL methods, particularly in large-scale settings.

2 RELATED WORK

VQ-VAEs for reinforcement learning Vector Quantized Variational Autoencoders (Van Den Oord
et al., 2017) have demonstrated their utility in reinforcement learning, particularly for offline setups.
TAP (Jiang et al., 2022), SAQ (Luo et al., 2023) and L-MAP Luo et al. (2025) use a VQ-VAE
to discretize continuous action spaces, mitigating the curse of dimensionality. In contrast, QPHIL
uses a VQ-VAE to quantize states, simplifying waypoint generation in long-horizon tasks. These
two approaches have different purposes and are complementary: action quantization focuses on
simplifying policy search, while state quantization helps in task decomposition such as in (Hamed
et al., 2024) where a VQ-VAE is used to define landmarks as states like in QPHIL but without a
contrastive loss and in the online setting. Within goal-conditioned reinforcement learning, several
works used VQ-VAE to encode observations into discrete (sub)goals. (Lee et al., 2024a) learn
quantized goals to simplify curriculum learning. (Islam et al., 2022) also use quantization to map
(sub)goals into discrete and factorized representations to efficiently handle novel goals at test time.
Both these works focus on online goal-conditioned reinforcement learning while QPHIL tackles the
offline learning setting. (Kujanpää et al., 2023) also uses VQ-VAE to generate discrete subgoals,
but while they rely on a finite subgoal set derived from offline learning, QPHIL identifies subgoals
directly through the VQ-VAE. To the best of our knowledge, VQ-VAE has never been applied for
discrete state planning in offline GCRL settings.

Hierarchical offline learning Leveraging a hierarchical structure to decompose and simplify se-
quential decision-making problems is a long-standing idea and subject of research within machine
learning (Schmidhuber, 1991; Sutton et al., 1999). Recently, multiple successful works renewed
the interest of the research community to these models, both for online (Vezhnevets et al., 2017;
Pertsch et al., 2021; Kim et al., 2021; Fang et al., 2022) and offline reinforcement learning (Nachum
et al., 2018b; Ajay et al., 2020; Rao et al., 2021; Rosete-Beas et al., 2023; Yang et al., 2023; Shin
& Kim, 2023). Among these, Hierarchical Implicit Q-Learning (HIQL) from (Park et al., 2024) has
emerged as the state-of-the-art method for offline goal-conditioned RL. Most methods differ in how
they represent and use subgoals; for instance, (Nachum et al., 2018a) compare different subgoal rep-
resentations, while (Ajay et al., 2020) focus on detecting and combining primitive behaviors. While
all aforementioned works focus on continuous state representations, QPHIL leverages the advantage
of discrete state representations to simplify long-distance navigation.

Planning Hierarchical planning methods are a natural complement to RL. For instance, HIPS (Ku-
janpää et al., 2023) learns to segment trajectories, generating subgoals of varying lengths to facilitate

2

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

adaptive planning. HIPS-ε (Jiang et al., 2023; Kujanpää et al., 2024) introduces hybrid hierarchical
methods and offers completeness guarantees, but their method is only usable with a discrete state
space. (Li et al., 2022) proposes a method combining a high-level planner, based on a VAE, with
a low-level offline RL policy. The VAE serves as the planner by leveraging the low-level policy’s
value function. QPHIL, on the other hand, utilizes a simpler subgoal planning approach directly tied
to a discrete state-space via VQ-VAE.

Transformers for (hierarchical) offline RL Transformers have recently found application in hier-
archical setups to solve RL problems. In (Correia & Alexandre, 2023), transformers are used for
hierarchical subgoal sampling, where a high-level transformer generates subgoals for a low-level
transformer responsible for action selection. Similarly, (Badrinath et al., 2024) combine a Decision
Transformer (DT) from (Chen et al., 2021) with a waypoint-generation network. (Ma et al., 2024)
present a hierarchical transformer-based approach outperforming both aforementioned methods. (Li
et al., 2022; Ma et al., 2024) are extensions of DT that allows stitching, a known issue with Deci-
sion Transformer (Fujimoto & Gu, 2021; Emmons et al., 2021; Kostrikov et al., 2021; Yamagata
et al., 2023; Xiao et al., 2023). Their approach, Goal-prompted Autotuned Decision Transformer
(G-ADT) (Ma et al., 2024), is able to efficiently integrate an offline RL learning scheme similar to
HIQL. G-ADT uses a low-level transformer and a simple high level subgoal policy, while we focus
on the opposite scenario: our transformer is used to generate a plan of subgoal, which are then fol-
lowed by a fully connected neural network. G-ADT uses an offline reinforcement learning objective
to train its high-level policy while we rely on a simpler imitation learning objective.

Sequence generation (Lee et al., 2024b) explore sequence generation using tokens learned via a
VQ-VAE, much like QPHIL; but their work does not extend to reinforcement learning. In RL,
sequence models have been used for various components (Bakker, 2001; Heess et al., 2015; Chiappa
et al., 2017; Parisotto et al., 2020; Kumar et al., 2020). However, none of these approaches integrate
planning over a discrete representation, which is central to our method. Sequence generation also
plays a key role in offline RL, where it is helping to prevent out-of-distribution actions (Fujimoto
et al., 2019; Kumar et al., 2019; Ghasemipour et al., 2021). Trajectory Transformer (Janner et al.,
2021) completely treats offline RL as a sequence generation problem. They use a transformer to
perform planning using Beam-Search and an IQL-like value function. Contrary to QPHIL, they use
a simple dimension-wise uniform or quantile discretization.

Spatial zone learning and skill discovery Zone-based spatial navigation and skill discovery are
additional techniques that overlap with hierarchical RL and QPHIL. For instance in the context
of online RL, (Kamienny et al., 2022) proposes to discover a set of ”easy-to-learn” short policies,
each corresponding to a given skill defined as an area of the state space, which can be eventually
composed for the task at hand. Using a VQ-VAE, (Mazzaglia et al., 2022) define skills that are used
to influence exploration in online policies. In a closer context with a known state space, (Gao et al.,
2023) segments space into zones and uses these segments to facilitate goal-reaching tasks, but their
method is restricted to vision environments. Similarly, (Hausman et al., 2017) uses a multi-modal
imitation learning approach to discover and segment skills from unstructured demonstrations, which
is close to the discrete landmark generation in QPHIL. In skill decision transformer (Sudhakaran &
Risi, 2023), a transformer is used to predict actions from latent variables discovered by a VQ-VAE.
While their approach is close to QPHIL, it differs by not using contrastive loss and not planning
subgoals.

3 PRELIMINARIES

3.1 OFFLINE GOAL CONDITIONED REINFORCEMENT LEARNING

We frame our work in the context of offline goal-conditioned Reinforcement Learning (offline
GCRL), which involves training an agent to interact with an environment to reach specific goals,
without getting access to the environment itself at train time. It is typically modeled as a Markov De-
cision Process (MDP) defined by a tuple (S,A, p, µ, r), a dataset of demonstration trajectoriesD and
a given goal space G, where S is the state space,A the action space, p(st+1|st, at) ∈ S×A → P(S)
the transition dynamics, µ ∈ P(S) the initial state distribution and r(st, g) ∈ S × G → R the goal-
conditioned reward function given the goal space G. In GCRL, the reward is sparse as r(s, g) = 1
only when s reaches g and 0 otherwise. Hence, our objective is to leverage the dataset D com-
posed of reward-free pre-recorded trajectoires τ = (s0, a0, ..., sT−1, aT−1, sT) to learn the pol-

3

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

icy π(at|st, g) to reach given goals g ∈ G, by maximizing the expected cumulative reward, or
return, J(π), which can be expressed as: J(π) = Eg∼dg

τ∼dπ

[∑T
t=0 γ

tr(st, g)
]
, where γ is a dis-

count factor, dg represents the goal distribution and dπ is the trajectory distribution defined by:
dπ(τ, g) = µ(s0)

∏T
t=0 π(at|st, g)p(st+1|st, at) and represents the trajectory distribution when the

policy is used. To study long range navigation, we consider in the following positional environments,
where the goal space G can be computed as the set of positions coordinates Sp.

(a) Simpler high level planning (b) Smoother low level targets (c) Easier target conditioning

Figure 1: Motivations behind QPHIL (a) QPHIL aims to simplify the planning of the subgoals by
leveraging discrete tokens. (b) By doing so, QPHIL avoids the noisy high-frequency target subgoal
updates by updating the subgoal of the low-level policy after each landmark traversal only. (c) The
subgoal reaching tasks are less demanding in conditioning for the low policy as it corresponds to the
reaching of an entier subzone instead of a precise subgoal.

3.2 HIERARCHICAL IMPLICIT Q-LEARNING (HIQL)

Because of the sparsity of the offline GCRL’s reward signals, bad actions can be corrected by sub-
sequent good actions, and good actions can be undermined by future bad actions in a trajectory.
Hence, offline RL methods risk mislabeling bad actions as good ones, and vice versa. This leads to
the learning of a noisy goal-conditioned value function: V̂ (st, g) = V ∗(st, g) +N(st, g) where V ∗

corresponds to the optimal value function and N corresponds to a noise. As the ”signal-to-noise”
ratio worsens for longer term goals, offline RL methods such as IQL (Kostrikov et al., 2021) struggle
when the scale of the GCRL problem increases, leading to noisy advantages estimates for which the
noise overtakes the signal. To alleviate this issue, HIQL (Park et al., 2024) first proposes to learn a
noisy goal conditioned action-free value function, inspired from IQL (Kostrikov et al., 2021):

LV (θV) = E(st,st+1,g)∼D

[
Lx
2(r(st, g) + γVθV (st+1, g)− VθV (st, g))

]
(1)

using an expectile loss Lx
2(u) = |x − 1(u < 0)|u2, x ∈ [0.5, 1) on the temporal difference of

the value function, which aims at anticipating in-distribution sampling without querying the envi-
ronment. This loss is then used to learn two policies with advantage weighted regression (AWR):
πh(st+k|st, g) to generate subgoals on the path towards goal g and πl(at|st, g′), with g′ ∈ G a given
subgoal, to generate actions to reach the subgoals, in a hierarchical manner. With this division, each
policy profits from higher signal-to-noise ratios, as the low-policy only queries the value function
for nearby subgoals V (st+1, st+k) and the high policy queries the value function for more distant
goal V (st+k, g).

3.3 QUANTIZING PLANNER FOR HIERARCHIAL IMPLICIT LEARNING (QPHIL)

If HIQL shows significant improvements in offline GCRL problems compared to previous flat-policy
methods, its performance depends on the right choice of the subgoal step k. A high k would im-
prove the high policy’s signal-to-noise ratio by querying more diverse subgoals but at the cost of
decreasing the signal-to-noise ratio of the low policy. Conversely, a low k would improve the low
policy’s signal-to-noise ratio by querying values for nearby goals but at the cost of the diversity of
the high subgoals. Hence, HIQL might struggle for longer term goal reaching tasks as the low level
performance imposes the choice of a sufficiently low k, which leads to high frequency noisy high
subgoal targets for the low policy to follow. QPHIL proposes to mitigate this issue by shifting the
learning paradigm of the high policy into planning in a discretized learned space representation (see
Fig. 1).

4

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

4 QUANTIZING PLANNER FOR HIERARCHICAL IMPLICIT LEARNING

In this paper, we propose a new hierarchical goal conditionned offline RL algorithm: Quantizing
Planner for Hierarchical Implicit Q-Learning (QPHIL). While current hierarchical methods rely
heavily on continuous waypoint predictions, we propose to consider discrete subgoals, allowing
to simplify the planning process. Instead of relying on precise coordinates, QPHIL identifies key
landmarks to guide trajectory planning, much like how a road trip is described by cities or highways
rather than specific geographic points. The algorithm detects these landmarks, creates landmark-
based sequences, and formulates policies to navigate between them, ultimately reaching the target
destination.

4.1 OVERALL DESIGN

QPHIL operates through four components: (1) a state quantizer qθq , which divides the state space
positions into a finite set of landmarks, (2) a plan generator πp

θp
, which acts as a high-level policy

to generate a sequence of landmarks to be reached given the final goal, and two low-level policy
modules: (3) πlm

θlm
, which targets state areas defined as landmarks and (4) πg

θg
, which targets a

specific goal state. At a timestep t, given a state history (s0, ..., st) ∈ SH (SH being the set of state
histories) and a target goal g ∈ G:

(1) The quantizer qθq : Sp → Ω (with Ω = {1, . . . , k}) is used to map the current state st
positions into a set of k landmark indexes (or tokens). It serve as the building blocks for our planning
strategy, while allowing for maintaining a certain landmark history τ̄ω≤n by appending each new
landmark to τ̄ω≤n−1, with n the current number of landmarks in the history.

(2) The planner πp
θp

: ΩH × Ω → ΩP (with ΩH the set of landmark histories and ΩP the set of
landmark plans), if needed, processes these discrete landmark histories to generate a coherent plan of
landmarks that outlines the overall trajectory to be followed in the environment to reach the requested
goal landmark qθq (g). Given any history of tokens τ̄ω≤n = (ω0, · · · , ωn)n>0 ∈ ΩH and a targeted
goal g ∈ G, the plan generator produces a feasible sequence of tokens (ωn+1, · · · , ωn+l)n>0,l>0 ∈
ΩP auto-regressively until ωn+l = qθq (g) following:

∀l > 0, πp
θp

(
(ωn+1, · · · , ωn+l) |τ̄ω≤n, qθq (g)

)
=

l∏
t=1

πp
θp

(
ωn+t |τ̄ω≤n+t−1, qθq (g)

)
(2)

(3) The landmark policy πlm
θlm

: A×S ×Ω→ [0, 1] is then called if the goal landmark qθq (g) is
not yet reached to generate an action through πlm

θlm
(at|st, ωn+1) to reach the next landmark ωn+1 in

the plan given the current state st.

(4) The goal policy πg
θg

: A × S × G → [0, 1] is finally called once the goal landmark qθq (g)

as been attainted to reach the actual goal g given the current state st by generating actions through
πg
θg
(at|st, g).

4.2 QUANTIZER

The first component to be trained is the quantizer qθq based on the VQ-VAE (Van Den Oord et al.,
2017) architecture. It is composed of an encoder fe

θe
: Sp → Rd and a learned code-book z = Rk×d,

which associates each landmark to a continuous embedding such that θq = [θe, z]. It is trained
alongside a decoder fd

θd
: Rd → Sp. From these, qθq is defined as:

∀sp ∈ Sp, qθq (sp) = argminω∈Ω||fe
θe(s

p)− zω||22 (3)
Three losses are considered to train these components. First, the VQ-VAE learns a meaningful
representation by considering a reconstruction loss, which ensures that states can be decoded from
tokens they are projected into:

Lrecon(θq, θd) = Esp∼D

[
||fd

θd
(zqθq (sp)))− sp||22

]
(4)

5

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

where D is the dataset. As the gradient flow stops in the previous loss due to the discrete projection
performed, we need to consider an additional commitment loss to learn the encoder parameters:

Lcommit(θq) =Esp∼D

[
||fe

θe(s
p)− sg[zqθq (sp))]||

2
2 + β||sg[fe

θe(s
p)]− zqθq (sp))||

2
2

]
(5)

where sg is the stop-gradient operator. The first term of this loss aims at attracting encoder outputs
close to the code-book’s codes. As explained by authors of the VQ-VAE architecture (Van Den Oord
et al., 2017), the embedding space grows arbitrarily if the token embedding does not train as fast
as the encoder parameters. The second term, weighted by a hyperparameter β, aims to prevent this
issue by forcing the encodings to commit to a code-book’s embedding. To introduce dynamics of
the environment in the representation learned, we consider a third contrastive loss that incentivize
temporally close states to be assigned the same tokens, while temporally distant states receive dif-
ferent tokens. To achieve this, we use the triplet margin loss (Balntas et al., 2016) applied to our
setting:

Lcontrastive(θe) = E spt∼D
k∼{−δ,...,δ}

k′∼Z\{−δ,...,δ}

[
max

{
||fe

θe(s
p
t), f

e
θe(s

p
t+k)||

2
2 − ||fe

θe(s
p
t), f

e
θe(s

p
t+k′)||22, 0

}]
(6)

where δ is the time window used to specify temporal closeness of states in demonstration trajectories.
This loss is of crucial importance in navigation, for instance in settings with thin walls, where two
states can be close in the input space while corresponding to very different situations. The tokenizer
loss, used in training is then a linear combination of the three previous losses:

Lquantizer(θq, θd) = αreconLrecon(θq, θd) + αcommitLcommit(θq) + αcontrastiveLcontrastive(θe) (7)

4.3 PLANNER

Once the quantizer has been trained, each state from dataset trajectories τ = (s0, ..., sT) can be
discretized leading to sequences of landmark tokens τω = (qθq (s

p
0), ..., qθq (s

p
T)). Temporal consis-

tency induces sub-sequences of repeated tokens corresponding to positions within a given region.
By applying a simple post-processing step noted that removes consecutive repetitions of tokens from
τω , we obtain more concise sequences τ̄ω that succinctly represent key zones to traverse in the cor-
rect order. For instance, a tokenized sequence such as “1 1 1 2 2 3 3 3 4 4” is simplified to “1 2 3 4”,
reflecting the core structure of the trajectory. Then, the planner πp

θp
is trained following a teacher

forcing approach on compressed sequences, considering any future token of τ̄ω as the associated
training goal:

Lplanner(θp) = −Eτ∼D

[
En<|τ̄ω|−1

[
Eωg∈τ̄ω

>n

[
log πp

θp
(τ̄ωn+1 |τ̄ω≤n, ωg))

]]]
(8)

with |τ̄ω| the number of compressed tokens and τ̄ω≤n (resp. τ̄ω>n) the history (resp. future) of
τ̄ω at step n. We implement πp

θp
using a transformer architecture (Vaswani et al., 2017), where

πp
θp
(ω |τ̄ω≤n, ωg) is defined for any ω ∈ Ω using a softmax on the outputs of the transformer. While an

alternative would be to consider a markov assumption stating that πp
θp
(·|τ̄ω≤n, ωg) = πp

θp
(·|τ̄ωn , ωg),

we claim that dependency on the full history of the sequence is useful to anticipate the next token
to be reached, as it can be leveraged to deduce the precise location of the agent in large landmark
areas (which is unknown during plan generation). Also, we perform a data augmentation process
which relies on the opportunity of accurate trajectory stitching that our quantized space offers. As
such, we augment every token sequence of D by stitching all other sub-sequences from the dataset
that contains its last token, allowing for a higher state coverage.

4.4 LANDMARK POLICY

Independently from the planner, we train the landmark policy πlm
θlm

by first training a landmark
conditioned value function V lm

ϕlm
learned with IVL (Park et al., 2024), a value function only IQL

(Kostrikov et al., 2021), by minimizing the following loss:

LV lm(ϕlm) = E(st,st+1,ω)

[
Lxlm
2 (rω(st, ω) + γlmV lm

ϕ̄lm
(st+1, ω)− V lm

ϕlm
(st, ω))

]
(9)

6

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

To get the training sample (st, st+1, ω), we sample two consecutive states (st, st+1) and with a
probability pcurrent we set ω = qθq (s

p
t), otherwise we sample ω uniformly among the next tokens

in the trajectory if they exist: ω ∼ U({ω ∈ τω>t, ω ̸= qθq (s
p
t)}). We set rω(s, ω) = 0 if qθq (s

p) = ω

and −1 otherwise. After that, we can train πlm
θlm

through AWR by maximizing:

Jπlm(θlm) = E(st,st+1,ω)

[
exp(βlm · (V lm

ϕlm
(st+1, ω)− V lm

ϕlm
(st, ω)) log π

lm
θlm

(at|st, ω))
]

(10)

To get the training samples, we sample two consecutive states (st, st+1) and we set the target land-
mark ω as the first future token of the compressed sequence if it exists, otherwise the current token.

4.5 GOAL POLICY

Independently from the planner and the landmark policy, we train the goal policy πg
θg

using the
GC-IVL (Park et al., 2024) algorithm. We train first a value function to minimize the following loss:

LV g (ϕg) = E(st,st+1,g)

[
L
xg

2 (rg(st, g) + γgV
g

ϕ̄g
(st+1, g)− V g

ϕg
(st, g))

]
(11)

We get the training samples by sampling two consecutive states (st, st+1) and set g as the current
state with probability pcurrent or sample it uniformly among the future trajectory states with prob-
ability pfuture and otherwise we set the goal by sampling a random state from the dataset. We set
rω(s, g) = 0 if s = g and −1 otherwise. As for the policy, we perform again an AWR training by
optimizing the following objective:

Jπg (θg) = E(st,st+1,g)

[
exp(βg · (V g

ϕg
(st+1, g)− V g

ϕg
(st, g)) log π

g
θg
(at|st, g))

]
(12)

The training samples are obtained by sampling two consecutive states (st, st+1) and we sample the
goal g uniformly from the future states of the trajectory.

5 EXPERIMENTS

Our experiments aim to address the following questions:

1. Does QPHIL’s architecture enable efficient long-term navigation?

2. What is the impact of the contrastive loss used for landmark learning?

3. What is the impact of the different losses when training the quantizer ?

5.1 EXPERIMENTAL SETUP

Scope QPHIL focuses on advancing hierarchical offline reinforcement learning for long-range
navigation, a domain where state quantization and hierarchical planning address noise in long-
horizon value estimates, a critical challenge in offline goal-conditioned RL. We thus evaluate QPHIL
on the AntMaze suite, a well-suited benchmark for this scope, deferring orthogonal tasks like dexter-
ous manipulation (e.g., Adroit) or locomotion (e.g., HalfCheetah) to future work, as these prioritize
control dynamics over spatial path-planning.

Antmaze We measure QPHIL’s performance through a set of the AntMaze environments of in-
creasing sizes. The Antmaze suite is an established and challenging benchmask which calls for long-
term planning benchmark as well as solving hard locomotion tasks which illustrates well QPHIL’s
scope. In AntMaze the agent controls an 8-DoF ant-shaped robot. Observations consist in a 29-
dimension state vector (e.g. positions, torso coordinates and velocity, angles between leg parts). For
original AntMaze environments we use datasets provided in the D4RL library (Fu et al., 2020) as
well as additional datasets for even larger mazes, namely Antmaze-Ultra provided by (Jiang et al.,
2022) and Antmaze-Extreme which we created. For each maze type (medium, large, ultra and ex-
treme), we train on two types of datasets: ”play” and ”diverse”, each containing 1000 (500 for
extreme) trajectories of 1000 steps (2000 for extreme). The ”play” variant has been generated us-
ing hand-picked locations for the goal and starting positions while the ”diverse” variant has been
generated using random goal and starting positions.

7

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Baselines We compare QPHIL to 5 previous methods ranging from model-free behavior cloning
and offline RL methods. For the behavior cloning methods, we include in our baselines the flat Goal-
Conditioned Behavior Cloning (GCBC) (Ghosh et al., 2019) and the Hierarchical Goal-Conditioned
Behavior Cloning (HGCBC) (Gupta et al., 2019). For offline RL, we include a goal-conditioned
variant of Implicit Q-Learning (GCIQL) (Kostrikov et al., 2021), Hierarchical Implicit Q-Learning
(HIQL) (Park et al., 2024) as well as a flatten version of it called GCIVL which relies only the
the value function to compute the advantages (Park et al., 2024). We performed our experiments
on QPHIL on 8 seeded runs, results are provided with the mean ± std format in Table 1. As the
transformer-based methods such as DT (Chen et al., 2021), TAP (Jiang et al., 2022) or V-ADT (Ma
et al., 2024) as been shown to fall short in long-range settings (see Park et al. (2024); Ma et al.
(2024)) compared to hierarchical and/or value-based methods such as HIQL, we decided to focus
our comparisons on the latter methods.

5.2 DOES QPHIL ARCHITECTURE ENABLE EFFICIENT LONG-TERM NAVIGATION ?

Table 1: Evaluating QPHIL on AntMaze environments. We see that QPHIL scales well with
the length of the navigation range, competing with SOTA performance on the smaller mazes and
improving significantly on the SOTA on the larger settings.

env name GCBC GCIQL GCIVL HGCBC
w/o repr

HGCBC
w/repr

HIQL
w/o repr

HIQL
w/repr QPHIL

antmaze-medium-diverse-v2 65 ± 11 80 ± 8 82 ± 8 46 ± 11 13 ± 9 92 ± 4 92 ± 4 92 ± 4
antmaze-medium-play-v2 60 ± 11 80 ± 9 84 ± 9 48 ± 9 10 ± 8 90 ± 5 92 ± 4 91 ± 2
antmaze-large-diverse-v2 10 ± 5 21 ± 10 59 ± 13 78 ± 7 18 ± 8 88 ± 4 85 ± 8 82 ± 6

antmaze-large-play-v2 9 ± 5 25 ± 12 50 ± 9 79 ± 7 14 ± 13 87 ± 7 84 ± 7 80 ± 3
antmaze-ultra-diverse-v0 16 ± 9 20 ± 8 6 ± 5 71 ± 12 32 ± 24 71 ± 7 71 ± 12 62 ± 7

antmaze-ultra-play-v0 15 ± 10 20 ± 10 10 ± 6 64 ± 12 13 ± 15 63 ± 20 74 ± 23 62 ± 4
antmaze-extreme-diverse-v0 9 ± 6 12 ± 7 5 ± 10 6 ± 14 0 ± 4 14 ± 17 20 ± 20 40 ± 13

antmaze-extreme-play-v0 8 ± 7 16 ± 7 0 ± 0 11 ± 10 4 ± 8 12 ± 16 28 ± 27 50 ± 7

We first analyze the performance in success rate of the different baselines on the state-based
AntMaze-{Medium,Large,Ultra} settings. As usual in D4RL Antmaze benchmarks (Park et al.,
2024), starting state and target goals are sampled near two reference points, forcing the agent to
walk across the entire maze. Figure 2. showcases examples of tokenizations obtained by our VQ-
VAE model. One can observe a tendency for learned clusters to decrease in size in the middle of all
mazes, which can be explained by the higher number of demonstration data in those areas. Table
1 shows the results of our experiment on the set of AntMaze map. For HIQL, ”w/ repr.” means
the use of representations for subgoals and goals, in opposite of ”w/o repr.” that takes raw values
(see (Park et al., 2024)). We see that our method is near the state-of-the art on smaller and average
scale maps. To test QPHIL’s scaling ability in more difficult settings, we created a larger AntMaze
environment called AntMaze-Extreme (Figure 3), along with two datasets variants ”diverse” and
”play”. As shown in Table 1, in AntMaze-Extreme QPHIL attains up to 50% success rate, which is
significantly above baseline results, e.g. HIQL scores in diverse and play datasets. While QPHIL
remains competitive in short-term settings, our approach is especially well suited for long-distance
goal reaching navigation.

5.3 WHAT IS THE IMPACT OF THE CONTRASTIVE LOSS USED FOR LANDMARK LEARNING ?

The use of a contrastive loss is essential in the context of high dimensional data, where the VQ-
VAE reconstruction loss is not enough to learn temporally consistent latent encodings (meaning that
temporally nearby states share spatially nearby encodings). To assess the impact of the contrastive
loss on the learned landmarks, we compute, for each token, the minimum and maximum distances
between states position and their corresponding codebook’s decoded position. This is represented as
histograms in Figure 4. While the unconstrained VQ-VAE tends to allocate higher token density in
areas of higher data density, we observe that the contrastive loss results in a smoother repartition of
the tokens, which in consequence increases the performance of our model. This allows to stabilize
conditioning in areas of high data density.

8

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Figure 2: Tokenization example. Each
background point’s color corresponds to its
associated token. Tokens align with walls
thanks to the contrastive loss.

Medium
Large
Ultra

Figure 3: Evaluating QPHIL on AntMaze-
Extreme. A top-down view of the maze with
size comparisons.

(a) Intertoken histograms

(b) Performances on Antmaze-Extreme.
Method Diverse Play

QPHIL (non-cont) 17 ± 1 26 ± 2

QPHIL 40 ± 13 50 ± 7

Figure 4: Non-contrastive (top) and contrastive (bottom) intertoken distance histograms. The
non-contrastive tokenization results in higher extreme sized tokens, while the contrastive tokeniza-
tion yields a smoother distribution, improving performance.

5.4 WHAT IS THE IMPACT OF THE DIFFERENT LOSSES WHEN TRAINING THE QUANTIZER ?

In QPHIL, the VQ-VAE quantizer is learned using a linear composition of three losses: the commit
loss, the contrastive loss, and the reconstruction loss, which all have an associated coefficient hyper-
parameter to be tuned. In our experiments, we used the same set of coefficients for each maze shape,
which we found through a preliminary hyperparameter search to be robust across the diversity of
maze sizes we considered. In the following, we analyze the impact of the different coefficients on
the quality of the discretization.

0 1 2 3 4 5
6

7 8
9 10

11
1213

14

15
16 17 1819 20

21 2223
24

25
26 272829

3031 32 33

34 35 36 3738 39
40 41

4243 44
45 4647

0
1 2 3 4

5
6 7

8
910 11 12

13
14

1516 17

1819 20 2122 23
24

25 26

27 28
29 30 3132

3334 35 36

3738 3940 41 42

434445
4647

0 1 2 3 4 5 6

7 89
1011 12

13
14

15
16 17

18 19 20
21 22 23

24 25 26

27 282930 3132
3334 35 36

37 38 3940 41 42

434445
4647

0

1

2

3 4

5 6
78

9

10

11
12

13
14 15

16 17

Figure 5: Commit coefficient impact. From left to right αcommit ∈ {0, 1e1, 1e3, 1e6}, αcontrastive =
2e1, αrecon = 1e5. We see that a low commit coefficient leads to varying sized landmarks, while
high commit loss diminishes the number of landmarks.

Commit loss The commit loss serves the purpose of maintaining a vicinity between the continuous
encodings and the elements of the codebook in the latent space. A zero or low commit loss creates a
poor repartition of the continuous representations with regard to the codebook. This creates varying

9

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

sized areas, where some are too small and some too big (e.g. Figure 5, leftmost map). On the other
hand, a high commit loss will force the encoder to match the codebook vectors too rigidly. This
leads to information loss as the encoder might struggle to represent subtle variations in the input.
Also, this increases the amount of dead codebook vectors which consequently reduces the amount
of used tokens for discretization (e.g. Figure 5, rightmost map).

Figure 6: Contrastive coefficient impact with reconstruction loss With αcommit =
1e3, αcontrastive ∈ {0, 2, 2e1, 2e5}, αrecon = 1e5. We see that a low contrastive coefficient leads
to multiple piece landmarks, while high values of contrastive seem to fix this issue.

Figure 7: Contrastive coefficient impact without reconstruction loss With αcommit =
1e3, αcontrastive ∈ {0, 2, 2e1, 2e5}, αrecon = 0. We see that the reconstruction loss is not needed
to generate good tokens, however, it makes the tokenization more stable to hyperparamters.

Contrastive loss The contrastive loss serves the purpose of organizing temporally the latent space,
which is paramount to create navigable landmarks. When used jointly with the reconstruction loss
(see Figure 6), it ensures that the landmarks do not span through obstacles, consequently ensuring
that landmarks are of single piece and navigable. If the contrastive coefficient is too low, multiple
piece landmarks can appear by spanning across obstacles. If it is too high, it might overshadow
other components, leading to the aforementioned failures. Used without the reconstruction loss
(see Figure 7), the contrastive can manage a good tokenization but the reconstruction loss helps by
showing better tokenization for a higher number of contrastive coefficient values.

6 CONCLUSION

Takeaways We proposed QPHIL, a hierarchical offline goal-conditioned reinforcement learning
method that leverages pre-recorded demonstration to learn a discrete and temporally consistent rep-
resentation of the state space. QPHIL utilizes those discrete state representations to plan subgoals in
a discretized space and guide a low policy towards its final goal in a human-inspired manner. QPHIL
reaches top performance in challenging long-term navigation benchmarks, showing promising next
steps for discretization and planning in continous offline RL settings.

Limitations and future work QPHIL is a method aimed at longterm navigation as it aims to
solve tasks where a low amount of landmarks is sufficient. QPHIL demonstrated the interest of
space quantization for long range navigation settings in offline GCRL. As a future work, studying
quantization techniques applicable to higher dimensional data (images, ...) and in more intricate
planning settings (multi-token discretization and combinatorial representations), such as multi-task
robotics scenarios could be promising. Finally, as discretized planning brings interpretability and
editability, one could study how users can edit learned quantization to further improve performances
or cheaply ”update” the agent to environmental changes.

10

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

7 ACKNOWLEDGEMENTS

This work was granted access to the HPC resources of IDRIS under the allocation 2023-
AD011014679 made by GENCI.

8 REPRODUCIBILITY STATEMENT

To ensure the reproductibility of our experiments, we provided all needed implementation details
and hyperparameter values in the appendix. All our training have been seeded with the same 8
seeds: 0, 1, 2, 3, 4, 6 and 7. Also, we provide QPHIL’s codebase along with the pretrained models
ready to be evaluated on our test environments.

REFERENCES

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. Opal: Offline prim-
itive discovery for accelerating offline reinforcement learning. arXiv preprint arXiv:2010.13611,
2020.

Eloi Alonso, Maxim Peter, David Goumard, and Joshua Romoff. Deep reinforcement learning for
navigation in aaa video games, 2020. URL https://arxiv.org/abs/2011.04764.

Anirudhan Badrinath, Yannis Flet-Berliac, Allen Nie, and Emma Brunskill. Waypoint transformer:
Reinforcement learning via supervised learning with intermediate targets. Advances in Neural
Information Processing Systems, 36, 2024.

Bram Bakker. Reinforcement learning with long short-term memory. Advances in neural informa-
tion processing systems, 14, 2001.

Vassileios Balntas, Edgar Riba, Daniel Ponsa, and Krystian Mikolajczyk. Learning local feature
descriptors with triplets and shallow convolutional neural networks. In Bmvc, volume 1, pp. 3,
2016.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Silvia Chiappa, Sébastien Racaniere, Daan Wierstra, and Shakir Mohamed. Recurrent environment
simulators. arXiv preprint arXiv:1704.02254, 2017.

André Correia and Luı́s A. Alexandre. Hierarchical decision transformer. In IROS, pp. 1661–
1666, 2023. doi: 10.1109/IROS55552.2023.10342230. URL https://doi.org/10.1109/
IROS55552.2023.10342230.

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for
offline rl via supervised learning? arXiv preprint arXiv:2112.10751, 2021.

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. Search on the replay buffer: Bridg-
ing planning and reinforcement learning, 2019. URL https://arxiv.org/abs/1906.
05253.

Kuan Fang, Patrick Yin, Ashvin Nair, and Sergey Levine. Planning to practice: Efficient online
fine-tuning by composing goals in latent space. In 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 4076–4083. IEEE, 2022.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

11

https://arxiv.org/abs/2011.04764
https://doi.org/10.1109/IROS55552.2023.10342230
https://doi.org/10.1109/IROS55552.2023.10342230
https://arxiv.org/abs/1906.05253
https://arxiv.org/abs/1906.05253

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Chen Gao, Xingyu Peng, Mi Yan, He Wang, Lirong Yang, Haibing Ren, Hongsheng Li, and Si Liu.
Adaptive zone-aware hierarchical planner for vision-language navigation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14911–14920, 2023.

Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. Emaq: Expected-
max q-learning operator for simple yet effective offline and online rl. In International Conference
on Machine Learning, pp. 3682–3691. PMLR, 2021.

Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Devin, Benjamin Eysenbach,
and Sergey Levine. Learning to reach goals via iterated supervised learning. arXiv preprint
arXiv:1912.06088, 2019.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956, 2019.

Hany Hamed, Subin Kim, Dongyeong Kim, Jaesik Yoon, and Sungjin Ahn. Dr. strategy: Model-
based generalist agents with strategic dreaming. arXiv preprint arXiv:2402.18866, 2024.

Karol Hausman, Yevgen Chebotar, Stefan Schaal, Gaurav Sukhatme, and Joseph J Lim. Multi-modal
imitation learning from unstructured demonstrations using generative adversarial nets. Advances
in neural information processing systems, 30, 2017.

Nicolas Heess, Jonathan J Hunt, Timothy P Lillicrap, and David Silver. Memory-based control with
recurrent neural networks. arXiv preprint arXiv:1512.04455, 2015.

Christopher Hoang, Sungryull Sohn, Jongwook Choi, Wilka Carvalho, and Honglak Lee. Successor
feature landmarks for long-horizon goal-conditioned reinforcement learning. Advances in neural
information processing systems, 34:26963–26975, 2021.

Riashat Islam, Hongyu Zang, Anirudh Goyal, Alex Lamb, Kenji Kawaguchi, Xin Li, Romain
Laroche, Yoshua Bengio, and Remi Tachet Des Combes. Discrete factorial representations as
an abstraction for goal conditioned reinforcement learning. arXiv preprint arXiv:2211.00247,
2022.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Zhengyao Jiang, Tianjun Zhang, Michael Janner, Yueying Li, Tim Rocktäschel, Edward Grefen-
stette, and Yuandong Tian. Efficient planning in a compact latent action space. arXiv preprint
arXiv:2208.10291, 2022.

Zhengyao Jiang, Yingchen Xu, Nolan Wagener, Yicheng Luo, Michael Janner, Edward Grefenstette,
Tim Rocktäschel, and Yuandong Tian. H-gap: Humanoid control with a generalist planner. arXiv
preprint arXiv:2312.02682, 2023.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A
survey. Journal of artificial intelligence research, 4:237–285, 1996.

Pierre-Alexandre Kamienny, Jean Tarbouriech, Sylvain Lamprier, Alessandro Lazaric, and Ludovic
Denoyer. Direct then diffuse: Incremental unsupervised skill discovery for state covering and
goal reaching. In ICLR 2022, 2022.

Junsu Kim, Younggyo Seo, and Jinwoo Shin. Landmark-guided subgoal generation in hierarchical
reinforcement learning. Advances in neural information processing systems, 34:28336–28349,
2021.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021.

12

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Kalle Kujanpää, Joni Pajarinen, and Alexander Ilin. Hierarchical imitation learning with vector
quantized models. In International Conference on Machine Learning, pp. 17896–17919. PMLR,
2023.

Kalle Kujanpää, Joni Pajarinen, and Alexander Ilin. Hierarchical imitation learning with vec-
tor quantized models. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engel-
hardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Con-
ference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pp. 17896–17919. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/
v202/kujanpaa23a.html.

Kalle Kujanpää, Joni Pajarinen, and Alexander Ilin. Hybrid search for efficient planning with com-
pleteness guarantees. Advances in Neural Information Processing Systems, 36, 2024.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in neural information processing systems,
32, 2019.

Shakti Kumar, Jerrod Parker, and Panteha Naderian. Adaptive transformers in rl. arXiv preprint
arXiv:2004.03761, 2020.

Seungjae Lee, Daesol Cho, Jonghae Park, and H Jin Kim. Cqm: curriculum reinforcement learning
with a quantized world model. Advances in Neural Information Processing Systems, 36, 2024a.

Yoonhyung Lee, Younhyung Chae, and Kyomin Jung. Leveraging vq-vae tokenization for autore-
gressive modeling of medical time series. Artificial Intelligence in Medicine, pp. 102925, 2024b.

Jinning Li, Chen Tang, Masayoshi Tomizuka, and Wei Zhan. Hierarchical planning through goal-
conditioned offline reinforcement learning. IEEE Robotics and Automation Letters, 7(4):10216–
10223, 2022. doi: 10.1109/LRA.2022.3190100.

Baiting Luo, Ava Pettet, Aron Laszka, Abhishek Dubey, and Ayan Mukhopadhyay. Scalable
decision-making in stochastic environments through learned temporal abstraction. In The
Thirteenth International Conference on Learning Representations, 2025. URL https://
openreview.net/forum?id=pQsllTesiE.

Jianlan Luo, Perry Dong, Jeffrey Wu, Aviral Kumar, Xinyang Geng, and Sergey Levine. Action-
quantized offline reinforcement learning for robotic skill learning. In Conference on Robot Learn-
ing, pp. 1348–1361. PMLR, 2023.

Yi Ma, Jianye HAO, Hebin Liang, and Chenjun Xiao. Rethinking decision transformer via hier-
archical reinforcement learning. In Forty-first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?id=WsM4TVsZpJ.

Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt, Alexandre Lacoste, and Sai Rajeswar. Choreographer:
Learning and adapting skills in imagination. arXiv preprint arXiv:2211.13350, 2022.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Near-optimal representation learning
for hierarchical reinforcement learning. arXiv preprint arXiv:1810.01257, 2018a.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018b.

Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayakumar,
Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al. Stabilizing transformers
for reinforcement learning. In International conference on machine learning, pp. 7487–7498.
PMLR, 2020.

Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-
conditioned rl with latent states as actions. Advances in Neural Information Processing Systems,
36, 2024.

Karl Pertsch, Youngwoon Lee, Yue Wu, and Joseph J Lim. Guided reinforcement learning with
learned skills. arXiv preprint arXiv:2107.10253, 2021.

13

https://proceedings.mlr.press/v202/kujanpaa23a.html
https://proceedings.mlr.press/v202/kujanpaa23a.html
https://openreview.net/forum?id=pQsllTesiE
https://openreview.net/forum?id=pQsllTesiE
https://openreview.net/forum?id=WsM4TVsZpJ

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. A survey on
offline reinforcement learning: Taxonomy, review, and open problems. IEEE Transactions on
Neural Networks and Learning Systems, 2023.

Dushyant Rao, Fereshteh Sadeghi, Leonard Hasenclever, Markus Wulfmeier, Martina Zambelli,
Giulia Vezzani, Dhruva Tirumala, Yusuf Aytar, Josh Merel, Nicolas Heess, et al. Learning trans-
ferable motor skills with hierarchical latent mixture policies. arXiv preprint arXiv:2112.05062,
2021.

Erick Rosete-Beas, Oier Mees, Gabriel Kalweit, Joschka Boedecker, and Wolfram Burgard. Latent
plans for task-agnostic offline reinforcement learning. In Conference on Robot Learning, pp.
1838–1849. PMLR, 2023.

Jürgen Schmidhuber. Learning to generate sub-goals for action sequences. In Artificial neural
networks, pp. 967–972, 1991.

Wonchul Shin and Yusung Kim. Guide to control: Offline hierarchical reinforcement learning using
subgoal generation for long-horizon and sparse-reward tasks. In IJCAI, pp. 4217–4225, 2023.

Shyam Sudhakaran and Sebastian Risi. Skill decision transformer. arXiv preprint arXiv:2301.13573,
2023.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT Press, 2
edition, 2018.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International conference on machine learning, pp. 3540–3549. PMLR, 2017.

Chenjun Xiao, Han Wang, Yangchen Pan, Adam White, and Martha White. The in-sample softmax
for offline reinforcement learning. arXiv preprint arXiv:2302.14372, 2023.

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional sequence modelling in offline rl. In Inter-
national Conference on Machine Learning, pp. 38989–39007. PMLR, 2023.

Yiqin Yang, Hao Hu, Wenzhe Li, Siyuan Li, Jun Yang, Qianchuan Zhao, and Chongjie Zhang. Flow
to control: Offline reinforcement learning with lossless primitive discovery. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pp. 10843–10851, 2023.

14

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

A DETAILS ABOUT BASELINES

Implicit Q-Learning (IQL) The main issue of offline RL is the overestimation of the value of
out-of-distribution actions when minimizing the temporal difference error, leading the policy to
favor overestimated actions:

LTD = E(st,at,st+1)∼D

[
(r(st, at) + γ max

at+1

Qθ̂Q
(st+1, at+1)−QθQ(st, at))

2

]
(13)

with r(st, at) the task reward, θ̂Q the parameters of a target network. Without further interactions
with the environment, those over-estimations cannot be corrected. While other work propose to
regularize the loss function to avoid sampling out-of-distribution actions, Kostrikov et al. (2021)
proposes IQL which estimates the in-distribution maxQ operator with expectile regression. To do
so, it learns a state value function VθV (st) along a state-action value function QθQ(st, at):

LV (θV) = E(st,at)∼D

[
Lτ
2(Qθ̂Q

(st, at)− VθV (st))
]

(14)

LQ(θQ) = E(st,at,st+1)∼D[r(st, at) + γ VθV (st+1)−QθQ(st, at))
2] (15)

with Lx
2(u) = |x−1(u < 0)|u2, x ∈ [0.5, 1) the expectile loss, which corresponds to an asymmetric

square loss which penalises positive values more than negative ones the more x tends to 1, conse-
quently leading VθV (st) to lean towards max at+1∈A, st. πβ(at|st)>0 Qθ̂Q

(st, at) with πβ the datasets
behavior policy. The use of two different networks is justified to train the value function only on the
dataset action distribution without incorporating environment dynamics in the TD-error loss, which
avoids the overestimation induced by lucky transitions. Then, the trained VθV (st) and QθQ(st, at)
are used to compute advantages to extract a policy πθπ with advantage weighted regression (AWR):

Lπ(θπ) = −E(st,at)∼D

[
exp

(
β(Qθ̂Q

(st, at)− VθV (st)
)
log πθπ (at|st)

]
, (16)

with β ∈ (0,+∞] an inverse temperature. This corresponds to the cloning of the demonstrations
with a bias towards actions that present a higher Q-value.

Hierarchical Implicit Q-Learning (HIQL) In the offline GCRL setting, the rewards are sparse,
only giving signals for states where the goal is reached. Hence, as bad actions can be corrected by
good actions and good actions can be polluted by bad actions in the future of the trajectory, offline
RL methods are at risk of wrongly label bad actions as good one, and conversely good actions
as bad ones. This leads to the learning of a noisy goal-conditioned value function: V̂ (st, g) =
V ∗(st, g) + N(st, g) where V ∗ corresponds to the optimal value function and N corresponds to a
noise. As the ’signal-to-noise’ ratio worsens for longer term goals, offline RL methods such as IQL
struggle when the scale of the GCRL problem increases, leading to noisy advantages in IQL’s AWR
weights for which the noise overtakes the signal. To alleviate this issue, Park et al. (2024) propose
HIQL which leverages a learned noisy goal conditioned action-free value function inspired by IQL:

LV (θV) = E(st,st+1)∼D,g∼p(g|τ)

[
Lx
2(r(st, g) + γVθ̂V

(st+1, g)− VθV (st, g))
]

(17)

by using it to train two policies, πh(st+k|st, g) to generate subgoals from the goal and πl(at|st, g)
to generate actions to reach the subgoals:

Lπh(θh) = E(st,st+k,g)[exp(β · (VθV (st+k, g)− VθV (st, g))) log π
h
θh
(st+k|st, g)] (18)

Lπl(θl) = E(st,at,st+1,st+k)[exp(β · (VθV (st+1, st+k)− VθV (st, st+k)) log π
l
θl
(at|st, st+k)]

(19)

With this division, each policy benefits from higher signal-to-noise ratios as the low-policy only
queries the value function for nearby subgoals V (st+1, st+k) and the high policy queries the value
function for more diverse states leading to dissimilar values V (st+k, g).For high-dimensional states
like images, HIQL proposes to learn states and goal representations ϕ(s) to reduce the dimension,
allowing consequently easier subgoal generation. With representations, the writing of the policies
become πh

θh
(ϕ(st+k)|st, g) and πl

θl
(at|st, ϕ(st+k)).

15

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Flat-policies ”signal-to-noise” issues The usual policy learning strategy in offline RL and as such
goal-conditioned offline RL is to learn the policy by weighting its updates by a function of is goal-
conditioned advantage. In the case of HIQL, low-level and high-level policy updates are performed
using a learned action-free advantage function: Â(st, st+1, g) = V̂ (st+1, g) − V̂ (st, g), where V̂
itself is a neural network learned through action-free IQL updates. As high values corresponds to
an expectation on the discounted cumulative sum of rewards, given a state and a goal, they indicate
a notion of temporal proximity in the goal-conditioned sparse rewards case. The advantage gives
consequently an indication of an approach of the goal g allowing the policy to learn directions.
However, as the goal moves away from the current state, the learned value function may provide
noisy estimates. We can write the learned value function in the from: V̂ (s, g) = V ∗(s, g)+N(s, g)
where V ∗(s, g) corresponds to the minimal (in-distribution) distance between s and g and N(s, g) a
random noise. Borrowing from Park et al. (2024) paper, we could assume N(s, g) = σzs,gV

∗(s, g),
where σ is the standard deviation and zs,g is the a random variable that follows a standard normal
distribution. This corresponds to a gaussian noise proportional to the temporal distance between s
and g. If we rewrite the advantage:

Â(st, st+1, g) = V̂ (st+1, g)− V̂ (st, g) (20)
= V ∗(st+1, g) + σzst+1,gV

∗(st+1, g)− V ∗(st, g) + σzst,gV
∗(st, g) (21)

= V ∗(st+1, g)− V ∗(st, g) + σzst+1,gV
∗(st+1, g)− σzst,gV

∗(st, g) (22)
d
= A∗(st+1, st, g)︸ ︷︷ ︸

signal

+ z
√
σ2
1V

∗(st+1, g)2 + σ2
2V

∗(st, g)2︸ ︷︷ ︸
noise

(23)

Hence, for faraway goals, the ”signal-to-noise” ratio (SNR) defined in this case by:

SNR(st+1, st, g) =
A∗(st, st+1, g)

N(st, st+1, g)
=

A∗(st, st+1, g)

z
√

σ2
1V

∗(st+1, g)2 + σ2
2V

∗(st, g)2

can be underwhelming, because the difference in advantage is too small compared to the noise
induced by the estimation. HIQL proposes to learn two different policies though the advantage
estimates of a single value function. A high policy πh(st+k|st, g) is trained to generate find subgoals
that maximizes V̂ (st+k, g) and a low policy πl(at|st, g) is trained to maximize V̂ (st+1, g). Hence,
we can write the SNR for each level:

SNRh(st, st+k, g) =
A∗(st, st+k, g)

N(st, st+k, g)
=

A∗(st, st+k, g)

z
√
σ2
1V

∗(st+k, g)2 + σ2
2V

∗(st, g)2

SNRl(st, st+1, st+k) =
A∗(st, st+1, st+k)

N(st, st+1, st+k)
=

A∗(st, st+1, st+k)

z
√
σ2
1V

∗(st+1, st+k)2 + σ2
2V

∗(st, st+k)2

The division in two policies allows to increase the high-policy SNR by comparing values from more
distance states (higher signal) while also increasing the low-policy SNR by decreasing the distance
between state and goal (lower noise). However, as the low-policy has to generate an instant action
information and as the high-policy has to be conditioned on the real goal, HIQL seeks to find the
optimal step k that balanced both SNRh and SNRl, which might still pose scaling issues for
longer-range settings. Consequently, in very long-range scenarios, the high policy πh(st+k|st, g)
may lead to noisy subgoal estimates, varying at each timestep and as such difficult for the low policy
to follow.

16

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

B IMPLEMENTATION DETAILS

Here is the pseudo-codes for QPHIL’s training and inference pipelines:

B.1 TRAINING PSEUDO-CODE

Algorithm 1 Quantizing Planner for Hierarchical Implicit Q-Learning (QPHIL)

Input: offline dataset D
Initialize qθq , π

p
θp
, V lm

ϕlm
, πlm

θlm
, V g

ϕg
, πg

θg

1. Train the quantizer qθq
while not converged do

(θq, θd)← (θq, θd)− λq,d∇(θq,θq)Lquantizer(θq, θd) with Equation 7

2. Train the planner πp
θp

while not converged do
ϕp ← θp − λp∇θpLplanner(θp) with Equation 8

3. Train the landmark value V lm
ϕlm

and policy πlm
θlm

while not converged do
ϕlm ← ϕlm − λV lm∇ϕlm

LV lm(ϕlm) with Equation 9
while not converged do

θlm ← θlm + λπlm∇θlmJπlm(θlm) with Equation 10

4. Train the goal value V g
ϕg

and policy πg
θg

while not converged do
ϕg ← ϕg − λV g∇ϕg

LV g (ϕg) with Equation 11
while not converged do

θg ← θg + λπg∇θgJπg (θg) with Equation 12

B.2 INFERENCE PSEUDO-CODE

Algorithm 2 Navigation with QPHIL

Input: start state s0, goal state g, quantizer qθq , planner πp
θp

, landmark policy πlm
θlm

, and goal
policy πg

θg
.

Initialize the history τ̄ω≤ ← (qθq (s
p
0)), the plan τ̄ω> ← (), the current state s ← s0 and the step

t← 0
while step t doesn’t exceed a max number of steps do

if t = 0 or re-planning is required then ▷ Generate future landmarks
τ̄ω> ← (ωp

0 , ω
p
1 , . . . , ωg) ∼ πp

θp
(·|τ̄ω≤, qθq (g))

if ωp
0 ̸= ωg then sample an action a ∼ πlm

θlm
(·|s, ωp

0)

else sample an action a ∼ πg
θg
(· | s, g)

Emit a in the environment and observe new state s′

Set new current state s← s′ and increment step t← t+ 1
if ωp

0 ̸= ωg then
if qθq (s) = ωp

0 then ▷ Subgoal reached, go to the next one
τ̄ω≤.append(τ̄ω>.pop(0));

else
if s ≈ g then ▷ Final goal reached

return;

17

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

B.3 HYPERPARAMETERS

For the VQ-VAE, we based our implementation on the https://github.com/
lucidrains/vector-quantize-pytorch.git repository. We utilize for all AntMaze
variants as the encoder fe

θe
and the decoder fd

θd
a simple 2-layer MLP with ReLU activations and

hidden size of 16 and latent dimension d of 8. We add a gaussian noise to the input positions and we
normalize the positions before feeding them to the encoder. Also, we vary the number of encodings
in the codebook as the map grows.

For the transformer, we used as described an encoder-decoder architecture inspired by the paper
(Vaswani et al., 2017) provided by the torch.nn library. We use a max sequence length of size
128, an embedding dimension of 128, a feed-forward dimension of 128, 4 layers of 4 heads and a
dropout of 0.2 and we train our model with 250 epoch. We perform validation computation with a
0.95 dataset split and perform sampling with a temperature of 0.9. We optimize our model using the
Adam optimizer with a learning rate of 1e-5.

For the low landmark policy and its value function, we adapt the policy proposed by HIQL. For
the value function, we use a MLP policy of 3 layers with hidden size of 512 and GeLU activations.
We apply layer normalization for each layers and initialize the weights with a variance scaling
initialization of scale 1. No dropout is used for the value function. For the policy, we use a two
layer MLP with hidden size of 256 and ReLU activations. We don’t apply layer norm and initialize
the parameters though a variance scaling initialization of scale 0.01. Our policy outputs the mean
and standard deviation of an independent normal distribution. We clamp the log std of the output
between -5 and 2. We train both the value function and the policy at the same time, performing
1e6 gradient steps with a batch size of 1024. For the IQL parameters, βlm = 3.0, the expectile
xlm = 0.9, the polyak coefficient is 0.005 and the discount factor γlm = 0.995. We clip the AWR
weights to 100. Also, for the value function, we sample the next token with a probability of 0.8 and
the current token with probability 0.2. The targets updates are performed at each gradient step.

For the low goal policy, we trained our GC-IQL implementation with GC-IQL’s hyper-parameters
taken the HIQL paper: (βg, xg, γg) = (0.99, 3, 0.9) for the smaller mazes (AntMaze-{Medium-
Large}) and (βg, xg, γg) = (0.995, 1, 0.7) for the larger mazes (AntMaze-{Ultra,Extreme}).

18

https://github.com/lucidrains/vector-quantize-pytorch.git
https://github.com/lucidrains/vector-quantize-pytorch.git

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

C ENVIRONMENT DETAILS

AntMaze is a very popular benchmark in offline reinforcement learning, and it is part of the D4RL Fu
et al. (2020) dataset suite, interfaced through the Gym library Brockman et al. (2016). It uses the
Mujoco physics engine Todorov et al. (2012) for its simulation.

Figure 8: Maze of Antmaze ultra

The antmaze environment consist of a maze-like struc-
ture in which a simulated ant agent must navigate from
a starting position to a goal position. Contrary to what
one might expect, the agent is not controlled by sim-
ple directional commands. Instead, the ant is controlled
through an 8-dimensional continuous action space. Due
to the complex dynamics of the ant and the intricate
structure of the maze, this environment poses a signifi-
cant challenge for both exploration and planning. Each
dimension of the action space corresponds to a torque
applied to one of the ant’s joints. Values in the ac-
tion space are bounded between -1 and 1 and are in
Nm. Hence, A = [−1, 1]9. The observation space is a
29-dimensional continuous space corresponding to the
cartesian product of the x,y ant coordinates and the ant’s
configuration space Sant. This space is unbounded in

all directions: Sant = R27. The first dimension is the height in meter of the torso. The four fol-
lowing dimensions correspond to respectively the x, y, z and w orientation in radian of the torso.
The height next dimensions are the angles between different links, in radian. Then, x, y and z ve-
locities in m.s−1 followed by their respective angular velocities and angular velocities of all links,
in rad.s−1. The goal space is a subspace of R2: goals are given in x, y coordinates. The reward is
sparse: it is equal to 0 until the ant has reach the goal, where it is equal to 1. Hence,R = {0, 1}.

Figure 9: Ant

There are three variations of this environment: medium, large and ultra; each
one consisting of a different maze structure. The ultra variant is not part of the
original dataset and has been introduced in Jiang et al. (2022). Each maze has
a different datasets, each one composed of 1000 trajectories of 1000 steps, for
a total of 106 steps. D4RL provides two variations datasets per: “play” and
“diverse”. The former is generated using hand-picked locations for the goal
and the starting position whereas the latter is generated using a random goal
position and starting position for each trajectory.

The extreme maze was designed following the same principles as the original maps. Its surface
area is approximately 166% larger than antmaze ultra and three times the size of antmaze large.
This new map is a direct extension of the original implementation, and both the implementation and
the datasets are provided. A comparison is available in Figure 3. The two provided datasets are
“play” and “diverse”, both collected using the same methods as for the smaller maps. The maze is
structured as a grid, where trajectories are generated on the grid, and a trained policy follows these
paths to gather data.

19

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

D ADDITIONAL EXPERIMENTS

This sections contains additional experiments assessing the following questions:

1. How does the codebook’s size impact the quantization and the overall performance ?
2. How does the coverage of the dataset (in the state space) broadly impact both the learning

of the VQ-VAE and the policy ?
3. Does QPHIL still performs in diverse state-target initialization?

D.1 HOW DOES THE CODEBOOK’S SIZE IMPACT THE QUANTIZATION AND THE OVERALL
PERFORMANCE ?

Table 2: Impact of the codebook size on performance There seem to be a threshold for perfor-
mance regarding the token use percentage.

Codebook size Number of used tokens Performance of policy
1 1 (100 % used) 0
8 8 (100 % used) 6.0

24 24 (100 % used) 52.0
48 48 (100 % used) 86.1
96 96 (100 % used) 72.0
256 57 (22 % used) 88.0

1024 95 (9 % used) 88.0
2048 146 (7 % used) 82.0

We conducted an experiment to assess the impact of the codebook size on the overall performance on
antmaze-ultra-diverse-v0, shown in Table 2. The first column corresponds to the number of available
codebook vectors of the VQ-VAE quantizer. The second column corresponds to the number of used
codebook vectors. We consider that a codebook vector is used if there exists a state that projects its
encoding on it and that the set of states whose encodings are projected on the same codebook vector
corresponds to a landmark. We observe that after a given threshold on the number of available
codebook vectors, their use percentage decreases, i.e. the quantizer do not benefit from additional
codebooks to achieve a good quantization. The performance of the method appears to saturate after
the threshold of 48 tokens. Regarding the antmaze ultra map, this codebook size corresponds to a
good trade-off ensuring an accurate “signal-to-noise” ratio while stabilizing high-level commands.

D.2 HOW DOES THE COVERAGE OF THE DATASET (IN THE STATE SPACE) BROADLY IMPACT
BOTH THE LEARNING OF THE VQ-VAE AND THE POLICY ?

We see experimentally that areas with very low to null coverage (specifically walls here) share the
same token as one of the nearest in-distribution state, showing a certain amount of generalization of
the tokenization. Also, high coverage areas have a tendency to constrain a higher number of smaller
landmarks than the low coverage parts of the maze, due to the loss having more weight in those,
since there are more samples. Section 5.4 illustrates that this issue is mitigated by the contrastive
loss, leading to tokens of more uniform size. For the policy, as we use an offline reinforcement
learning (IQL), low coverage areas are to be avoided and IQL seeks to sample actions within training
distribution to avoid getting out-of-distribution.

Figure 10: Landmarks formed within the walls.

20

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

D.3 DOES QPHIL STILL PERFORMS IN DIVERSE STATE-TARGET INITIALIZATION?

Previous sections relied on evaluating performance in AntMaze environments by classically sam-
pling initial states s0 and goals g from narrow distributions near two fixed points, requiring the
agent to cross the entire maze. Regarding QPHIL, given such state and goal distributions do not span
across multiple learned landmarks, each sampled navigation scenario leads to the similar landmark-
based conditioning for our low-level policy, which is not convenient to conduct a comprehensive
performance evaluation. Consequently, we designed Random-AntMaze evaluation environments,
which cycles through a diverse set of 50 couples of (s0, g) allowing a more rigorous test of the
generalization capabilities of our model.

Antmaze-Medium

Antmaze-Large

Antmaze-Ultra

Antmaze-Extreme

Figure 11: Initializations comparisions between AntMaze and Random-AntMaze. (left) Plots of
50 sampled starting positions s0 (in blue) and target goals g (in orange) for AntMaze and Random-
Antmaze. We see that Random-AntMaze has a broader s0, g distribution and as such is a better fit
for a comprehensive evaluation of navigation tasks. (left) Plots of 50 sampled planing paths with a
color gradient indicating the order in sequence (yellow to blue). The high policy subgoals exhibit
higher diversity in the Random-AntMaze variations.

21

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Table 3: Performance in long-range Random-AntMaze environments. QPHIL is robust to ran-
dom start and goal initializations, maintaining high success rates.

Method ultra-diverse ultra-play extreme-diverse extreme-play
QPHIL 62 ± 7 62 ± 4 40 ± 13 50 ± 7

QPHIL (random) 63 ± 5 63 ± 8 45 ± 5 42 ± 7

Those result the robustness of QPHIL to the diversity of states and goal initializations.

22

	Introduction
	Related work
	Preliminaries
	Offline Goal Conditioned Reinforcement Learning
	Hierarchical Implicit Q-Learning (HIQL)
	Quantizing Planner for Hierarchial Implicit Learning (QPHIL)

	Quantizing Planner for Hierarchical Implicit Learning
	Overall design
	Quantizer
	Planner
	Landmark policy
	Goal policy

	Experiments
	Experimental setup
	Does QPHIL architecture enable efficient long-term navigation ?
	What is the impact of the contrastive loss used for landmark learning ?
	What is the impact of the different losses when training the quantizer ?

	Conclusion
	Acknowledgements
	Reproducibility Statement
	Details about baselines
	Implementation details
	Training pseudo-code
	Inference pseudo-code
	Hyperparameters

	Environment details
	Additional experiments
	How does the codebook's size impact the quantization and the overall performance ?
	How does the coverage of the dataset (in the state space) broadly impact both the learning of the VQ-VAE and the policy ?
	Does QPHIL still performs in diverse state-target initialization?

