
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MEANCACHE: FROM INSTANTANEOUS TO AVERAGE
VELOCITY FOR ACCELERATING FLOW MATCHING IN-
FERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

We present MeanCache, a training-free caching framework for efficient Flow
Matching inference. Existing caching methods reduce redundant computation
but typically rely on instantaneous velocity information (e.g., feature caching),
which often leads to severe trajectory deviations and error accumulation under
high acceleration ratios. MeanCache introduces an average-velocity perspective:
by leveraging cached Jacobian–vector products (JVP) to construct interval aver-
age velocities from instantaneous velocities, it effectively mitigates local error
accumulation. To further improve cache timing and JVP reuse stability, we de-
velop a trajectory-stability scheduling strategy as a practical tool, employing a
Peak-Suppressed Shortest Path under budget constraints to determine the sched-
ule. Experiments on FLUX.1, Qwen-Image, and HunyuanVideo demonstrate that
MeanCache achieves 4.12×, 4.56×, and 3.59× acceleration, respectively, while
consistently outperforming state-of-the-art caching baselines in generation qual-
ity. We believe this simple yet effective approach provides a new perspective for
Flow Matching inference and will inspire further exploration of stability-driven
acceleration in commercial-scale generative models.

Figure 1: Visualization of images generated by different methods on FLUX.1[dev] under varying
acceleration ratios.

1 INTRODUCTION

Flow Matching (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2022) has recently demonstrated
remarkable progress across image (Wu et al., 2025), video (Zheng et al., 2024b; Kong et al., 2024),
and multi-modal generation tasks (Hung et al., 2024). By modeling instantaneous velocity fields to
learn continuous transport paths, it offers a concise and effective paradigm for generative model-
ing. However, in commercial-scale models such as FLUX.1 (Labs, 2024), Qwen-Image (Wu et al.,
2025), and HunyuanVideo (Kong et al., 2024), the large memory footprint, heavy per-step com-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

putational cost, and long inference latency significantly hinder its applicability in interactive or
resource-constrained scenarios.

Traditional acceleration methods, such as distillation (Salimans & Ho, 2022; Kim et al., 2023; Sauer
et al., 2024b), pruning (Han et al., 2015), and quantization (Li et al., 2023b), usually rely on architec-
ture modification and large-scale retraining. In contrast, caching-based methods (Ma et al., 2023a)
offer a lightweight, training-free alternative. By reusing intermediate representations from selected
timesteps, they reduce redundant computation and accelerate sampling. However, at high accelera-
tion ratios, these methods often suffer from severe error accumulation: interval states reconstructed
solely from instantaneous velocity or feature information amplify local deviations, causing the tra-
jectory to drift away from the true path. As shown in Fig. 2 (left), instantaneous velocities fluctuate
sharply along the denoising trajectory, making them unstable for reuse, whereas interval average
velocities are much smoother and thus more stable for reconstruction.

Figure 2: Instantaneous vs. Average Velocity and JVP Caching. (Left) Along the original tra-
jectory, instantaneous velocity shows sharp fluctuations, while average velocity is much smoother.
(Middle) At timestep 927, JVP Caching reduces error accumulation, though its effectiveness de-
pends on the cache interval and hyperparameter K. (Right) At timestep 551, it achieves stronger
error mitigation, showing that effectiveness varies across timesteps. Both middle and right figures
are under the single-cache setting on the original trajectory.

This observation is consistent with the objective of Flow Matching, which encourages trajectories to
satisfy linear characteristics. Under fixed input conditions, an ideal trajectory approximates linear
interpolation between sample and noise; the more linear the trajectory, the more stable and higher-
quality the generation results. Recent work such as MeanFlow (Geng et al., 2025), further demon-
strates that modeling and leveraging average velocity can significantly improve trajectory stability,
underscoring the potential of the average-velocity domain for more robust generation.

Motivated by this insight, we propose MeanCache, a training-free caching paradigm that operates
in the average-velocity domain rather than relying solely on instantaneous velocities. The key idea
is to construct interval average velocities from instantaneous ones under a limited budget, ensuring
trajectory stability. MeanCache has two components. First, interval average velocities are approx-
imated using cached Jacobian–vector products (JVP), yielding smoother and more stable guidance
signals that help mitigate local error accumulation. As shown in Fig. 2 (middle, right), JVP caching
reduces errors at timesteps 927 and 551; however, its benefit varies with the timestep, cache inter-
val, and hyperparameters, indicating that fixed caching rules are insufficient. Second, we develop a
trajectory-stability scheduling strategy as a practical tool. Inspired by the graph-based modeling idea
in ShortDF (Chen et al., 2025), timesteps are represented as nodes, deviations of average velocity
under JVP caching define edge weights, and a budget-constrained shortest-path search determines
cache placement. This scheduling tool systematically improves cache timing and JVP reuse stability
without retraining.

The main contributions of this work are summarized as follows:

• Average-Velocity Perspective on Caching. We introduce MeanCache, which redefines
the caching problem from an instantaneous velocity view to the average-velocity domain,
offering a simpler and more stable perspective for high-acceleration generative modeling.

• Trajectory-Stability Scheduling Strategy. We develop a scheduling tool that scores
timesteps by JVP-based stability deviation and uses a budget-constrained shortest-path
search for cache placement, improving timing and reuse stability without retraining.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• Outstanding Performance. MeanCache maintains generation quality under high accel-
eration while significantly reducing inference cost. Compared to state-of-the-art caching
baselines, experiments on FLUX.1, Qwen-Image, and HunyuanVideo show speedups of
4.12×, 4.56×, and 3.59×, respectively. Moreover, MeanCache consistently delivers higher
generation quality across different acceleration ratios (Fig. 1), highlighting its acceleration
potential on commercial-scale generative models.

2 METHODOLOGY

2.1 PRELIMINARIES

Flow Matching and MeanFlow. Flow Matching (Lipman et al., 2023; Albergo & Vanden-
Eijnden, 2022) constructs continuous transport paths between a noise distribution π1 and a data
distribution π0 via velocity fields, typically defined by linear interpolation xt = (1 − t)x0 + tx1,
t ∈ [0, 1]. This leads to the ODE dxt = (x0 − x1)dt. Since x0 is unknown during generation, a
neural network vθ(xt, t) is trained to predict the instantaneous velocity, yielding the dynamics

dx̂t = vθ(xt, t) dt. (1)

Where x̂t denotes the trajectory point predicted by the neural ODE. Building on this formulation,
MeanFlow (Geng et al., 2025) offers a new perspective by modeling the average velocity over the
interval [s, t], defined as

u(zs, t, s) =
1

s−t

∫ s

t

v(zτ , τ) dτ, (2)

Furthermore, the MeanFlow Identity provides a theoretical bridge between instantaneous and aver-
age velocity:

v(zs, s) = u(zs, t, s) + (s− t) d
dsu(zs, t, s). (3)

In this identity, the derivative term d
dsu can be expressed as a Jacobian–Vector Product (JVP),

where the Jacobian of u with respect to (z, s) is contracted with the tangent vector [v(zs, s), 1].
Observing this formulation, JVP can be regarded as a computational bridge that directly connects
instantaneous velocity and average velocity.

Figure 3: From Instantaneous to Average Ve-
locity. Directly caching the instantaneous ve-
locity v(zt, t) over [t, s] easily leads to trajec-
tory drift and error accumulation, whereas the
average velocity u(zt, t, s) accurately reaches
the target s. MeanCache introduces a prior
timestep r and reuses JVPr→t to estimate the
average velocity û(zt, t, s), thereby correcting
the trajectory and effectively mitigating error
accumulation.

Feature Caching in Diffusion Models. Cache,
as a training-free acceleration method, speeds up
the denoising process by storing intermediate fea-
tures and reusing them across adjacent timesteps.
In particular, the reuse strategy directly substi-
tutes cached features from a previous step:

F(xl
t−k) := F(xl

t), ∀k ∈ [1, N − 1], (4)

where F denotes the feature extraction function,
and l is the layer index. This approach avoids re-
dundant computations and yields up to (N − 1)×
theoretical speedup. Nevertheless, two major
limitations remain:

(i) Error Accumulation: Ignoring the temporal
dynamics of features leads to exponential error
accumulation as k increases. Although cache-
then-forecast methods have been proposed re-
cently (Liu et al., 2025), the extrapolated fea-
tures still exhibit significant deviations from the
true trajectories, limiting acceleration in genera-
tive tasks.

(ii) When to Cache: Existing methods for deciding when to cache rely on fixed intervals (Ma et al.,
2023a) or manually tuned threshold-based strategies (Liu et al., 2024; Bu et al., 2025), but these
approaches cause significant degradation in generative quality under high acceleration ratios.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.2 INSTANTANEOUS TO AVERAGE VELOCITY TRANSFORMATION

Traditional feature caching methods operate in the instantaneous-velocity domain, where velocity
varies continuously along the trajectory and inevitably accumulates errors (Fig. 2). Inspired by the
MeanFlow Identity, we instead reformulate caching in the average-velocity domain. As shown in
Fig. 3, transforming the instantaneous velocity v(zt, t) into the average velocity u(zt, t, s) over the
interval [s, t] can, in principle, correct the trajectory accurately and eliminate accumulated errors.
MeanCache builds on this perspective by formally deriving and practically approximating u(zt, t, s).

The MeanFlow Identity in Eq. 3 characterizes the instantaneous velocity only at the endpoint s,
leaving the starting point t unspecified. To close this gap, we derive an analogous relation at t (see
A.1 for details):

v(zt, t) = u(zt, t, s)− (s− t)
d

dt
u(zt, t, s). (5)

Here, the derivative term d
dtu(zt, t, s) can be expressed as a Jacobian–Vector Product (JVP). Since

the exact JVP is unavailable during inference, we approximate it using cached values from earlier
steps. This yields the following estimate for the average velocity:

û(zt, t, s) := v(zt, t) + (s− t) ĴVP, (6)

where ĴVP denotes an approximation to the total derivative d
dtu(zt, t, s), and û(zt, t, s) represents

the estimated average velocity.

2.3 JVP-BASED CACHE CONSTRUCTION

To construct a practical cache estimator, we extend the start-point identity by introducing a reference
point r preceding t, with r > t > s. Intuitively, r serves as an earlier cached state that helps
approximate the JVP between t and s, as illustrated in Fig. 3. Applying the start-anchored identity
on the interval [t, r] and rearranging gives:

ĴVP =
d

dr
u(zr, r, t) =

u(zr, r, t)− v(zr, r)

t− r
. (7)

Using the displacement form of the average velocity on [r, t],

u(zr, r, t) =
zt − zr
t− r

, (8)

we obtain the fully cacheable estimator:

ĴVP =
zt − zr − (t− r) v(zr, r)

(t− r)2
. (9)

Plugging this into the start-point identity yields the predicted average velocity:

û(zt, t, s) = v(zt, t) + (s− t)
zt − zr − (t− r) v(zr, r)

(t− r)2
. (10)

We denote by K the number of discrete timesteps between r and t in the original trajectory. The
final estimator is:

û(zt, t, s) =

{
v(zt, t) + (s− t) ĴVPK , K > 1,

v(zt, t), K = 1,
(11)

where larger K corresponds to reusing cached information over a longer interval, while K = 1
reduces the average velocity to the instantaneous one. In the original denoising trajectory (e.g., 50
steps), zr, zt, and zs are available, so exact average velocities and JVP can be computed. Under
caching, however, JVPt→s is unavailable and must be approximated using JVPr→t. Thus, the
choice of K is critical: it specifies the span of the preceding segment (r → t) used to approxi-
mate JVPt→s, balancing approximation error and stability. This trade-off motivates the need for a
principled scheduling strategy.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.4 TRAJECTORY-STABILITY SCHEDULING

Although JVP-based corrections mitigate local error accumulation, two key challenges remain: de-
termining when to cache and how to select the cache span K. Empirically, while latent values
vary across samples (e.g., different prompts and seeds), their relative changes at fixed timesteps are
highly consistent. This stability, also observed in adaptive schemes such as TeaCache (Liu et al.,
2024), indicates that caching decisions can be guided by a precomputed stability map rather than
fixed heuristics.

Stability Map via Graph Representation. Specifically, we define the error from t to s as the
deviation between the true average velocity and its cached approximation:

LK(t, s) = ∥u(zt, t, s) − û(zt, t, s)∥ . (12)

Expanding the cached estimator û(zt, t, s) with JVP correction gives:

LK(t, s) =
1

N

∥∥∥u(zt, t, s) − v(zt, t) − (s− t) ĴVPK

∥∥∥
1
, (13)

To support trajectory-stability scheduling, we use a graph representation as a practical tool to orga-
nize stability costs and possible transitions. Specifically, for convenience, this can be represented as
a graph G = (V, E), where nodes V correspond to timesteps in the denoising process and edges E
are directed connections (t → s) with t > s, each representing a potential caching transition. Each
edge is assigned a weight:

EK(t → s) = LK(t, s), t, s ∈ V. (14)

where LK(t, s) is the error between predicted and true average velocities under cache span K. Since
multiple cache spans may connect the same node pair, G is naturally modeled as a multigraph.

Peak-Suppressed Shortest Path. Given a Multigraph with error-weighted edges, the scheduling
problem can be conveniently solved via a constrained shortest-path search. A challenge under small
budgets is that the solution may concentrate error into a few edges, leading to large error spikes.
To address this, we adopt a peak-suppressed objective that penalizes high-error edges via a power-
weighted path cost. The optimization problem is:

π⋆ = argmin
π∈P(T,0)

∑
e∈π

C(e) γ s.t. |π| ≤ B ≤ T, (15)

where P(T, 0) is the set of feasible multi-edge paths from the start node T to the end node 0, C(e)
is the error cost of edge e, γ ≥ 1 is the peak-suppression parameter (γ = 1 recovers the standard
shortest path), and |π| is the path length. This peak-suppressed shortest-path problem can be solved
efficiently via dynamic programming. The budget B acts as a constraint on the original path cost
and directly controls the acceleration ratio.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Baselines and Compared Methods. We evaluate our method on representative diffusion-based
generative models: FLUX.1 [dev] (Labs, 2024), Qwen-Image (Wu et al., 2025), and Hunyuan-
Video (Kong et al., 2024). Baselines include TeaCache (Liu et al., 2024), DBCache (vipshop.com,
2025), DiCache (Bu et al., 2025), ToCa (Zou et al., 2024a), DuCa (Zou et al., 2024b), and Tay-
lorSeer (Liu et al., 2025). Among them, TeaCache (Liu et al., 2024) and TaylorSeer (Liu et al.,
2025) are two of the most representative mainstream approaches, spanning both text-to-image and
text-to-video generation tasks.

Metrics. For a fair comparison, we evaluate both efficiency and quality. Efficiency is measured
by FLOPs and latency, while quality is assessed with task-specific and reconstruction metrics. For
text-to-image generation, we follow the standard DrawBench (Saharia et al., 2022) protocol and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Quantitative comparison in text-to-image generation on FLUX.1 [dev] and Qwen-Image.
Method Acceleration Visual Quality

FLOPs(T) ↓ Latency(s) ↓ Speed ↑ Image Reward ↑ CLIP Score ↑ LPIPS ↓ SSIM ↑ PSNR ↑

FLUX.1 [dev] 1024×1024

Original: 50 steps 3734.56 11.57 – 1.033 31.229 – – –
60% steps 2246.87 7.01 1.65× 0.984 31.242 0.217 0.808 20.256
30% steps 1131.10 3.60 3.21× 0.880 30.832 0.399 0.682 15.798

TeaCache (l = 0.25) 1949.73 4.62 2.50× 0.960 31.145 0.338 0.721 17.286
DiCache (δ = 0.8) 1032.51 4.32 2.68× 0.675 30.814 0.416 0.717 21.268
TaylorSeer (N = 6, O = 2) 760.08 4.24 2.74× 0.971 31.310 0.415 0.663 16.278
TaylorSeer (N = 6, O = 1) 760.08 4.06 2.85× 0.961 31.191 0.419 0.660 15.831
MeanCache (B = 15) 1131.10 3.98 2.91× 1.010 31.244 0.142 0.870 24.834
TeaCache (l = 1.5)† 536.73 3.16 3.66× 0.717 30.696 0.504 0.624 15.010
DiCache (δ = 2.0)† 958.15 3.14 3.68× -0.652 27.613 0.586 0.588 17.446
TaylorSeer (N = 20, O = 1)† 388.27 3.10 3.73× -0.727 24.412 0.798 0.443 11.219
MeanCache (B = 10) 759.18 2.81 4.12× 0.993 31.323 0.272 0.761 19.425

Qwen-Image 1664×928

Original: 50 steps 10928.60 32.68 1.00× 1.180 33.626 – – –
30% steps 3291.75 9.86 3.31× 1.128 33.026 0.363 0.727 15.826

TeaCache (l = 0.6) 5481.27 18.52 1.76× 1.087 32.598 0.416 0.698 14.902
DBCache (r = 0.6) 2703.00 11.92 2.74× 1.016 33.435 0.298 0.825 22.221
MeanCache (B = 15) 3291.75 11.45 2.85× 1.159 33.636 0.075 0.938 27.663
DBCache (r = 1.5)† 2070.26 9.57 3.41× -2.059 15.499 0.889 0.129 5.559
DBCache + Taylorseer (r = 1.5, O = 4)† 2070.26 9.70 3.37× -0.227 29.753 0.625 0.646 16.574
MeanCache (B = 13) 2855.35 9.09 3.60× 1.147 33.799 0.113 0.907 24.802
MeanCache (B = 10) 2200.77 7.16 4.56× 1.142 33.621 0.236 0.815 18.983

• † Methods exhibit significant degradation in Image Reward, leading to severe deterioration in image quality.

report ImageReward (Xu et al., 2023) and CLIP Score (Hessel et al., 2021) to evaluate perceptual
quality and text–image alignment. For text-to-video generation, we adopt VBench (Huang et al.,
2024) to capture human preference on generated videos. In addition, for both tasks, we report
LPIPS (Zhang et al., 2018) (perceptual similarity), SSIM (Wang & Bovik, 2002) (structural con-
sistency), and PSNR (pixel-level accuracy) to quantify potential degradation in content and fidelity
introduced by acceleration.

Implementation details. Experiments are conducted on NVIDIA H100 GPUs using PyTorch. To
construct the multigraph, we sample 50 prompts (10 per attribute) from T2V-CompBench (Sun et al.,
2024), following standard practice (Sun et al., 2024; Liu et al., 2024). This procedure is applied
consistently across both text-to-image and text-to-video experiments, even though the dataset was
originally not designed for text-to-image generation. Sampling is repeated 5 times with different
seeds, and results are averaged to reduce bias. For all experiments, FlashAttention (Dao et al., 2022)
is enabled by default to accelerate attention computation. Notably, since TaylorSeer encounters
out-of-memory (OOM) issues under HunyuanVideo, we uniformly adopt the cpu-offload setting to
ensure fair comparison.

3.2 TEXT-TO-IMAGE GENERATION.

Figure 4: Comparison of different methods at
high acceleration ratios on FLUX.1[dev].

As shown in Table 1, MeanCache achieves
clear quantitative gains on two advanced text-
to-image models, FLUX and Qwen-Image. We
use ImageReward (Xu et al., 2023) and CLIP
Score (Hessel et al., 2021) as perceptual metrics,
and reconstruction metrics to measure content
and detail preservation. On FLUX, at 2.91× ac-
celeration, MeanCache surpasses TaylorSeer and
TeaCache in both image quality and detail preser-
vation, and remains robust at higher ratios. Even
at 4.12×, where competitors collapse in quality,
our method still attains an ImageReward Score↑
of 0.993 and an LPIPS↓ of 0.272. On Qwen-
Image (1664×928 resolution), MeanCache like-
wise improves both quality and speed, reaching
an LPIPS↓ of 0.075 at 2.85× acceleration, indi-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Quantitative comparison in text-to-video generation on HunyuanVideo †.
Method
HunyuanVideo

Acceleration Visual Quality

Latency(s) ↓ Speed ↑ VBench ↑ LPIPS ↓ SSIM ↑ PSNR ↑

Original: 50 steps 105.92 1.00× 80.39% – – –
30% steps 39.53 2.68× 79.84% 0.381 0.659 17.335

ToCa (N = 5) 36.17 2.93× 79.51% 0.454 0.590 15.765
Duca (N = 5) 34.32 3.09× 79.54% 0.454 0.595 15.807
DiCache (δ = 0.8) 33.76 3.11× 74.09% 0.382 0.701 22.053
TaylorSeer (N = 5, O = 1) 34.95 3.03× 79.95% 0.428 0.603 16.026
Teacache (l = 0.33) 34.06 3.11× 80.02% 0.363 0.651 17.957
MeanCache (B = 12) 33.05 3.21× 80.01% 0.176 0.809 24.002

DiCache (δ = 3.0) 31.81 3.33× 70.86% 0.583 0.490 19.098
Teacache (l = 0.39) 31.86 3.32× 79.75% 0.396 0.631 17.382
TaylorSeer (N = 7, O = 1) 31.50 3.36× 79.76% 0.480 0.595 15.444
MeanCache (B = 10) 29.48 3.59× 80.08% 0.269 0.732 20.464

• † TaylorSeer may encounter OOM; for fairness, all methods are run with CPU-offload enabled.

cating near-lossless sampling. As shown in Fig. 4, on FLUX.1 [dev], when the acceleration exceeds
3.5×, baseline methods suffer from severe blurring, detail loss, and structural distortions, whereas
MeanCache consistently preserves perceptual quality and fidelity close to the original outputs. On
Qwen-Image, MeanCache also demonstrates strong robustness under high acceleration ratios, out-
performing other baselines as illustrated in Fig. 9.

3.3 TEXT-TO-VIDEO GENERATION.

On the HunyuanVideo, Table 2 demonstrates the acceleration performance of MeanCache across
VBench and three reconstruction metrics. With a speedup of 3.42×, our method significantly out-
performs the main competitors, achieving 0.809 in SSIM↑ and 24.002 in PSNR↑. Performance
continues to improve with a further 3.97× speedup, while maintaining a VBench score of 80.08%.
In terms of content preservation, our method effectively preserves both the content and intricate de-
tails of the original video, surpassing all baseline methods in this regard. As shown in Fig. 5, when
the acceleration exceeds 3.0×, baseline methods suffer from visual degradation or blurring, whereas
MeanCache maintains superior video quality and fidelity to the original videos.

Figure 5: Comparison of different methods at high acceleration ratios on HunyuanVideo.

3.4 ABLATION STUDY

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 6: Shortest paths on a multigraph under different budgets B in FLUX.1[dev]

Shortest Path Analysis. Trajectory-Stability Scheduling is realized by constructing a multigraph
and solving for its shortest paths. Given this representation, the shortest path under any step budget
B can be obtained via edge-weighted optimization. The budget B (equivalent to the Number of
Function Evaluations, NFE) directly controls the acceleration ratio: smaller values correspond to
greater speedups. Figure 6 illustrates the shortest-path patterns on FLUX as B decreases from 40
to 10. The horizontal axis corresponds to the 50-step denoising trajectory, while the vertical axis
indicates different budget levels. Darker cells represent larger cached JVP spans K, and gray cells
indicate reuse (skips). This analysis reveals that early timesteps are crucial for denoising quality,
whereas later timesteps, particularly in the latter half, contribute less and are more suitable for
skipping. Moreover, the optimal JVP span K is not fixed but depends jointly on the budget and
timestep, underscoring the necessity of multigraph-based modeling for analyzing acceleration from
the average-velocity perspective.

Effect of Peak-Suppression Parameter γ. The peak-suppression parameter, γ, controls the de-
gree of peak suppression in the shortest path, effectively mitigating the concentration of error into a
small number of edges. We selected a moderate budget size of B = 15 and varied γ within the range
[1, 5]. The results, shown in Table 3, indicate that when γ = 1, the image quality metrics fail to reach
optimal performance, suggesting the presence of error spikes within the shortest path. In contrast,
when γ = 5, all evaluation metrics achieve their best performance, highlighting the effectiveness of
peak suppression.

Table 3: Impact of peak-suppression pa-
rameter γ on quality metrics.

γ Reward↑ CLIP↑ LPIPS↓ SSIM↑ PSNR↑

1 1.0136 31.201 0.192 0.826 22.376

2 1.0072 31.195 0.148 0.860 24.147

3 1.0066 31.208 0.145 0.862 24.183

4 1.0179 31.291 0.135 0.869 24.569

5 1.0177 31.271 0.140 0.871 24.568
Figure 7: Content consistency under rare-word
prompts “Matutinal” across acceleration ratios.

Content Consistency Content consistency before and after acceleration is a key criterion for eval-
uating acceleration methods. Rare words, due to their ambiguous semantics and infrequent usage,
pose a stringent challenge for text-to-image generation. To assess consistency under acceleration,
we compare MeanCache with two baselines, TaylorSeer (Liu et al., 2025) and TeaCache (Liu et al.,
2024), using prompts containing rare words. As shown in Figure 7, all three methods maintain good
consistency at low acceleration ratios (< 2.43×). However, as the ratio increases, TaylorSeer and
TeaCache exhibit severe content drift and quality degradation, whereas MeanCache preserves most
of the original content and details even at a 4.12× speedup.

4 RELATED WORK

Diffusion Model Acceleration/Flow Models. Diffusion models have achieved remarkable suc-
cess across modalities, yet their iterative denoising procedure incurs high inference latency, making

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

acceleration a central challenge. A large body of work has therefore focused on reducing sampling
steps. For example, DDIM (Song et al., 2020a) extends the original DDPM (Ho et al., 2020) to non-
Markovian dynamics for faster sampling, while EDM (Karras et al., 2022) introduces principled
design choices to improve efficiency. In parallel, advanced numerical solvers for SDEs/ODEs (Song
et al., 2020b; Jolicoeur-Martineau et al., 2021; Lu et al., 2022; Chen et al., 2025) significantly im-
prove the trade-off between accuracy and speed. Another line of work leverages knowledge distil-
lation (Hinton et al., 2015), compressing multi-step trajectories into compact few-step models (Luo
et al., 2023). Representative approaches include Progressive Distillation (Salimans & Ho, 2022),
Consistency Distillation (Song et al., 2023; Kim et al., 2023; Geng et al., 2024; Wang et al., 2025;
Zheng et al., 2024a), Adversarial Diffusion Distillation (Sauer et al., 2024b;a), and Score Distilla-
tion Sampling (Yin et al., 2024b;a). Orthogonal strategies such as quantization (Li et al., 2023b; So
et al., 2023; Shang et al., 2023), pruning (Han et al., 2015; Ma et al., 2023b), system-level optimiza-
tion (Liu et al., 2023), and parallelization frameworks (Zhao et al., 2024a; Li et al., 2024; Fang et al.,
2024; Chen et al., 2024b) have also been explored to enhance efficiency.

Beyond these efforts, Flow Matching (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2022) has
emerged as a promising alternative. Unlike diffusion models (Song et al., 2020a;b) that rely on
noise injection and SDE solvers, it learns velocity fields for distributional transformations and can
be viewed as a continuous-time normalizing flow (Rezende & Mohamed, 2015). Extensions include
Flow Map (Boffi et al., 2024) for integral displacements, Shortcut Models (Frans et al., 2025) for
interval self-consistency, and Inductive Moment Matching (Zhou et al., 2025) for stochastic consis-
tency. MeanFlow (Geng et al., 2025) further shifts the focus from instantaneous to average velocity,
offering a new perspective on efficient generative modeling. Nevertheless, most methods still require
heavy computation, large data, or complex engineering, limiting practical adoption.

Cache in Diffusion Models. Recently, caching strategies (Smith, 1982) have emerged as a promis-
ing retraining-free approach for accelerating diffusion inference (Wimbauer et al., 2023; Ma et al.,
2024). The core idea is to reuse intermediate results from selected timesteps during sampling to re-
duce redundant computation (Selvaraju et al., 2024). Early attempts such as DeepCache (Ma et al.,
2023a) accelerated the UNet backbone with handcrafted rules. Later, T-GATE (Zhang et al., 2024)
and ∆-DiT (Chen et al., 2024a) extended this idea to DiT architectures (Peebles & Xie, 2023),
achieving significant speed-ups in image synthesis (Li et al., 2023a). With the breakthrough of
Sora (OpenAI, 2024) in video generation, these techniques have also been extended to temporal
domains. For instance, PAB (Zhao et al., 2024b) identified a U-shaped trajectory of attention differ-
ences across timesteps and proposed a cache-and-broadcast strategy. More recently, TaylorSeer (Liu
et al., 2025) combined multi-step cached features in a Taylor-expansion-like manner to enhance fea-
ture reuse; TeaCache (Liu et al., 2024) exploits the correlation between timestep embeddings and
model outputs, employing thresholding and polynomial fitting to guide its caching strategy. Di-
Cache (Bu et al., 2025) enhances this idea with online shallow-layer probes, while DBCache (vip-
shop.com, 2025) extends TeaCache’s thresholding scheme to additional boundary blocks. LeM-
iCa (Gao et al., 2025) proposes a global caching mechanism based on a DAG structure to accelerate
video synthesis. While effective, these methods mainly adopt an instantaneous-velocity perspective,
performing feature caching at the step-wise level. This view is inherently unstable (Fig. 2), often
leading to trajectory drift and error accumulation under high acceleration ratios.

5 DISCUSSION AND CONCLUSION

In this work, we presented MeanCache, a lightweight and training-free caching framework for
Flow Matching. By shifting the perspective from instantaneous to average velocities and combining
JVP-based estimation with trajectory-stability scheduling, MeanCache effectively mitigates error
accumulation and improves cache placement. Experiments on commercial-scale models demon-
strate that it achieves significant acceleration while preserving high-fidelity generation. Beyond its
empirical performance, MeanCache contributes a new perspective to caching methods: rather than
reusing instantaneous quantities, it leverages average-velocity formulations as a more stable founda-
tion. This not only enriches the design space of caching strategies, but also extends the applicability
of average-based velocities ideas, such as those in MeanFlow, to practical large-scale generative
models. We hope that MeanCache provides fresh insights for accelerating commercial-scale gener-
ative models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work does not introduce any new datasets or sensitive content, and all experiments are con-
ducted on publicly available models. Furthermore, this study does not involve human subjects, ani-
mal experiments, or personally identifiable information. All datasets used are publicly available and
strictly follow their usage licenses. We adhere to data usage guidelines throughout the experiments
to ensure no ethical or privacy risks arise.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. The experimental setup,
including baseline parameter settings, model configurations, and hardware details, is described in
detail in both the main paper and the supplementary material. In addition, we provide compre-
hensive ablation studies and analyses to further support reproducibility. To better illustrate the ef-
fectiveness of our approach, we also include high-resolution videos in the supplementary material.
Furthermore, we plan to make key resources related to MeanCache, including core code (within
permissible scope), available to the community. This is intended to encourage further exploration of
MeanCache in compliance with relevant guidelines.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
polants. arXiv preprint arXiv:2209.15571, 2022.

Nicholas M Boffi, Michael S Albergo, and Eric Vanden-Eijnden. Flow map matching. arXiv preprint
arXiv:2406.07507, 2024.

Jiazi Bu, Pengyang Ling, Yujie Zhou, Yibin Wang, Yuhang Zang, Tong Wu, Dahua Lin, and Jiaqi
Wang. Dicache: Let diffusion model determine its own cache. arXiv preprint arXiv:2508.17356,
2025.

Pengtao Chen, Mingzhu Shen, Peng Ye, Jianjian Cao, Chongjun Tu, Christos-Savvas Bouganis,
Yiren Zhao, and Tao Chen. Delta dit: A training-free acceleration method tailored for diffusion
transformers. arXiv preprint arXiv:2406.01125, 2024a.

Ping Chen, Xingpeng Zhang, Zhaoxiang Liu, Huan Hu, Xiang Liu, Kai Wang, Min Wang, Yanlin
Qian, and Shiguo Lian. Optimizing for the shortest path in denoising diffusion model. Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2025.

Zigeng Chen, Xinyin Ma, Gongfan Fang, Zhenxiong Tan, and Xinchao Wang. Asyncdiff: Paral-
lelizing diffusion models by asynchronous denoising. arXiv preprint arXiv:2406.06911, 2024b.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Jiarui Fang, Jinzhe Pan, Xibo Sun, Aoyu Li, and Jiannan Wang. xdit: an inference engine for
diffusion transformers (dits) with massive parallelism. arXiv preprint arXiv:2411.01738, 2024.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. In International Conference on Learning Representations (ICLR), 2025.

Huanlin Gao, Ping Chen, Fuyuan Shi, Chao Tan, Zhaoxiang Liu, Fang Zhao, Kai Wang, and Shiguo
Lian. Lemica: Lexicographic minimax path caching for efficient diffusion-based video genera-
tion. arXiv preprint arXiv:2511.00090, 2025.

Zhengyang Geng, Ashwini Pokle, William Luo, Justin Lin, and J Zico Kolter. Consistency models
made easy. arXiv preprint arXiv:2406.14548, 2024.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for
video generative models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 21807–21818, 2024.

Chia-Yu Hung, Navonil Majumder, Zhifeng Kong, Ambuj Mehrish, Amir Zadeh, Chuan Li, Rafael
Valle, Bryan Catanzaro, and Soujanya Poria. Tangoflux: Super fast and faithful text to audio
generation with flow matching and clap-ranked preference optimization, 2024. URL https:
//arxiv.org/abs/2412.21037.

11

https://arxiv.org/abs/2412.21037
https://arxiv.org/abs/2412.21037

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis Mitliagkas.
Gotta go fast when generating data with score-based models. arXiv preprint arXiv:2105.14080,
2021.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning proba-
bility flow ode trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023.

Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
Bo Wu, Jianwei Zhang, et al. Hunyuanvideo: A systematic framework for large video generative
models. arXiv preprint arXiv:2412.03603, 2024.

Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.

Muyang Li, Tianle Cai, Jiaxin Cao, Qinsheng Zhang, Han Cai, Junjie Bai, Yangqing Jia, Kai Li,
and Song Han. Distrifusion: Distributed parallel inference for high-resolution diffusion models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7183–7193, 2024.

Senmao Li, Taihang Hu, Fahad Shahbaz Khan, Linxuan Li, Shiqi Yang, Yaxing Wang, Ming-Ming
Cheng, and Jian Yang. Faster diffusion: Rethinking the role of unet encoder in diffusion models.
arXiv e-prints, pp. arXiv–2312, 2023a.

Yanjing Li, Sheng Xu, Xianbin Cao, Xiao Sun, and Baochang Zhang. Q-dm: An efficient low-bit
quantized diffusion model. Advances in neural information processing systems, 36:76680–76691,
2023b.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In International Conference on Learning Representations
(ICLR), 2023.

Enshu Liu, Xuefei Ning, Zinan Lin, Huazhong Yang, and Yu Wang. Oms-dpm: Optimizing the
model schedule for diffusion probabilistic models. In International Conference on Machine
Learning, pp. 21915–21936. PMLR, 2023.

Feng Liu, Shiwei Zhang, Xiaofeng Wang, Yujie Wei, Haonan Qiu, Yuzhong Zhao, Yingya Zhang,
Qixiang Ye, and Fang Wan. Timestep embedding tells: It’s time to cache for video diffusion
model. CoRR, abs/2411.19108, 2024. doi: 10.48550/ARXIV.2411.19108. URL https://
doi.org/10.48550/arXiv.2411.19108.

Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Junjie Chen, and Linfeng Zhang. From reusing to fore-
casting: Accelerating diffusion models with taylorseers. arXiv preprint arXiv:2503.06923, 2025.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models: Synthe-
sizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378, 2023.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free.
arXiv preprint arXiv:2312.00858, 2023a.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023b.

Xinyin Ma, Gongfan Fang, Michael Bi Mi, and Xinchao Wang. Learning-to-cache: Accelerating
diffusion transformer via layer caching. Advances in Neural Information Processing Systems, 37:
133282–133304, 2024.

12

https://github.com/black-forest-labs/flux
https://doi.org/10.48550/arXiv.2411.19108
https://doi.org/10.48550/arXiv.2411.19108

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

OpenAI. Sora, 2024. https://openai.com/index/sora/.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Interna-
tional Conference on Machine Learning (ICML), 2015.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural informa-
tion processing systems, 35:36479–36494, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Axel Sauer, Frederic Boesel, Tim Dockhorn, Andreas Blattmann, Patrick Esser, and Robin Rom-
bach. Fast high-resolution image synthesis with latent adversarial diffusion distillation. In SIG-
GRAPH Asia 2024 Conference Papers, pp. 1–11, 2024a.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion dis-
tillation. In European Conference on Computer Vision, pp. 87–103. Springer, 2024b.

Pratheba Selvaraju, Tianyu Ding, Tianyi Chen, Ilya Zharkov, and Luming Liang. Fora: Fast-forward
caching in diffusion transformer acceleration. arXiv preprint arXiv:2407.01425, 2024.

Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on
diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 1972–1981, 2023.

Alan Jay Smith. Cache memories. ACM Computing Surveys (CSUR), 14(3):473–530, 1982.

Junhyuk So, Jungwon Lee, Daehyun Ahn, Hyungjun Kim, and Eunhyeok Park. Temporal dynamic
quantization for diffusion models. Advances in neural information processing systems, 36:48686–
48698, 2023.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

Kaiyue Sun, Kaiyi Huang, Xian Liu, Yue Wu, Zihan Xu, Zhenguo Li, and Xihui Liu. T2v-
compbench: A comprehensive benchmark for compositional text-to-video generation. arXiv
preprint arXiv:2407.14505, 2024.

vipshop.com. cache-dit: A unified and training-free cache acceleration toolbox for diffusion trans-
formers, 2025. URL https://github.com/vipshop/cache-dit.git. Open-source
software available at https://github.com/vipshop/cache-dit.git.

Cunzheng Wang, Ziyuan Guo, Yuxuan Duan, Huaxia Li, Nemo Chen, Xu Tang, and Yao Hu. Target-
driven distillation: Consistency distillation with target timestep selection and decoupled guidance.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 7619–7627,
2025.

Zhou Wang and Alan C Bovik. A universal image quality index. IEEE signal processing letters, 9
(3):81–84, 2002.

Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom
Sanakoyeu, Peizhao Zhang, Sam Tsai, Jonas Kohler, et al. Cache me if you can: Accelerating
diffusion models through block caching. arXiv preprint arXiv:2312.03209, 2023.

13

https://github.com/vipshop/cache-dit.git

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng ming Yin, Shuai
Bai, Xiao Xu, Yilei Chen, Yuxiang Chen, Zecheng Tang, Zekai Zhang, Zhengyi Wang, An Yang,
Bowen Yu, Chen Cheng, Dayiheng Liu, Deqing Li, Hang Zhang, Hao Meng, Hu Wei, Jingyuan
Ni, Kai Chen, Kuan Cao, Liang Peng, Lin Qu, Minggang Wu, Peng Wang, Shuting Yu, Tingkun
Wen, Wensen Feng, Xiaoxiao Xu, Yi Wang, Yichang Zhang, Yongqiang Zhu, Yujia Wu, Yuxuan
Cai, and Zenan Liu. Qwen-image technical report, 2025. URL https://arxiv.org/abs/
2508.02324.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
Advances in Neural Information Processing Systems, 36:15903–15935, 2023.

Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and
Bill Freeman. Improved distribution matching distillation for fast image synthesis. Advances in
neural information processing systems, 37:47455–47487, 2024a.

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 6613–6623, 2024b.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

Wentian Zhang, Haozhe Liu, Jinheng Xie, Francesco Faccio, Mike Zheng Shou, and Jürgen Schmid-
huber. Cross-attention makes inference cumbersome in text-to-image diffusion models. arXiv
preprint arXiv:2404.02747, 2024.

Xuanlei Zhao, Shenggan Cheng, Chang Chen, Zangwei Zheng, Ziming Liu, Zheming Yang, and
Yang You. Dsp: Dynamic sequence parallelism for multi-dimensional transformers. arXiv
preprint arXiv:2403.10266, 2024a.

Xuanlei Zhao, Xiaolong Jin, Kai Wang, and Yang You. Real-time video generation with pyramid
attention broadcast. arXiv preprint arXiv:2408.12588, 2024b.

Jianbin Zheng, Minghui Hu, Zhongyi Fan, Chaoyue Wang, Changxing Ding, Dacheng Tao, and Tat-
Jen Cham. Trajectory consistency distillation: Improved latent consistency distillation by semi-
linear consistency function with trajectory mapping. arXiv preprint arXiv:2402.19159, 2024a.

Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun
Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all,
2024b. https://github.com/hpcaitech/Open-Sora.

Linqi Zhou, Stefano Ermon, and Jiaming Song. Inductive moment matching. arXiv preprint
arXiv:2503.07565, 2025.

Chang Zou, Xuyang Liu, Ting Liu, Siteng Huang, and Linfeng Zhang. Accelerating diffusion
transformers with token-wise feature caching. arXiv preprint arXiv:2410.05317, 2024a.

Chang Zou, Evelyn Zhang, Runlin Guo, Haohang Xu, Conghui He, Xuming Hu, and Linfeng Zhang.
Accelerating diffusion transformers with dual feature caching. arXiv preprint arXiv:2412.18911,
2024b.

14

https://arxiv.org/abs/2508.02324
https://arxiv.org/abs/2508.02324

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

MeanCache: From Instantaneous to Average Velocity for
Accelerating Flow Matching Inference

Appendix

We organize our appendix as follows:

Proofs and Experimental Settings:

• Section A.1: MeanFlow Identity at the Start Point
• Section A.2: Model Configuration
• Section A.3: Baselines generation settings
• Section A.4: Metrics

Additional Experimental Results and Analysis:

• Section B.1: MeanCache vs. Distillation
• Section B.2: Efficiency–Performance Trade-off
• Section B.3: Additional quantitative results

LLM Statement:

• Section C: Use of Large Language Models

A PROOFS AND EXPERIMENTAL SETTINGS

A.1 MEANFLOW IDENTITY AT THE START POINT

Start-point identity from the integral definition. Let t < s. In the MeanFlow formulation, the
average velocity over the interval [s, t] is defined as

u(zs, t, s) =
1

s− t

∫ s

t

v(zτ , τ) dτ. (16)

Since the average velocity is uniquely determined by the interval [s, t], it can be equivalently
indexed by the state at the start point zt. For notational consistency with the original MeanFlow
identity, we write

u(zt, t, s) = u(zs, t, s). (17)
Equivalently, the definition can be expressed as

(s− t)u(zt, t, s) =

∫ s

t

v(zτ , τ) dτ. (18)

Differentiate both sides with respect to t.

While the original MeanFlow identity is obtained by differentiating with respect to the end variable
s, here we instead differentiate the definition equation 18 with respect to the start variable t
(holding s fixed).

On the left-hand side, by the product rule,
∂t
[
(s− t)u(zt, t, s)

]
= −u(zt, t, s) + (s− t) ∂tu(zt, t, s). (19)

On the right-hand side, by the Leibniz rule for a lower limit depending on t,

∂t

(∫ s

t

v(zτ , τ) dτ

)
= − v(zt, t). (20)

Equating equation 19 and equation 20 and rearranging yields the MeanFlow Identity at the start
point:

v(zt, t) = u(zt, t, s) − (s− t)
d

dt
u(zt, t, s). (21)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2 MODEL CONFIGURATION

For MeanCache, the primary hyperparameter is the peak-suppression parameter γ. Based on ab-
lation studies, different γ values are adopted across the three models to achieve better results. For
the step size parameter K of JVP caching, values from 2 to 5 are considered. Trajectory-Stability
Scheduling is further applied in combination with multigraph construction and the Peak-Suppressed
Shortest Path to determine the optimal acceleration path. Under different constraints B, where B
denotes the number of full computation steps, MeanCache flexibly balances runtime cost and accel-
eration ratio. The detailed parameter settings are summarized in Table 4.

Table 4: MeanCache configuration across different models.
Model Peak-suppression γ Budget B
FLUX.1[dev] 4 [10, 15]
Qwen-Image 4 [10, 13, 15]
HunyuanVideo 3 [10, 12]

A.3 BASELINES GENERATION SETTINGS

Experiments are conducted on three representative models from different tasks: FLUX.1-
[dev] (Labs, 2024) and Qwen-Image (Wu et al., 2025) for text-to-image generation, and Hunyuan-
Video (Kong et al., 2024) for text-to-video generation. The detailed configuration for each model is
summarized below.

• FLUX.1[dev] (Labs, 2024): TeaCache (Liu et al., 2024) is evaluated with accumulation er-
ror thresholds l = 0.25 and 1.5, corresponding to different acceleration ratios. DiCache (Bu
et al., 2025) replaces the threshold discriminator of the first block in TeaCache with a probe-
based perspective, where δ serves as the control factor. In the experiments, δ is set to 0.8
and 2.0. TaylorSeer (Liu et al., 2025) reformulates cache reuse as cache prediction, where
N denotes the caching interval and O the order of derivatives. For moderate acceleration
(2.50–2.91×), the settings N = 6, O = 1 and N = 6, O = 2 are adopted, while a higher
acceleration setting of N = 20, O = 1 is applied to align with MeanCache.

• Qwen-Image (Wu et al., 2025): DBCache (vipshop.com, 2025) adjusts acceleration via
r, with default hyperparameters Fn = 2 and Bn = 4. The compositional setting DB-
Cache+TaylorSeer is further considered, configured with r = 1.5 and O = 4. Community
implementations of TeaCache are also included, although significant quality degradation is
observed when thresholds are large.

• HunyuanVideo (Kong et al., 2024): In addition to TeaCache, DiCache, and TaylorSeer,
comparisons are conducted with ToCa (Zou et al., 2024a) and DuCa (Zou et al., 2024b),
both configured with N = 5, consistent with the TaylorSeer setting. Since TaylorSeer
frequently encounters out-of-memory (OOM) under HunyuanVideo, all methods are eval-
uated with CPU-offload enabled to ensure fairness.

A.4 METRICS

For fair and consistent evaluation, we consider both efficiency and generation quality. Efficiency is
quantified using FLOPs and runtime latency. Quality is evaluated with the following five metrics:

ImageReward. ImageReward (Xu et al., 2023) is a learned metric designed to align with human
preferences in text-to-image generation. It uses a reward model trained on human-annotated com-
parisons to provide scores that capture both fidelity and semantic alignment with the input text.
Higher scores indicate better alignment with human judgment.

CLIP Score. CLIP Score (Hessel et al., 2021) leverages pretrained CLIP embeddings to evaluate
text–image alignment. It computes the cosine similarity between image and text embeddings, with
higher values indicating stronger semantic alignment. This metric complements ImageReward by

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

providing an embedding-based, zero-shot evaluation of alignment quality. For more precise assess-
ment, we adopt ViT-G as the visual encoder in this paper.

VBench. VBench (Huang et al., 2024) evaluates video generation quality along 16 dimensions, in-
cluding Subject Consistency, Background Consistency, Temporal Flickering, Motion Smoothness,
Dynamic Degree, Aesthetic Quality, Imaging Quality, Object Class, Multiple Objects, Human Ac-
tion, Color, Spatial Relationship, Scene, Appearance Style, Temporal Style, and Overall Consis-
tency. We adopt the official implementation and weighted scoring to comprehensively assess video
quality. In practice, we randomly select 350 generated video samples, which are evenly distributed
across the 16 evaluation dimensions, and evaluate them using the official VBench protocol to ensure
fairness and consistency.

PSNR. Peak Signal-to-Noise Ratio (PSNR) is widely used to measure pixel-level fidelity:

PSNR = 10 · log10
(

R2

MSE

)
, (22)

where R is the maximum possible pixel value and MSE is the mean squared error between reference
and generated images. Higher PSNR indicates better reconstruction fidelity. For videos, we compute
PSNR per frame and report the average.

LPIPS. Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) measures per-
ceptual similarity using deep features:

LPIPS =
∑
i

αi · Dist(Fi(I1), Fi(I2)), (23)

where Fi denotes feature maps from a pretrained network, Dist is typically the L2 distance, and αi

are layer-specific weights. Lower LPIPS values indicate higher perceptual similarity.

SSIM. The Structural Similarity Index Measure (SSIM) (Wang & Bovik, 2002) evaluates lumi-
nance, contrast, and structural consistency:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + C1)(µ2

y + C1)(σ2
x + σ2

y + C2)
, (24)

where µx, µy are mean values, σ2
x, σ

2
y are variances, σxy is covariance, and C1, C2 are constants for

stability. SSIM ranges from −1 to 1, with larger values indicating stronger structural similarity.

B ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSIS

B.1 MEANCACHE VS. DISTILLATION

To better understand the difference between training-free caching and retraining-based distillation,
we compare them on the commercial-scale text-to-image model Qwen-Image. Caching requires
no extra training, whereas distillation depends on costly large-scale retraining. As Qwen-Image
is newly released, distilled variants are limited; we therefore include the 15-step distilled model
from DiffSynth-Studio as a representative baseline. Here, NFE (Number of Function Evaluations)
denotes the number of sampling steps during inference. Table 5 shows that the distilled model
achieves the highest ImageReward score, but MeanCache remains competitive, reaching 1.142 with
only 10 steps. On CLIP Score, a measure of text–image alignment, MeanCache performs favorably.
Distilled models also tend to drift from the original outputs, while caching better preserves fidelity to
the backbone. This is reflected in reconstruction metrics, where MeanCache achieves lower LPIPS
and higher SSIM and PSNR. Overall, distillation can improve some aspects through additional train-
ing, but our results suggest that caching-based approaches such as MeanCache provide a practical
alternative. They maintain semantic consistency, deliver good perceptual quality, and achieve strong
reconstruction accuracy, all without retraining. Caching thus appears to be a scalable acceleration
strategy for commercial-grade generative models.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 5: Quantitative comparison between distillation and MeanCache on Qwen-Image.
Method

Qwen-Image
NFE Training-Free Visual Quality

ImageReward ↑ CLIP Score ↑ LPIPS ↓ SSIM ↑ PSNR ↑

Original (50 steps) 50 – 1.180 33.626 – – –

Qwen-Image-Distill-Full 15 × 1.162 33.062 0.594 0.505 11.019
Qwen-Image-Distill-Full 10 × 1.118 32.802 0.583 0.524 11.483
MeanCache 15 ✓ 1.159 33.636 0.075 0.938 27.663
MeanCache 10 ✓ 1.142 33.621 0.236 0.815 18.983

B.2 EFFICIENCY–PERFORMANCE TRADE-OFF

Our analysis in Fig. 8 compares MeanCache, TaylorSeer, TeaCache, and DiCache on FLUX.1[dev]
across three reconstruction metrics (LPIPS, SSIM, and PSNR). Across a wide range of latency
configurations, MeanCache consistently delivers higher reconstruction fidelity while requiring less
inference time. This advantage is particularly clear in the low-latency regime: even when the total
runtime falls below 3 seconds, MeanCache maintains stable performance across all metrics, whereas
baseline methods exhibit severe degradation, including loss of structural consistency and perceptual
quality. These results highlight that MeanCache not only achieves a favorable quality–efficiency
balance, but also extends the usable acceleration range far beyond prior caching strategies, enabling
practical deployment in interactive or resource-constrained scenarios.

Figure 8: Efficiency–Performance Trade-off on FLUX.1[dev].

B.3 ADDITIONAL QUALITATIVE RESULTS

We provide further qualitative results to complement the main paper. These experiments cover high-
acceleration scenarios on Qwen-Image, different acceleration ratios on FLUX.1[dev], rare-word
prompts for testing content consistency, and additional video examples on HunyuanVideo.

Qwen-Image under High Acceleration. Figure 9 shows results on Qwen-Image at high acceler-
ation ratios. Compared with baselines, MeanCache achieves more faithful preservation of structural
details and visual quality, even when runtime is significantly reduced. Competing methods display
blurring or noticeable artifacts, while MeanCache remains robust.

FLUX.1 across Acceleration Ratios. Figures 10 and 11 illustrate results on FLUX.1[dev] across
multiple acceleration ratios. MeanCache consistently outperforms TaylorSeer and TeaCache in pre-
serving fidelity and perceptual quality. Notably, even at a 4.12× speedup, where baselines collapse
in quality, MeanCache maintains coherent textures and stable global structure.

Content Consistency under Rare-Word Prompts. In Figure 12, we compare MeanCache with
TaylorSeer and TeaCache using the rare-word prompt “Peristeronic”. While all methods retain
reasonable content under mild acceleration (< 2.5×), TaylorSeer and TeaCache quickly degrade as
speedup increases, showing severe semantic drift and detail loss. In contrast, MeanCache preserves
both the intended concept and fine-grained details even at 4.03× acceleration.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 9: Qualitative comparison of different methods at high acceleration ratios on Qwen-Image.

Figure 10: Qualitative comparison on FLUX.1[dev] under different acceleration ratios (Supplemen-
tary 1).

HunyuanVideo under High Acceleration. Figure 13 presents supplementary video results on
HunyuanVideo. When the acceleration exceeds 3×, baseline methods suffer from heavy motion
artifacts, visual degradation, and temporal inconsistency. MeanCache, however, continues to deliver
stable frame quality and temporal coherence, closely matching the reference trajectory and confirm-
ing its robustness in video generation tasks.

C USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) solely for grammar checking and minor language polishing.
No part of the method design, experimental setup, analysis, or results was generated by LLMs. All
technical contributions and empirical findings in this paper are entirely by the authors.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 11: Qualitative comparison on FLUX.1[dev] under different acceleration ratios (Supplemen-
tary 2).

Figure 12: Content consistency under rare-word prompts ”Peristeronic” across acceleration ratios.

Figure 13: Comparison of different methods at high acceleration ratios on HunyuanVideo.

20

	Introduction
	Methodology
	Preliminaries
	Instantaneous to Average Velocity Transformation
	JVP-based Cache Construction
	Trajectory-Stability Scheduling

	Experiments
	Experimental setup
	Text-to-Image Generation.
	Text-to-Video Generation.
	Ablation Study

	Related Work
	Discussion and Conclusion
	Proofs and Experimental Settings
	MeanFlow Identity at the Start Point
	Model Configuration
	Baselines Generation Settings
	Metrics

	Additional Experimental Results and Analysis
	MeanCache vs. Distillation
	Efficiency–Performance Trade-off
	Additional Qualitative Results

	Use of Large Language Models

