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Abstract

We propose a new Novelty Detection and One Class classifier, based on the smooth-
ness properties of orthogonal neural network, and on the properties of Hinge
Kantorovich Rubinstein (HKR) function. The classifier benefits from robustness
certificates against l2-attacks thanks to the Lipschitz constraint, whilst the HKR
loss allows to provably approximate the signed distance function to the boundary
of the distribution: the normality score induces by the classifier has a meaningful
interpretation in term of distance to the support. Finally, gradient steps in the input
space allows free generation of samples from the one class in a fashion that reminds
GAN or VAE.

Methodology

We assume we are given samples that are independently and identically sampled from a distribution
PX with compact support X ⊂ Rd. Let ∂X = X/X̊ the boundary of the distribution. Our goal is to
learn the Signed Distance Function [1] to the boundary.
Definition 1 (Signed Distance Function)
Let S : Rd → R be such that:

S(x) =
{
d(x, ∂X ) if x ∈ X ,
−d(x, ∂X ) otherwise.

(1)

Here d(x, ∂X ) = infz∈∂X ∥x− z∥2.

The value S(x) can be used as a normality score for one class classification.
Property 1 (Regularity of SDF). S fulfills the Eikonal equation: ∥∇xS(x)∥ = 1. In particular S is
1-Lipschitz with respect to l2-nom : ∀x, z ∈ Rd, ∥f(x)− f(z)∥2 ≤ ∥x− z∥2.

Orthogonal Neural Networks

Property 1 is the rational to parameterize S with an orthogonal neural network [2, 3, 4]. As noticed
in [5, 6] those networks are naturally linked to the signed distance function. In particular they fulfill
∥∇xf(x)∥ ≤ 1 on the whole input space.

They boasts a rich literature, specially for convolutional neural networks [7, 8, 9, 10, 11, 12, 13]. In
this work we use the Deel-Lip library1. They are based on the work of [14] that proved that universal
approximation in the set of 1-Lipschitz function was possible with normalized matrices; they suggest
to use orthogonal matrices in affine layers (i.e WT

i Wi = I) and GroupSort activation function to
counter vanishing gradient: GroupSort2(x)2i,2i+1 = [min (x2i, x2i+1),max (x2i, x2i+1)]. Details
about the architecture are given in appendix.

1https://github.com/deel-ai/deel-lip distributed under MIT license.
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(a) One cloud. (b) Two circles. (c) Two blobs. (d) Blob and cloud. (e) Two moons.

Figure 1: Contour plots of our method with Lipschitz (LIP) orthogonal network and Lhkr
m,λ (HKR)

loss on toy examples of Scikit-learn.

These networks benefit from several appealing properties: they are not subject to exploding nor
vanishing gradients [11], they generalize well [15, 5], they are certifiably robust against adversarial
attacks [16, 5], they are elegantly connected to optimal transport theory [17, 18], and their saliency
map [19] behave like counterfactual explanations [20].

Metric One Class Learning as special case of Binary Classification

The function fθ is an orthogonal neural network parameterized by θ. The idea is to learn by reformu-
lating one class learning of PX as a binary classification of PX against a carefully chosen adversarial
distribution Q(PX). We show there that it enjoys great properties when applied to orthogonal neural
networks, and that those theoretical results are corroborated by empirical performance.

Definition 2 (
B,ϵ∼ Complementary Distribution (informal))

Let Q be a distribution of compact support included in B, with disjoint support from PX that “fill”

the remaining space, with 2ϵ gap between X and supp Q. Then we write Q
B,ϵ∼ PX .

Definition 2 captures the idea of a “complementary distribution”, that can be made formal in appendix

with Definition 3. Binary classification between PX and any Q
B,ϵ∼ PX allows to build the the optimal

Signed Distance Function, with the use of hinge Kantorovich Rubinstein [18] loss.

Theorem 1
Signed Distance Learning with hKR loss. Let Lhkr

m,λ(yf(x)) = λmax (0,m− yf(x))− yf(x) be
the hinge Kantorovich Rubinstein loss, with margin m = ϵ, regularization λ > 0, prediction f(x)
and label y ∈ {−1, 1}. Let Q be a probability distribution on B. Let Ehkr(f) be the average loss:

Ehkr(f,PX , Q) := Ex∼PX
[Lhkr

m,λ(f(x))] + Ez∼Q[Lhkr
m,λ(−f(z))]. (2)

Let f∗ be such that:
f∗ ∈ arg inf

f∈Lip1(Rd,R)
Ehkr(f,PX , Q). (3)

Assume that Q
B,ϵ∼ PX . Then f∗ approximates the signed distance function over B:

∀x ∈ X ,S(x) = f∗(x)−m, ∀z ∈ supp Q,S(z) = f∗(z)−m. (4)

Moreover sign(f(x)) = sign(S(x)) for all x ∈ supp Q ∪ X .

If m = ϵ≪ 1, then we have f∗(x) ≈ S(x). We propose to seek Q through an alternating optimization
process: at every iteration t a proposal distribution Qt is used to train a classifier ft against PX by
minimizing empirical loss. Then, the proposal distribution is updated in Qt+1 based on the loss
induced by the optimal classifier ft.

Finding the complementary distribution by targeting the boundary

To ensure that supp Q ⊂ B we suggest to start from the uniform distribution: Q0 = U(B). Observe
that in high dimension, due to the curse of dimensionality, it is unlikely that a sample z ∼ Q0

fulfills z ∈ X . Indeed the data lies on a low dimensional manifold X for which Lebesgue measure is
negligible compared to B. Hence, in the limit of small sample size n ≪ ∞, a sample Zn ∼ Q⊗n

0
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fulfills Zn
B,ϵ∼ PX . However this is merely an advantage since the curse works both ways and yield a

high variance in samples Zn. Consequently the variance of the associated minimizers f0 of equation 3
will also exhibit a high variance, which may impede generalization and convergence speed.

Instead, the distribution Qt must be chosen to produce higher density in the neighborhood of the
boundary ∂X . The boundary is unknown, however the level set Lt = f−1

t ({−ϵ}) of the classifier
can be used as a proxy to improve the initial proposal Q0. We start from z0 ∼ Q0. We look for a dis-
placement δ ∈ Rd such that z + δ ∈ Lt. Taking inspiration from multidimensional Newton–Raphson
method we consider a linearization of ft:

ft(z0 + δ) ≈ ft(z0) + ⟨∇xft(z0), δ⟩. (5)

Condition ft(z0 + δ) ∈ Lt translates into ft(z0 + δ) = −ϵ. Hence we have:

δ = − ft(z0) + ϵ

∥∇xft(z0)∥2
∇xft(z0). (6)

The optimal displacement follows the direction of the gradient∇xft(z0) which coincides with the
direction of an optimal transportation plan, since the Lhkr

m,λ loss yields optimal transportation plans as
noticed in [18]. The term ∥∇xft(z0)∥ enjoys an interpretation as a Local Lipschitz Constant (see [21])
of ft around z0, that we know fulfills ∥∇xft(z0)∥ ≤ 1 when parametrized with an orthogonal neural
network. When ft is trained to perfection, the expression for δ simplifies to δ = −ft(z0)∇xft(z0)
thanks to Property 2.
Property 2 (Minimizers of Lhkr

m,λ are Gradient Norm Preserving (from [18])). Let f∗ be the solution
of Equation 3. Then for almost every z ∈ B we have ∥∇xft(z)∥ = 1.

In practice the exact minimizer f∗ is not always retrieved so the equation 6 applies more broadly to
imperfectly fitted classifiers. The final sample z′ ∼ Qt is obtained by generating a sequence of T
small steps to smooth the generation. The procedure is given in algorithm 1. In practice T can be
chosen very low (below 16) without significantly hurting the quality of generated samples. Finally,
we pick a random “learning rate” η ∼ U([0, 1]) for each negative example in the batch to ensure they
distribute evenly on the path toward the boundary.
Remark. In high dimension d ≫ 1, when ∥∇xft(z)∥ = 1 and Vol(B) ≫ Vol(X ) the samples
obtained with algorithm 1 are approximately uniformly distributed on the level sets of ft. It implies
that the density of Q increases exponentially fast (with factor d) with respect to the value of −|ft(·)|.
This mitigates the adverse effects of the curse of dimensionality.

This scheme of “generating samples by following gradient in input space” reminds of diffusion
models [22], feature vizualization tools [23], or recent advances in VAE [24]. However no elaborated
scheme is required for the training of ft: orthogonal networks exhibit smooth and interpretable
gradients [20] which allows sampling from X “for free” as illustrated in figure 2.

Alternating minimization for Metric One Class learning

The sequence of classifiers ft does not need to be trained from scratch - that would be too expensive.
Instead, the same architecture f· is kept throughout training, and the algorithm produces a sequence
of parameters θt such that ft = fθt . Each set of parameters θt is used as high quality initialization for
the next one θt+1. Similarly, the distribution Qt can be updated at high pace to take advantage of the
fast convergence of ft. In the limit, each mini-batch at time step t can be sampled from a different Qt.
The final procedure is depicted in algorithm 2.

Orthogonal neural networks benefit from structural robustness [5] and certificates against l2-
attacks [11]; hence the approximation of the S is robust against l2-adversarial attacks by design.

Experiments

Toy examples from Scikit-Learn

We use the toy examples of Scikit-Learn library [25] with two dimensional examples. Results are
shown in figure 1. We plot the contour of the decision function in resolution 300 × 300 pixels.
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Figure 2: Synthetic examples obtained by running algorithm 1 with T = 64 and η = 1.

MNIST Digit 0 1 2 3 4 5 6 7 8 9
Accuracy (ours) 97.26 99.21 88.67 87.50 91.80 87.50 96.48 91.40 80.85 93.35

AUC (ours) 99.44 99.84 94.85 92.94 95.25 92.64 98.25 97.11 86.37 96.54
AUC DeepSVDD 98 99.7 91.7 91.9 94.9 88.5 98.3 94.6 93.9 96.5

AUC OCSVM 98.6 99.5 82.5 88.1 94.9 77.1 96.5 93.7 88.9 93.1
AUC IF 98.0 97.3 88.6 89.9 92.7 85.5 95.6 92.0 89.9 93.5

Table 1: AUC score and Test accuracy on the test set of MNIST in a one versus all fashion. We also
report the AUC of DeepSVDD [28] for completeness, along with the other AUC scores of Isolation
Forest (IF) and One Class SVM (OCSVM) reported in [28]. We highlight the highest ROC-AUC.
When the confidence intervals overlap, we highlight both.

We compare the level sets of the classifier against the ones of One Class SVM [26] and Isolation
Forest [27]. We also show the contour plot of a conventional network trained with Binary Cross
Entropy against complementary distribution Qt, and we show it struggles to learn a meaningful
decision boundary. Moreover its Local Lipschitz Constant [21] increases uncontrollably, as shown in
table 3. This make the conventional network prone to adversarial attacks. Moreover there is no natural
interpretation of the prediction of the conventional network in term of distance: the magnitude |f(·)|
of the predictions quickly grows above 1e− 3 whereas for orthogonal networks it is approximately
equal to the signed distance function S, as show in figure 4.

One Class on Mnist

We train a classifier on each of the classes of Mnist, and we evaluate it on test set in a one-versus-all
fashion. Note that the out-of-distribution examples are not seen during training, but more importantly,
the in-distribution examples from the test set are not seen either. Hence the task evaluates both
the generalization capacity (new example from the in-distribution) and the discriminative capacity
(against out-of-distribution). This setting is more challenging because of the curse of dimensionality.
The AUC score is reported in table 1. The accuracy is computed by choosing the optimal threshold
on decision function. The histograms are given in figure 5.

One Class Classifier Explainability with Image synthesis

Interestingly, the smoothness of the gradients of the classifier (with respect to the input) are easy
to interpret. In particular, the decision boundary learned by the classifier can be materialized by
generating adversarial examples with algorithm 1. The forward computation graph is a classifier
based on optimal transport, and the backward computation graph an image generator. Indeed, the
back-propagation through a convolution is a transposed convolution, a popular layer in the generator
of GANs. In overall the algorithm behave like a WGAN [17] with a single network fulfilling both
roles.
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Proofs and comments

Complementary distribution

Definition 3 (
B,ϵ∼ Complementary Distribution)

Let PX a distribution with compact support X ⊂ B, with B ⊂ Rd a bounded measurable set. Q is
said to be (B, ϵ) disjoint from PX if (i) its support supp Q ⊂ B is compact (ii) d(supp Q,X ) ≥ 2ϵ
(iii) for all measurable sets M ⊂ B such that d(M,X ) ≥ 2ϵ we have Q(M) > 0. It defines a

symmetric but irreflexive binary relation denoted Q
B,ϵ∼ PX .

The idea is to learn one class classifier by reformulating one class learning of PX as a binary
classification of PX against a carefully chosen adversarial distribution Q(PX). This simple idea had
already occurred repeatedly in the related literature [29]. Note that Lhkr

m,λ benefit from generalization
guarantees as proved in [5]: the optimal classifier on the train set and on the test set are the same in
the limit of big samples.
Theorem 1
Signed Distance Learning with hKR loss. Let Lhkr

m,λ(yf(x)) = λmax (0,m− yf(x))− yf(x) be
the hinge Kantorovich Rubinstein loss, with margin m = ϵ, regularization λ > 0, prediction f(x)
and label y ∈ {−1, 1}. Let Q be a probability distribution on B. Let Ehkr(f) be the average loss:

Ehkr(f,PX , Q) := Ex∼PX
[Lhkr

m,λ(f(x))] + Ez∼Q[Lhkr
m,λ(−f(z))]. (2)

Let f∗ be such that:
f∗ ∈ arg inf

f∈Lip1(Rd,R)
Ehkr(f,PX , Q). (3)

Assume that Q
B,ϵ∼ PX . Then f∗ approximates the signed distance function over B:

∀x ∈ X ,S(x) = f∗(x)−m, ∀z ∈ supp Q,S(z) = f∗(z)−m. (4)

Moreover sign(f(x)) = sign(S(x)) for all x ∈ supp Q ∪ X .

Proof. The results follows from the properties of Lhkr
m,λ loss given in Proposition 2 of [18]. If

Q
B,ϵ∼ PX then by definition the two datasets are 2ϵ separated. Consequently the hinge part of the loss

is null: max (0,m− yf(x)) for all pairs (x,+1) and (z,−1) with x ∼ PX and z ∼ Q. We deduce
that:

∀x ∈ X , f(x) ≥ m ∀z ∈ supp Q, f(z) ≤ −m (7)

Since m = ϵ we must have f(∂x) = m for all x ∈ ∂X and f(∂z) = −m for all ∂z ∈ ∂(supp Q).
Whereas Sdf(∂x) = 0 and Sdf(∂z) = −2m. Now observe that thanks to the −yf(x) term in Lhkr

m,λ

loss maximizes the amplitude |f(x)|, and any other choice is sub-optimal without violating the
1-Lipschitz constraint. Hence for every x ∈ X we have f(x) = f(∂x) + ∥x − ∂x∥ where ∂x =
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argminx̄∈∂X ∥x−x̄∥ is the projection of x onto the boundary ∂X . Similarly f(z) = f(∂z)−∥z−∂z∥.
Notice that S(x) = S(∂x) + ∥x− ∂x∥ and S(z) = S(∂z)− ∥z − ∂z∥. This allows to conlude:

∀x ∈ X ,S(x)) = f∗(x)−m, ∀z ∈ supp Q,S(z) = f∗(z)−m. (8)

Finding the right distribution Q
B,ϵ∼ PX with small ϵ is also challenging.

We propose to seek Q through an alternating optimization process. Consider a sample z ∈ Lt. If z
is a false positive (i.e ft(z) > 0 and z /∈ X ), by training ft+1 on the pair (z,−1) it will incentive
ft+1 to fulfill ft+1(z) < 0, and that will have for consequence to reduce the volume of false positive
associated to ft+1. If z is a true negative (i.e ft(z) < 0 and z /∈ X ) it already exhibit the wanted
properties. The case of false negative (i.e ft(z) < 0 and z ∈ X ) is more tricky: the density of PX

around z will play an important role to ensure that ft+1(z) > 0.

Hence we assume that samples from the target PX are significantly more frequent than the ones
obtained from pure randomness. This is a very reasonable assumption (specially for images for
example), and most distributions from real use-cases fall under this setting.
Assumption 1 (PX samples are more frequent than pure randomness (informal))
For any measurable set M ⊂ X we have PX(M)≫ U(M).

Algorithm 1: Adapted Newton–Raphson for Complementary Distribution Generation
Input: orthogonal neural network ft
Parameter: number of steps T
Output: sample z′ ∼ Qt(f)

1: sample learning rate η ∼ U([0, 1])
2: z0 ∼ U(B) { Initial approximation.}
3: for each step t = 1 to T do
4: zt+1 ← zt − η

T
∇xf(z

t)
∥∇xf(zt)∥2

2
(f(zt) + ϵ){Refine estimation.}

5: zt+1 ← ΠB(zt+1){ Ensure it remains in feasible set.}
6: end for
7: return zT

To ensure that property (iii) of definition 3 is fulfilled, we also introduce stochasticity in algorithm 1
by picking a random “learning rate” η ∼ U([0, 1]). The learning rate is sampled independently for
each example in the batch, in order to decorrelate samples.

The final procedure depicted in algorithm 2 benefit from the mild guarantee of proposition 1. This
guarantees that once the complementary distribution has been found, the algorithm will continue to
produce a sequence of complementary distributions, and a sequence of classifiers ft that approximates
S.

One Class learning framed as Adversarial Training

Proposition 1 (Complementary distributions are fix points). Let Qt be such that Qt B,ϵ∼ PX . Assume

that Qt+1 is obtained with algorithm 2. Then we have Qt+1 B,ϵ∼ PX .

Proof. The proof also follows from the properties of Lhkr
m,λ loss given in Proposition 2 of [18] Since

Qt
B,ϵ∼ PX all examples z ∼ Qt generated fulfill (by definition) d(z,X ) ≥ 2ϵ ≥ 2m. Indeed the

1-Lipschitz constraint (in property 2) guarantees that no example zt can “overshoot” the boundary.
Hence for the associated minimizer ft+1 of Lhkr

m,λ loss, the hinge part of the loss is null. This
guarantees that ft+1(z) ≤ −m for z ∼ Q. We see that by applying algorithm 1 the property is
preserved: for all z ∼ Qt+1 we must have ft+1(z) ≤ −m = −ϵ. Finally notice that because
z0 ∼ U(B) and η ∼ U([0, 1]) the support supp Q covers the whole space B (except the points that

are less than 2ϵ apart from X ). Hence we have Qt+1
B,ϵ∼ PX as expected.
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Algorithm 2: Alternating Minimization for Metric One Class learning
Input: orthogonal neural network architecture f◦
Input: initial weights θ0, learning rate α

1: repeat
2: ft ← fθt
3: Generate batch z ∼ Qt of negative samples with algorithm 1
4: Sample batch x ∼ PX of positive samples
5: Compute loss on batch L(θt) := Ehkr(fθt , x, z)
6: Learning step θt+1 ← θt + α∇θL(θt)
7: until convergence of ft.

The procedure of algorithm 2 bears numerous similarities with the adversarial training of Madry [30].
In our case the adversarial examples are obtained by starting from noise U(B) and relabeled are
negative examples. In their case the adversarial examples are obtained by starting from PX itself and
relabeled as positive examples.

Experimental setting

Orthogonal Neural Networks

We ensure that the kernel remains orthogonal by re-parametrizing them: Θi = Π(Wi) where Wi

is a set of unconstrained weights, and Θi the orthogonal projection of Wi on the Stiefel manifold
- i.e the set of orthogonal matrices. The projection Π is made with Björck algorithm [31] which is
differentiable and be included in computation graph during forward pass. Unconstrained optimization
is performed on Wi directly.

Toy experiment in 2D

All datasets are normalized to have zero mean and unit variance across all dimensions. The domain B
is chosen to be the ball of radius 5. This guarantees that X ⊂ B for all datasets. The plots of figure1
are squares of sizes [−5, 5] for (a), [−3, 3] for (b)(c)(e) and [−4, 4] for (d) to make the figure more
appealing.

Metric One Class Learning

All the toy experiments of figure 1 uses a 2 ) 512 ) 512 ) 512 ) 512 ) 1 neural network. All the
squares matrices are constrained to be orthogonal. The last layer is a unit norm column vector. The
first layer consists of two unit norm columns that are orthogonal to each other. The optimizer is
Rmsprop with default hyper-parameters. The batch size is b = 256 and the number of steps T = 4 is
small. We chose a margin m = 0.05 except for “blob and cloud” dataset where we used m = 0.1
instead. We take λ = 100. The networks are trained for a total of 10, 000 gradient steps.

Other benchmarks

For One Class SVM we chose a parameter ν = 0.05, γ = 1
2 (which corresponds to the “scale”

behavior of scikit-learn for features in 2D with unit variance) and the popular RBF kernel. For
Isolation Forest we chose a default contamination level of 0.05.

The conventional network (without orthogonality constraint) is trained with Binary Cross Entropy
(also called log-loss) and Adam optimizer. It shares the same architecture, with ReLU instead of
GroupSort. It is also trained for a total of 10, 000 gradient steps for fair comparison. It would not
make sense to use Lhkr

m,λ loss for conventional network since it diverges during as noticed in [5]. The
Lipschitz constant of conventional network grows uncontrollably during training even with Lhkr

m,λ

loss, which is also compliant with the results of [5].
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(a) One cloud. (b) Two circles. (c) Two blobs. (d) Blob and cloud. (e) Two moons.

Figure 3: Toy examples of Scikit-learn. Top row: our method with Lipschitz (LIP) orthogonal network
and Lhkr

m,λ (HKR) loss. Second row: conventional network (NET) trained with Binary Cross Entropy
(BCE). Third row: One Class SVM. Fourth row: Isolation Forest.

Mnist experiment

The MNIST images are normalized such that pixel intensity lies in [−1, 1] range. The set B is chosen
to be the image space, i.e B = [−1, 1]28×28 = [−1, 1]784. The optimizer is Adam with default
hyper-parameters. We chose m = 0.02 ×

√
(28× 28× (1− (−1)) ≈ 0.79 : this corresponds to

modification of 2% of the maximum norm of an image. We take λ = 200. We use a batch size
b = 128 a number of steps T = 16. The network is trained for a total of 1000 epochs over the one
class (size of the support: ≈ 5000 examples).

All the experiments use a VGG-like architecture depicted in table 2. Convolutions are parametrized
using layers of Deel-Lip library [18], that uses orthogonal kernel with a corrective constant on
the upper bound of the Lipschitz constant of the kernel. Dense layers also use orthogonal kernel.
We use l2-norm-pooling layer with windows of size 2× 2 that operates as: (x11, x12, x21, x22) 7→
∥[x11, x12, x21, x22]∥.
We see in table 1 that it yields competitive results against other naive baselines such as Isolation
Fortest (IF) and One Class SVM (OCSVM), and against the popular deep learning algorithm Deep
SVDD [28].

We report the histogram of predictions for the train set (One class), the set test (One class) and Out
Of Distribution (OOD) examples (the classes of the test set) in figure 5.

Image synthesis from one class classifier

We perform a total of T = 64 steps with algorithm 1 by targeting the level set f−1({2m}) (to
ensure we are inside the distribution). Moreover during image synthesis we follow a deterministic
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(a) Lipschitz Network and Lhkr
m,λ. (b) Conventional Network and BCE.

Figure 4: Histograms of score functions for orthogonal network (left) and conventional neural network.
The blue bars correspond to the distribution of f(x), x ∼ PX and the red bars to the distribution
f(z), z ∼ U(B).

path by setting η = 1. The images generated were picked at random (with respect to initial sample
z0 ∼ U(B)) without cherry picking. Interestingly, we see that the algorithm recovers some in-
distribution examples successfully. The examples for which the image is visually deceptive are
somewhat correlated with low AUC score. Those failure cases are also shared by concurrent methods,
which suggests that some classes are harder than other to distinguish. Notice that sometimes OOD
MNIST digits, from other classes not seen during training, are sometimes generated. This is the case
of the class “7” for example inside which we find images that look like a “9” or a “2”. This suggests
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network architecture
conv-3x3-128 (fullsort)
l2 norm pooling - 2x2

conv-3x3-128 (fullsort)
l2 norm pooling - 2x2

conv-3x3-128 (fullsort)
l2 norm pooling - 2x2

conv-3x3-128 (fullsort)
global l2 norm pooling

dense-128 (fullsort)
dense-128 (fullsort)
dense-128 (fullsort)

dense-1 (linear)
Table 2: Architecture of the ConvNet used for MNIST experiment. 872K parameters.

Daatset One cloud Two circles Two blobs Blob and cloud Two moons
LLC conventional 26.66 122.84 1421.41 53.90 258.73

Table 3: Lower bound on the Local Lipschitz Constant (LLC) of conventional network after 10, 000
training steps. It is obtained by computing the maximum of ∥∇xif(xi)∥ over the train set.

that most MNIST digits can be build from a small sets of elementary features that are combined
during generation of Qt.

Finally note that are our method is not tailored for example generation: this is merely a side effect
of the training process of the classifier. There is no need a the encoder-decoder pair of VAE nor
the discriminator-generator pair of a GAN. Moreover no hyper-parameters other than m and T are
required.

Hardware

The hardware consist on a workstation with NVIDIA 1080 GPU with 8GB memory and a machine
with 32GB RAM.
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(a) Class “0”. (b) Class “1”.

(c) Class “2”. (d) Class “3”.

(e) Class “4”. (f) Class “5”.

(g) Class “6”. (h) Class “7”.

(i) Class “8”. (j) Class “9”.

Figure 5: Histogram of scores predicted by the classifier at the end of training for train examples,
test examples, and OOD Test examples.
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