
 

 

  

Abstract— Developing algorithms to detect seizures in 
neonatal electroencephalogram (EEG) signals is an important 
area of research. Identifying neonatal seizures is a time-
consuming process that requires specially trained experts. Most 
neonatal seizure detection algorithms use supervised learning 
and require large datasets of labelled EEG for training. However, 
EEG is a complex physiological signal, and expert annotators 
often have disagreements when identifying seizures in infants. 
Most studies with multiple expert annotators compress the 
annotations down to one ‘ground truth’ set of labels during 
algorithm training, this may lead to a loss of valuable 
information. This study investigates if preserving the 
disagreement of multiple expert annotators during training 
improves model performance. Three variations of a deep learning 
architecture are compared experimentally; each one varies in 
how annotator disagreements are accounted for. The results 
indicate that there is value in modelling expert annotations 
separately in supervised learning algorithms. This study proposes 
architectures that harness expert variability by learning from 
both the agreement and disagreement in an open-source dataset 
of neonatal EEGs. 

Clinical Relevance— This work demonstrates how a more 
holistic approach to neonatal seizure detection algorithm 
development, incorporating opinions of all annotators, improves 
algorithm results and better reflects the standards of clinical care.  

I. INTRODUCTION 

Neonatal seizures are often the first indication of a serious 
underlying medical condition [1]. Seizures have a reported 
incidence rate of 1-5 per 1000 neonates, but identifying 
seizures is challenging as they usually present no clear clinical 
signs [2]. The gold-standard for the reliable detection of 
neonatal seizures is continuous multi-channel EEG 
monitoring, but this requires expertise, time, and costly 
equipment for set-up, interpretation, and diagnosis. These 
challenges have prompted the development of automated 
algorithms for neonatal seizure detection [3], [4], [5]. 

Currently the state-of-the-art algorithms for neonatal 
seizure detection use deep learning to automatically extract 
hierarchical layers of patterns from labelled datasets of EEG. 
An algorithm that utilizes labelled training data is a supervised 
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learning algorithm, and in particular for deep learning models, 
these algorithms are known to be data hungry [6]. When data 
and specifically labelled data are limited, innovative 
development has come from the efficient use of the available 
data; a recent study utilized pseudo-labelling of test data which 
increased the amount of labelled data for training and led to 
improved performance, other studies use data augmentation to 
artificially generate new training samples [7], [8].  

In the domain of neonatal seizure detection, labelled 
training data comes from expert EEG annotators who review 
hours of multi-channel EEG and assign binary labels {seizure 
or no-seizure} across the temporal dimension. Even among 
experts there can be variations in these binary labels due to the 
subjective nature of this visual task [9]. Previous works have 
studied methods of combining these individual expert 
annotations into a single ground truth label that can be used for 
training and testing supervised algorithms [10]. Using 
consensus labels from experts reduces label noise, but a 
downside of this is that potentially valuable information may 
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Figure 1 Examples of expert seizure annotations for four EEG 
segments showing: A) annotators disagreeing on seizure events, 
B) agreement on some events but one annotator noted additional 
short seizures, C) two of the three annotators noted seizures, D) a 
case where there is high agreement among experts. 



 

 

be lost. This study seeks to understand the value of learning 
from individual expert insights and to investigate if modelling 
expert variability during training can lead to improved model 
performance [11]. 

II. METHODOLOGY 

A. Dataset description 

A publicly available dataset of multi-channel neonatal 
EEG with seizures annotated by three clinical experts is used 
in all experiments [12]. The dataset contains 112 hours of EEG 
from 79 infants and was recorded in the NICU of Helsinki 
University Hospital between 2010 and 2014. The EEG data are 
represented using a referential montage of 19 electrodes. 
In this work a bipolar montage of 8 channels is used: [F4-C4; 
C4-O2; F3-C3; C3-O1; T4-C4; C4-Cz; Cz-C3; C3-T3]. 

Three clinical experts, each with over 10 years’ experience, 
reviewed the entire dataset and annotated seizure events. A 
Fleiss’ kappa agreement value of 0.767 was reported, 
representing a very high agreement across three annotators 
[12]. Despite this high-level of agreement and the expertise of 
these reviewers, there are still many seizure events, and even 
entire recordings, where there is disagreement among 
annotators. In Figure 1, four example EEG segments were 
selected and the corresponding expert annotations are shown. 

During preprocessing the EEG is downsampled from 
256Hz to 50Hz, this reduces the size of the data and results in 
less computational complexity and shorter run time during 
model development. A high and low pass filter of 0.5Hz and 
15Hz respectively are used to filter the EEG signal to a range 
that includes the dominant frequencies of EEG seizures [13]. 

The multi-channel EEG is segmented into 16 second windows 
with a 4 second shift between windows. 

B. Architecture 

Three different experimental architectures are proposed, 
all utilizing the labels from three annotators, but each one 
employing varying methods for amalgamating the information 
from individual experts. Seizures are clinically defined as 
having a duration of greater than 10 seconds [14], but in this 
study 16 second windows are used as input to the model. To 
fully represent short seizures and event edges in the training 
data a sequence-to-sequence architecture was employed. 
Windows that are partially labelled as seizure were included 
during training, by representing the label as a temporal 
sequence of 16 binary values. The base model convolutional 
neural network (CNN) is shown in Figure 2, and the three 
variations are:  

A) One model - consensus annotations 
A single CNN model is trained using the consensus seizure 
annotations from all three expert annotators. Windows of 
EEG where annotators disagree are not included in the 
training data. 

  

 

Figure 3 Diagram of the three different approaches: A) one 
model trained on consensus annotations, B) one model trained 
to predict the annotation of 3 experts separately, C) three models 
trained each with a set of labels from a particular expert. 

 

Figure 2 Base model architecture consisting of convolutional 
blocks followed by an attention layer. The final two fully connected 
layers map the 16s window of multi-channel EEG input to a 16s 
vector of per-second seizure decisions using a Sigmoid operation. 



 

 

B) One model - three heads 
A single CNN where the output layer is adapted to predict 
multiple labels, one for each annotator, across the 16 
second window. In this instance there are 3 annotators, so 
each “head” predicts the label of that expert for all samples.  

C) Three models - individual annotations 
Three CNNs where each individual model is trained with 
annotations from one specific expert.  

Figure 3 demonstrates how the information from 
individual expert annotators contributes to the models’ 
weights through the loss function. The degree to which the 
expertise of individual experts is blended decreases as we 
move from model A to model C, where the information from 
experts becomes more separated and distinct. 

C. Experimental Procedure 

A leave-one-patient-out (LOO) cross-validation routine 
was used to test model performance; 79 experiments were run, 
each used 78 patients for model training and 1 patient for 
model testing. In each experiment, the test patient was varied 
until all patients had been tested. All experiments were run 
using Python with PyTorch on AWS Sagemaker.  

In each LOO experiment, 10% of the training patients were 
used as a validation set. The model was trained for a maximum 
of 50 epochs using EarlyStopping monitoring AUC on the 
validation set. A Sequence-to-Sequence approach was used, 
the model input is an 8-channel 16 second window of 50Hz 
EEG (8x800 samples) and the model output is a 16 second 1Hz 
output (16 samples). TverskyLoss [15] was used as a loss 
function in combination with Adam optimizer and a learning 
rate scheduler applying a 25% reduction every 5 epochs. 

Each EEG window is 16 seconds long with a 12 second 
overlap between windows. At the model output, there is more 

than one predicted value for each second of EEG. The average 
of these values is calculated for each second and a 7-second 
moving average filter is applied followed by a binary decision 
threshold at 0.5. For models B and C, the output label is seizure 
if all three heads or three models predict seizure, otherwise the 
output label is non-seizure.  

D. Evaluation Metrics 

Models are tested by comparing them to the expert seizure 
annotations. Models are evaluated based on epoch-level 
performance: AUC (Area Under the Curve), MCC (Matthews 
Correlation Coefficient), and event-level performance: PPA 
(Positive Percentage Agreement), FDr/h (False Detection rate 
per hour), FDb (False Detection burden). Models are also 
tested by measuring their agreement with the human 
annotators to calculate an average Cohen’s kappa and Fleiss’ 
kappa statistic for each model. 

III. RESULTS 

The experimental results are presented in Figure 4. For 
each model, the results are reported when comparing against: 

• the individual experts (the dotted vertical line 
represents the range across the three annotators, and 
the solid horizontal line represents the average) 

• the majority voting of the three experts (the triangle) 

• the consensus annotations, only segments where all 
three experts agree on seizures are reported as 
seizures, all other segments are no seizure (the star) 

Across almost all metrics, the performance improves when 
incorporating the information from each annotator separately. 
The only metric where the model trained with consensus 
annotations (model A) outperforms the others is PPA, but this 

 

Figure 4 Results of the LOO experiments for models A, B, C. The green shaded areas show the inter-rater performance of the 3 
expert annotators for each metric. 



 

 

comes at the expense of having a relatively high number of 
false positives. Figure 4 also shows the models’ performances 
when compared with the agreement between expert 
annotators, green shading. 

IV. DISCUSSION 

This study shows the potential value in modelling 
individual experts separately and that valuable information is 
lost when expert annotations are merged. Model architectures 
that learn from variations between expert annotations report 
better performance and more closely mimic clinical experts. 
This improvement is evident in both epoch-level and event-
level metrics, indicating that the improvements may translate 
from a research setting to a clinical environment.  

Previous works have indicated that EEG segments with 
ambiguous labels should be removed from training datasets 
[10], but in an environment where data are limited and expert 
annotations are valuable, discarding data should be avoided. 
The proposed architecture shows that deep learning algorithms 
can learn from experts, even when there is disagreement. A 
takeaway from this work is the potential value in diversity and 
the varying insights of different experts. In Stevenson et al., it 
is noted that the clinical annotators and patients in the dataset 
all come from the same clinical center [12], this is a limitation 
of this work as changes in national guidelines, clinical training, 
equipment utilized, and many other factors could influence the 
EEG and expertise across centers. Future work would benefit 
from assessing the generalizability of these findings by testing 
on a held-out dataset recorded at a different center. 

When the results are compared with the inter-rater 
agreement between expert annotators, it shows that Model B 
and Model C approach expert level performance; previously a 
mean Fleiss’ kappa for an algorithm developed on this dataset 
of 0.646 was reported [3]. Comparing with the expert 
annotators in this manner, provides a clearer understanding of 
the potential performance of algorithms with respect to that of 
clinical experts. 

V. CONCLUSION 

This study demonstrates that there is valuable information 

in the individual labels from expert annotators and that deep 

learning models can be constructed to harness this 

information. By training separate networks, each focused on 

replicating an individual expert, the deep learning task more 

closely models how human knowledge is represented. The 

results suggest that future work in this area could benefit from 

modelling individual experts, rather than compressing their 

annotations using majority voting or consensus calculations 

during training. Performance results are limited by the size of 

the publicly available dataset utilized in this work.  
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