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Abstract. We present RodinHD, which can generate high-fidelity 3D
avatars from a portrait image. Existing methods fail to capture intricate
details such as hairstyles which we tackle in this paper. We first identify
an overlooked problem of catastrophic forgetting that arises when fit-
ting triplanes sequentially on many avatars, caused by the MLP decoder
sharing scheme. To overcome this issue, we raise a novel data schedul-
ing strategy and a weight consolidation regularization term, which im-
proves the decoder’s capability of rendering sharper details. Addition-
ally, we optimize the guiding effect of the portrait image by computing
a finer-grained hierarchical representation that captures rich 2D texture
cues, and injecting them to the 3D diffusion model at multiple layers
via cross-attention. When trained on 46K avatars with a noise sched-
ule optimized for triplanes, the resulting model can generate 3D avatars
with notably better details than previous methods and can generalize to
in-the-wild portrait input. See Fig. 1 for some examples. Project page:
https://rodinhd.github.io/.
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1 Introduction

High-fidelity 3D avatar generation has many applications in fields such as
gaming and metaverse. Recent development of generative diffusion models [19,
21,24,46,49] and implicit neural radiance fields [39,65] has opened up new oppor-
tunities for automatic generation of 3D avatar [20,40,52,65] at scale. However,
current methods struggle to generate fine details, which is a core challenge that
has to be addressed. Otherwise, a “toy-like” avatar is less effective in delivering
practical values.

The work of 3D generative diffusion models [2, 20, 28, 40, 44, 52, 65, 72, 73]
usually follow a two-stage framework. First, they compute a proxy 3D represen-
tation of fixed length such as triplanes or volumes from the original unstructured
meshes or point clouds so that they can be handled by diffusion models. A paired
decoder is jointly learned to render 360◦ images from the representation. Differ-
ent from the dominant NeRF fitting methods, the decoder here is shared among
all avatars to decode novel generated triplanes. Then, they train diffusion models
on the proxy representation to generate diverse avatars. However, they struggle
to generate fine details such as sharp cloth textures and hair strands. To allevi-
ate the problem, Rodin [65] applies a convolution refiner [66] to complement the
missing details for each rendered image. Although the 2D refiner improves the
visual quality in one view, it significantly compromises 3D consistency, which is
not tolerable in many applications.

In this work, we introduce RodinHD, which aims to improving the fidelity
of avatars without any refiners. We begin by empirically showing that fitting
triplanes sequentially on a large number of avatars suffers from catastrophic
forgetting, which can result in under-fitted decoders incapable of generating
intricate details on novel triplanes. This occurs because the triplane of an avatar
is typically trained for many iterations before switching to the next one, in
order to reduce the data transfer costs between CPUs and GPUs. However, this
process gradually causes the shared decoder to forget knowledge learned from
previous avatars, leading to a lack of generalizability. Fig. 2 illustrates this
issue with typical renderings of the resulting decoder. This problem has been
largely overlooked in the literature, hindering the development of high-fidelity
generation based on neural radiance fields.

To address this issue, we propose a novel data scheduling strategy called task
replay, and a weight consolidation regularization term that effectively preserves
the decoder’s capability of rendering sharp details. The idea of task-replay is to
switch avatars more frequently so that each can be seen periodically for multiple
times, preventing the decoder from over-fitting to a single avatar. The weight
consolidation regularization term prevents the critical weights from deviating far
from its consolidated values. As a result, knowledge learned from previous data
can be retained during training. The method effectively alleviates the forgetting
problem and improve the model’s capability to encode intricate details, paving
the way for the subsequent generation step.

We train a cascaded diffusion model on the triplanes for conditional gen-
eration. It consists of a base model, which generates a low-resolution triplane
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Fig. 2: Catastrophic forgetting. As training proceeds, decoder gradually forgets the
knowledge learned on the previous avatars of 1&4 and is overly adapted to avatar 9.

conditioned on a portrait image, and an upsample model, which subsequently
generates a high-resolution triplane. Differing from the previous work [65] which
uses CLIP [48] to compute a global semantic token for the portrait image as con-
ditions, we maximize its guiding effect by computing a finer-grained hierarchical
representation to provide more detailed cues for the 3D diffusion model using
a VAE-based image encoder. The multi-scale features are injected into different
layers of U-Net via cross-attention, which significantly improves the coherence
between the generated avatars and the portrait images. Fig. 3 shows the pro-
cess. Besides, inspired by [8], we also optimize the noise schedule for the triplane
considering its high redundancy in both spatial and channel dimensions.

We train the model on 46K digital avatars [67] of diverse identities, expres-
sions, hairstyles, and clothing. We render high-quality images at the resolution
of 1024 × 1024. The resulting model is capable of generating highly detailed
avatars with clear clothing textures and hairstyles using a simple diffusion model
without extra refinement models. While only validated on avatars, the proposed
techniques are general and can be applied to other 3D generation tasks.

2 Related Work

Early works in 3D generation have primarily focused on generating coarse
3D shapes, which are typically represented as meshes [34, 57], point clouds [1,
32], voxel grids [4, 68], and implicit neural representations [45, 54], using either
GANs [16,29,74] or VAEs [30]. However, it remains unclear whether these meth-
ods can be effectively applied to generate complex 3D avatars with rich details.

3D-aware GANs [5, 6, 10, 12, 15, 43, 51, 60, 70, 71] are able to generate high-
resolution images with the aid of 2D upsampler and patch-based image discrimi-
nator. Nevertheless, they suffer from cross-view consistency [69]. Gram [70] per-
forms upsampling on the surface manifold to promote multiview consistency and
efficiency but it cannot handle large viewpoint changes and complex geometry.
Moreover, they are prone to mode collapse due to training instabilities of GANs.
Although score-distillation-based methods [9, 35, 47, 56, 58, 59] are proposed to
distill the 2D diffusion prior to a 3D representation with score function, they
suffer from the Janus problem which prevents them from generating accurate
geometry because the problem is under-determined.
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Recently, diffusion models [13, 23, 55] have achieved notable success in text-
to-image synthesis, with a few on high-resolution image generation [14, 18, 38,
46,49,50,62]. Inspired by this, many recent works apply diffusion models for 3D
generation [2,7,11,20,28,37,40,44,52,61,65,72]. They first compute a proxy 3D
representation from the raw data, and then train a diffusion model on the proxy
data with either text or image as conditions. However, most of them struggle
to generate fine details such as cloth textures and hair strands, due to the lack
of high-quality proxy data and a well-designed upsample network. Rodin [65]
exploits a convolution refiner [66] to complement the missing details in each
individually rendered image, but this compromises cross-view consistency.

Some recent work [14, 18, 38, 46, 49, 50, 62] have investigated high-resolution
image generation, and obtained some interesting findings about optimal noise
schedules, model architectures and capacity scaling principles. Despite this, we
find the triplanes are essentially different from images, and directly transferring
their findings barely works in our scenario. For instance, Stable Diffusion [49]
uses a VAE to compress an image into a lower-resolution latent for diffusion.
However, we observe that compressing triplanes by training a VAE will lose
many high-frequency details in the renderings. Moreover, the considerations for
designing the noise schedules are also different from those in the images.

3 Method

Our framework comprises two primary steps: fitting and modeling. In the
first step, we fit a high-resolution triplane x0 ∈ R3×Hx×Wx×C for each avatar,
and learn a decoder F , which is shared by all avatars, to render high-fidelity
images from the triplanes. The parameters of Hx and Wx denote the height
and width of triplanes, taking value on 512, and C is the number of channels,
taking value on 32. In the second step, we train a 3D diffusion model G that
can generate triplanes from random noises ϵ ∈ R3×Hx×Wx×C conditioned on a
portrait image Ifront ∈ RHI×WI×3. Fig. 3 shows the overall framework. During
inference, we can render 360◦ high-resolution images

{
Î ∈ RHI×WI×3

}
from the

following process:

G : (ϵ, Ifront)
Denosing−−−−−−→ x0, (1)

F : x0
Rendering−−−−−−→

{
Î
}
. (2)

The primary challenge arises from the high-resolution nature of the triplane,
presenting difficulties in both fitting and modeling. We will elaborate on several
key design considerations in the following.

3.1 Triplane Fitting

The increased resolution of the triplanes introduces a higher computational
load, leading to potential bottlenecks in terms of both time and memory. There-
fore we split this task into two stages to reduce computation cost. In the first
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Fig. 3: Overview of our method.

stage, we jointly train the MLP decoder and the triplanes on a smaller subset
of avatars. In the second stage, we fix the decoder’s weights and fine-tune the
triplane of each avatar independently, which can be performed in parallel. The
first stage of getting an accurate yet generalizable MLP decoder is critical in
order to generate details for all avatars including those generated ones.

The decoder F parameterized by ω learns identity-agnostic priors from a
set of S avatars. Each avatar is represented as N multi-view renderings Ds =
{(Is,n, cs,n)}Nn=1, where Is,n is the RGBA image and cs,n is the correspond-
ing camera configuration. There are two critical issues overlooked in previous
work [65]. 1) During training, batches typically comprise rays sampled from a
single avatar due to limited GPU memory. Consequently, each avatar is treated
as an independent task. To minimize data transfer between CPU and GPU, each
avatar undergoes multiple training iterations until convergence before being re-
placed by the next one. As a result, the MLP may gradually forget the previously
learned knowledge and become overly adapted to the current avatar. This is
known as catastrophic forgetting in continual learning. Fig. 2 visualizes the phe-
nomenon. 2) Additionally, the approach encounters training instabilities when
switching between avatars due to the substantial gaps between them. This usu-
ally results in an under-fitted MLP that is incapable of decoding high-frequency
details, even with the second triplane finetuning stage. Fig. 10 compares the
differences. In the following, we formally describe the task-replay strategy and
weight consolidation regularizer to address the above challenges.
Task replay. The core idea is to switch avatars more frequently, allowing each
avatar to be seen periodically for multiple times and preventing the decoder
from over-fitting to a single avatar. As a result, the decoder is exposed to tri-
planes of a variety of avatars, ensuring its generalization ability. To implement
this strategy, each avatar is trained multiple times, with each time fitting for
a shorter time without requiring convergence by tuning “outer_loop_iteration"
and “inner_loop_iteration” in Algorithm 1, while the naive method trains each
avatar only once, and fits it to convergence before switching to the next avatar.
The task replay strategy proves effective in mitigating the risk of over-fitting to
a single avatar, which may otherwise result in poor generalization performance.
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Algorithm 1 The First Stage of Triplane Fitting

Require: dataset {Ds}Ss=1, triplane parameters {xs}Ss=1, shared MLP F parameters
ω, IWC states {Ωs = 0,ωs,∗}Ss=1, learning rate α, β.

1: repeat
2: Sample from Ds and load triplane xs from disk
3: repeat
4: Sample rays r ∼ Ds

5: L(xs,ω;Ωs,ωs,∗)← LDs + LIWC

6: xs ← xs − α∇xsL(xs,ω;Ωs,ωs,∗)
7: ω ← ω − β∇ωL(xs,ω;Ωs,ωs,∗)
8: until inner_loop_iteration
9: {Ωs,ωs,∗} ←

{
(∇ωLDs)2,ω

}
▷ update state

10: until outer_loop_iteration

Weight consolidation. Learning the triplanes and the decoder also suffers from
instabilities caused by the occasionally occurring large gradients when we switch
between the avatars. To mitigate this issue, we introduce an Identity-aware
Weight Consolidation (IWC) regularizer, a technique that stabilizes learning by
consolidating knowledge and reducing drastic shifts in the learning landscape.
Specifically, it uses the elastic weight consolidation regularizer [31] to prevent the
most important weights of this avatar from deviating far from its consolidated
values during training:

LFitting = LDs +DIWC

= LDs +
λ

2

∑
i

Ωs
i

(
ωi − ωs,∗

i

)2
,

(3)

where LDs is the conventional rendering loss between rendered images and
ground-truth images, ωs,∗

i is the ith MLP weight obtained when training the
avatar in the previous epoch, and Ωs

i is the importance of ith weight, calcu-
lated by the ith diagonal element of the Fisher Information Matrix Ωs. Since
the Fisher Information Matrix is equivalent to the second derivatives of the loss
near a minimum and it can be computed from first-order derivatives, computing
the IWC loss is efficient.

We find that our approach not only improves the details but also reduces
the high-frequency components in the triplanes, making them easier to learn by
diffusion models [33,38]. See Fig. 4 for comparison. We also use TV loss and L2

regularization on the triplanes to promote smoothness as in the prior work [65].

3.2 Triplane Diffusion

We train a cascaded diffusion model to generate high-resolution triplanes. It
consists of a base model, which generates a low-resolution triplane conditioned on
a portrait image Ifront, and an upsample model, which subsequently generates a
high-resolution triplane. During training, we first obtain the destructed triplane



RodinHD 7

0 50 100 150 200 250 300
Amplitude

0.0015
0.0010
0.0005
0.0000
0.0005
0.0010
0.0015
0.0020
0.0025

Pr
ob

ab
ilit

y 
Di

ffe
re

nc
e

Triplane w/ IWC - Triplane w/o IWC

0 50 100 150 200 250 300
Amplitude

0.08

0.06

0.04

0.02

0.00

0.02

Pr
ob

ab
ilit

y 
Di

ffe
re

nc
e

Triplane w/ IWC - Image

Fig. 4: Frequency difference between two sources. Left: Triplanes have more
high-frequency components than images. Right: Triplanes learned with our proposed
IWC have fewer high-frequency components.

xt according to xt := αtx0 + σtϵ, where αt, σt define the noise schedule which
determines the destruction strength of the signal, and t is a continuous number
ranged from 0 to 1. We train the base and upsample diffusion models in two
separate steps. For base diffusion training, we parameterize the diffusion model
ϵ̂θ to predict the noise [23] added to the low-resolution triplane xLR

t :

LLR
simple = Et,xLR

0 ,ϵ

[∥∥ϵ̂θ (αtx
LR
0 + σtϵ, t, Ifront

)
− ϵ

∥∥2
2

]
. (4)

Despite the LLR
simple, we also use the variational lower bound to optimize the

negative log-likelihood of estimated distribution by incorporating LLR
vlb follow-

ing [42] for higher generation quality. Our upsample diffusion model is learned
to enhance the high-fidelity details of the low-resolution triplane, which is con-
ditioned on both xLR

0 and Ifront. We directly parameterize the model to predict
the noiseless input xHR

0 :

LHR
simple = Et,xHR

0 ,ϵ

[∥∥x̂θ

(
αtx

HR
0 + σtϵ, t, Ifront,x

LR
0

)
− xHR

0

∥∥2
2

]
. (5)

To ensure the rendered images of our generated triplanes have compelling
visual quality, we also adopt image-level supervision when training the upsample
model inspired by previous works [65]. Specifically, we penalize the discrepancy
between the rendered image patch Îpatch from predicted triplane x̂θ and the
ground truth image patch Ipatch:

LHR
Image = LPixel + LPerc

= Et,Îpatch
(
∑
l

∥∥∥Ψ l(Îpatch)− Ψ l(Ipatch)
∥∥∥2
2
)

+ Et,Îpatch
(
∥∥∥Îpatch − Ipatch

∥∥∥2
2
),

(6)

where Ψ l denotes the multi-scale feature extracted using a pre-trained VGG [53].
Ensuring the diffusion model scales well with the increased resolution is crucial.
As high-resolution triplanes involve a large number of parameters, processing
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8 channels 32 channels

Fig. 5: Rendered images from triplanes with 8 and 32 channels, respectively. The
triplanes are destructed with the same noise level (logSNR(t) = 0.57). The 32-channel
triplane has larger redundancy so it is less destructed.

such vast amounts of information efficiently can be a substantial hurdle. Next,
we introduce improvements to our diffusion model.
Multi-scale image feature conditioning. It is difficult to hallucinate detailed
3D avatars from scratch. So, we propose to supply ample details from the portrait
image to alleviate the difficulty. Previous works such as [65] compute a global
semantic token using the pre-trained CLIP image encoder [48], which results in
a substantial loss of detailed information.

To fully utilize the information of the portrait, we compute a multi-scale
feature representation using a pre-trained Variational Autoencoder [46]. Since
the VAE is trained to accurately reconstruct the input images, the low-level
visual details are well preserved in the latent features. Formally, we denote the
VAE encoder as E, and the frontal portrait image Ifront ∈ RH×W×3. We compute
the conditional signals for our diffusion model by:

{y1,y2,y3} = E(Ifront), (7)

where y1 ∈ RH
2 ×W

2 ×C ,y2 ∈ RH
4 ×W

4 ×2C , and y3 ∈ RH
8 ×W

8 ×4C denote the multi-
scale spatial features, and C is the based channel dimension.

Since the 2D portrait is not aligned with the 3D triplane, directly harmonizing
the conditional signals with diffusion U-Net features via concatenation [24,41] or
addition [75] is problematic. Therefore, we elect to perform cross-attention [63].
In this way, the network is learned to automatically discover the spatial corre-
spondence between triplanes and 2D images.

Formally, let xi be the feature maps of the i-th attention resolution in U-Net,
we inject yi by

{yk
i }Kk=1 = PatchPartition(yi),

x′
i = CrossAttn(xi; {yk

i }Kk=1),
(8)

where K and x′
i are the number of patches and the output features, respectively.

For the base model, the conditions are injected into both encoder and decoder
layers that have the same resolutions. For the upsample model, the conditions
are only injected into the middle latent features to reduce computation costs.
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Fig. 6: Optimized noise schedule. LogSNR comparison between the default and
our optimized noise schedules for the base (left) and upsample (right) networks.

Optimized noise schedule. In high-resolution image generation, some work [8,
17, 25, 36] find that using a stronger noise is critical to retain the learning diffi-
culty for images with higher resolutions. We similarly study the optimal noise
schedule for triplanes in 3D generation. Compared to images, triplanes have large
spatial resolutions and channel numbers, and even long-range dependencies in-
troduced by 3D correspondence. All these factors increase the redundancy in the
representation. Fig. 5 shows an example. We fit two triplanes with the same
spatial resolution but different channel dimensions (8 vs. 32), and add the same
level of noises (SNR(t) = α2

t /σ
2
t ) to them, respectively. However, we can see that

the rendered images are destructed differently. The triplane with fewer channels
suffers from more disruption compared with the one with larger channels.

Considering the larger redundancy in triplanes, we propose to apply a stronger
noise to fully destruct triplanes to prevent the model from under-training. To
be more specific, we utilize the adjusted cosine noise schedule [8,42] in our base
diffusion and a much stronger sigmoid noise schedule [8,27] in the upsample dif-
fusion stage. The adjusted noise schedules are shown in Fig. 6. They are much
stronger than the default linear noise scheduling [23] designed for low-resolution
images e.g . 32× 32, 64× 64.

4 Experiments

4.1 Dataset and Metrics

We conduct experiments on 46K avatars created from Blender [67]. For
each avatar, we uniformly render 300 multi-view images at the resolution of
1024× 1024. We evaluate our model’s conditional and unconditional generation
capability, respectively. For image-conditioned generation, we compute numer-
ical results using the common metrics of FID [22], LPIPS [76], and Structural
Similarity Index Measure (SSIM) between 5K rendered multi-view images from
generated avatars with ground-truth images. For unconditional generation, we
report FID of 5K rendered images from randomly sampled avatars. We also mea-
sure cross-view consistency by fitting a NeuS model [64] from the multi-view
renderings of the generated avatars.
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Reference Rodin [65] Our RodinHD
Fig. 7: Avatars generated by different methods.

Table 1: Quantitative results of conditional avatar generation.

Models FID↓ LPIPS↓ SSIM↑

Rodin [65] 33.20 0.323 0.758
Ours 26.49 0.299 0.765

4.2 Implementation Details

The triplane resolution is 512 × 512 and its channel number is 32. We ran-
domly select 64 avatars for jointly training the triplanes and the NeRF decoder
for two days on 8 Tesla V100 GPUs, with task replay and IWC regularization
applied. Then, we fit the triplanes for all avatars independently, with each taking
about 15 minutes. We adopt the U-Net architecture [13] as diffusion backbone.
For the configuration of conditional feature injection, please refer to supplemen-
tary material. We utilize conditional augmentation [24, 65] when training the
upsample diffusion to reduce the domain gap between training and inference.
Both our base and upsample models are trained on 32 Tesla V100 (32G) GPUs,
with batch sizes 96 and 32 respectively. We randomly drop the conditional fea-
tures with 20% probability, which enables us to perform classifier-free guidance
and unconditional generation.

4.3 Main Results

Conditional generation. We compare our approach with Rodin [65]. We re-
port the results of Rodin without 2D refinement for fair comparison. As shown
in Fig. 7, our model captures the detailed appearance and vivid expression of the
given portrait, benefiting from high-quality triplane fitting and strong guidance
of the proposed multi-scale image feature conditioning. On the contrary, Rodin
fails to synthesize details of avatars, e.g ., hairstyles and closed eyes. Moreover,
our model enables us to directly render compelling images in high resolution
without any 2D refinement, demonstrating the strong capacity of the proposed
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EG3D [5] Rodin [65] Our RodinHD

Fig. 8: Qualitative results of unconditional avatar generation.

Table 2: Quantitative results of unconditional avatar generation. The subscript ∗

indicates that 2D refinement is applied to the rendered images.

Pi-GAN GIRAFFE EG3D∗ Rodin∗ Rodin Ours

FID ↓ 78.3 64.6 40.5 30.29 45.70 32.62

model. Furthermore, we achieve the best results across all metrics as shown
in Tab. 1, demonstrating the superiority of our model.
Unconditional generation. We compare our method with the state-of-the-
art methods, including both 3D-aware GANs [5, 6, 43] and 3D-diffusion-based
Rodin [65]. We present the results of Rodin before and after the 2D refiner (de-
noted as Rodin∗), respectively. Tab. 2 shows the results. Our approach achieves
significantly better results than the methods except Rodin∗ which uses a 2D re-
finer. However, as we will discuss in the following, our method achieves notably
better 3D consistency. We also provide visual comparison in Fig. 8. While prior
arts tend to generate blur rendering, our model is able to provide complex and
diverse avatars with rich details, e.g ., hair and clothing.
3D consistency. We evaluate the 3D consistency of the generated results by
visualizing the spatiotemporal textures following [70]. We include Rodin∗, ours
and ground-truth triplane renderings for comparison in Fig. 9. As the camera
moving smoothly, the texture of the fixed horizontal line is expected to be smooth
and nature as GT triplane renderings. However, the spatiotemporal textures of
Rodin∗ suffer from obvious flickering, which suggests inconsistency across views
(see video in supplementary for more intuitive comparison). In contrast, our
model produces smooth and natural results as GT, demonstrating the strong
consistency of the proposed model. Moreover, the renderings of Rodin∗ fail to
maintain the skin tone of the input while our model provides more faithful
results. We also quantitatively measure the 3D consistency by training a multi-
view reconstruction method NeuS [64] on 300 rendering images of Rodin∗ and
ours respectively. The results of our model achieve significantly better metrics
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Table 3: 3D consistency measured by the fitting quality of NeuS [64].

Models PSNR↑ LPIPS↓ SSIM↑

Rodin∗ [65] 31.73 0.051 0.973
Ours 35.46 0.041 0.975

GT Rodin∗ [65] Our RodinHD

Fig. 9: Visual comparison of 3D consistency akin to the Epipolar Line Images [3]. We
visualize the stacked texture of a fixed line as the camera smoothly rotates horizontally.
Our model yields smooth and natural texture as GT, whereas a clear flickering pattern
is shown in Rodin’s results, indicating the 3D inconsistency using 2D refinement.

thanks to the 3D consistency, whereas Rodin∗ obtains worse results since the 2D
refiner breaks the 3D consistency.

4.4 Ablation Study

We first study the factors that affect triplane fitting. As shown in Tab. 4(a),
we present results for five baselines. Rodin (256) is the method proposed in [65].
In Rodin (512), we naively increase the triplane resolution to 512. We can see
that directly increasing the triplane resolution provides very marginal gains due
to the forgetting problem. With our proposed bunch of techniques, scaling the
resolution can notably increase PSNR to 31.54.

Fig. 10 visualizes the differences of the baselines. Rodin (256) cannot obtain a
sharp beard due to the low-resolution triplanes. Rodin (512) obtains sharp details
but there are many noises caused by the under-fitted decoder. In contrast, our
method with task replay and consolidation weight regularization is able to get
clean and sharp details. Also, see the areas around the silver tie for differences.

We further evaluate the factors that affect the generation results of our dif-
fusion model in Tab. 4(b). Starting from Rodin [65] which trains diffusion on
256 × 256 × 32 triplanes, we only scale the triplane to 512 × 512 × 32 with
other factors unchanged. We can see that the results even become worse. We
think this is because the original noises are not suitable for larger triplanes.
Using a stronger noise schedule obtains more reasonable results. Replacing the
original CLIP image encoder with the VAE encoder (single-scale) also improves
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Table 4: Ablation study of the proposed components.

Training strategy PSNR↑ LPIPS↓ SSIM↑

A. Rodin (256) 30.31 0.131 0.862
B. Rodin (512) 30.56 0.129 0.863
C. + Task replay 30.93 0.106 0.890
D. + Weight decay 31.00 0.094 0.909
E. + Consolidation 31.45 0.086 0.911

(a)

Model configuration FID↓ LPIPS↓ SSIM↑

A. Rodin (256) 33.20 0.323 0.758
B. + Naively scale to 512 35.84 0.324 0.740
C. + Strong noise schedule 27.74 0.318 0.745
D. + Single-scale cond. 27.13 0.301 0.763
E. + Multi-scale cond. 26.49 0.299 0.765

(b)

Tab. 4(a) A. Tab. 4(a) B. Tab. 4(a) C. Tab. 4(a) E.

Fig. 10: Qualitative ablation for the representation fitting.

Reference Tab. 4(b) C. Tab. 4(b) D. Tab. 4(b) E.

Fig. 11: Qualitative ablation for 3D diffusion model. Multi-scale feature conditioning
results in significantly faithful and detailed generation results.

the results. Our method with multi-scale features achieves the best results. We
also provide visual comparison as shown in Fig. 11, the introduced multi-scale
features of the input portrait provide significantly more detailed texture cues,
enabling high-fidelity avatar creation.

4.5 Applications

Avatar creation from in-the-wild portrait. Despite training on the synthetic
dataset [67], our model is robust to create 3D avatars conditioned on single in-
the-wild portraits. The results in Fig. 12 validate our method’s capability for
generalization to real-world images, which outperforms Rodin [65] in retaining
both identity and details.
Text-conditioned avatar creation. To enable high-quality avatar creation
from text, we first convert the text prompt to reference portrait leveraging strong
2D diffusion network [49], thereafter generate a high-fidelity avatar with the



14 B. Zhang and Y. Cheng et al.

Reference Rodin Our RodinHD

Fig. 12: Avatars generated conditioned on single in-the-wild portraits.

“Blender Synthetic Avatar, girl, blue eyes,
brown afro hair, curly hair, green sweater”

“Blender Synthetic Avatar, blonde hair, boy,
brown eyes, medium and facial hair,

red and orange shirt, mustache”

Fig. 13: RodinHD can create high-fidelity avatars based on the reference portraits
(dashed boxes) generated by finetuned 2D text-to-image diffusion models.

reference portrait. To be more specific, we use 40 selected frontal images and
corresponding text prompts in our synthetic dataset to perform LoRA-based [26]
finetuning for Stable Diffusion. We employ the term “Blender Synthetic Avata”
as our trigger words within prompts to generate frontally aligned image inputs,
which is a widely adopted technique for steering the style of images produced
by fine-tuned SD. We provide the samples of text-to-avatar creation in Fig. 13.

5 Conclusion

We present RodinHD for high-fidelity 3D avatar generation by improving
both the data fitting and the diffusion modeling. To maintain the compelling
visual details of avatars, we propose a task-relay strategy and identity-aware
weight consolidation regularizer for high-quality and robust data fitting in large-
scale. Furthermore, to model the distribution of highly detailed avatars, we in-
troduce a multi-scale visual feature conditioning mechanism in our cascaded dif-
fusion model, which provides fine-grind guidance to diffusion generation. In ad-
dition, we study previous 2D optimized noise scheduling in both high-resolution
and high-dimensional 3D diffusion training. Our optimized noise schedules effec-
tively enhance the details of the generated avatars. Extensive experiments show
the proposed framework can generate high-fidelity 3D avatars with rich details,
which is also promising to apply our model to general 3D scene modeling.
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