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Abstract

Large language models have achieved remark-001
able success in general language understand-002
ing tasks. However, as a family of generative003
methods with the objective of next token pre-004
diction, the semantic evolution with the depth005
of these models are not fully explored, unlike006
their predecessors, such as BERT-like architec-007
tures. In this paper, we specifically investigate008
the bottom-up evolution of lexical semantics009
for a popular LLM, namely Llama2, by probing010
its hidden states at the end of each layer using011
a contextualized word identification task. Our012
experiments show that the representations in013
lower layers encode lexical semantics, while014
the higher layers, with weaker semantic induc-015
tion, are responsible for prediction. This is in016
contrast to models with discriminative objec-017
tives, such as mask language modeling, where018
the higher layers obtain better lexical seman-019
tics. The conclusion is further supported by020
the monotonic increase in performance via the021
hidden states for the last meaningless symbols,022
such as punctuation, in the prompting strategy.023

1 Introduction024

GPT-like large language models (LLMs) (Brown025

et al., 2020; Touvron et al., 2023) have recently026

demonstrated impressive performance on various027

understanding and generative tasks, shifting from028

the pretraining-then-finetuning approach employed029

by BERT-like models (Zhao et al., 2023). However,030

existing research (Ethayarajh, 2019) suggests that031

the contextual representations of GPT-like models032

exhibit subpar performance in downstream tasks,033

struggling to fully capture the semantic nuances of034

words. This discrepancy raises a crucial research035

question: To what extent and through which layers036

do LLMs encode lexical semantics?037

Previous research on intermediate layer represen-038

tations in BERT has revealed important linguistic039

information, including its hierarchy. For instance,040

BERT encodes surface features at the bottom, syn-041

the bank of the river

Llama2

BERT

the bank of the river

understanding
predicting
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Figure 1: Key Differences between BERT and Llama2
Language Models. Blue and red lines indicate the infor-
mation flows of understanding and predicting.

tactic features in the middle, and semantic features 042

at the top (Jawahar et al., 2019). However, contex- 043

tual representations in LLMs have received less at- 044

tention due to structural differences and challenges, 045

as illustrated in Figure 1. Firstly, LLMs employ 046

a decoder-only strategy, which restricts their abil- 047

ity to access only preceding context during infer- 048

ence. Consequently, LLMs struggle to differentiate 049

between homonymous meanings of words such 050

as "bank" in the case of "the bank of the river" 051

and "the bank to save money," due to the shared 052

left context "the". Furthermore, LLMs are trained 053

to predict the next token, resulting in varying de- 054

grees of comprehension of historical and predictive 055

contexts across layers (Wang et al., 2023a; Voita 056

et al., 2019). In contrast, BERT focuses on masked 057

word restoration through mask language modeling 058

(MLM), where both understanding and prediction 059

processes are targeted for the same word. 060

Given these observations, we hypothesize that 061

GPT-like LLMs encode lexical semantics in lower 062

layers while making predictions, potentially lead- 063

ing to the forgetting of information related to cur- 064

rent tokens in higher layers. This hierarchical be- 065

havior suggests a dynamic interaction between un- 066

derstanding and prediction in generative LLMs, as 067

indicated by the view of information flow in recent 068

studies (Wang et al., 2023a; Voita et al., 2019). 069
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To validate our hypothesis, this study delves into070

the examination of lexical semantics in LLMs by071

analyzing how the hidden states at each layer reflect072

word meanings. In particular, we investigate the073

understanding of lexical semantics in the popular074

open-source LLM, Llama2 (Touvron et al., 2023),075

utilizing the word in context benchmark (Pilehvar076

and Camacho-Collados, 2019). We employ various077

input transformation and prompting strategies to078

fully utilize the contextual information. The results079

suggest that lower layers of Llama2 capture lexical080

semantics, while higher layers prioritize prediction081

tasks. These findings offer practical insights into082

determining which layers of hidden states to utilize083

as representations of the meaning of the current084

word in GPT-like LLMs.085

2 Related Work086

2.1 Interpretability of language models087

Interpretability of LLMs can be categorized into088

mechanistic (bottom-up) and representational (top-089

down) analysis (Zou et al., 2023). Mechanistic090

interpretability focuses on translating model com-091

ponents into understandable algorithms for humans,092

typically by representing models as computational093

graphs and identifying circuits with specific func-094

tions (Olsson et al., 2022; Geiger et al., 2021; Wang095

et al., 2022). On the other hand, representational096

analysis abstracts away lower-level mechanisms097

and explores the structure and characteristics of098

representations. Probing, an effective approach in099

top-down interpretability, can be classifier-based100

or geometric-based. Classifier-based probing trains101

additional classifiers for specific proxy tasks, in-102

cluding syntactic analysis (Hewitt and Manning,103

2019), semantic roles (Ettinger, 2020), named en-104

tity recognition (Wang et al., 2023b), and world105

knowledge (Petroni et al., 2019). These linguistic106

features have demonstrated a rich hierarchy, span-107

ning from lower layers to higher layers (Jawahar108

et al., 2019). Geometric probing without additional109

classifiers, examines the properties of the repre-110

sentational space itself. For example, difference111

vectors, obtained by subtracting base vectors, can112

detect linguistic features such as scalar adjective113

intensity (Garí Soler and Apidianaki, 2021) and114

stylistic features (Lyu et al., 2023). Furthermore,115

methods from the view of information flow indicate116

that models with autoregressive objectives (Voita117

et al., 2019) and specifically LLMs (Wang et al.,118

2023a) gather information in shallow layers while119

making predictions in deep layers. 120

2.2 Representations of Lexical Semantics 121

Lexical semantics, the study of word meanings, 122

is a prominent field in both linguistics and com- 123

putational research. Linguistics offers rich de- 124

scriptive entries, known for their high dimension- 125

ality, contextual modulation, and discreteness (Pe- 126

tersen and Potts, 2023). Early rule-based mod- 127

els, including the Generative Lexicon (Pustejovsky, 128

1998) approach, used discrete feature representa- 129

tions. In contrast, neural models represent words 130

as compact continuous vectors to avoid arbitrary 131

feature selection. Static vector models, such as 132

word2vec (Mikolov et al., 2013), Glove (Penning- 133

ton et al., 2014), and fastText (Mikolov et al., 2018), 134

provide unified representations for all word oc- 135

currences. To distinguish word meanings in var- 136

ious contexts, especially for polysemous words, 137

researchers have developed context-sensitive rep- 138

resentations. Notable models include Elmo (Pe- 139

ters et al., 2018), BERT (Kenton and Toutanova, 140

2019), and the GPT family (Radford et al., 2019; 141

Brown et al., 2020). While LSTM-based Elmo 142

and transformer-based models offer bidirectional 143

context around the target word, the GPT family 144

focuses solely on context preceding the query word 145

as a generative model. Large language models 146

(LLMs) (Touvron et al., 2023; Brown et al., 2020) 147

follow training mechanisms similar to GPT and 148

have shown competitive performance via prompt- 149

ing engineering (White et al., 2023) compared to 150

BERT-like models, e.g., in lexical tasks like word 151

sense disambiguation (Kocoń et al., 2023) and 152

named entity recognition (Wang et al., 2023b). Our 153

research emphasizes evaluating the quality of rep- 154

resentations in LLMs to enhance interpretability, 155

rather than focusing on prompting strategies. 156

3 Experimental Design 157

3.1 Probing 158

We leverage the Word in Context (WiC) dataset as 159

a proxy task for exploring lexical semantics (Pile- 160

hvar and Camacho-Collados, 2019)1. This well- 161

structured benchmark presents a binary classifi- 162

cation challenge - determining whether identical 163

words convey the same meaning in distinct contexts. 164

Our approach involves utilizing 638 instances from 165

the development set to fine-tune the optimal hyper- 166

parameter, and assessing the final performance on 167

1https://pilehvar.github.io/wic/
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setting input

base the bank of the river
repeat the bank of the river the bank of the river
prompt The bank in this sentence:“the bank of the river”

means in one word :

Table 1: An example to show different input formats in
three settings. Bold token positions are used as hidden
states hi of target words.

1400 instances from test set. We evaluate results168

based on accuracy and calculate accuracy sepa-169

rately for instances with different parts of speech.170

3.2 Settings and Models171

For a given word w within context c, Llama2 ex-172

tracts hidden states hi ∈ RD across each of its 32173

layers, where D is 4096 in Llama2. The cosine174

similarity of w in paired contexts (ca, cb) is cal-175

culated as sabw . Subsequently, sentence pairs are176

classified as true if sabw exceeds a threshold γ, and177

false if it falls below γ. The optimal γ is deter-178

mined through development dataset, with distinct179

values potentially assigned for each layer to ac-180

commodate varying similarity ranges. The optimal181

values of γ are listed in Appendix A.1. To address182

potential anisotropy in the embedding space, we183

employ standardization across samples following184

prior research (Ethayarajh, 2019).185

We employ different input variants for Llama2.186

The base setting uses the original context c with lex-187

ical representations hi at the target position. Since188

w cannot access the context behind it in this setting,189

we repeat the original context and obtain hi in the190

second context, ensuring all information is left of191

w. This configuration is referred to as repeat. An-192

other setting is inspired by the prompting strategy193

proposed in the paper (Jiang et al., 2023). Here,194

we modify the context c as: The w in this sentence:195

c means in one word :. Then, we calculate the196

representation from the position of the last token,197

i.e., the final colon :, as hi and we denote this as198

prompt. An example is provided in Table 1.199

In order to compare autoregressive generative200

models with bidirectional models, we conduct201

experiments on BERT-large2, which consists of202

25 layers, a hidden dimension of 1024, and203

336M parameters. Additionally, we consider204

other word-level contextualized embedding meth-205

ods, such as WSD (Loureiro and Jorge, 2019), Con-206

text2vec (Melamud et al., 2016), and Elmo (Peters207

2https://huggingface.co/bert-large-uncased

Method All Noun Verb

Human 80.0 - -
Random 50.0 - -

WSD 67.7 - -
BERT_large†(23) 67.8 69.1 67.6
BERT_large (22) 71.0 70.7 71.5

Context2vec 59.3 - -
Elmo 57.7 - -

Llama2_base†(6) 60.9 62.6 62.1
Llama2_base (12) 62.9 63.9 62.5
Llama2_repeat†(8) 64.6 66.5 63.6
Llama2_repeat (7) 68.4 70.3 65.5

Llama2_prompt†(23) 68.9 68.9 69.5
Llama2_prompt (20) 69.2 69.2 69.5

Table 2: Overall accuracy (%) on the WiC test set.
†indicates methods without anisotropy removal. The
numbers in brackets after the model name indicate the
number of layers for achieving the best performance.

et al., 2018), as mentioned in the dataset paper (Pile- 208

hvar and Camacho-Collados, 2019)3. 209

4 Results and Analysis 210

Table 2 presents the overall performance. Llama2, 211

as a generative model, achieves comparable results 212

to bidirectional and non-regressive BERT models, 213

outperforming non-transformer models like Elmo. 214

This suggests that LLMs have the potential for 215

word-level understanding, even though it is not 216

explicitly trained for this capability. As expected, 217

the prompting strategy achieves the highest accu- 218

racy among all the Llama2 variants. This approach 219

incorporates downstream tasks into the generative 220

process during LLM training and has proven to be 221

popular and effective in addressing both intermedi- 222

ate and high-level tasks in the LLM era (Zhao et al., 223

2023). However, prompting relies on the choice of 224

prompts and may not directly reveal the model’s in- 225

ternal understanding. On the other hand, our repeat 226

strategy demonstrates comparable performance to 227

prompting and significantly outperforms the base 228

version (with a 5.5 advantage gap). This simple 229

yet effective transformation strikes a balance be- 230

tween information accessibility and prompting ro- 231

bustness. 232

In terms of parts-of-speech, nouns generally ex- 233

hibit higher accuracy than verbs, as evidenced by 234

a 4.8 advantage gap in Llama2_repeat. This ob- 235

servation aligns with previous studies that have 236

3It is important to note that we reproduce the result of
BERT-large, which is relatively higher than the reported per-
formance in the dataset paper.
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concluded that verbs are more challenging to dis-237

ambiguate (Barba et al., 2021).238

Effectiveness of Anisotropy Removal. In Ta-239

ble 2, we compare methods with and without240

anisotropy removal (marked by †). The results con-241

sistently demonstrate the advantage of methods242

with anisotropy removal, suggesting that the repre-243

sentation space may collapse into a smaller cone244

space, as indicated by previous work (Ethayarajh,245

2019). This also offers a simple and practical ap-246

proach for calculating similarity in the embedding247

space.248
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Figure 2: Layer-wise accuracy for different settings and
models. Star shows the best value.

Trends Across Layers. Figure 2 illustrates the249

layer-wise dynamics in two settings for Llama2250

and also BERT_large. We observe non-monotonic251

trends for Llama2 across layers: both the base and252

repeat initially increase in lower layers before de-253

creasing in higher layers. Consequently, optimal254

performance is achieved at lower layers when uti-255

lizing the hidden states of the target word as the256

default choice. This suggests that lower layers257

in LLMs encode lexical semantics, offering both258

a practical insight and a pathway for interpreting259

LLMs. Moreover, the trend contrasts with bidirec-260

tional BERT_large model, which obtains the best261

performance in higher layers. This highlights a262

difference between these two architectures: BERT263

concentrates on its current word across the layers264

while Llama2 aims for next token prediction.265

Balancing Understanding and Prediction. To266

explore the balance between lexical understanding267

and predictive capability in Llama2, we computed268

the accuracy using representations of the previous269

token before the target (referred to as repeat_prev)270

0 5 10 15 20 25 30
Layer Index

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

Ac
cu

ra
cy

 (%
)

repeat
repeat_prev
prompt

Figure 3: Layer-wise accuracy of Llama2 representa-
tions (repeat and prompt setting), as well as the previous
token in the repeat setting (repeat_prev). The increasing
trends observed in repeat_prev and prompt accuracies,
as well as the non-monotonic trend observed in repeat
accuracy, suggest that while the understanding ability
may be weakening, the predictive ability is improving.

in the repeat setting. It is important to note that 271

we opted for the repeat setting instead of the base 272

setting, given that the base setting is constrained 273

by incomplete information access. Furthermore, 274

we conducted a comparison with the prompt set- 275

ting, as depicted in Figure 3. Despite the fact that 276

the representations do not originate from the cor- 277

rect target word but are anticipated to represent the 278

next word, both repeat_prev and prompt exhibit a 279

monotonic trend and comparable result across the 280

layers. This observation suggests that while the 281

understanding may diminish (as indicated by the 282

inverted-U trend in the repeat setting) as layers go 283

deeper, the predictive ability improves. 284

5 Conclusion 285

This study investigates how Llama2’s layer-wise 286

representations encode lexical semantics using the 287

WiC dataset. Our experiments reveal that optimal 288

performance is achieved at lower layers for gen- 289

erative tasks, while predictive accuracy improves 290

in higher layers. This suggests that Llama2 priori- 291

tizes understanding before prediction as informa- 292

tion flows from lower to higher layers. These find- 293

ings offer practical guidance on extracting represen- 294

tations for lexical semantics tasks in engineering 295

applications and shed light on the interpretability 296

of LLMs due to their impressive performance. 297
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6 Limitations298

Probing offers a valuable viewpoint on lexical se-299

mantics, but it is still unclear what kind of seman-300

tics representations are exactly learned. Bridg-301

ing the gap between dense, high-dimensional vec-302

tors from computational models and discrete, low-303

dimensional concepts from linguistic conventions304

remains an important issue to consider.305

Another pressing issue is the narrow focus on306

only English and one large language model, namely307

Llama2. Different languages and models may yield308

varying effects on lexical semantic estimation. We309

anticipate that future studies will refine and com-310

plement our findings using a more diverse sample311

of natural languages and models.312

7 Ethics Statement313

We do not foresee any immediate negative ethical314

consequences of our research.315
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A Appendix499

A.1 Optimal Thresholds for each layer500

We list the optimal thresholds for each layer in501

terms of three settings of Llama2, i.e., base, repeat502

and prompt in Table 3. They are searched according503

to the best performance in the development set of504

WiC dataset.505

Layer Index base repeat prompt

0 0.95 0.95 0.40
1 0.90 0.90 0.35
2 0.55 0.75 0.25
3 0.70 0.70 0.40
4 0.45 0.55 0.30
5 0.35 0.45 0.40
6 0.35 0.40 0.35
7 0.30 0.35 0.35
8 0.25 0.25 0.35
9 0.25 0.25 0.35
10 0.35 0.25 0.40
11 0.35 0.20 0.35
12 0.30 0.25 0.40
13 0.30 0.35 0.35
14 0.35 0.30 0.40
15 0.45 0.35 0.45
16 0.40 0.40 0.50
17 0.40 0.35 0.55
18 0.45 0.40 0.45
19 0.45 0.35 0.55
20 0.45 0.40 0.55
21 0.45 0.40 0.45
22 0.40 0.35 0.55
23 0.35 0.35 0.60
24 0.40 0.35 0.60
25 0.35 0.30 0.50
26 0.40 0.25 0.50
27 0.40 0.45 0.55
28 0.30 0.25 0.50
29 0.35 0.45 0.50
30 0.35 0.40 0.55
31 0.40 0.35 0.55

Table 3: Optimal thresholds for each layer.
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