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ABSTRACT

We present MeanCache, a training-free caching framework for efficient Flow
Matching inference. Existing caching methods reduce redundant computation
but typically rely on instantaneous velocity information (e.g., feature caching),
which often leads to severe trajectory deviations and error accumulation under
high acceleration ratios. MeanCache introduces an average-velocity perspective:
by leveraging cached Jacobian–vector products (JVP) to construct interval aver-
age velocities from instantaneous velocities, it effectively mitigates local error
accumulation. To further improve cache timing and JVP reuse stability, we de-
velop a trajectory-stability scheduling strategy as a practical tool, employing a
Peak-Suppressed Shortest Path under budget constraints to determine the sched-
ule. Experiments on FLUX.1, Qwen-Image, and HunyuanVideo demonstrate that
MeanCache achieves 4.12×, 4.56×, and 3.59× acceleration, respectively, while
consistently outperforming state-of-the-art caching baselines in generation qual-
ity. We believe this simple yet effective approach provides a new perspective for
Flow Matching inference and will inspire further exploration of stability-driven
acceleration in commercial-scale generative models.

Figure 1: Visualization of images generated by different methods on FLUX.1[dev] under varying
acceleration ratios.

1 INTRODUCTION

Flow Matching (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2022) has recently demonstrated
remarkable progress across image (Wu et al., 2025), video (Zheng et al., 2024b; Kong et al., 2024),
and multi-modal generation tasks (Hung et al., 2024). By modeling instantaneous velocity fields to
learn continuous transport paths, it offers a concise and effective paradigm for generative model-
ing. However, in commercial-scale models such as FLUX.1 (Labs, 2024), Qwen-Image (Wu et al.,
2025), and HunyuanVideo (Kong et al., 2024), the large memory footprint, heavy per-step com-
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putational cost, and long inference latency significantly hinder its applicability in interactive or
resource-constrained scenarios.

Traditional acceleration methods, such as distillation (Salimans & Ho, 2022; Kim et al., 2023; Sauer
et al., 2024b), pruning (Han et al., 2015), and quantization (Li et al., 2023b), usually rely on architec-
ture modification and large-scale retraining. In contrast, caching-based methods (Ma et al., 2023a)
offer a lightweight, training-free alternative. By reusing intermediate representations from selected
timesteps, they reduce redundant computation and accelerate sampling. However, at high accelera-
tion ratios, these methods often suffer from severe error accumulation: interval states reconstructed
solely from instantaneous velocity or feature information amplify local deviations, causing the tra-
jectory to drift away from the true path. As shown in Fig. 2 (left), instantaneous velocities fluctuate
sharply along the denoising trajectory, making them unstable for reuse, whereas interval average
velocities are much smoother and thus more stable for reconstruction.

Figure 2: Instantaneous vs. Average Velocity and JVP Caching. (Left) Along the original tra-
jectory, instantaneous velocity shows sharp fluctuations, while average velocity is much smoother.
(Middle) At timestep 927, JVP Caching reduces error accumulation, though its effectiveness de-
pends on the cache interval and hyperparameter K. (Right) At timestep 551, it achieves stronger
error mitigation, showing that effectiveness varies across timesteps. Both middle and right figures
are under the single-cache setting on the original trajectory.

This observation is consistent with the objective of Flow Matching, which encourages trajectories to
satisfy linear characteristics. Under fixed input conditions, an ideal trajectory approximates linear
interpolation between sample and noise; the more linear the trajectory, the more stable and higher-
quality the generation results. Recent work such as MeanFlow (Geng et al., 2025), further demon-
strates that modeling and leveraging average velocity can significantly improve trajectory stability,
underscoring the potential of the average-velocity domain for more robust generation.

Motivated by this insight, we propose MeanCache, a training-free caching paradigm that operates
in the average-velocity domain rather than relying solely on instantaneous velocities. The key idea
is to construct interval average velocities from instantaneous ones under a limited budget, ensuring
trajectory stability. MeanCache has two components. First, interval average velocities are approx-
imated using cached Jacobian–vector products (JVP), yielding smoother and more stable guidance
signals that help mitigate local error accumulation. As shown in Fig. 2 (middle, right), JVP caching
reduces errors at timesteps 927 and 551; however, its benefit varies with the timestep, cache inter-
val, and hyperparameters, indicating that fixed caching rules are insufficient. Second, we develop a
trajectory-stability scheduling strategy as a practical tool. Inspired by the graph-based modeling idea
in ShortDF (Chen et al., 2025), timesteps are represented as nodes, deviations of average velocity
under JVP caching define edge weights, and a budget-constrained shortest-path search determines
cache placement. This scheduling tool systematically improves cache timing and JVP reuse stability
without retraining.

The main contributions of this work are summarized as follows:

• Average-Velocity Perspective on Caching. We introduce MeanCache, which redefines
the caching problem from an instantaneous velocity view to the average-velocity domain,
offering a simpler and more stable perspective for high-acceleration generative modeling.

• Trajectory-Stability Scheduling Strategy. We develop a scheduling tool that scores
timesteps by JVP-based stability deviation and uses a budget-constrained shortest-path
search for cache placement, improving timing and reuse stability without retraining.
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• Outstanding Performance. MeanCache maintains generation quality under high accel-
eration while significantly reducing inference cost. Compared to state-of-the-art caching
baselines, experiments on FLUX.1, Qwen-Image, and HunyuanVideo show speedups of
4.12×, 4.56×, and 3.59×, respectively. Moreover, MeanCache consistently delivers higher
generation quality across different acceleration ratios (Fig. 1), highlighting its acceleration
potential on commercial-scale generative models.

2 METHODOLOGY

2.1 PRELIMINARIES

Flow Matching and MeanFlow. Flow Matching (Lipman et al., 2023; Albergo & Vanden-
Eijnden, 2022) constructs continuous transport paths between a noise distribution π1 and a data
distribution π0 via velocity fields, typically defined by linear interpolation xt = (1 − t)x0 + tx1,
t ∈ [0, 1]. This leads to the ODE dxt = (x0 − x1)dt. Since x0 is unknown during generation, a
neural network vθ(xt, t) is trained to predict the instantaneous velocity, yielding the dynamics

dx̂t = vθ(xt, t) dt. (1)

Where x̂t denotes the trajectory point predicted by the neural ODE. Building on this formulation,
MeanFlow (Geng et al., 2025) offers a new perspective by modeling the average velocity over the
interval [s, t], defined as

u(zs, t, s) =
1

s−t

∫ s

t

v(zτ , τ) dτ, (2)

Furthermore, the MeanFlow Identity provides a theoretical bridge between instantaneous and aver-
age velocity:

v(zs, s) = u(zs, t, s) + (s− t) d
dsu(zs, t, s). (3)

In this identity, the derivative term d
dsu can be expressed as a Jacobian–Vector Product (JVP),

where the Jacobian of u with respect to (z, s) is contracted with the tangent vector [v(zs, s), 1].
Observing this formulation, JVP can be regarded as a computational bridge that directly connects
instantaneous velocity and average velocity.

Figure 3: From Instantaneous to Average Ve-
locity. Directly caching the instantaneous ve-
locity v(zt, t) over [t, s] easily leads to trajec-
tory drift and error accumulation, whereas the
average velocity u(zt, t, s) accurately reaches
the target s. MeanCache introduces a prior
timestep r and reuses JVPr→t to estimate the
average velocity û(zt, t, s), thereby correcting
the trajectory and effectively mitigating error
accumulation.

Feature Caching in Diffusion Models. Cache,
as a training-free acceleration method, speeds up
the denoising process by storing intermediate fea-
tures and reusing them across adjacent timesteps.
In particular, the reuse strategy directly substi-
tutes cached features from a previous step:

F(xl
t−k) := F(xl

t), ∀k ∈ [1, N − 1], (4)

where F denotes the feature extraction function,
and l is the layer index. This approach avoids re-
dundant computations and yields up to (N − 1)×
theoretical speedup. Nevertheless, two major
limitations remain:

(i) Error Accumulation: Ignoring the temporal
dynamics of features leads to exponential error
accumulation as k increases. Although cache-
then-forecast methods have been proposed re-
cently (Liu et al., 2025), the extrapolated fea-
tures still exhibit significant deviations from the
true trajectories, limiting acceleration in genera-
tive tasks.

(ii) When to Cache: Existing methods for deciding when to cache rely on fixed intervals (Ma et al.,
2023a) or manually tuned threshold-based strategies (Liu et al., 2024; Bu et al., 2025), but these
approaches cause significant degradation in generative quality under high acceleration ratios.
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2.2 INSTANTANEOUS TO AVERAGE VELOCITY TRANSFORMATION

Traditional feature caching methods operate in the instantaneous-velocity domain, where velocity
varies continuously along the trajectory and inevitably accumulates errors (Fig. 2). Inspired by the
MeanFlow Identity, we instead reformulate caching in the average-velocity domain. As shown in
Fig. 3, transforming the instantaneous velocity v(zt, t) into the average velocity u(zt, t, s) over the
interval [s, t] can, in principle, correct the trajectory accurately and eliminate accumulated errors.
MeanCache builds on this perspective by formally deriving and practically approximating u(zt, t, s).

The MeanFlow Identity in Eq. 3 characterizes the instantaneous velocity only at the endpoint s,
leaving the starting point t unspecified. To close this gap, we derive an analogous relation at t (see
A.1 for details):

v(zt, t) = u(zt, t, s)− (s− t)
d

dt
u(zt, t, s). (5)

Here, the derivative term d
dtu(zt, t, s) can be expressed as a Jacobian–Vector Product (JVP). Since

the exact JVP is unavailable during inference, we approximate it using cached values from earlier
steps. This yields the following estimate for the average velocity:

û(zt, t, s) := v(zt, t) + (s− t) ĴVP, (6)

where ĴVP denotes an approximation to the total derivative d
dtu(zt, t, s), and û(zt, t, s) represents

the estimated average velocity.

2.3 JVP-BASED CACHE CONSTRUCTION

To construct a practical cache estimator, we extend the start-point identity by introducing a reference
point r preceding t, with r > t > s. Intuitively, r serves as an earlier cached state that helps
approximate the JVP between t and s, as illustrated in Fig. 3. Applying the start-anchored identity
on the interval [t, r] and rearranging gives:

ĴVP =
d

dr
u(zr, r, t) =

u(zr, r, t)− v(zr, r)

t− r
. (7)

Using the displacement form of the average velocity on [r, t],

u(zr, r, t) =
zt − zr
t− r

, (8)

we obtain the fully cacheable estimator:

ĴVP =
zt − zr − (t− r) v(zr, r)

(t− r)2
. (9)

Plugging this into the start-point identity yields the predicted average velocity:

û(zt, t, s) = v(zt, t) + (s− t)
zt − zr − (t− r) v(zr, r)

(t− r)2
. (10)

We denote by K the number of discrete timesteps between r and t in the original trajectory. The
final estimator is:

û(zt, t, s) =

{
v(zt, t) + (s− t) ĴVPK , K > 1,

v(zt, t), K = 1,
(11)

where larger K corresponds to reusing cached information over a longer interval, while K = 1
reduces the average velocity to the instantaneous one. In the original denoising trajectory (e.g., 50
steps), zr, zt, and zs are available, so exact average velocities and JVP can be computed. Under
caching, however, JVPt→s is unavailable and must be approximated using JVPr→t. Thus, the
choice of K is critical: it specifies the span of the preceding segment (r → t) used to approxi-
mate JVPt→s, balancing approximation error and stability. This trade-off motivates the need for a
principled scheduling strategy.
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2.4 TRAJECTORY-STABILITY SCHEDULING

Although JVP-based corrections mitigate local error accumulation, two key challenges remain: de-
termining when to cache and how to select the cache span K. Empirically, while latent values
vary across samples (e.g., different prompts and seeds), their relative changes at fixed timesteps are
highly consistent. This stability, also observed in adaptive schemes such as TeaCache (Liu et al.,
2024), indicates that caching decisions can be guided by a precomputed stability map rather than
fixed heuristics.

Stability Map via Graph Representation. Specifically, we define the error from t to s as the
deviation between the true average velocity and its cached approximation:

LK(t, s) = ∥u(zt, t, s) − û(zt, t, s)∥ . (12)

Expanding the cached estimator û(zt, t, s) with JVP correction gives:

LK(t, s) =
1

N

∥∥∥u(zt, t, s) − v(zt, t) − (s− t) ĴVPK

∥∥∥
1
, (13)

To support trajectory-stability scheduling, we use a graph representation as a practical tool to orga-
nize stability costs and possible transitions. Specifically, for convenience, this can be represented as
a graph G = (V, E), where nodes V correspond to timesteps in the denoising process and edges E
are directed connections (t → s) with t > s, each representing a potential caching transition. Each
edge is assigned a weight:

EK(t → s) = LK(t, s), t, s ∈ V. (14)

where LK(t, s) is the error between predicted and true average velocities under cache span K. Since
multiple cache spans may connect the same node pair, G is naturally modeled as a multigraph.

Peak-Suppressed Shortest Path. Given a Multigraph with error-weighted edges, the scheduling
problem can be conveniently solved via a constrained shortest-path search. A challenge under small
budgets is that the solution may concentrate error into a few edges, leading to large error spikes.
To address this, we adopt a peak-suppressed objective that penalizes high-error edges via a power-
weighted path cost. The optimization problem is:

π⋆ = argmin
π∈P(T,0)

∑
e∈π

C(e) γ s.t. |π| ≤ B ≤ T, (15)

where P(T, 0) is the set of feasible multi-edge paths from the start node T to the end node 0, C(e)
is the error cost of edge e, γ ≥ 1 is the peak-suppression parameter (γ = 1 recovers the standard
shortest path), and |π| is the path length. This peak-suppressed shortest-path problem can be solved
efficiently via dynamic programming. The budget B acts as a constraint on the original path cost
and directly controls the acceleration ratio.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Baselines and Compared Methods. We evaluate our method on representative diffusion-based
generative models: FLUX.1 [dev] (Labs, 2024), Qwen-Image (Wu et al., 2025), and Hunyuan-
Video (Kong et al., 2024). Baselines include TeaCache (Liu et al., 2024), DBCache (vipshop.com,
2025), DiCache (Bu et al., 2025), ToCa (Zou et al., 2024a), DuCa (Zou et al., 2024b), and Tay-
lorSeer (Liu et al., 2025). Among them, TeaCache (Liu et al., 2024) and TaylorSeer (Liu et al.,
2025) are two of the most representative mainstream approaches, spanning both text-to-image and
text-to-video generation tasks.

Metrics. For a fair comparison, we evaluate both efficiency and quality. Efficiency is measured
by FLOPs and latency, while quality is assessed with task-specific and reconstruction metrics. For
text-to-image generation, we follow the standard DrawBench (Saharia et al., 2022) protocol and
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Table 1: Quantitative comparison in text-to-image generation on FLUX.1 [dev] and Qwen-Image.
Method Acceleration Visual Quality

FLOPs(T) ↓ Latency(s) ↓ Speed ↑ Image Reward ↑ CLIP Score ↑ LPIPS ↓ SSIM ↑ PSNR ↑

FLUX.1 [dev] 1024×1024

Original: 50 steps 3734.56 11.57 – 1.033 31.229 – – –
60% steps 2246.87 7.01 1.65× 0.984 31.242 0.217 0.808 20.256
30% steps 1131.10 3.60 3.21× 0.880 30.832 0.399 0.682 15.798

TeaCache (l = 0.25) 1949.73 4.62 2.50× 0.960 31.145 0.338 0.721 17.286
DiCache (δ = 0.8) 1032.51 4.32 2.68× 0.675 30.814 0.416 0.717 21.268
TaylorSeer (N = 6, O = 2) 760.08 4.24 2.74× 0.971 31.310 0.415 0.663 16.278
TaylorSeer (N = 6, O = 1) 760.08 4.06 2.85× 0.961 31.191 0.419 0.660 15.831
MeanCache (B = 15) 1131.10 3.98 2.91× 1.010 31.244 0.142 0.870 24.834
TeaCache (l = 1.5)† 536.73 3.16 3.66× 0.717 30.696 0.504 0.624 15.010
DiCache (δ = 2.0)† 958.15 3.14 3.68× -0.652 27.613 0.586 0.588 17.446
TaylorSeer (N = 20, O = 1)† 388.27 3.10 3.73× -0.727 24.412 0.798 0.443 11.219
MeanCache (B = 10) 759.18 2.81 4.12× 0.993 31.323 0.272 0.761 19.425

Qwen-Image 1664×928

Original: 50 steps 10928.60 32.68 1.00× 1.180 33.626 – – –
30% steps 3291.75 9.86 3.31× 1.128 33.026 0.363 0.727 15.826

TeaCache (l = 0.6) 5481.27 18.52 1.76× 1.087 32.598 0.416 0.698 14.902
DBCache (r = 0.6) 2703.00 11.92 2.74× 1.016 33.435 0.298 0.825 22.221
MeanCache (B = 15) 3291.75 11.45 2.85× 1.159 33.636 0.075 0.938 27.663
DBCache (r = 1.5)† 2070.26 9.57 3.41× -2.059 15.499 0.889 0.129 5.559
DBCache + Taylorseer (r = 1.5, O = 4)† 2070.26 9.70 3.37× -0.227 29.753 0.625 0.646 16.574
MeanCache (B = 13) 2855.35 9.09 3.60× 1.147 33.799 0.113 0.907 24.802
MeanCache (B = 10) 2200.77 7.16 4.56× 1.142 33.621 0.236 0.815 18.983

• † Methods exhibit significant degradation in Image Reward, leading to severe deterioration in image quality.

report ImageReward (Xu et al., 2023) and CLIP Score (Hessel et al., 2021) to evaluate perceptual
quality and text–image alignment. For text-to-video generation, we adopt VBench (Huang et al.,
2024) to capture human preference on generated videos. In addition, for both tasks, we report
LPIPS (Zhang et al., 2018) (perceptual similarity), SSIM (Wang & Bovik, 2002) (structural con-
sistency), and PSNR (pixel-level accuracy) to quantify potential degradation in content and fidelity
introduced by acceleration.

Implementation details. Experiments are conducted on NVIDIA H100 GPUs using PyTorch. To
construct the multigraph, we sample 50 prompts (10 per attribute) from T2V-CompBench (Sun et al.,
2024), following standard practice (Sun et al., 2024; Liu et al., 2024). This procedure is applied
consistently across both text-to-image and text-to-video experiments, even though the dataset was
originally not designed for text-to-image generation. Sampling is repeated 5 times with different
seeds, and results are averaged to reduce bias. For all experiments, FlashAttention (Dao et al., 2022)
is enabled by default to accelerate attention computation. Notably, since TaylorSeer encounters
out-of-memory (OOM) issues under HunyuanVideo, we uniformly adopt the cpu-offload setting to
ensure fair comparison.

3.2 TEXT-TO-IMAGE GENERATION.

Figure 4: Comparison of different methods at
high acceleration ratios on FLUX.1[dev].

As shown in Table 1, MeanCache achieves
clear quantitative gains on two advanced text-
to-image models, FLUX and Qwen-Image. We
use ImageReward (Xu et al., 2023) and CLIP
Score (Hessel et al., 2021) as perceptual metrics,
and reconstruction metrics to measure content
and detail preservation. On FLUX, at 2.91× ac-
celeration, MeanCache surpasses TaylorSeer and
TeaCache in both image quality and detail preser-
vation, and remains robust at higher ratios. Even
at 4.12×, where competitors collapse in quality,
our method still attains an ImageReward Score↑
of 0.993 and an LPIPS↓ of 0.272. On Qwen-
Image (1664×928 resolution), MeanCache like-
wise improves both quality and speed, reaching
an LPIPS↓ of 0.075 at 2.85× acceleration, indi-
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Table 2: Quantitative comparison in text-to-video generation on HunyuanVideo †.
Method
HunyuanVideo

Acceleration Visual Quality

Latency(s) ↓ Speed ↑ VBench ↑ LPIPS ↓ SSIM ↑ PSNR ↑

Original: 50 steps 105.92 1.00× 80.39% – – –
30% steps 39.53 2.68× 79.84% 0.381 0.659 17.335

ToCa (N = 5) 36.17 2.93× 79.51% 0.454 0.590 15.765
Duca (N = 5) 34.32 3.09× 79.54% 0.454 0.595 15.807
DiCache (δ = 0.8) 33.76 3.11× 74.09% 0.382 0.701 22.053
TaylorSeer (N = 5, O = 1) 34.95 3.03× 79.95% 0.428 0.603 16.026
Teacache (l = 0.33) 34.06 3.11× 80.02% 0.363 0.651 17.957
MeanCache (B = 12) 33.05 3.21× 80.01% 0.176 0.809 24.002

DiCache (δ = 3.0) 31.81 3.33× 70.86% 0.583 0.490 19.098
Teacache (l = 0.39) 31.86 3.32× 79.75% 0.396 0.631 17.382
TaylorSeer (N = 7, O = 1) 31.50 3.36× 79.76% 0.480 0.595 15.444
MeanCache (B = 10) 29.48 3.59× 80.08% 0.269 0.732 20.464

• † TaylorSeer may encounter OOM; for fairness, all methods are run with CPU-offload enabled.

cating near-lossless sampling. As shown in Fig. 4, on FLUX.1 [dev], when the acceleration exceeds
3.5×, baseline methods suffer from severe blurring, detail loss, and structural distortions, whereas
MeanCache consistently preserves perceptual quality and fidelity close to the original outputs. On
Qwen-Image, MeanCache also demonstrates strong robustness under high acceleration ratios, out-
performing other baselines as illustrated in Fig. 9.

3.3 TEXT-TO-VIDEO GENERATION.

On the HunyuanVideo, Table 2 demonstrates the acceleration performance of MeanCache across
VBench and three reconstruction metrics. With a speedup of 3.42×, our method significantly out-
performs the main competitors, achieving 0.809 in SSIM↑ and 24.002 in PSNR↑. Performance
continues to improve with a further 3.97× speedup, while maintaining a VBench score of 80.08%.
In terms of content preservation, our method effectively preserves both the content and intricate de-
tails of the original video, surpassing all baseline methods in this regard. As shown in Fig. 5, when
the acceleration exceeds 3.0×, baseline methods suffer from visual degradation or blurring, whereas
MeanCache maintains superior video quality and fidelity to the original videos.

Figure 5: Comparison of different methods at high acceleration ratios on HunyuanVideo.

3.4 ABLATION STUDY

7
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Figure 6: Shortest paths on a multigraph under different budgets B in FLUX.1[dev]

Shortest Path Analysis. Trajectory-Stability Scheduling is realized by constructing a multigraph
and solving for its shortest paths. Given this representation, the shortest path under any step budget
B can be obtained via edge-weighted optimization. The budget B (equivalent to the Number of
Function Evaluations, NFE) directly controls the acceleration ratio: smaller values correspond to
greater speedups. Figure 6 illustrates the shortest-path patterns on FLUX as B decreases from 40
to 10. The horizontal axis corresponds to the 50-step denoising trajectory, while the vertical axis
indicates different budget levels. Darker cells represent larger cached JVP spans K, and gray cells
indicate reuse (skips). This analysis reveals that early timesteps are crucial for denoising quality,
whereas later timesteps, particularly in the latter half, contribute less and are more suitable for
skipping. Moreover, the optimal JVP span K is not fixed but depends jointly on the budget and
timestep, underscoring the necessity of multigraph-based modeling for analyzing acceleration from
the average-velocity perspective.

Effect of Peak-Suppression Parameter γ. The peak-suppression parameter, γ, controls the de-
gree of peak suppression in the shortest path, effectively mitigating the concentration of error into a
small number of edges. We selected a moderate budget size of B = 15 and varied γ within the range
[1, 5]. The results, shown in Table 3, indicate that when γ = 1, the image quality metrics fail to reach
optimal performance, suggesting the presence of error spikes within the shortest path. In contrast,
when γ = 5, all evaluation metrics achieve their best performance, highlighting the effectiveness of
peak suppression.

Table 3: Impact of peak-suppression pa-
rameter γ on quality metrics.

γ Reward↑ CLIP↑ LPIPS↓ SSIM↑ PSNR↑

1 1.0136 31.201 0.192 0.826 22.376

2 1.0072 31.195 0.148 0.860 24.147

3 1.0066 31.208 0.145 0.862 24.183

4 1.0179 31.291 0.135 0.869 24.569

5 1.0177 31.271 0.140 0.871 24.568
Figure 7: Content consistency under rare-word
prompts “Matutinal” across acceleration ratios.

Content Consistency Content consistency before and after acceleration is a key criterion for eval-
uating acceleration methods. Rare words, due to their ambiguous semantics and infrequent usage,
pose a stringent challenge for text-to-image generation. To assess consistency under acceleration,
we compare MeanCache with two baselines, TaylorSeer (Liu et al., 2025) and TeaCache (Liu et al.,
2024), using prompts containing rare words. As shown in Figure 7, all three methods maintain good
consistency at low acceleration ratios (< 2.43×). However, as the ratio increases, TaylorSeer and
TeaCache exhibit severe content drift and quality degradation, whereas MeanCache preserves most
of the original content and details even at a 4.12× speedup.

4 RELATED WORK

Diffusion Model Acceleration/Flow Models. Diffusion models have achieved remarkable suc-
cess across modalities, yet their iterative denoising procedure incurs high inference latency, making
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acceleration a central challenge. A large body of work has therefore focused on reducing sampling
steps. For example, DDIM (Song et al., 2020a) extends the original DDPM (Ho et al., 2020) to non-
Markovian dynamics for faster sampling, while EDM (Karras et al., 2022) introduces principled
design choices to improve efficiency. In parallel, advanced numerical solvers for SDEs/ODEs (Song
et al., 2020b; Jolicoeur-Martineau et al., 2021; Lu et al., 2022; Chen et al., 2025) significantly im-
prove the trade-off between accuracy and speed. Another line of work leverages knowledge distil-
lation (Hinton et al., 2015), compressing multi-step trajectories into compact few-step models (Luo
et al., 2023). Representative approaches include Progressive Distillation (Salimans & Ho, 2022),
Consistency Distillation (Song et al., 2023; Kim et al., 2023; Geng et al., 2024; Wang et al., 2025;
Zheng et al., 2024a), Adversarial Diffusion Distillation (Sauer et al., 2024b;a), and Score Distilla-
tion Sampling (Yin et al., 2024b;a). Orthogonal strategies such as quantization (Li et al., 2023b; So
et al., 2023; Shang et al., 2023), pruning (Han et al., 2015; Ma et al., 2023b), system-level optimiza-
tion (Liu et al., 2023), and parallelization frameworks (Zhao et al., 2024a; Li et al., 2024; Fang et al.,
2024; Chen et al., 2024b) have also been explored to enhance efficiency.

Beyond these efforts, Flow Matching (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2022) has
emerged as a promising alternative. Unlike diffusion models (Song et al., 2020a;b) that rely on
noise injection and SDE solvers, it learns velocity fields for distributional transformations and can
be viewed as a continuous-time normalizing flow (Rezende & Mohamed, 2015). Extensions include
Flow Map (Boffi et al., 2024) for integral displacements, Shortcut Models (Frans et al., 2025) for
interval self-consistency, and Inductive Moment Matching (Zhou et al., 2025) for stochastic consis-
tency. MeanFlow (Geng et al., 2025) further shifts the focus from instantaneous to average velocity,
offering a new perspective on efficient generative modeling. Nevertheless, most methods still require
heavy computation, large data, or complex engineering, limiting practical adoption.

Cache in Diffusion Models. Recently, caching strategies (Smith, 1982) have emerged as a promis-
ing retraining-free approach for accelerating diffusion inference (Wimbauer et al., 2023; Ma et al.,
2024). The core idea is to reuse intermediate results from selected timesteps during sampling to re-
duce redundant computation (Selvaraju et al., 2024). Early attempts such as DeepCache (Ma et al.,
2023a) accelerated the UNet backbone with handcrafted rules. Later, T-GATE (Zhang et al., 2024)
and ∆-DiT (Chen et al., 2024a) extended this idea to DiT architectures (Peebles & Xie, 2023),
achieving significant speed-ups in image synthesis (Li et al., 2023a). With the breakthrough of
Sora (OpenAI, 2024) in video generation, these techniques have also been extended to temporal
domains. For instance, PAB (Zhao et al., 2024b) identified a U-shaped trajectory of attention differ-
ences across timesteps and proposed a cache-and-broadcast strategy. More recently, TaylorSeer (Liu
et al., 2025) combined multi-step cached features in a Taylor-expansion-like manner to enhance fea-
ture reuse; TeaCache (Liu et al., 2024) exploits the correlation between timestep embeddings and
model outputs, employing thresholding and polynomial fitting to guide its caching strategy. Di-
Cache (Bu et al., 2025) enhances this idea with online shallow-layer probes, while DBCache (vip-
shop.com, 2025) extends TeaCache’s thresholding scheme to additional boundary blocks. LeM-
iCa (Gao et al., 2025) proposes a global caching mechanism based on a DAG structure to accelerate
video synthesis. While effective, these methods mainly adopt an instantaneous-velocity perspective,
performing feature caching at the step-wise level. This view is inherently unstable (Fig. 2), often
leading to trajectory drift and error accumulation under high acceleration ratios.

5 DISCUSSION AND CONCLUSION

In this work, we presented MeanCache, a lightweight and training-free caching framework for
Flow Matching. By shifting the perspective from instantaneous to average velocities and combining
JVP-based estimation with trajectory-stability scheduling, MeanCache effectively mitigates error
accumulation and improves cache placement. Experiments on commercial-scale models demon-
strate that it achieves significant acceleration while preserving high-fidelity generation. Beyond its
empirical performance, MeanCache contributes a new perspective to caching methods: rather than
reusing instantaneous quantities, it leverages average-velocity formulations as a more stable founda-
tion. This not only enriches the design space of caching strategies, but also extends the applicability
of average-based velocities ideas, such as those in MeanFlow, to practical large-scale generative
models. We hope that MeanCache provides fresh insights for accelerating commercial-scale gener-
ative models.
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ETHICS STATEMENT

This work does not introduce any new datasets or sensitive content, and all experiments are con-
ducted on publicly available models. Furthermore, this study does not involve human subjects, ani-
mal experiments, or personally identifiable information. All datasets used are publicly available and
strictly follow their usage licenses. We adhere to data usage guidelines throughout the experiments
to ensure no ethical or privacy risks arise.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. The experimental setup,
including baseline parameter settings, model configurations, and hardware details, is described in
detail in both the main paper and the supplementary material. In addition, we provide compre-
hensive ablation studies and analyses to further support reproducibility. To better illustrate the ef-
fectiveness of our approach, we also include high-resolution videos in the supplementary material.
Furthermore, we plan to make key resources related to MeanCache, including core code (within
permissible scope), available to the community. This is intended to encourage further exploration of
MeanCache in compliance with relevant guidelines.
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MeanCache: From Instantaneous to Average Velocity for
Accelerating Flow Matching Inference

Appendix

We organize our appendix as follows:

Proofs and Experimental Settings:

• Section A.1: MeanFlow Identity at the Start Point
• Section A.2: Model Configuration
• Section A.3: Baselines generation settings
• Section A.4: Metrics

Additional Experimental Results and Analysis:

• Section B.1: MeanCache vs. Distillation
• Section B.2: Efficiency–Performance Trade-off
• Section B.3: Additional quantitative results

LLM Statement:

• Section C: Use of Large Language Models

A PROOFS AND EXPERIMENTAL SETTINGS

A.1 MEANFLOW IDENTITY AT THE START POINT

Start-point identity from the integral definition. Let t < s. In the MeanFlow formulation, the
average velocity over the interval [s, t] is defined as

u(zs, t, s) =
1

s− t

∫ s

t

v(zτ , τ) dτ. (16)

Since the average velocity is uniquely determined by the interval [s, t], it can be equivalently
indexed by the state at the start point zt. For notational consistency with the original MeanFlow
identity, we write

u(zt, t, s) = u(zs, t, s). (17)
Equivalently, the definition can be expressed as

(s− t)u(zt, t, s) =

∫ s

t

v(zτ , τ) dτ. (18)

Differentiate both sides with respect to t.

While the original MeanFlow identity is obtained by differentiating with respect to the end variable
s, here we instead differentiate the definition equation 18 with respect to the start variable t
(holding s fixed).

On the left-hand side, by the product rule,
∂t
[
(s− t)u(zt, t, s)

]
= −u(zt, t, s) + (s− t) ∂tu(zt, t, s). (19)

On the right-hand side, by the Leibniz rule for a lower limit depending on t,

∂t

(∫ s

t

v(zτ , τ) dτ

)
= − v(zt, t). (20)

Equating equation 19 and equation 20 and rearranging yields the MeanFlow Identity at the start
point:

v(zt, t) = u(zt, t, s) − (s− t)
d

dt
u(zt, t, s). (21)
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A.2 MODEL CONFIGURATION

For MeanCache, the primary hyperparameter is the peak-suppression parameter γ. Based on ab-
lation studies, different γ values are adopted across the three models to achieve better results. For
the step size parameter K of JVP caching, values from 2 to 5 are considered. Trajectory-Stability
Scheduling is further applied in combination with multigraph construction and the Peak-Suppressed
Shortest Path to determine the optimal acceleration path. Under different constraints B, where B
denotes the number of full computation steps, MeanCache flexibly balances runtime cost and accel-
eration ratio. The detailed parameter settings are summarized in Table 4.

Table 4: MeanCache configuration across different models.
Model Peak-suppression γ Budget B
FLUX.1[dev] 4 [10, 15]
Qwen-Image 4 [10, 13, 15]
HunyuanVideo 3 [10, 12]

A.3 BASELINES GENERATION SETTINGS

Experiments are conducted on three representative models from different tasks: FLUX.1-
[dev] (Labs, 2024) and Qwen-Image (Wu et al., 2025) for text-to-image generation, and Hunyuan-
Video (Kong et al., 2024) for text-to-video generation. The detailed configuration for each model is
summarized below.

• FLUX.1[dev] (Labs, 2024): TeaCache (Liu et al., 2024) is evaluated with accumulation er-
ror thresholds l = 0.25 and 1.5, corresponding to different acceleration ratios. DiCache (Bu
et al., 2025) replaces the threshold discriminator of the first block in TeaCache with a probe-
based perspective, where δ serves as the control factor. In the experiments, δ is set to 0.8
and 2.0. TaylorSeer (Liu et al., 2025) reformulates cache reuse as cache prediction, where
N denotes the caching interval and O the order of derivatives. For moderate acceleration
(2.50–2.91×), the settings N = 6, O = 1 and N = 6, O = 2 are adopted, while a higher
acceleration setting of N = 20, O = 1 is applied to align with MeanCache.

• Qwen-Image (Wu et al., 2025): DBCache (vipshop.com, 2025) adjusts acceleration via
r, with default hyperparameters Fn = 2 and Bn = 4. The compositional setting DB-
Cache+TaylorSeer is further considered, configured with r = 1.5 and O = 4. Community
implementations of TeaCache are also included, although significant quality degradation is
observed when thresholds are large.

• HunyuanVideo (Kong et al., 2024): In addition to TeaCache, DiCache, and TaylorSeer,
comparisons are conducted with ToCa (Zou et al., 2024a) and DuCa (Zou et al., 2024b),
both configured with N = 5, consistent with the TaylorSeer setting. Since TaylorSeer
frequently encounters out-of-memory (OOM) under HunyuanVideo, all methods are eval-
uated with CPU-offload enabled to ensure fairness.

A.4 METRICS

For fair and consistent evaluation, we consider both efficiency and generation quality. Efficiency is
quantified using FLOPs and runtime latency. Quality is evaluated with the following five metrics:

ImageReward. ImageReward (Xu et al., 2023) is a learned metric designed to align with human
preferences in text-to-image generation. It uses a reward model trained on human-annotated com-
parisons to provide scores that capture both fidelity and semantic alignment with the input text.
Higher scores indicate better alignment with human judgment.

CLIP Score. CLIP Score (Hessel et al., 2021) leverages pretrained CLIP embeddings to evaluate
text–image alignment. It computes the cosine similarity between image and text embeddings, with
higher values indicating stronger semantic alignment. This metric complements ImageReward by
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providing an embedding-based, zero-shot evaluation of alignment quality. For more precise assess-
ment, we adopt ViT-G as the visual encoder in this paper.

VBench. VBench (Huang et al., 2024) evaluates video generation quality along 16 dimensions, in-
cluding Subject Consistency, Background Consistency, Temporal Flickering, Motion Smoothness,
Dynamic Degree, Aesthetic Quality, Imaging Quality, Object Class, Multiple Objects, Human Ac-
tion, Color, Spatial Relationship, Scene, Appearance Style, Temporal Style, and Overall Consis-
tency. We adopt the official implementation and weighted scoring to comprehensively assess video
quality. In practice, we randomly select 350 generated video samples, which are evenly distributed
across the 16 evaluation dimensions, and evaluate them using the official VBench protocol to ensure
fairness and consistency.

PSNR. Peak Signal-to-Noise Ratio (PSNR) is widely used to measure pixel-level fidelity:

PSNR = 10 · log10
(

R2

MSE

)
, (22)

where R is the maximum possible pixel value and MSE is the mean squared error between reference
and generated images. Higher PSNR indicates better reconstruction fidelity. For videos, we compute
PSNR per frame and report the average.

LPIPS. Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) measures per-
ceptual similarity using deep features:

LPIPS =
∑
i

αi · Dist(Fi(I1), Fi(I2)), (23)

where Fi denotes feature maps from a pretrained network, Dist is typically the L2 distance, and αi

are layer-specific weights. Lower LPIPS values indicate higher perceptual similarity.

SSIM. The Structural Similarity Index Measure (SSIM) (Wang & Bovik, 2002) evaluates lumi-
nance, contrast, and structural consistency:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + C1)(µ2

y + C1)(σ2
x + σ2

y + C2)
, (24)

where µx, µy are mean values, σ2
x, σ

2
y are variances, σxy is covariance, and C1, C2 are constants for

stability. SSIM ranges from −1 to 1, with larger values indicating stronger structural similarity.

B ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSIS

B.1 MEANCACHE VS. DISTILLATION

To better understand the difference between training-free caching and retraining-based distillation,
we compare them on the commercial-scale text-to-image model Qwen-Image. Caching requires
no extra training, whereas distillation depends on costly large-scale retraining. As Qwen-Image
is newly released, distilled variants are limited; we therefore include the 15-step distilled model
from DiffSynth-Studio as a representative baseline. Here, NFE (Number of Function Evaluations)
denotes the number of sampling steps during inference. Table 5 shows that the distilled model
achieves the highest ImageReward score, but MeanCache remains competitive, reaching 1.142 with
only 10 steps. On CLIP Score, a measure of text–image alignment, MeanCache performs favorably.
Distilled models also tend to drift from the original outputs, while caching better preserves fidelity to
the backbone. This is reflected in reconstruction metrics, where MeanCache achieves lower LPIPS
and higher SSIM and PSNR. Overall, distillation can improve some aspects through additional train-
ing, but our results suggest that caching-based approaches such as MeanCache provide a practical
alternative. They maintain semantic consistency, deliver good perceptual quality, and achieve strong
reconstruction accuracy, all without retraining. Caching thus appears to be a scalable acceleration
strategy for commercial-grade generative models.
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Table 5: Quantitative comparison between distillation and MeanCache on Qwen-Image.
Method

Qwen-Image
NFE Training-Free Visual Quality

ImageReward ↑ CLIP Score ↑ LPIPS ↓ SSIM ↑ PSNR ↑

Original (50 steps) 50 – 1.180 33.626 – – –

Qwen-Image-Distill-Full 15 × 1.162 33.062 0.594 0.505 11.019
Qwen-Image-Distill-Full 10 × 1.118 32.802 0.583 0.524 11.483
MeanCache 15 ✓ 1.159 33.636 0.075 0.938 27.663
MeanCache 10 ✓ 1.142 33.621 0.236 0.815 18.983

B.2 EFFICIENCY–PERFORMANCE TRADE-OFF

Our analysis in Fig. 8 compares MeanCache, TaylorSeer, TeaCache, and DiCache on FLUX.1[dev]
across three reconstruction metrics (LPIPS, SSIM, and PSNR). Across a wide range of latency
configurations, MeanCache consistently delivers higher reconstruction fidelity while requiring less
inference time. This advantage is particularly clear in the low-latency regime: even when the total
runtime falls below 3 seconds, MeanCache maintains stable performance across all metrics, whereas
baseline methods exhibit severe degradation, including loss of structural consistency and perceptual
quality. These results highlight that MeanCache not only achieves a favorable quality–efficiency
balance, but also extends the usable acceleration range far beyond prior caching strategies, enabling
practical deployment in interactive or resource-constrained scenarios.

Figure 8: Efficiency–Performance Trade-off on FLUX.1[dev].

B.3 ADDITIONAL QUALITATIVE RESULTS

We provide further qualitative results to complement the main paper. These experiments cover high-
acceleration scenarios on Qwen-Image, different acceleration ratios on FLUX.1[dev], rare-word
prompts for testing content consistency, and additional video examples on HunyuanVideo.

Qwen-Image under High Acceleration. Figure 9 shows results on Qwen-Image at high acceler-
ation ratios. Compared with baselines, MeanCache achieves more faithful preservation of structural
details and visual quality, even when runtime is significantly reduced. Competing methods display
blurring or noticeable artifacts, while MeanCache remains robust.

FLUX.1 across Acceleration Ratios. Figures 10 and 11 illustrate results on FLUX.1[dev] across
multiple acceleration ratios. MeanCache consistently outperforms TaylorSeer and TeaCache in pre-
serving fidelity and perceptual quality. Notably, even at a 4.12× speedup, where baselines collapse
in quality, MeanCache maintains coherent textures and stable global structure.

Content Consistency under Rare-Word Prompts. In Figure 12, we compare MeanCache with
TaylorSeer and TeaCache using the rare-word prompt “Peristeronic”. While all methods retain
reasonable content under mild acceleration (< 2.5×), TaylorSeer and TeaCache quickly degrade as
speedup increases, showing severe semantic drift and detail loss. In contrast, MeanCache preserves
both the intended concept and fine-grained details even at 4.03× acceleration.
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Figure 9: Qualitative comparison of different methods at high acceleration ratios on Qwen-Image.

Figure 10: Qualitative comparison on FLUX.1[dev] under different acceleration ratios (Supplemen-
tary 1).

HunyuanVideo under High Acceleration. Figure 13 presents supplementary video results on
HunyuanVideo. When the acceleration exceeds 3×, baseline methods suffer from heavy motion
artifacts, visual degradation, and temporal inconsistency. MeanCache, however, continues to deliver
stable frame quality and temporal coherence, closely matching the reference trajectory and confirm-
ing its robustness in video generation tasks.

C USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) solely for grammar checking and minor language polishing.
No part of the method design, experimental setup, analysis, or results was generated by LLMs. All
technical contributions and empirical findings in this paper are entirely by the authors.
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Figure 11: Qualitative comparison on FLUX.1[dev] under different acceleration ratios (Supplemen-
tary 2).

Figure 12: Content consistency under rare-word prompts ”Peristeronic” across acceleration ratios.

Figure 13: Comparison of different methods at high acceleration ratios on HunyuanVideo.

20


	Introduction
	Methodology
	Preliminaries
	Instantaneous to Average Velocity Transformation
	JVP-based Cache Construction
	Trajectory-Stability Scheduling

	Experiments
	Experimental setup
	Text-to-Image Generation.
	Text-to-Video Generation.
	Ablation Study

	Related Work
	Discussion and Conclusion
	Proofs and Experimental Settings
	MeanFlow Identity at the Start Point
	Model Configuration
	Baselines Generation Settings
	Metrics

	Additional Experimental Results and Analysis
	MeanCache vs. Distillation
	Efficiency–Performance Trade-off
	Additional Qualitative Results

	Use of Large Language Models

