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ABSTRACT

Recent decomposition-based neural multi-objective combinatorial optimization
(MOCO) methods struggle to achieve desirable performance. Even equipped with
complex learning techniques, they often suffer from significant optimality gaps in
weight-specific subproblems. To address this challenge, we propose a neat weight
embedding method to learn weight-specific representations, which captures weight-
instance interaction for the subproblems and was overlooked by most current
methods. We demonstrate the potentials of our method in two instantiations. First,
we introduce a succinct addition model to learn weight-specific node embeddings,
which surpassed most existing neural methods. Second, we design an enhanced
conditional attention model to simultaneously learn the weight embedding and node
embeddings, which yielded new state-of-the-art performance. Experimental results
on classic MOCO problems verified the superiority of our method. Remarkably, our
method also exhibits favorable generalization performance across problem sizes,
even outperforming the neural method specialized for boosting size generalization.

1 INTRODUCTION

Multi-objective combinatorial optimization (MOCO) problems (Lust & Teghem, 2010; Zajac &
Huber, 2021; Ishibuchi et al., 2015; Türkyılmaz et al., 2020; Liu et al., 2020) have garnered extensive
interest within the computational intelligence community due to their widespread applicability
across various industries such as logistics, manufacturing, and warehousing. These sectors often
require decision makers to consider and accommodate multiple intricate factors concurrently like the
costs, fairness, and customer satisfaction. Building upon the foundation of NP-hard single-objective
combinatorial optimization (CO), MOCO presents an even greater challenge by involving multiple
conflicting objectives that cannot be optimized simultaneously. The primary goal of MOCO is to
identify a collection of Pareto optimal solutions, known as the Pareto set, simultaneously pursuing
both convergence (or optimality) and diversity.

Due to the NP-hard complexity of MOCO, exact methods (Ehrgott et al., 2016; Bergman et al.,
2022) often necessitate exponentially growing computational time as the problem size increases. In
response, heuristic methods (Blot et al., 2018) have been adopted to approximate Pareto optimal
solutions more efficiently. However, traditional heuristics heavily rely on domain-specific knowledge
and require substantial manual tuning for each unique problem. Moreover, they may also involve
prolonged solving time due to the intensive inherent iterative search from scratch for each instance.

∗Corresponding Author.
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Recent advancements in deep reinforcement learning have catalyzed the rapid development of neural
MOCO methods (Li et al., 2021; Zhang et al., 2021; Lin et al., 2022a; Ye et al., 2022; Zhang et al.,
2023c; Chen et al., 2023a;b; Wang et al., 2024; Fan et al., 2024; Su et al., 2024; Ye et al., 2025),
where deep models are leveraged to autonomously learn promising policies from extensive problem
instances. These neural methods are able to mitigate the need of laborious problem-specific design,
reduce solving time, and generalize to unseen instances. In this context, the decomposition scheme
plays a crucial role due to its universality and efficacy (Lin et al., 2024; 2022b; Navon et al., 2021),
which is used by most existing neural MOCO methods. Typically, an MOCO problem is decomposed
into a series of scalarized subproblems, each associated with a specific weight (or preference) vector,
and these subproblems are then solved end-to-end using deep models.

To tackle the weight-specific subproblems, neural MOCO methods typically integrate single-objective
neural CO methods with additional mechanisms. A naive way is to train or fine-tune a separate
single-objective model for each decomposed subproblem using transfer learning (Li et al., 2021;
Zhang et al., 2021) or meta learning (Zhang et al., 2023c; Chen et al., 2023a), known as the multi-
model method. However, these methods are impractical due to extensive training or fine-tuning
overhead and limited adaptability with predetermined weight vectors. An alternative way is to train
only one model, which is used to deal with all subproblems, known as the single-model method. For
instance, the multi-objective routing attention model (MORAM) (Wang et al., 2024) can only handle
predefined weight vectors and only address the multi-objective traveling salesman problem, while
the preference-conditioned multi-objective combinatorial optimization (PMOCO) (Lin et al., 2022a)
employs a hypernetwork to adapt decoder parameters to any weight vector, offering higher flexibility.
Nonetheless, PMOCO struggles with subproblem optimality due to the weight-agnostic encoder and
the complexity introduced by the hypernetwork. The recent conditional neural heuristic (CNH) (Fan
et al., 2024) realizes a unified model across various sizes, regarded as the state-of-the-art (SOTA)
method. However, due to the extra introduction of a complex size-aware decoder, it suffers from the
demand of more computational resource and the unscalable problem size embedding for larger sizes.

In short, despite these complicated techniques, neural MOCO methods still exhibit considerable
performance gaps. The key to effectively solving these subproblems lies in capturing the weight-
instance interaction, i.e., simultaneously leveraging both weight and instance (defined by a set of
nodes) information. In this sense, we propose a neat method called weight embedding, wherein
the weight-specific representations are directly learned by the single-objective model to effectively
manage the subproblems. Unlike existing ones that feature complex schemes, our method not only
achieves new SOTA performance but also does so with remarkable elegance.

Our contributions are summarized as follows. (1) We propose a neat weight embedding method for
MOCO. It directly learns weight-specific representations, diverging from previous ones that rely on
complex auxiliary techniques. (2) We design two models to instantiate our method. Particularly, we
first introduce a succinct weight embedding model that utilizes only addition in its embedding process,
and then we present an enhanced weight embedding model with conditional attention. (3) Extensive
experimental results on various MOCO problems show that our method not only surpasses the SOTA
neural methods in performance but also exhibits superior generalization capabilities across different
problem sizes, even outperforming the baseline tailored for generalization with size embedding. Due
to its elegance and superiority, our weight embedding is expected to become a fundamental method
in the field of neural MOCO, paving the way for the development of more advanced methodologies.

2 RELATED WORKS

Traditional MOCO methods. Traditional MOCO methods typically fall into two categories: exact
and heuristic ones. Exact methods (Ehrgott et al., 2016; Bergman et al., 2022) can deliver accurate
Pareto optimal solutions, but often require exponentially increasing computation time. Consequently,
heuristic methods, particularly the multi-objective evolutionary algorithms (MOEAs) (Tian et al.,
2021; Falcón-Cardona et al., 2021), have become favored alternatives. In this context, dominance-
based MOEAs (Deb et al., 2002; Deb & Jain, 2013; Deng et al., 2022) and decomposition-based
MOEAs (Zhang & Li, 2007; Qi et al., 2014; Yuan et al., 2016) are recognized as two representative
schemes. Furthermore, several MOEAs incorporate specialized local search mechanisms to enhance
their efficacy (Jaszkiewicz, 2002; Shi et al., 2020; 2024). Despite extensive research, MOEAs still
face hurdles due to the heavy hand-crafted workload and massive solving time.
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Neural CO methods. Neural CO methods (Garmendia et al., 2024; Zhang et al., 2023a; Mazyavkina
et al., 2021; Bengio et al., 2021; Yan et al., 2022) have gained prominence recently, which leverage
deep learning models with an encoder-decoder architecture to quickly construct high-quality solutions
end-to-end. A pivotal innovation in this field is the attention model (AM) (Kool et al., 2019), which
employs the Transformer architecture (Vaswani et al., 2017) to instantiate a new approach in solving
CO such as vehicle routing problems. AM has spurred a series of advancements (Kim et al., 2022;
Bi et al., 2022; Chen et al., 2022; Zhang et al., 2022; 2023b; Zhou et al., 2023; Grinsztajn et al.,
2023; Luo et al., 2023; Chalumeau et al., 2023; Drakulic et al., 2023; Fang et al., 2024; Xiao et al.,
2024a;b), including the policy optimization with multiple optima (POMO) (Kwon et al., 2020), which
capitalizes on symmetries in the solution space to further narrow the optimality gaps. Due to its
competitive performance and versatility, POMO has become a favored base model used in most
existing neural MOCO methods.

Neural MOCO methods. The neural MOCO methods (as summarized in Appendix A), most of
which are based on decomposition, can be broadly categorized into the multi-model and single-model
method. The former trains (Li et al., 2021; Zhang et al., 2021) or fine-tunes (Zhang et al., 2023c;
Chen et al., 2023a) a separate single-objective model for each decomposed subproblem, while the
latter only trains one model for all subproblems (Wang et al., 2024; Lin et al., 2022a). One small part
of CNH (Fan et al., 2024) is somewhat technically similar to ours, i.e., inputing the weight vector
into the model. However, CNH overall pursues complex techniques such as the size-aware decoder
to realize cross-size generalization, which is contrary to our “neat” principle. Different from above
decomposition-based neural methods focusing on convergence, another orthogonal line of work
focuses on diversity enhancement (Chen et al., 2023b) with increased computational resources. This
paper aims to improve the convergence of decomposition-based neural methods by more elegantly
utilizing the weight vectors.

3 PRELIMINARY

3.1 MOCO

An MOCO problem with M objectives can be defined as min
x∈X

f(x) = (f1(x), f2(x), . . . , fM (x)),

where X is a discrete decision space.

Definition 1 (Dominance). A solution x1 ∈ X is said to dominate another x2 ∈ X , denoted as
x1 ≺ x2, if and only if fi(x1) ≤ fi(x

2),∀i ∈ {1, . . . ,M} and fj(x
1) < fj(x

2),∃j ∈ {1, . . . ,M}.
Definition 2 (Pareto optimality). A solution x∗ ∈ X is Pareto optimal if it is not dominated by
any other solution x′ ∈ X . The set composed of all Pareto optimal solution is called Pareto set, i.e.,
P = {x∗ ∈ X | ∄x′ ∈ X : x′ ≺ x∗}, and its image in the objective space is called Pareto front, i.e.,
F = {f(x) ∈ RM | x ∈ P}.

3.2 DECOMPOSITION-BASED NEURAL MOCO METHODS

Decomposition (Zhang & Li, 2007) is a mainstream strategy in the neural MOCO field, where an
MOCO problem is decomposed into N subproblems by N weight vectors. Each subproblem is a CO
problem with a scalarized objective g(x|λ), where λ ∈ RM is a weight vector satisfying λm ≥ 0

and
∑M

m=1 λm = 1. As the simplest representative, the weighted sum (WS) scalarization uses the
linear combination of M objectives, i.e., min

x∈X
gws(x|λ) =

∑M
m=1 λmfm(x).

Given N weight vectors, the corresponding scalarized subproblems can be tackled using neural CO
methods like POMO to approximate the Pareto set. For a subproblem associated with a weight vector
λ, the solution construction process can be framed as a Markov decision process. Specifically, a solu-
tion is represented as a sequence π = {π1, . . . , πT } of length T . For example, for the traveling sales-
man problem and capacitated vehicle routing problem, it denotes a tour of visited nodes. Similarly, for
the knapsack problem, it signifies an order of selected items. Given an instance s, a stochastic policy
P (π|λ, s) sequentially generating solution π is defined as P (π|λ, s) =

∏T
t=1 Pθ(πt|π1:t−1,λ, s),

where the probability of node selection Pθ(πt|π1:t−1,λ, s) is parameterized and governed by a deep
model θ. The reward is quantified as the negative scalarized objective value, −g(π|λ, s).
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Figure 1: The architectures of the deep models. (a) Single-objective model, POMO. (b) Weight
embedding with addition (Add). (c) Weight embedding with conditional attention (Cond Attn).

4 METHODOLOGY

To learn Pθ(πt|π1:t−1,λ, s) in the stochastic policy for scalarized subproblems, which are associated
with the weight, our weight embedding method neatly inputs λ to the single-objective model (as
illustrated in Figure 1(a)). This method efficiently learns weight-specific representations, capturing
and enhancing the weight-instance interaction. To demonstrate its potentials, we instantiate our
method into two models. First, we introduce a succinct weight embedding model with addition
(WE-Add), as depicted in Figure 1(b). Second, we design an enhanced weight embedding model with
conditional attention (WE-CA), as depicted in Figure 1(c), which achieved new SOTA performance.

4.1 THE SUCCINCT MODEL: WEIGHT EMBEDDING WITH ADDITION

Single-objective model. The single-objective model follows the encoder-decoder structure, such as
the prevailing POMO (Kwon et al., 2020). As presented in Figure 1(a), given a problem instance
s containing n nodes with Z-dimensional features v1, . . . ,vn ∈ RZ (see Appendix B), the initial
node embeddings h(0)

1 , . . . ,h
(0)
n ∈ Rd, in which d is empirically set to 128 (Kool et al., 2019), are

first derived via a linear projection (LP) with a trainable matrix W v ∈ Rd×Z and bias bv ∈ Rd, as
follows,

h
(0)
i = W vvi + bv,∀i ∈ {1, . . . , n}. (1)

In the encoder, the eventual node embeddings h(L)
1 , . . . ,h

(L)
n are then produced by going through

L = 6 attention layers (Kwon et al., 2020). Each layer l ∈ {1, ..., L} consists of a series of
components in order: a multi-head attention (MHA) sublayer with 8 heads (Kool et al., 2019), a
skip-connection (He et al., 2016) and instance normalization (IN) (Ulyanov et al., 2016) sublayer
(Add & Norm), a fully connected feed-forward sublayer, and another Add & Norm sublayer, as
follows,

ĥi = IN(h
(l−1)
i +MHA(h

(l−1)
i , {h(l−1)

1 , . . . ,h(l−1)
n })), ∀i ∈ {1, . . . , n}, (2)

h
(l)
i = IN(ĥi + FF(ĥi)), ∀i ∈ {1, . . . , n}. (3)

In the decoder, the node embeddings are used to autoregressively compute the probability of node
selection with T steps. At decoding step t ∈ {1, ..., T}, the glimpse qc of context embedding hc (see
Appendix B) is produced by an MHA layer with 8 attention heads, and the compatibility α is then
computed, as follows,

qc = MHA(hc, {h(L)
1 , . . . ,h(L)

n }), (4)

αi =

{
−∞, node i is masked

C · tanh(q
T
c (WKh

(L)
i )√

d
), otherwise

(5)
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where C is set to 10 (Kool et al., 2019). Finally, the probability of node selection for a single-objective
CO problem is calculated via softmax, i.e., Pθ(πt|π1:t−1, s) = Softmax(α).

Weight-specific node embeddings with addition. To solve the scalarized subproblem related with
the weight vector λ, we input it to the model and directly add the produced initial weight embedding
with the initial node embedding, as illustrated in Figure 1(b). Concretely, we only replace Equation
(1) by Equation (6) below and keep the other parts of the model unchanged:

h
(0)
i = (Wλλ+ bλ) + (W vvi + bv), ∀i ∈ {1, . . . , n}, (6)

where the trainable parameters Wλ ∈ Rd×M and bλ ∈ Rd are used for the initial weight embed-
ding, while W v ∈ Rd×Z and bv ∈ Rd are employed for the initial node embeddings. In such a
straightforward way, the weight-specific node embeddings are obtained. Subsequently, the weight
and instance information interacts in the original encoder and decoder. Eventually, this process
yields the probability of weight-specific node selection policy Pθ(πt|π1:t−1,λ, s) for the scalarized
subproblem. It is worth highlighting that this succinct weight embedding model with addition can
already outperform most existing ones with complicated learning techniques, as shown in Table 1.

4.2 THE ENHANCED MODEL: WEIGHT EMBEDDING WITH CONDITIONAL ATTENTION

To more effectively capture the weight-instance interaction, we propose an enhanced weight embed-
ding model with a conditional attention mechanism, as illustrated in Figure 1(c). In the conditional
attention model, the weight embedding is incorporated into node embeddings in a feature-wise man-
ner. Besides, the weight embedding and node embeddings are simultaneously updated to diminish
disharmony of their interaction. As a result, it enables the model to more accurately discern their
joint influence on the solution of the weight-specific subproblem.

Conditional attention model. The initial weight and node embeddings are first obtained by Equation
(7) with the trainable parameters Wλ, bλ, W v , and bv , as follows,

h
(0)
λ = Wλλ+ bλ, h

(0)
i = W vvi + bv, ∀i ∈ {1, . . . , n}. (7)

In layer l ∈ {1, ..., L} of the encoder, the weight and node embeddings are jointly updated via a
conditional attention sublayer, which is composed of the conditional embedding mechanism and the
MHA mechanism. First, the node embeddings conditioned on the weight embedding are produced by
a feature-wise affine transformation (Perez et al., 2018), as follows,

γ = W γh
(l−1)
λ , β = W βh

(l−1)
λ , h′

i = γ ◦ h(l−1)
i + β, ∀i ∈ {1, . . . , n}, (8)

where W γ and W β are trainable matrices; ◦ is the element-wise multiplication, i.e., the j-th feature
of the i-th node embedding h′

i,j = γj · h(l−1)
i,j + βj . Then, the weight and node embeddings are

updated via the MHA mechanism and an Add & Norm sublayer, as follows,

ĥλ = IN(h
(l−1)
λ +MHA(h

(l−1)
λ , {h(l−1)

λ ,h′
1, . . . ,h

′
n})), (9)

ĥi = IN(h
(l−1)
i +MHA(h′

i, {h
(l−1)
λ ,h′

1, . . . ,h
′
n})), ∀i ∈ {1, . . . , n}. (10)

Afterwards, a fully connected feed-forward sublayer and another Add & Norm sublayer, i.e., Equation
(3), are employed to yield the weight embedding h

(l)
λ and node embeddings h(l)

1 , . . . ,h
(l)
n . Finally,

the decoder leverages the weight and node embeddings to produce the glimpse qc by Equation
(11), and the probability of weight-specific node selection Pθ(πt|π1:t−1,λ, s) can be computed by
Equation (5), which is used to construct the solution for the scalarized subproblem:

qc = MHA(hc, {h(L)
λ ,h

(L)
1 , . . . ,h(L)

n }). (11)

4.3 TRAINING AND INFERENCE

To train the deep model, we adopt the REINFORCE algorithm with a shared baseline (Kwon et al.,
2020) (see Appendix C for more details). We would like to note that most existing neural MOCO
methods specifically train a model for each problem size and thus exhibit limited generalization across
sizes. However, besides training size-specific models, our method, benefiting from the proposed
weight embedding, can even train a single unified model achieving favorable cross-size generalization
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capabilities by directly sampling instances of various sizes. During inference, when N weight vectors
are given, N corresponding subproblems are solved to approximate the Pareto set. Furthermore,
unlike existing neural MOCO methods that rely on complex learning techniques to handle weights,
our neat weight embedding method facilitates the parallel processing of subproblems. This capability
significantly enhances the speed of inference (see Appendix D for more details).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Problems. We evaluate the proposed method on three classic MOCO problems that are studied in
most neural MOCO literature, including the multi-objective traveling salesman problem (MOTSP)
(Lust & Teghem, 2010), multi-objective capacitated vehicle routing problem (MOCVRP) (Zajac &
Huber, 2021), and multi-objective knapsack problem (MOKP) (Ishibuchi et al., 2015) (see Appendix
B for more details). Three common sizes are considered, i.e., n = 20/50/100 for MOTSP and
MOCVRP, and n = 50/100/200 for MOKP.

Hyperparameters. We configure most hyperparameters based on prior works (Lin et al., 2022a;
Kwon et al., 2020), and our method introduces no additional hyperparameters. The model is trained
over 200 epochs, with each epoch containing 100,000 randomly sampled instances. The batch size B
is set to 64. The Adam (Kingma & Ba, 2015) optimizer with learning rate 10−4 and weight decay
10−6 is adopted. The N weight vectors are generated using the Das & Dennis (1998) method, with
N set to 101 for M = 2 and 105 for M = 3.

Baselines. Our methods, including weight embedding with addition (WE-Add) and weight embed-
ding with conditional attention (WE-CA), are compared with three classes of strong baseline methods.
They all adopt the weighted sum (WS) scalarization for fair comparisons. (1) The state-of-the-art
single-model neural MOCO methods, including PMOCO (Lin et al., 2022a), MORAM (Wang et al.,
2024), and CNH (Fan et al., 2024), where CNH is specialized for size generalization using extra size
embedding. (2) The multi-model neural MOCO methods, including DRL-MOA (Li et al., 2021),
MDRL (Zhang et al., 2023c), and EMNH (Chen et al., 2023a). Particularly, DRL-MOA trains N
POMO models for N subproblems, with 200 epochs for the first one and 5 epochs for each remaining
one via parameter transfer. MDRL and EMNH both fine-tune N POMO models from a pretrained
meta-model that shares the same structure, with the training and fine-tuning settings following those
in (Chen et al., 2023a). (3) The non-learnable methods, including widely used MOEAs and other
strong heuristics. Specifically, MOEA/D (Zhang & Li, 2007) and NSGA-II (Deb et al., 2002), both
implemented with 4,000 iterations, are representative decomposition-based and dominance-based
MOEAs, respectively. MOGLS (Jaszkiewicz, 2002), with 4,000 iterations and 100 local search steps
in each iteration, and PPLS/D-C (Shi et al., 2024), with 200 iterations, are both of MOEAs special-
ized for MOCO, using a 2-opt heuristic for MOTSP and MOCVRP, and a greedy transformation
heuristic (Ishibuchi et al., 2015) for MOKP. WS-LKH and WS-DP, combining WS scalarization
with the strong LKH (Helsgaun, 2000; Tinós et al., 2018) and dynamic programming (DP) solvers for
decomposed subproblems, are used for MOTSP and MOKP, respectively. All methods are executed
on a machine with an RTX 3090 GPU and an Intel Xeon 4216 CPU. Our code is publicly available1.

Metrics. The widely used hypervolume (HV) indicator (Audet et al., 2021) is adopted here to evaluate
the performance of MOCO methods (see Appendix E for the definition), where higher HV means
better solution set. The average HV, gaps with respect to WE-CA-Aug, and total solving time for
200 instances are reported. The methods with “-Aug” represent results using instance augmentation
(Lin et al., 2022a) (see Appendix F) to further improve performance. A Wilcoxon rank-sum test with
1% significance level is conducted. The best result and the ones without statistical significance are
highlighted in bold, while the second-best result and the ones without statistical significance are
highlighted in underline.

5.2 RESULTS AND ANALYSES

Comparison of specialized training on each problem size. The comparison results on bi-objective
TSP (Bi-TSP), bi-objective CVRP (Bi-CVRP), bi-objective KP (Bi-KP), and tri-objective TSP

1https://github.com/bill-cjb/WE
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Figure 2: Pareto fronts on benchmark instances.

(Tri-TSP) are reported in Table 1. Our succinct WE-Add and enhanced WE-CA outperform most
neural methods, where WE-CA is superior to WE-Add. Remarkably, compared with the state-
of-the-art PMOCO, which also trains a single model, WE-CA acquires much smaller gaps in all
cases, e.g., 0.24% vs 4.14% on Bi-CVRP100 and 1.19% vs 3.53% on Tri-TSP100. Compared
with the multi-model methods, WE-CA gains much higher solution quality in most cases, except
on Bi-KP100, Bi-KP200, Bi-CVRP20, and Bi-CVRP50, where it still presents competitive gaps
(at most 0.06%). Especially, WE-CA, i.e., without instance augmentation, surpasses other neural
baselines with instance augmentation on Bi-TSP100 and Tri-TSP100. Compared with the traditional
non-learnable heuristics that consume much longer computational time due to the iterative search,
such as WS-LKH taking 6.0 hours on Bi-TSP100, our WE-CA-Aug only takes 15 minutes while still
achieving promising gaps.

Generalization of unified training across problem sizes. We train a unified model across problem
sizes n ∈ {20, 21, · · · , 100} (except n ∈ {50, 51, · · · , 200} for Bi-KP) for WE-CA, CNH, and
PMOCO. For MORAM, we use the provided pretrained model. The suffixes “-U” and “-n” are used
to distinguish the models trained across various sizes and on a fixed size n, respectively. For WE-CA
and PMOCO, only the results trained with “-50” are reported, as they are much better than that trained
with “-20” and “-100”. As shown in Table 2, among all the neural methods including CNH tailored
for size generalization, WE-CA-U achieves the smallest average gap, which is even close to WE-CA
specially trained on each size, i.e., the gap 0.00% on MOTSP, 0.02% on MOCVRP, and 0.03% on
MOKP. On Tri-TSP and Bi-KP, CNH is even inferior to WE-CA-50 and WE-CA-100, respectively,
which are both trained on a fixed size. Besides inferior solution quality, CNH also suffers from
much longer solving and training time due to the extra size embedding. In addition, WE-CA-U
manifests significant superiority to WE-CA-50, while PMOCO-U suffers from unstable training
across sizes on some problems, like Bi-TSP and Bi-KP. We further assess the out-of-distribution
generalization capability on the unseen larger sizes, i.e., Bi-TSP150 and Bi-TSP200. The results are
reported in Table 3, where all the neural methods are trained on n = 100 except MORAM, CNH,
and WE-CA-U. As shown, WE-CA-U significantly outperforms other neural methods and the classic
MOEAs. Commendably, WE-CA-U is much more superior to CNH in the out-of-distribution case.
Especially, WE-CA-U surpasses CNH-Aug equipped with instance augmentation on the larger size
n = 200. We also test the methods on three commonly used instances adapted from TSPLIB (Reinelt,
1991), i.e., KroAB100, KroAB150, and KroAB200. The obtained Pareto fronts are visualized in
Figure 2. Obviously, many solutions derived from WE-CA-U dominate those obtained by CNH and
PMOCO, indicating that our method achieves smaller optimality gaps on decomposed subproblems.
More generalization results are given in Appendix G.

Pattern of weight-instance interaction. On the one hand, we study the effect of weight-instance
interaction via different parts of the model. Our WE-CA interacts weight information with instance
information by the whole model, which is compared with WE-CA-Dec only inputting the weight
information to the decoder for weight-instance interaction. Besides, we compare PMOCO with its
two variants that employ the whole model for weight-instance interaction. They use a hypernetwork
to learn the parameters of the encoder and whole model, named PMOCO-Enc and PMOCO-All,
respectively. On the other hand, we study the effect of different weight embedding models. WE-CA
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Table 1: Results of specialized training on each size with 200 random instances for MOCO problems.

Method
Bi-TSP20 Bi-TSP50 Bi-TSP100

HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓

Non-learnable

WS-LKH 0.6270 0.02% 10m 0.6415 -0.05% 1.8h 0.7090 -0.33% 6.0h
MOEA/D 0.6241 0.48% 1.7h 0.6316 1.50% 1.8h 0.6899 2.38% 2.2h
NSGA-II 0.6258 0.21% 6.0h 0.6120 4.55% 6.1h 0.6692 5.31% 6.9h
MOGLS 0.6279 -0.13% 1.6h 0.6330 1.28% 3.7h 0.6854 3.01% 11h
PPLS/D-C 0.6256 0.24% 26m 0.6282 2.03% 2.8h 0.6844 3.16% 11h

Multi-model
DRL-MOA 0.6257 0.22% 6s 0.6360 0.81% 9s 0.6970 1.37% 21s
MDRL 0.6271 0.00% 5s 0.6364 0.75% 9s 0.6969 1.39% 17s
EMNH 0.6271 0.00% 5s 0.6364 0.75% 9s 0.6969 1.39% 16s

Single-model
PMOCO 0.6259 0.19% 6s 0.6351 0.95% 10s 0.6957 1.56% 19s
WE-Add 0.6270 0.02% 6s 0.6386 0.41% 10s 0.7024 0.61% 19s
WE-CA 0.6270 0.02% 6s 0.6391 0.33% 10s 0.7039 0.40% 20s

Multi-model-Aug
MDRL-Aug 0.6271 0.00% 33s 0.6408 0.06% 1.7m 0.7022 0.64% 14m
EMNH-Aug 0.6271 0.00% 33s 0.6408 0.06% 1.7m 0.7023 0.62% 14m

Single-model-Aug
PMOCO-Aug 0.6270 0.02% 1.1m 0.6395 0.27% 3.2m 0.7016 0.72% 15m
WE-Add-Aug 0.6272 -0.02% 1.1m 0.6411 0.02% 3.2m 0.7058 0.13% 15m
WE-CA-Aug 0.6271 0.00% 1.1m 0.6412 0.00% 3.3m 0.7067 0.00% 15m

Method
Bi-CVRP20 Bi-CVRP50 Bi-CVRP100

HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓

Non-learnable

MOEA/D 0.4255 1.07% 2.3h 0.4000 2.53% 2.9h 0.3953 3.16% 5.0h
NSGA-II 0.4275 0.60% 6.4h 0.3896 5.07% 8.8h 0.3620 11.32% 9.4h
MOGLS 0.4278 0.53% 9.0h 0.3984 2.92% 20h 0.3875 5.07% 72h
PPLS/D-C 0.4287 0.33% 1.6h 0.4007 2.36% 9.7h 0.3946 3.33% 38h

Multi-model
DRL-MOA 0.4287 0.33% 10s 0.4076 0.68% 12s 0.4055 0.66% 33s
MDRL 0.4291 0.23% 8s 0.4082 0.54% 13s 0.4056 0.64% 32s
EMNH 0.4299 0.05% 7s 0.4098 0.15% 13s 0.4072 0.24% 31s

Single-model
PMOCO 0.4267 0.79% 7s 0.4036 1.66% 12s 0.3913 4.14% 27s
WE-Add 0.4292 0.21% 6s 0.4089 0.37% 12s 0.4061 0.51% 26s
WE-CA 0.4293 0.19% 6s 0.4090 0.34% 12s 0.4072 0.24% 25s

Multi-model-Aug
MDRL-Aug 0.4294 0.16% 11s 0.4092 0.29% 36s 0.4072 0.24% 2.8m
EMNH-Aug 0.4302 -0.02% 11s 0.4106 -0.05% 35s 0.4079 0.07% 2.8m

Single-model-Aug
PMOCO-Aug 0.4294 0.16% 14s 0.4080 0.58% 36s 0.3969 2.77% 2.7m
WE-Add-Aug 0.4300 0.02% 14s 0.4103 0.02% 38s 0.4079 0.07% 2.5m
WE-CA-Aug 0.4301 0.00% 14s 0.4104 0.00% 37s 0.4082 0.00% 2.5m

Method
Bi-KP50 Bi-KP100 Bi-KP200

HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓

Non-learnable

WS-DP 0.3561 0.00% 22m 0.4532 0.02% 2.0h 0.3601 0.00% 5.8h
MOEA/D 0.3540 0.59% 1.6h 0.4508 0.55% 1.7h 0.3581 0.56% 1.8h
NSGA-II 0.3547 0.39% 7.8h 0.4520 0.29% 8.0h 0.3590 0.31% 8.4h
MOGLS 0.3540 0.59% 5.8h 0.4510 0.51% 10h 0.3582 0.53% 18h
PPLS/D-C 0.3528 0.93% 18m 0.4480 1.17% 47m 0.3541 1.67% 1.5h

Multi-model
DRL-MOA 0.3559 0.06% 9s 0.4531 0.04% 18s 0.3601 0.00% 1.0m
MDRL 0.3530 0.87% 6s 0.4532 0.02% 21s 0.3601 0.00% 1.2m
EMNH 0.3561 0.00% 6s 0.4535 -0.04% 21s 0.3603 -0.06% 1.2m

Single-model
PMOCO 0.3552 0.25% 9s 0.4523 0.22% 19s 0.3595 0.17% 1.3m
WE-Add 0.3558 0.08% 8s 0.4530 0.07% 20s 0.3600 0.03% 1.1m
WE-CA 0.3561 0.00% 9s 0.4533 0.00% 19s 0.3601 0.00% 1.1m

Method
Tri-TSP20 Tri-TSP50 Tri-TSP100

HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓

Non-learnable

WS-LKH 0.4712 0.00% 12m 0.4440 -0.20% 1.9h 0.5076 -0.79% 6.6h
MOEA/D 0.4702 0.21% 1.9h 0.4314 2.64% 2.2h 0.4511 10.42% 2.4h
NSGA-II 0.4238 10.06% 7.1h 0.2858 35.50% 7.5h 0.2824 43.92% 9.0h
MOGLS 0.4701 0.23% 1.5h 0.4211 4.97% 4.1h 0.4254 15.53% 13h
PPLS/D-C 0.4698 0.30% 1.4h 0.4174 5.80% 3.9h 0.4376 13.11% 14h

Multi-model
DRL-MOA 0.4699 0.28% 6s 0.4303 2.89% 9s 0.4806 4.57% 19s
MDRL 0.4699 0.28% 5s 0.4317 2.57% 9s 0.4852 3.65% 16s
EMNH 0.4699 0.28% 5s 0.4324 2.41% 9s 0.4866 3.38% 16s

Single-model
PMOCO 0.4693 0.40% 5s 0.4315 2.62% 8s 0.4858 3.53% 18s
WE-Add 0.4705 0.15% 6s 0.4379 1.17% 10s 0.4943 1.85% 20s
WE-CA 0.4707 0.11% 5s 0.4389 0.95% 9s 0.4976 1.19% 19s

Multi-model-Aug
MDRL-Aug 0.4712 0.00% 2.6m 0.4408 0.52% 25m 0.4958 1.55% 1.7h
EMNH-Aug 0.4712 0.00% 2.6m 0.4418 0.29% 25m 0.4973 1.25% 1.7h

Single-model-Aug
PMOCO-Aug 0.4712 0.00% 5.1m 0.4409 0.50% 28m 0.4956 1.59% 1.7h
WE-Add-Aug 0.4712 0.00% 5.1m 0.4429 0.05% 29m 0.5016 0.40% 1.8h
WE-CA-Aug 0.4712 0.00% 5.2m 0.4431 0.00% 29m 0.5036 0.00% 1.7h
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Table 2: Results of unified training across sizes with 200 random instances for MOCO problems.

Method
Bi-TSP20 Bi-TSP50 Bi-TSP100 Bi-TSP

HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓ Avg. Gap↓

MORAM 0.6216 0.88% 1s 0.6255 2.45% 2s 0.6821 3.48% 3s 2.27%
CNH 0.6270 0.02% 14s 0.6387 0.39% 17s 0.7019 0.68% 29s 0.36%
PMOCO-50 0.6262 0.14% 6s 0.6351 0.95% 10s 0.6915 2.15% 19s 1.08%
PMOCO-U 0.6111 2.55% 7s 0.5939 7.38% 11s 0.6417 9.20% 21s 6.38%
WE-CA-50 0.6267 0.06% 6s 0.6391 0.33% 10s 0.6988 1.12% 19s 0.50%
WE-CA-U 0.6270 0.02% 7s 0.6392 0.31% 10s 0.7034 0.47% 21s 0.26%

CNH-Aug 0.6271 0.00% 1.5m 0.6410 0.03% 4.1m 0.7054 0.18% 16m 0.07%
PMOCO-50-Aug 0.6270 0.02% 1.0m 0.6395 0.27% 3.2m 0.6977 1.27% 15m 0.52%
PMOCO-U-Aug 0.6253 0.29% 1.0m 0.6126 4.46% 3.3m 0.6558 7.20% 15m 3.98%
WE-CA-50-Aug 0.6272 -0.02% 1.0m 0.6412 0.00% 3.3m 0.7034 0.47% 15m 0.15%
WE-CA-U-Aug 0.6271 0.00% 1.0m 0.6413 -0.02% 3.3m 0.7066 0.01% 16m 0.00%

Method
Bi-CVRP20 Bi-CVRP50 Bi-CVRP100 Bi-CVRP

HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓ Avg. Gap↓

CNH 0.4287 0.33% 15s 0.4087 0.41% 17s 0.4065 0.42% 31s 0.39%
PMOCO-50 0.4191 2.56% 9s 0.4036 1.66% 12s 0.4014 1.67% 26s 1.96%
PMOCO-U 0.4275 0.60% 8s 0.4068 0.88% 13s 0.4044 0.93% 25s 0.80%
WE-CA-50 0.4238 1.46% 7s 0.4090 0.34% 12s 0.4025 1.40% 25s 1.07%
WE-CA-U 0.4290 0.26% 7s 0.4089 0.37% 12s 0.4068 0.34% 26s 0.32%

CNH-Aug 0.4299 0.05% 22s 0.4101 0.07% 45s 0.4077 0.12% 2.5m 0.08%
PMOCO-50-Aug 0.4270 0.72% 15s 0.4080 0.58% 36s 0.4051 0.76% 2.4m 0.69%
PMOCO-U-Aug 0.4296 0.12% 15s 0.4095 0.22% 40s 0.4071 0.27% 2.4m 0.20%
WE-CA-50-Aug 0.4277 0.56% 15s 0.4104 0.00% 37s 0.4056 0.64% 2.5m 0.40%
WE-CA-U-Aug 0.4300 0.02% 14s 0.4103 0.02% 40s 0.4081 0.02% 2.5m 0.02%

Method
Bi-KP50 Bi-KP100 Bi-KP200 Bi-KP

HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓ Avg. Gap↓

CNH 0.3556 0.14% 18s 0.4527 0.13% 27s 0.3598 0.08% 1.2m 0.12%
PMOCO-100 0.3548 0.37% 11s 0.4523 0.22% 19s 0.3527 2.05% 1.0m 0.88%
PMOCO-U 0.3503 1.63% 10s 0.4484 1.08% 19s 0.3536 1.81% 1.0m 1.50%
WE-CA-100 0.3559 0.06% 10s 0.4533 0.00% 19s 0.3591 0.28% 1.0m 0.11%
WE-CA-U 0.3558 0.08% 9s 0.4531 0.04% 21s 0.3602 -0.03% 1.1m 0.03%

Method
Tri-TSP20 Tri-TSP50 Tri-TSP100 Tri-TSP

HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓ Avg. Gap↓

MORAM 0.4573 2.95% 1s 0.4101 7.45% 2s 0.4588 8.90% 3s 6.43%
CNH 0.4698 0.30% 10s 0.4358 1.65% 14s 0.4931 2.08% 26s 1.34%
PMOCO-50 0.4682 0.64% 6s 0.4315 2.62% 8s 0.4824 4.21% 21s 2.49%
PMOCO-U 0.4691 0.45% 7s 0.4318 2.55% 10s 0.4873 3.24% 21s 2.08%
WE-CA-50 0.4691 0.45% 5s 0.4389 0.95% 9s 0.4877 3.16% 20s 1.52%
WE-CA-U 0.4707 0.11% 5s 0.4389 0.95% 9s 0.4975 1.21% 20s 0.76%

CNH-Aug 0.4704 0.17% 8.0m 0.4409 0.50% 33m 0.4996 0.79% 2.1h 0.49%
PMOCO-50-Aug 0.4713 -0.02% 5.2m 0.4409 0.50% 28m 0.4933 2.05% 1.7h 0.84%
PMOCO-U-Aug 0.4712 0.00% 5.2m 0.4406 0.56% 31m 0.4968 1.35% 1.7h 0.64%
WE-CA-50-Aug 0.4711 0.02% 5.3m 0.4431 0.00% 29m 0.4991 0.89% 1.9h 0.30%
WE-CA-U-Aug 0.4712 0.00% 5.2m 0.4432 -0.02% 31m 0.5035 0.02% 1.8h 0.00%

is compared with the addition model (WE-Add), conditional embedding model (WE-CA w/o A),
and attention model (WE-CA w/o C). All results are presented in Appendix H, and we observe that
WE-CA achieves the best performance, which verified our design for weight-instance interaction.

Optimality on scalarized subproblems. To study the optimality on decomposed subproblems, the
scalarized objective values of three representative subproblems associated with λ = (1, 0), (0.5, 0.5),
and (0, 1) on Bi-TSP100 are recorded in Table 4. The single-objective methods, LKH and POMO,
specialized on the three subproblems are also included. Among the neural MOCO methods, WE-CA
achieves the smallest gaps on all three subproblems. Compared with four weight embedding methods,
PMOCO, EMNH, and MDRL all yield significant gaps, especially on the two extreme subproblems.
WE-CA w/o A displays the superiority on the two extreme subproblems, while WE-CA w/o C exhibits
the close performance on all subproblems. Beyond them, our WE-CA effectively combines their
advantages on all subproblems, resulting in the best overall performance on the MOCO problems.

Unnecessariness of problem size embedding for size generalization. CNH uses an extra size-aware
decoder to learn the problem size embedding (PSE) by the sinusoidal positional encoding. However,
PSE is unscalable when the problem size is larger than the predefined maximum of the sinusoidal
positional encoding (we set 300, 200, 300, and 200 for Bi-TSP, Bi-CVRP, Bi-KP, and Tri-TSP,
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Table 3: Out-of-distribution generalization results on 200 random instances for larger-size problems.

Method
Bi-TSP150 Bi-TSP200

HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓

WS-LKH 0.7149 -1.71% 13h 0.7490 -2.50% 22h
MOEA/D 0.6809 3.13% 2.4h 0.7139 2.30% 2.7h
NSGA-II 0.6659 5.26% 6.8h 0.7045 3.59% 6.9h
MOGLS 0.6768 3.71% 22h 0.7114 2.64% 38h
PPLS/D-C 0.6784 3.49% 21h 0.7106 2.75% 32h

MORAM 0.6711 4.52% 4s 0.7024 3.87% 7s
DRL-MOA 0.6901 1.82% 45s 0.7219 1.20% 1.5m
MDRL 0.6922 1.52% 40s 0.7251 0.77% 1.4m
EMNH 0.6930 1.41% 40s 0.7260 0.64% 1.4m
PMOCO 0.6910 1.69% 50s 0.7231 1.04% 1.5m
WE-CA 0.6991 0.54% 56s 0.7264 0.59% 1.6m
CNH 0.6985 0.63% 1.1m 0.7292 0.21% 1.9m
WE-CA-U 0.7008 0.30% 57s 0.7346 -0.53% 1.6m

MDRL-Aug 0.6976 0.75% 47m 0.7299 0.11% 1.6h
EMNH-Aug 0.6983 0.65% 47m 0.7307 0.00% 1.6h
PMOCO-Aug 0.6967 0.88% 47m 0.7283 0.33% 1.6h
WE-CA-Aug 0.7029 0.00% 51m 0.7307 0.00% 1.7h
CNH-Aug 0.7025 0.06% 52m 0.7343 -0.49% 1.7h
WE-CA-U-Aug 0.7044 -0.21% 50m 0.7381 -1.01% 1.7h

Table 4: The results of scalarized objectives on 200 random instances for various subproblems.

Method
Bi-TSP100

g(π|(1, 0))↓ Gap↓ g(π|(0.5, 0.5))↓ Gap↓ g(π|(0, 1))↓ Gap↓

LKH 7.7632 0.00% 17.3094 0.00% 7.7413 0.00%
POMO-Aug 7.7659 0.03% 17.4421 0.77% 7.7716 0.39%

MDRL-Aug 8.0316 3.46% 17.6209 1.80% 8.0290 3.72%
EMNH-Aug 8.0620 3.85% 17.5979 1.67% 8.0439 3.91%
PMOCO-Aug 8.1401 4.85% 17.5723 1.52% 8.1202 4.89%
WE-Add-Aug 7.8389 0.98% 17.5228 1.23% 7.8130 0.93%
WE-CA w/o A-Aug 7.8202 0.73% 17.5271 1.26% 7.7939 0.68%
WE-CA w/o C-Aug 7.8417 1.01% 17.4847 1.01% 7.8123 0.92%
WE-CA-Aug 7.8198 0.73% 17.4633 0.89% 7.7937 0.68%

Table 5: Effect of problem size embedding on cross-size generalization.

Method
Bi-TSP20 Bi-TSP50 Bi-TSP100 Bi-TSP

HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓ Avg. Gap↓ Training time↓

CNH 0.6270 0.02% 14s 0.6387 0.39% 17s 0.7019 0.68% 29s 0.36% 30h
WE-CA-PSE-Enc 0.6270 0.02% 13s 0.6392 0.31% 16s 0.7033 0.48% 29s 0.27% 30h
WE-CA-PSE-Dec 0.6270 0.02% 14s 0.6390 0.34% 18s 0.7030 0.52% 30s 0.29% 30h
WE-CA-U 0.6270 0.02% 7s 0.6392 0.31% 10s 0.7034 0.47% 21s 0.26% 19h

respectively). Moreover, PSE results in much more solving and training time, as reported in Table
5. We also apply PSE to our WE-CA in two ways, i.e., injecting PSE into the decoder as the same
with CNH and into the encoder as a variant, denoted as WE-CA-PSE-Dec and WE-CA-PSE-Enc,
respectively. However, PSE slightly damages the performance of WE-CA, and also considerably
increases solving and training time. This is because our method inherently possesses cross-size
generalization capability learned directly from data. These results indicate that PSE is unnecessary
for our weight embedding method, again underscoring the elegance and superiority of our WE.

6 CONCLUSION

This paper proposes a neat weight embedding method to effectively solve MOCO problems. By
directly learning weight-specific representations, our method captures crucial weight-instance interac-
tions, thereby reducing the optimality gaps. Extensive results on MOTSP, MOCVRP, and MOKP
showed that our method surpasses the state-of-the-art neural methods and even manifests favored
cross-size generalization capability. We acknowledge certain limitations: To effectively address
real-world MOCO problems with complex constraints, this method may require further integration
with appropriate constraint-handling techniques. Besides, the application of more sophisticated
sampling and learning techniques across different problem sizes could further improve generalization.
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A SUMMARY OF THE DECOMPOSITION-BASED NEURAL MOCO METHODS

The characteristics of the decomposition-based neural MOCO methods are summarized in Table
6. Our weight embedding methods, which yield new state-of-the-art performance, adopt neat extra
techniques beyond the single-objective model to handle all subproblems. Specifically, our succinct
WE-Add only employs the addition with negligible complexity, which brings the smallest number
of model parameters yet outperforms most neural methods. Our enhanced WE-CA couples the
conditional embedding mechanism with the attention mechanism, achieving the superior performance
with the smaller number of model parameters compared with the state-of-the-art neural methods.

B DETAILS OF MOCO PROBLEMS

B.1 MULTI-OBJECTIVE TRAVELING SALESMAN PROBLEM

Problem statement For the multi-objective traveling salesman problem (MOTSP) with n nodes,
node i ∈ {1, ..., n} has M groups of 2-dimensional coordinates, where M is the number of objectives.
The m-th Euclidean distance cmij between node i and j is calculated by their m-th coordinate. The
goal is to find a solution π visiting all nodes to minimize all the M total distances simultaneously,
i.e., min f(π) = (f1(π), f2(π), . . . , fM (π)), where fm(π) = cmπn,π1

+
∑n−1

i=1 cmπi,πi+1
,∀m ∈

{1, . . . ,M}.

Instance generation For the M -objective TSP, the coordinates of each instance are sampled from
uniform distribution on [0, 1]2M .

Node features and context embedding The inputs of the M -objective TSP are n nodes with
2M -dimensional features. At each decoding step, the context embedding hc is defined as the
concatenation of the embedding of the first visited node and the embedding of the last visited node.
All the visited nodes are masked.

B.2 MULTI-OBJECTIVE CAPACITATED VEHICLE ROUTING PROBLEM

Problem statement We consider bi-objective capacitated vehicle routing problem (Bi-CVRP) with
n customer nodes and a depot node. Each node is featured by a 2-dimensional coordinate, and each
customer node involves a demand. A fleet of homogeneous vehicles with identical capacity initialized
at the depot must serve all the customers and finally return to the depot. The remaining capacity of
vehicles must be no less than the demand of the customer when serving each customer. The two
conflicting objectives are the total tour length and the makespan, i.e., the length of the longest route.

Instance generation For Bi-CVRP, the coordinates of the depot and customers are sampled from
uniform distribution on [0, 1]2. The demand is uniformly sampled from {1, . . . , 9}. The vehicle
capacity is set as 30, 40, and 50 for 20 ≤ n < 40, 40 ≤ n < 70, and 70 ≤ n ≤ 100, respectively.
Without loss of generality, the demands are normalized by the capacity.

Node features and context embedding The inputs of Bi-CVRP are n customer nodes with 3-
dimensional features and a depot node with 2-dimensional features. Their initial embeddings are

Table 6: Summary of the decomposition-based neural MOCO methods.

Method Extra techniques for subproblems Flexibility #(Parameters) Performance

DRL-MOA Transfer learning Multi-model 133.37M large gap
MDRL Meta learning Multi-model 133.37M medium gap
EMNH Meta learning Multi-model 133.37M medium gap

MORAM Weight router Single-model 1.30M large gap
PMOCO Hypernetwork Single-model 1.50M large gap

CNH Size-aware decoder Single-model 1.63M small gap, good generalization

WE-Add Addition Single-model 1.27M small gap
WE-CA Feature-wise linear projection Single-model 1.47M smallest gap, best generalization
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Algorithm 1 Training algorithm

1: Input: weight distribution Λ, instance distribution Sn on problem size n, number of training
steps E, batch size B

2: Initialize the model parameters θ
3: for e = 1 to E do
4: if training a specialized model on a fixed size n then
5: si ∼ SampleInstance(Sn) ∀i ∈ {1, · · · , B}
6: else if training a unified model across various sizes then
7: n ∼ SampleSize(N ), si ∼ SampleInstance(Sn) ∀i ∈ {1, · · · , B}
8: end if
9: λ ∼ SampleWeight(Λ)

10: πj
i ∼ SampleSolution(P (π|λ, si)) ∀i ∈ {1, · · · , B} ∀j ∈ {1, · · · , n}

11: bi ← 1
n

∑n
j=1 g(π

j
i |λ, si) ∀i ∈ {1, · · · , B}

12: ∇J (θ)← 1
Bn

∑B
i=1

∑n
j=1[(g(π

j
i |λ, si)− bi)∇θ logP (πj

i |λ, si)]
13: θ ← Adam(θ,∇J (θ))
14: end for
15: Output: The model parameter θ

derived by two separate linear projections. At each decoding step, the context embedding hc is
defined as the concatenation of the embedding of the last visited node and the remaining vehicle
capacity. All the visited nodes and those with a larger demand than the remaining vehicle capacity
are masked.

B.3 MULTI-OBJECTIVE KNAPSACK PROBLEM

Problem statement For the multi-objective knapsack problem (MOKP) with M objectives and n
items, each item involves a weight and M separate values. The goal is to find a solution to maximize
all the M objectives simultaneously without violating the knapsack capacity.

Instance generation The values and weight of each item are all sampled from uniform distribution
on [0, 1]. The knapsack capacity is set as 12.5 and 25 for 50 ≤ n < 100 and 100 ≤ n ≤ 200,
respectively.

Node features and context embedding The inputs of Bi-KP are n nodes (i.e., items) with 3-
dimensional features. At each decoding step, the context embedding hc is defined as the concatenation
of the graph embedding h̄ =

∑n
i=1 hi/n and the remaining knapsack capacity. All the selected items

and those with a larger weight than the remaining knapsack capacity are masked.

C TRAINING ALGORITHM

The training algorithm is provided in Algorithm 1. To train a unified model with cross-size general-
ization capability, we sample instances from various problem sizes (as in Line 7).

D PARALLEL INFERENCE FOR SUBPROBLEMS

Most of the existing neural MOCO methods learn weight-specific model parameters for the corre-
sponding subproblems. It is difficult for these methods to implement parallel solving of subproblems,
since they need to handle a batch of N deep neural networks in parallel. By contrast, our method
directly inputs the weight vector into the deep model and learns weight-specific representations,
which can easily tackle a batch of N weight vectors in mainstream deep learning frameworks such
as Pytorch. The total runtime for solving all subproblems in parallel is reported in Table 7. As
shown, parallel inference for subproblems can curtail the solving time. Notably, the solving speed
is not accelerated to N times actually, because it also depends on the memory capacity and parallel
computing capability.
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Table 7: Running time of solving subproblems in parallel.

Method Bi-TSP20 Bi-TSP50 Bi-TSP100 Bi-CVRP20 Bi-CVRP50 Bi-CVRP100 KroAB100 KroAB150 KroAB200

WE-CA 6s 10s 20s 6s 12s 25s 9s 19s 25s
WE-CA (parallel) 2s 4s 15s 3s 6s 19s 1s 1s 2s

f (x5)

f (x4)

f (x3)

f (x2)

0 f1

f2
r

f (x1)

Figure 3: Hypervolume illustration.

Table 8: Reference points and ideal points.

Problem Size r z

Bi-TSP

20 (20, 20) (0, 0)
50 (35, 35) (0, 0)

100 (65, 65) (0, 0)
150 (85, 85) (0, 0)
200 (115, 115) (0, 0)

Bi-CVRP
20 (30, 4) (0, 0)
50 (45, 4) (0, 0)

100 (80, 4) (0, 0)

Bi-KP
50 (5, 5) (30, 30)

100 (20, 20) (50, 50)
200 (30, 30) (75, 75)

Tri-TSP
20 (20, 20, 20) (0, 0)
50 (35, 35, 35) (0, 0)

100 (65, 65, 65) (0, 0)

E HYPERVOLUME INDICATOR

Hypervolume (HV) is a mainstream indicator to evaluate the performance of MOCO methods, as it
can comprehensively measure the optimality and diversity of the obtained Pareto front without the
ground truth. HVr(F) of a Pareto front F with respect to a reference point r ∈ RM is defined as
follows,

HVr(F) = µ

 ⋃
f(x)∈F

[f(x), r]

 , (12)

where µ is the Lebesgue measure, and [f(x), r] is an M -dimensional cube, i.e., [f(x), r] =
[f1(x), r1]× · · · × [fM (x), rM ]. A 2-dimensional example of a Pareto front with five solutions is
demonstrated in Figure 3, where F = {f(x1),f(x2),f(x3),f(x4),f(x5)}. HVr(F) is equal to
the size of the gray area.

HV is finally normalized as HV′
r(F) = HVr(F)/

∏M
i=1 |ri−zi|, where z is an ideal point satisfying

zi < min{fi(x)|f(x) ∈ F} (or zi > max{fi(x)|f(x) ∈ F} for the maximization problem),
∀i ∈ {1, . . . ,M}. All methods share the same r and z for a MOCO problem, as given in Table 8.

F INSTANCE AUGMENTATION

In the inference phase, instance augmentation (Lin et al., 2022a) can be applied to boost the per-
formance. Specifically, an instance can be transformed into others that share the same optimal
solution. All transformed instances are then solved and the best solution is finally selected. An
instance of Bi-CVRP has 8 transformations with respect to the 2-dimensional coordinates, i.e.,
{(x, y), (y, x), (x, 1 − y), (y, 1 − x), (1 − x, y), (1 − y, x), (1 − x, 1 − y), (1 − y, 1 − x)}. An
instance of M -objective TSP has 8M transformations due to the full permutation of M groups of
2-dimensional coordinates.

G DETAILED RESULTS ON BENCHMARK INSTANCES

The detailed results of our method and other baselines on benchmark instances are provided in Table
9, which reveal the superior generalization capability of our method.
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Table 9: Detailed results on benchmark instances.

Method
KroAB100 KroAB150 KroAB200

HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓

WS-LKH 0.7022 -0.36% 2.3m 0.7017 -1.05% 4.0m 0.7430 -2.07% 5.6m
MOEA/D 0.6836 2.30% 5.8m 0.6710 3.37% 7.1m 0.7106 2.38% 7.3m
NSGA-II 0.6676 4.59% 7.0m 0.6552 5.65% 7.9m 0.7011 3.68% 8.4m
MOGLS 0.6817 2.57% 52m 0.6671 3.93% 1.3h 0.7083 2.69% 1.6h
PPLS/D-C 0.6785 3.03% 38m 0.6659 4.10% 1.4h 0.7100 2.46% 3.8h

MORAM 0.6723 3.92% 2s 0.6603 4.91% 2s 0.6955 4.45% 2s
DRL-MOA 0.6903 1.34% 10s 0.6794 2.16% 18s 0.7185 1.29% 23s
MDRL 0.6881 1.66% 10s 0.6831 1.63% 17s 0.7209 0.96% 23s
EMNH 0.6900 1.39% 9s 0.6832 1.61% 16s 0.7217 0.85% 23s
PMOCO 0.6878 1.70% 9s 0.6819 1.80% 17s 0.7193 1.18% 23s
WE-CA 0.6959 0.54% 9s 0.6898 0.66% 19s 0.7232 0.65% 25s
CNH 0.6947 0.71% 25s 0.6892 0.75% 35s 0.7250 0.40% 41s
WE-CA-U 0.6948 0.70% 9s 0.6924 0.29% 19s 0.7317 -0.52% 26s

MDRL-Aug 0.6950 0.67% 13s 0.6890 0.78% 19s 0.7261 0.25% 28s
EMNH-Aug 0.6958 0.56% 12s 0.6892 0.75% 18s 0.7270 0.12% 27s
PMOCO-Aug 0.6937 0.86% 12s 0.6886 0.84% 19s 0.7251 0.38% 32s
WE-CA-Aug 0.6997 0.00% 14s 0.6944 0.00% 23s 0.7279 0.00% 38s
CNH-Aug 0.6980 0.24% 30s 0.6938 0.09% 37s 0.7303 -0.33% 54s
WE-CA-U-Aug 0.6990 0.10% 14s 0.6957 -0.19% 23s 0.7349 -0.96% 39s
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Figure 4: Effect of weight-instance interaction via different parts
of the model. (a) Bi-TSP100. (b) Bi-CVRP100.
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Figure 5: Effect of different
weight embedding models.

H DETAILED RESULTS OF DIFFERENT PATTERNS OF WEIGHT-INSTANCE
INTERACTION

The results of weight-instance interaction via different parts of the model are presented in Figure 4.
WE-CA outperforms WE-CA-Dec, which only employs the decoder to interact weight information
with instance information. In addition, PMOCO-Enc and PMOCO-All, both using the whole model
for weight-instance interaction, are both superior to PMOCO, but inferior to WE-CA. These results
illustrate that our weight embedding method using the the whole model is an effective way for
weight-instance interaction. Moreover, as shown in Figure 5, WE-CA surpasses the basic addition
model (WE-Add), conditional embedding model (WE-CA w/o A), and attention model (WE-CA w/o
C), which verifies our model design.
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Table 10: Results of different numbers of weight vectors during inference.

Method
Tri-TSP20 Tri-TSP50 Tri-TSP100

HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓ HV↑ Gap↓ Time↓

WS-LKH 0.4712 0.00% 12m 0.4440 -0.20% 1.9h 0.5076 -0.79% 6.6h

PMOCO (N = 105) 0.4693 0.40% 5s 0.4315 2.62% 8s 0.4858 3.53% 18s
WE-CA (N = 105) 0.4707 0.11% 5s 0.4389 0.95% 9s 0.4976 1.19% 19s

PMOCO (N = 1035) 0.4735 -0.49% 34s 0.4460 -0.65% 1.1m 0.5052 -0.32% 2.9m
WE-CA (N = 1035) 0.4745 -0.70% 36s 0.4531 -2.26% 1.2m 0.5171 -2.68% 3.0m

PMOCO (N = 10011) 0.4744 -0.68% 4.9m 0.4497 -1.49% 10m 0.5110 -1.47% 27m
WE-CA (N = 10011) 0.4753 -0.87% 5.4m 0.4566 -3.05% 11m 0.5225 -3.75% 29m
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Figure 6: Pareto fronts derived by different numbers of weight vectors on Tri-TSP50. (a) PMOCO
(N = 105). (b) PMOCO (N = 1035). (c) PMOCO (N = 10011). (d) WE-CA (N = 105). (e)
WE-CA (N = 1035). (f) WE-CA (N = 10011).

I HYPERPARAMETER STUDY

I.1 STUDY ON THE NUMBER OF WEIGHT VECTORS DURING INFERENCE

Our method has high flexibility to deal with impromptu weight vectors during inference. We study
the effect of the number of weight vectors that are all generated by the Das & Dennis (1998) method.
According to Table 10 and Figure 6, our method can produce a denser Pareto front with better
performance when using more weight vectors. Commendably, due to the smaller optimality gaps of
our method on subproblems, our WE-CA with 1035 weight vectors even outperforms PMOCO with
10011 weight vectors, although they can both deliver well-distributed solutions.

To visually demonstrate the optimality of our WE-CA, we project the Pareto fronts at 2-dimensional
planes, i.e., the f1–f2, f1–f3, and f2–f3 plane, as depicted in Figure 7. Apparently, all three objective
values of the solutions delivered by WE-CA are smaller than that by PMOCO, which again verifies
the superiority of our WE-CA for solving subproblems.

19



Published as a conference paper at ICLR 2025

5 10 15 20 25
f1

5

10

15

20

25

f 2

Tri-TSP50 (N=1035)
WE-CA (HV: 0.4531)
PMOCO (HV: 0.4460)

(a)

5 10 15 20 25
f1

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

f 3

Tri-TSP50 (N=1035)
WE-CA (HV: 0.4531)
PMOCO (HV: 0.4460)

(b)

5 10 15 20 25
f2

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

f 3

Tri-TSP50 (N=1035)
WE-CA (HV: 0.4531)
PMOCO (HV: 0.4460)

(c)

Figure 7: Pareto fronts obtained by WE-CA and PMOCO on Tri-TSP50. (a) Projection at the f1–f2
plane. (b) Projection at the f1–f3 plane. (c) Projection at the f2–f3 plane.
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Figure 8: Results of different scalarization methods. (a) Pareto fronts on Bi-TSP50. (b) Pareto fronts
obtained by WE-CA-WS on Tri-TSP50. (c) Pareto fronts obtained by WE-CA-TCH on Tri-TSP50.

I.2 STUDY ON THE SCALARIZATION METHOD

Our decomposition-based method can adopt various scalarization methods, including the represen-
tative weighted sum (WS) and Tchebycheff (TCH). WS uses the simplest linear combination to
effectively handle convex Pareto fronts, as follows,

min
x∈X

gws(x|λ) =
M∑

m=1

λmfm(x). (13)

By contrast, TCH can tackle the concave PF , but it would lead to a more complicated scalarized
objective, as follows,

min
x∈X

gtch(x|λ) = max
1≤m≤M

{λm|fm(x)− zm|}, (14)

where z is an ideal point satisfying zm < minx∈X fm(x).

The results in Figure 8 indicate that WS is a simple yet superior scalarization method to TCH for
the studied problems. Although TCH has stronger theoretical properties, the raised complexity of
the scalarized subproblems leads to more difficulty in finding the optimal solution, as shown in
Figure 8(a). In addition, Different scalarization methods result in different solution distributions. As
demostrated in Figures 8(b) and 8(c), WS generates more uniformly distributed solutions, while TCH
produces solutions that are sparser internally and denser at the edges.
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