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Abstract

We describe a new design-based framework for drawing causal inference in ran-
domized experiments. Estimands in the framework are defined as arbitrary linear
functionals of the potential outcome functions, which are posited to live in an
experimenter-specified function class. This makes the framework expressive, al-
lowing experimenters to formulate and investigate a wide range of causal questions.
We describe a class of estimators for estimands defined using the framework and
investigate their properties. The construction of the estimators is based on insights
from the Riesz representation theorem. We provide necessary and sufficient condi-
tions for unbiasedness and consistency. Finally, we provide conditions under which
the estimators are asymptotically normal, and describe a conservative variance
estimator to facilitate inference about the estimands.

1 Introduction

Randomized experiments have been widely adopted in a diverse set of fields, including clinical
trials, policy evaluation, and social science research. However, the use of experiments is limited,
partly because conventional experimental methodologies cannot accommodate the range of settings
empirical researchers are interested in. An important such limitation is the assumption of no
interference, stating that a unit’s outcome or behavior is unaffected by the treatment assigned to other
units. Another limitation is the widespread focus on binary treatments, as opposed to, for example,
continuous or set-valued treatments.

A growing body of work seeks to address these limitations, but both conventional and recently
developed frameworks lack sufficient expressiveness to formulate the range of questions empirical
researchers are interested in, and the frameworks generally still require strong assumptions. Further-
more, most work in this literature is justified by sampling from a super-population rather than using a
design-based justification in which the randomness under consideration stems from the experiment
itself. This restricts the applicability and interpretability of prior frameworks and methods.
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In this paper, we describe a new design-based experimental framework for causal estimation under
interference to address these limitations 1. The purpose of the framework is to be sufficiently
expressive to allow experimenters to define and investigate a wide range of causal questions involving
continuous or discrete treatments under rich and complex interference structures. At the same time,
the framework is constructed to be sufficiently tractable to admit precise estimation and inference
of the estimands defined with it. The framework unifies and generalizes all previously developed
design-based frameworks that we are aware of. There are three main contributions of this paper.

1. We describe a new design-based causal inference framework, in which causal effects are
defined using linear functionals on potential outcome functions. This gives empirical
researchers an expressive tool to formulate new types of estimands that are relevant for
policy and substantive theory.

2. We describe a new treatment effect estimator, which we call the Riesz estimator. We provide
a large sample analysis of the estimator, including conditions for consistency and asymptotic
normality.

3. We describe a new conservative variance estimator for the Riesz estimator, and provide
conditions under which the variance estimator is consistent. This facilitates the construction
of asymptotically valid confidence intervals.

The statistical methodology developed in this paper relies on insights from functional analysis.
We believe these insights shed light on the underlying principles that facilitate inference of causal
effects more generally, both with and without interference, and we believe these insights will be of
independent interest to many researchers working in causal inference. Similar insights have recently
been used in the semi-parametric observational causal inference literature. While the application
of these insights in this paper is different from the application in the semi-parametric literature, we
hope that this work will serve as starting point for building bridges between the design-based and
semi-parametric perspectives on causal inference.

This is a short version of a longer paper, which contains more technical rigor as well as motivating
examples. We refer the interested reader to our longer preprint, which is presently uncited to maintain
anonymity. Because the framework and methods we describe in this paper generalize and unify
approaches previously described in the causal inference literature, we find it advantageous to review
and highlight these connections throughout the paper, rather than describing the connections to prior
work in a dedicated section.

2 Illustration: Cash Transfer Programs

The purpose of this section is to illustrate policy-relevant questions that cannot be investigated using
existing design-based frameworks and methods, but which can be investigated using the framework
described in this paper. A type of policy that has received attention in the social sciences in general,
and development economics in particular, is conditional or unconditional cash transfer programs,
the latter of which is sometimes referred to as universal basic income (UBI) programs. An example
is the study by [HS16], who investigate how different amounts of cash in an unconditional cash
transfer program targeting poor households in Kenya affected consumption and well-being. Here, the
experimental units are people who each receive a continuous individual treatment Zi ∈ [0, 1], which
the the cash transfer where Zi = 0 denotes no transfer and Zi = 1 denotes the maximum possible
transfer.

The typical estimand in a cash transfer experiment is a contrast between two levels of the transfer,
resulting in a version of the all-or-nothing effect. A possible alternative estimand is the effect of
a marginal increase of the transfer, which is policy relevant because it is informative of whether
changes to existing programs would make sense. We can use the derivative of the potential outcome
function to capture such a marginal effect. For example, the overall effect of a marginal increase the

1Here, the term “design-based” refers to the setting where randomization of treatment assignment is the sole
basis of inference. This is in contrast to “sampling-based” inference, where experimental units are assumed to
be drawn i.i.d. from a larger population, and inference is valid only when this strong assumption holds.
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transfer is captured by
1

n

n∑
i=1

n∑
j=1

∂yi
∂zj

(s),

where s ∈ [0, 1]n is the current transfer level and yi : [0, 1]n → R is a unit’s potential outcome
function which maps all treatment assignments to the observed outcome. Note that this marginal
effect takes into account all spillover effects of the increase; we could imagine that increasing the
transfer could have a positive effect for the person who receives the transfer but be detrimental to
other people because of crowding-out or inflationary effects. As highlighted by [EHM+22], among
others, general equilibrium effects, which is a type of interference, is an important consideration
when evaluating cash transfer programs.

3 The Framework

There are n units in the experiment, indexed by integers i ∈ [n], which may be for example
participants in the experiment.

Treatments Let Z denote the set of all possible treatments, upon which we place no restrictions.
The experimenter selects a random treatment Z from Z to apply in the experiment. For conventional
experiments where each unit receives an individual treatment, the set of treatments will have a product
structure, i.e. Z is [0, 1]n or {0, 1}n. In these cases, the treatment is considered to be the collection of
all individual treatments, i.e. Z = (Z1, . . . Zn). We refer to the distribution of Z as the experimental
design, which we take to be known to the experimenter. The only randomness under consideration in
this paper is that which is induced by the experimental design.

Outcome Model Spaces Each unit i ∈ [n] has a potential outcome function yi : Z → R that
maps each treatment to a potential observation. While this potential outcome function is unknown to
experimenters, they will use their domain knowledge to impose structure on the potential outcome
functions, which facilitates estimation and inference. Formally, we suppose the experimenter provides
a model spaceMi which is a subspace of real-valued measurable functions on Z with bounded
variation under the design. The model spaces are flexible constructions which shall encode the
interference structure. In this paper, we focus on finite-dimensional model spaces for technical
brevity, though infinite-dimensional model spaces are addressed in the full preprint version of the
paper. Throughout the paper, we implicitly assume that the model space is correctly specified in the
sense that yi ∈Mi for all units i ∈ [n].

Effect Functionals Each individual effect is defined by a linear functional evaluated at the cor-
responding unit’s potential outcome function. Formally, for each unit i ∈ [n], the experimenter
specifies a linear effect functional θi :Mi → R and the individual effect is defined as τi = θi(yi).
The use of effect functionals is considerably more expressive than conventional approaches, and
it accommodates a wide range of types of treatments. Our estimand of interest is the aggregated
treatment effect, which is the average of the individual effects:

τ =
1

n

n∑
i=1

τi =
1

n

n∑
i=1

θi(yi) .

Depending on the choice of effect functionals and model spaces, the aggregated treatment effect can
express conventionally studied global treatment effects, spillover effects, and direct effects as well as
new types of effects including marginal effects of continuous treatment.

3.1 Examples of the Framework

The classical no-interference setting with binary treatments, often referred to as SUTVA [Rub80,
Ney23], is recovered when Z = {0, 1}n and the model spaceMi is the span of indicators 1[Zi = 1]
and 1[Zi = 0]. The ATE is expressed by the effect functional θi(yi) = yi(1)− yi(0).

The exposure mapping framework [AS17] is one of most commonly used frameworks for experiments
under interference, where outcomes are considered to be functions of low-dimensional representation
of the treatment variable. Formally, let ∆ be a finite set of exposure and for each unit i ∈ [n],
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let di : Z → ∆ be the exposure mapping of unit i. Expressed in our notation, the model space
Mi contains all functions of the form yi(z) =

∑
e∈∆ αi,e1[di(z) = e] for real coefficients αi,e.

Commonly considered effects such as global treatment effect, indirect effect, and direct effect can
be written using effect functionals θi(yi) = yi(za,i)− yi(zb,i) where za,i, zb,i are two pre-specified
unit-specific treatments whose outcomes we wish to contrast.

As an alternative to the exposure mapping approach, consider a design-based version of the linear-in-
means model, which is used extensively in applied work [see, e.g., CJS15, Dup14, OT12]. Method-
ological investigations of the model are provided by [Chi19, Leu20, HLW22], among others. Here,
the outcome functions are assumed to take the following form:

yi(z) = αi,0 + αi,1zi + αi,2
∑
j∼i

zj ,

where i ∼ j if units i and j are neighbors in a graph. Typically, the literature has focused on binary
treatments Z = {0, 1}n, but within our framework there is no conceptual difficulty in extending this
to continuous treatments Z = [0, 1]n. While the contrastive effects discussed above are most often
used in this setting, our framework of effect functionals allows for marginal spill-over effects based
on derivatives (Section 2) as well as integral-based functions which capture types of accumulation.

In the full pre-print version of the paper, we highlight how the framework can formulate investigations
into dose-response, treatment timing, and spatial interference experiments [ASW21, PILL20, Pol20].

4 The Riesz Estimator

In this section, we present the Riesz estimator, which is a general method for estimating an aggregated
treatment effect, as defined in Section 3. All proofs in this section appear in Sections D and A.

We begin by presenting a positivity assumption which is both necessary and sufficient for unbiased
estimation of the aggregated treatment effect. We say that two potential outcome functions u, v in a
model spaceMi are observationally equivalent if u(Z) = u(Z) almost surely under the experimental
design.
Assumption 1 (Positivity). For each unit i ∈ [n], all pairs of observationally equivalent functions
u, v ∈Mi produce the same effect: θi(u) = θi(v).
Proposition 4.1. There exists an unbiased estimator of the aggregated treatment effect if and only if
Assumption 1 holds.

Assumption 1 and Proposition 4.1 formalize the way in which the experimental design must provide
the experimenter sufficient information of the potential outcome functions in order to estimate the
aggregated effect. Assumption 1 may be seen as a direct generalization of the more familiar positivity
assumption in the standard SUTVA no-interference setting: Pr(Zi = 1),Pr(Zi = 0) > 0.

We are now ready to define the Riesz estimator. We begin by formally defining the Riesz representors
in this context. Additionally, we show that the Riesz representors exist when positivity holds.
Definition 4.1 (Riesz Representor). Given an effect functional θi :Mi → R, a function ψi ∈Mi is
a Riesz representor if θi(u) = E[u(Z)ψi(Z)] for all u ∈Mi.
Proposition 4.2. Under Assumption 1, a Riesz representor ψi exists for each effect functional θi.

The usefulness of this representation is that it essentially gives us a direct, albeit stochastic, observation
of the effect functional. A priori, it is unclear how to relate the observed outcome yi(Z) to the
individual effect θi(yi), which is the reason for the conventional ad hoc approach to estimation in
interference settings. The usefulness of the Riesz representor is that it tells us exactly how to relate
the observed outcome yi(Z) to to the effect functional θi(yi).

By the definition of the Riesz representors, we may view the product τ̂i = ψi(Z)yi(Z) as an unbiased
estimator for the individual treatment effect. Each of these individual-level estimators will be terribly
imprecise, but they are unbiased by construction, so precision may be achieved by averaging. This
motivates the Riesz estimator τ̂ , which is defined as

τ̂ =
1

n

n∑
i=1

τ̂i =
1

n

n∑
i=1

ψi(Z)yi(Z) .
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In some ways, the Riesz estimator is similar to other design-based, linear estimators based on re-
weighting; indeed, in SUTVA and exposure mapping frameworks, the Riesz estimator recovers the
Horvitz–Thompson estimator. However, whereas the Horvitz–Thompson estimator generally requires
a small number of discrete treatments, the Riesz estimator does not have any such limitations. The
following theorem shows that the Riesz estimator is unbiased under the positivity assumption.

Theorem 4.1 (Unbiasedness). Under Assumption 1, the Riesz estimator is unbiased: E[τ̂ ] = τ .

When the model spaces are finite dimensional, the Riesz representors may be explicitly constructed
and evaluated. Formally, we require that eachMi is represented by an explicit set of basis functions
gi,1, . . . , gi,d on which the experimenter can compute cross-moments E[gi,`(Z)gi,k(Z)] and evaluate
the effect functional θi(gi,`). In this case, a Gram–Schmidt type procedure may be used to construct
the Riesz representor, and the details appear in Section D of the appendix.

5 Large Sample Analysis

In this section, we provide a large sample analysis of the Riesz estimator. In particular, we provide
sufficient conditions under which the estimator is consistent and asymptotically normal. In the
longer preprint version of this paper, we provide necessary and sufficient conditions for consistency
by investigating the operator norm of a variance characterizing linear operator; however, this has
been removed from this short version for space considerations. All proofs in this section appear in
Sections B and C.

We consider an asymptotic regime that consists of a sequence of experiments with a growing number
of units. Each experiment in the sequence is associated with its own experimental design, set of model
spaces, linear functionals, and so on. Therefore, nearly all variables and parameters are implicitly
subscripted by n to denote which experiment in the sequence they are associated with, but we omit
this subscript for notational clarity. We investigate the asymptotic properties of the Riesz estimator
subject to conditions on the sequence. This asymptotic regime, or minor variations of it, is commonly
used in the design-based causal inference literature [see, e.g., Fre08, Lin13, SAH21, Leu22a].

We measure regularity of the collection of potential outcome functions and the Riesz representors
using moment conditions. Let Mn = M1 × . . . ×Mn be the product of the individual model
spaces. An element u ∈ Mn is the vector-valued function u(Z) = (u1(Z) . . . un(Z)). We write
y and ψ for the collected potential outcome function and the collected Riesz representor function,
respectively. An example of a norm that has been widely used in the design-based causal inference,
albeit implicitly so, is what we refer to as the max-p norm:

‖u‖max,p = max
i∈[n]

E
[
|ui(Z)|p

]1/p
.

For example, it is common to assume that the fourth moment of the observed outcome exists for all
units, and this is equivalent to assuming that the max-p norm of potential outcome functions y is
asymptotically bounded for p = 4.

We measure the amount of dependence in the randomized experiment via the use of dependency
neighborhoods. Two collections of functions U and V are said to be independent with respect to the
experimental design if for every positive integer k and any functions u1, . . . uk ∈ U and v1 . . . vk ∈ V ,
we have that the collection of random variables (u1(Z), . . . , uk(Z)) are jointly independent from the
collection of random variables (v1(Z), . . . , vk(Z)) under the experimental design.

Definition 5.1. The model dependency neighborhood for unit i is the smallest Di ⊂ [n] such
thatMi and

⋃
j∈[n]\Di

Mj are independent with respect to the experimental design. Let davg =

n−1
∑n
i=1|Di| denote the average size of the dependence neighborhoods, and let dmax = maxi|Di|

denote the size of the largest dependence neighborhood.

Intuitively, functions associated with unit i will be independent of all functions associated with
unit j if j /∈ Di. The size of a dependency neighborhoods is one way to characterize the amount
of dependence for a given unit, and the average davg and maximum dmax characterize the overall
amount of dependence in the experiment.
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5.1 Consistency

Proposition 5.1. Let p and q be values satisfying 1/p + 1/q = 1/2. The variance of the Riesz
estimator is upper bounded by√

nVar(τ̂) ≤ d1/2
avg‖y‖max,p‖ψ‖max,q .

The magnitude of ψ captures the degree to which the outcomes are weighted in the Riesz estimator,
and it can be interpreted as how difficult it is to estimate the treatment effect. If ‖ψ‖max,q is large,
the outcomes are heavily weighted and the effect is difficult to estimate. Positivity, as defined in
Assumption 1, implies that ‖ψ‖max,q <∞ for any fixed n, but it is possible that ‖ψ‖max,q →∞ as n
grows even when positivity holds. Experimenters should try to ensure that ‖ψ‖max,q is asymptotically
bounded, which essentially is a slight strengthing of the positivity assumption. In a setting with
discrete treatments, such as when using exposure mappings, this corresponds to ensuring that the
assignment probabilities of the relevant exposures are bounded away from zero by a constant. That is,
if di(z) = a is an exposure of interest for unit i, then positivity stipulates that Pr(di(Z) = a) > 0,
while ‖ψ‖max,q = O(1) stipulates that Pr(di(Z) = a) ≥ c for some constant c > 0.

The following corollary of Proposition 5.1 shows that consistency is ensured for the Riesz estimator
provided that the potential outcomes and Riesz representors are well-behaved, and that there is not
too much dependence between model spaces.
Corollary 5.1. Under Assumption 1 and supposing regularity conditions ‖y‖max,p = O(1) and
‖ψ‖max,q = O(1) for 1/p+ 1/q = 1/2, and limited average model dependence, davg = o(n), the
Riesz estimator is consistent in mean square. If the condition on the average model dependence is
strengthened to davg = O(1), the Riesz estimator is root-n consistent.

5.2 Asymptotic Normality

The conditions used to ensure asymptotic normality are stronger than the conditions for consistency.
We also impose an additional regularity condition to ensure that the limiting distribution of the Riesz
estimator is not degenerate, which is implemented as an assumption that the convergence rate is not
faster than root-n, which is the parametric rate. In principle, there are sequence in our asymptotic
regime for which the rate is faster than this, but they are knife-edge situations where, for example, the
dependence structure in the design perfectly aligns with the potential outcomes. These situations are
not practically relevant, so essentially nothing is lost by imposing this assumption. Versions of this
assumption is common in the design-based causal inference literature, such as Condition 6 in [AS17]
and Assumption 5 in [Leu22b].

Assumption 2 (Non-degeneracy).
√
nVar(τ̂) ≥ c for some c > 0 and all n.

Proposition 5.2. Under Assumptions 1 and 2, regularity conditions ‖y‖max,p and ‖ψ‖max,q are
asymptotically bounded O(1) for some 1/p+ 1/q = 1/4, and limited maximum model dependence,
dmax = o(n1/4), the limiting distribution of the Riesz estimator is normal:

τ̂ − τ√
Var(τ̂)

d−→ N (0, 1).

6 Valid Inference and Variance Estimation

The asymptotic results in Section 5 suggest that the normal-based confidence intervals will be
asymptotically valid for the aggregated treatment effect under certain regularity conditions. The one
remaining step is to construct a variance estimator which is consistent in large samples. Full details
of the variance estimator appear in the larger preprint version of the paper, though we sketch the main
ideas here.

First, let us decompose the variance of the Riesz estimator into individual covariance terms:

Var(τ̂) = Var
( 1

n

n∑
i=1

yi(Z)ψi(Z)
)

=
1

n2

n∑
i=1

n∑
j=1

Cov(yi(Z)ψi(Z), yj(Z)ψj(Z)) .

This decomposition demonstrates that the variance of the Riesz estimator is the average of bilinear
functionals on the product of model spaces. This mirrors the structure of the aggregated treatment
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effect, which was the average of linear functionals on the model spaces. Thus, our approach to variance
estimation is again based on Riesz representation. There are however, two main differences that must
be addressed: first, the bilinear functionals must be identified with linear functionals on the tensor
productMi ×Mj in order for us to apply a Riesz representation theorem. Second, positivity will
typically not hold for each of these covariance functionals, in which case we must apply upper bounds
to construct a variance estimator which is conservative in expectation. This approach is following
the convention in the design-based causal inference literature [see, e.g., AGL14, Fog18, IM21].
The bound we use is inspired by the so-called Aronow–Samii bound described by [AS13, AS17]
for discrete treatments, and our contribution is to generalize the bound to general tensor products
of model spaces. In the full preprint version of the paper, we show that a conservative variance
estimator constructed in this way is (conservatively) consistent, which facilitates the construction of
asymptotically valid confidence intervals.

7 Conclusion

In this paper, we have presented a new design-based causal inference framework which allows
empirical researchers to formulate and investigate an exciting range of causal questions. In addition,
we have provide a general methodology for point estimation and inference (confidence intervals)
based on Riesz representation. Although we have demonstrated several new types of causal questions
which the framework addresses, we are most excited about the formulations which are yet to come.
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A Positivity and Unbiased Estimation

We begin by proving that positivity characterizes whether unbiased estimation is possible.
Proposition 4.1. There exists an unbiased estimator of the aggregated treatment effect if and only if
Assumption 1 holds.

Proof. When positivity holds, the Riesz estimator is an unbiased estimator of the aggregated treatment
effect.

Suppose that positivity does not hold, so that for some unit i ∈ [n], there exist two observationally
equivalent functions u ∼ v which have different individual effects θi(u) 6= θi(v). An estimator is a
function of observed outcomes and so any estimator must produce the same estimate whether yi = u
or yi = v. However, under these two possible potential outcome functions, the aggregated treatment
effect is different. Thus, no unbiased estimator exists.

Next, we show that the Riesz estimator is unbiased under the positivity assumption.
Theorem 4.1. Under Assumption 1, the Riesz estimator is unbiased: E[τ̂ ] = τ .

Proof. Under positivity, individual Riesz representors ψ1, . . . , ψn for the effect functionals θ1, . . . θn
exist. Thus, using linearity of expectation and the definition of the Riesz representors, we can compute
the expectation of the Riesz estimator as

E[τ̂ ] = E
[ 1

n

n∑
i=1

yi(Z)ψi(Z)
]

=
1

n

n∑
i=1

E[yi(Z)ψi(Z)] =
1

n

n∑
i=1

θi(yi) = τ .

B Consistency of the Riesz Estimator

In this section, we prove the sufficient conditions for consistency of the Riesz estimator, which appear
in Section 5.1. We begin by deriving an upper bound on the variance of an individual Riesz estimator
in terms of the moments of the potential outcome function and the individual Riesz representor.
Lemma B.1. Let p and q be values satisfying 1/p + 1/q = 1/2. The variance of an individual
treatment estimator is bounded as

Var(τ̂i) ≤
(

E[|yi(Z)|p]1/p · E[|ψi(Z)|q]1/q
)2

.

Proof. We can upper bound the variance by the raw second moment:

Var(τ̂i) = E[τ̂2
i ]− E[τ̂i]

2 ≤ E[τ̂2
i ] = E[|yi(Z)ψi(Z)|2] .

Define p′ = p/2 and q′ = q/2 and observe that p′ and q′ are conjugate pairs as
1

p′
+

1

q′
=

2

p
+

2

q
= 2 ·

(1

p
+

1

q

)
= 2 · 1

2
= 1 .

Thus, we may use Holder’s inequality to obtain that

Var(τ̂i) ≤ E[|yi(Z)ψi(Z)|2]

≤ E[|yi(Z)|2p
′
]1/p

′
· E[|ψi(Z)|2q

′
]1/q

′

=
(

E[|yi(Z)|2p
′
]1/2p

′
· E[|ψi(Z)|2q

′
]1/2q

′
)2

=
(

E[|yi(Z)|p]1/p · E[|ψi(Z)|q]1/q
)2

.

Next, we use the bounds on the variance of the individual Riesz estimator together with the dependency
neighborhood conditions to obtain a bound on the variance of the Riesz estimator.
Lemma B.2. Let p and q be values satisfying 1/p+ 1/q = 1/2. The variance of the Riesz estimator
is bounded above by

Var(τ̂) ≤ 1

n2

n∑
i=1

|Di|
(

E[|yi(Z)|p]1/p · E[|ψi(Z)|q]1/q
)2

.
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Proof. We begin by decomposing the variance as

Var(τ̂) = Var
( 1

n

n∑
i=1

τ̂i

)
=

1

n2

n∑
i=1

n∑
j=1

Cov(τ̂i, τ̂j) ,

By definition of the dependency neighborhoods, if i /∈ Dj or j /∈ Di, then τ̂i and τ̂j are independent,
so that Cov(τ̂i, τ̂j) = 0. Thus, we have the identity Cov(τ̂i, τ̂j) = 1[i ∈ Dj ]1[j ∈ Di] Cov(τ̂i, τ̂j).
Substituting this identity into the variance calculation and using Cauchy-Schwarz inequality together
with Lemma B.1, we obtain that

Var(τ̂) =
1

n2

n∑
i=1

n∑
j=1

1[i ∈ Dj ]1[j ∈ Di] Cov(τ̂i, τ̂j) (indicator identity)

≤ 1

n2

n∑
i=1

n∑
j=1

1[i ∈ Dj ]1[j ∈ Di]
√

Var(τ̂i) Var(τ̂j) (Cauchy-Schwarz)

=
1

n2

n∑
i=1

n∑
j=1

√
1[j ∈ Di] Var(τ̂i) · 1[i ∈ Dj ] Var(τ̂j)

≤ 1

n2

n∑
i=1

n∑
j=1

1

2

(
1[j ∈ Di] Var(τ̂i) + 1[i ∈ Dj ] Var(τ̂j)

)
(AM-GM inequality)

=
1

n2

n∑
i=1

|Di|Var(τ̂i) (collecting terms)

≤ 1

n2

n∑
i=1

|Di|
(

E[|yi(Z)|p]1/p · E[|ψi(Z)|q]1/q
)2

(Lemma B.1) .

Finally, we are ready to use the previous lemma to derive a finite sample bound on the variance of the
Riesz estimator.

Proposition 5.1. Let p and q be values satisfying 1/p + 1/q = 1/2. The variance of the Riesz
estimator is upper bounded by√

nVar(τ̂) ≤ d1/2
avg‖y‖max,p‖ψ‖max,q .

Proof. Using Lemma B.2 and the definition of the max-p norms, we have that the variance of the
Riesz estimator may be bounded as

Var(τ̂) ≤ 1

n2

n∑
i=1

|Di|
(

E[|yi(Z)|p]1/p · E[|ψi(Z)|q]1/q
)2

≤ 1

n2

n∑
i=1

|Di|
(
‖y‖max,p‖ψ‖max,q

)2
=

1

n

( 1

n

n∑
i=1

|Di|
)(
‖y‖max,p‖ψ‖max,q

)2

=
davg

n

(
‖y‖max,p‖ψ‖max,q

)2

.

The proof follows by rearranging terms.

Finally, the following corollary re-interprets the finite sample bound above in an asymptotic setting.

Corollary 5.1. Under Assumption 1 and supposing regularity conditions ‖y‖max,p = O(1) and
‖ψ‖max,q = O(1) for 1/p+ 1/q = 1/2, and limited average model dependence, davg = o(n), the
Riesz estimator is consistent in mean square. If the condition on the average model dependence is
strengthened to davg = O(1), the Riesz estimator is root-n consistent.
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Proof. Observe that under Assumption 1, the Riesz estimator is unbiased so that its mean squared
error is equal to its variance. In other words, we have that√

E[(τ̂ − τ)2] =
√

Var(τ̂) ≤
√
davg

n
· ‖y‖max,p‖ψ‖max,q .

By assumption, ‖y‖max,p and ‖ψ‖max,q are asymptotically bounded as O(1) and so the normalized
mean squared error is on the order of

√
E[(τ̂ − τ)2] = O(

√
davg/n). Thus, the estimator is

consistent in mean square if davg = o(n).

A similar calculation shows that davg = O(1) guarantees
√
n-convergence in mean squared error, i.e.√

n · E[(τ̂ − τ)2] = O(1).

C Asymptotic Normality of the Riesz Estimation

In this section, we prove that the Riesz estimator is asymptotically normal under moment conditions
on the outcomes and Riesz representors and a bound on the dependency between model spaces. Our
technique will be the dependency graph version of Stein’s method.

We begin by re-defining the notion of dependency neighborhoods used in this literature on Stein’s
method [Ros11]. Let A1, . . . An be random variables indexed by integers [n]. For each index i ∈ [n],
we define the dependency neighborhood to be the smallest set Di ⊂ [n] such that

Ai is jointly independent of the variables {Aj : j ∈ [n] \ Di} .

In the main paper, we introduce the notion of dependency neighborhoods at the level of the model
spaces, but they induce dependency neighborhoods of random variables of the form ui(Z) for
ui ∈Mi

The following lemma is a finite sample bound on the Wassterstein distance between the normalized
sum of random variables A1, . . . An and a normal distribution.
Lemma C.1 (Lemma 3.6 of [Ros11]). LetA1, A2, . . . An be random variables such that E[A4

i ] <∞,
E[Ai] = 0. Define S = 1

n

∑n
i=1Ai and define σ2 = Var(S), and define X = S/σ. Then for a

standard normal B ∼ N (0, 1), we have

dW (X,B) ≤ d2
max

σ3n3

n∑
i=1

E[|Ai|3] +

√
28

π
· d

3/2
max

n2σ2

√√√√ n∑
i=1

E[A4
i ] ,

where dmax = maxi∈[n] |Di| is the maximum dependency degree of the random variables and
dW (·, ·) is the Wasserstein distance.

We will be considering the random variables Ai = τ̂i − τi, which are the errors of the individual
treatment effect estimates. To this end, we need to bound the pth moments of the absolute error of the
individual treatment effect estimates. We begin with the following lemma which holds for general
random variables.
Lemma C.2. For 1 ≤ p ≤ ∞ and a random variable X , we have that

E
[∣∣X − E[X]

∣∣p] ≤ 2p E
[
|X|p

]
.

Proof. We may use Minkowski’s inequality together with Jensen’s inequality applied to x→ |x|p,
we have that

E
[∣∣X − E[X]

∣∣p]1/p ≤ E[|X|p]1/p + (|E[X]|p)1/p (Minkowski’s inequality)

≤ E[|X|p]1/p + E[|X|p]1/p (Jensen’s inequality)

= 2 E[|X|p]1/p .

Next, we use this lemma together with Holder’s inequality to obtain a bound on the pth moments of
absolute error of the individual treatment effect estimates.
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Lemma C.3. Fix 1 ≤ r ≤ ∞ and let p, q be value satisfying 1/p+ 1/q = 1/r. The rth moment of
the absolute error of the individual treatment effect estimate is

E
[
|τ̂i − τi|r

]
≤
(

2 E
[
|yi(Z)|p

]1/p
· E
[
|ψi(Z)|q

]1/q)r
.

Proof. Define p′ = p/r and q′ = q/r and observe that p′ and q′ are conjugate pairs as

1

p′
+

1

q′
=
r

p
+
r

q
= r ·

(1

p
+

1

q

)
= r · 1

r
= 1 .

We have that E[τ̂i] = τi. Thus, we may apply Lemma C.2 and obtain

E
[
|τ̂i − τi|r

]
≤ 2r E

[
|τ̂i|r

]
(Lemma C.2)

= 2r E
[
|yi(Z)ψi(Z)|r

]
(definition of τ̂i)

≤ 2r E
[
|yi(Z)|rp

′
]1/p′

· E
[
|ψi(Z)|rq

′
]1/q′

(Holder’s Inequality)

=
(

2 E
[
|yi(Z)|rp

′
]1/rp′

· E
[
|ψi(Z)|rq

′
]1/rq′)r

=
(

2 E
[
|yi(Z)|p

]1/p
· E
[
|ψi(Z)|q

]1/q)r
.

Finally, we are ready to prove Proposition 5.2, which establishes asymptotic normality of the Riesz
estimator under moment conditions and the assumption of limited dependence. We restate the
proposition below for completeness.
Proposition 5.2. Under Assumptions 1 and 2, regularity conditions ‖y‖max,p and ‖ψ‖max,q are
asymptotically bounded O(1) for some 1/p+ 1/q = 1/4, and limited maximum model dependence,
dmax = o(n1/4), the limiting distribution of the Riesz estimator is normal:

τ̂ − τ√
Var(τ̂)

d−→ N (0, 1).

Proof. We seek to use Lemma C.1 on the random variables Ai = τ̂i − τi, which are the errors
of the individual treatment effect estimates. Note that in this case, S = (1/n)

∑n
i=1Ai = τ̂ − τ ,

σ =
√

Var(τ̂), and X = τ̂−τ√
Var(τ̂)

.

First, let us verify that condition required for Lemma C.1 hold. By definition of the Riesz representors,
the individual treatment effect estimators are unbiased so that E[Ai] = E[τ̂i−τi] = 0. By Lemma C.3
together with asymptotic boundedness of ‖y‖max,p and ‖ψ‖max,q yields

E[A4
i ]

1/4 = E[(τ̂i − τi)4]1/4 ≤ 2 E
[
|yi(Z)|p

]1/p
· E
[
|ψi(Z)|q

]1/q
≤ 2‖y‖max,p‖ψ‖max,q <∞ .

Using Lemma C.1, we have that for B ∼ N (0, 1),

dW (X,B) ≤ d2
max

σ3n3

n∑
i=1

E[|τ̂i − τi|3] +

√
28

π
· d

3/2
max

n2σ2

√√√√ n∑
i=1

E[|τ̂i − τi|4] .

The first sum may be bounded as
n∑
i=1

E[|τ̂i − τi|3] ≤
n∑
i=1

(
2 E
[
|yi(Z)|p

]1/p
· E
[
|ψi(Z)|q

]1/q)3

≤ n(2‖y‖max,p‖ψ‖max,q)
3 .

Similarly, the second sum may be bounded as
n∑
i=1

E[|τ̂i − τi|4] ≤
n∑
i=1

(
2 E
[
|yi(Z)|p

]1/p
· E
[
|ψi(Z)|q

]1/q)4

≤ n(2‖y‖max,p‖ψ‖max,q)
4 .
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By assumption, the moment quantities ‖y‖max,p and ‖ψ‖max,q are asymptotically bounded by O(1)
so the Wasserstein distance is bounded by

dW (X,B) = O
(d2

max

σ3n2
+

d
3/2
max

σ2n3/2

)
.

By Assumption 2, the variance is bounded below as Var(τ̂) = σ2 ≥ Ω(1/n) and so the Wasserstein
distance is bounded by

dW (X,B) = O
(d2

max

n1/2
+
d

3/2
max

n1/2

)
= O

(d2
max

n1/2

)
.

By assumption, dmax = o(n1/4), so that the Wasserstein distance goes to zero.

D Construction of Riesz Representors

In this section, we provide a sketch of how to construct Riesz representors for the finite dimensional
model spaces. For purely notational convenience, we assume that each model space Mi is d
dimensional, where d is constant across units i ∈ [n].

Throughout the section, we assume that each model space Mi is explicitly represented by a set
of basis functions gi,1 . . . gi,d. That is, each function u ∈ Mi admits a unique decomposition
u =

∑d
`=1 α`gi,`. We assume that the experimenter can do the following three computational

primitives:

1. Evaluate the basis function gi,`(z) for all z ∈ Z .

2. Compute cross moments E[gi,`(Z)gi,k(Z)].

3. Evaluate effect functionals θi(gi,`).

Using these primitives, we show that the Riesz representor may be explicitly represented as ψi =∑d
`=1 βi,`gi,` and thus evaluated.

As a warm-up, we show how to construct the Riesz representor under the assumption of strong
positivity. A model space satisfies strong positivity under the experimental design if for all functions
u ∈ Mi which are not identically zero, E[u(Z)2] > 0. This is a stronger version of the positivity
condition in the following sense: under strong positivity, if u and v are observationally equivalent,
then strong positivity implies that u = v, so we trivially have that θi(u) = θi(v). To see this, suppose
that u and v are observationally equivalent so that E[(u(Z)− v(Z))2] = 0. Strong positivity implies
that only the zero function has this property, so that u− v = 0.

Under strong positivity assumption, the model spaceMi together with the inner product 〈u, v〉 =
E[uZvZ] form a finite-dimensional Hilbert space. Note that strong positivity guarantees that 〈u, v〉 =
E[uZvZ] is indeed a valid inner product, as 〈u, u〉 = 0 implies that u = 0. Thus, we may run Gram–
Schmidt orthogonalization on the basis functions gi,1 . . . gi,d to obtain an orthonormal set of functions
φi,1 . . . φi,d satisfying E[φi,`(Z)φi,k(Z)] = 1[` = k]. In this case, every function u ∈ Mi admits
the decomposition u =

∑d
`=1 E[u(Z)φi,`(Z)]φi,`. The Riesz representor admits the following

closed form:

ψi(Z) =

d∑
`=1

θi(φi,`)φi,`(Z) .
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To see this, observe that

E[ψi(Z)u(Z)] = E
[( d∑

k=1

θi(φi,k)φi,k(Z)
)( d∑

`=1

E[u(Z)φi,`(Z)]φi,`(Z)
)]

=

d∑
k=1

d∑
`=1

θi(φi,k) E[u(Z)φi,`(Z)] E[φi,`(Z)φi,k(Z)]

=

d∑
`=1

θi(φi,`) E[u(Z)φi,`(Z)]

= θi

( d∑
`=1

E[u(Z)φi,`(Z)]φi,`

)
= θi(u) .

When strong positivity does not hold, the above approach fails because E[uZvZ] no longer forms a
valid inner product onMi and so an orthonormal basis cannot be obtained. However, by passing
through a quotient space and invoking positivity (Assumption 1), a very similar construction of the
Riesz representor is possible.

Recall that we write u ∼ v to denote observational equivalence, i.e. u ∼ v if E[(u(Z)− v(Z))2] = 0.
Observe that this defines an equivalence relation and therefore partitionsMi into equivalence classes.
We write [u] to denote the equivalence class containing u. Let Si = {u ∈Mi : u ∼ 0} be the set of
functions which are observationally equivalent to the zero function, which we remark is a subspace
ofMi. Define the vector quotient spaceM′i = Mi/Si, which is the vector space induced by all
equivalence classes. The bilinear form 〈u, v〉 = E[u(Z)v(Z)] forms a well-defined inner product
on the finite-dimensional quotient spaceM′i, and so the pair form a Hilbert space. At this point, a
modified Gram–Schmidt orthogonalization process may be used to obtain an orthonormal basis for
M′i.

The final ingredient is constructing a linear functional θ̃i on the quotient space M′i which is a
contraction of the effect functional θi on Mi. By positivity, this is possible using the natural
contraction, θ̃i([u]) = θi(u). This contracted functional θ̃i is well-defined exactly because positivity
implies that θi is constant on each equivalence class.

The discussion above proves Proposition 4.2.
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