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ABSTRACT

As machine learning models scale, the demand for large volumes of high-quality
training data grows, but acquiring clean datasets is costly and time-consuming due
to detailed human annotation and noisy data filtering challenges. To address this,
symmetric loss functions were introduced in the context of label noise, enabling
models trained on noisy data to perform comparably to those trained on clean data
without explicit noise knowledge. Loss functions satisfying a specific symmetry
condition exhibit robustness to label noise. Building on this, we propose a novel
method to derive noise-robust loss functions using monotonic functions and la-
bel normalisation, which involves a simple normalisation of labels that leads to
noise robustness when labels are corrupted. Unlike other approaches, this method
allows creation of new loss functions by defining application-specific monotonic
functions rather than relying on predefined losses. We formally prove their the-
oretical properties, propose two concrete noise-robust losses, and demonstrate
through extensive empirical evaluations on computer vision and natural language
processing tasks that our losses outperform standard and existing noise-robust
losses. Our evaluations indicate better learning of decision boundaries, faster
convergence, and improved robustness to noise using the proposed loss functions.

1 INTRODUCTION

The scale of machine learning models has grown dramatically in recent years, fueling remarkable
advances across diverse applications such as computer vision, natural language processing, and
speech recognition. This rapid growth is primarily due to the advent of transformers (Vaswani et al.,
2017), which are trained to predict the next token in a sequence. These transformer models are
data-hungry and require vast amounts of corpus data for effective training.

High-quality datasets (Sajith et al., 2024) are essential for training these models effectively, but
obtaining such data is often prohibitively expensive and time-consuming. This is mainly because
labeling large datasets demands meticulous human annotation and expert domain knowledge, es-
pecially for complex tasks. Even in unsupervised learning settings, corpora tend to be noisy due
to human errors or corruption during data acquisition from various sources. Moreover, real-world
datasets frequently contain noisy or incorrect labels caused by human errors, ambiguity in labeling
criteria, or automated labeling processes. Label noise poses a significant challenge because it can
cause models to overfit incorrect information, which degrades predictive performance and harms
generalization. The problem of label noise is particularly critical in fine-tuning, where models are
trained on smaller, domain-specific datasets, making them more sensitive to imperfect labels.

Deep neural networks are particularly susceptible to label noise given their large capacity to mem-
orize training examples, including mislabeled ones. This phenomenon can lead to performance
deterioration even when only a fraction of labels are corrupted. Prior work has explored numerous
approaches to mitigate the impact of label noise, including data cleaning (Bernhardt et al., 2022),
data filtering (Wu et al., 2020), re-weighting samples, and architectural innovations (Jindal et al.,
2019; Li et al., 2020; Vashisht et al., 2024; Chen et al., 2020). Among these strategies, the de-
sign of noise-robust loss functions has emerged as a theoretically grounded and practically effective
direction. Loss functions play a critical role in shaping the learning process by quantifying the dis-
crepancy between predictions and labels, and certain loss functions inherently exhibit robustness to
noise by reducing the influence of incorrect labels.
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A notable theoretical advancement in this domain was introduced by Ghosh et al. (2017), who for-
malized a symmetry condition that loss functions should satisfy to guarantee robustness to label
noise. Their framework demonstrated that models trained with such symmetric loss functions on
noisy data could achieve error rates comparable to models trained on clean datasets, without requir-
ing explicit knowledge or estimation of the noise characteristics or datasets. This work has lead
to many follow up investigations. One of these investigations is the concept of normalizing (Ma
et al., 2020b) loss functions. In this work, any loss function can be divided by sum of losses for
all class-labels to obtain a noise robust loss function. But, the authors reported that this formula-
tion lead to underfitting Ma et al. (2020b), and hence had to be added with an active loss (possibly
non-noise robust) to make the training faster. A similar work Paquin et al. (2024) does the same,
but not dividing but by subtraction of losses summed over all labels. But, these methods only give
conditions for obtaining losses from existing losses. This insight has informed the construction of
novel noise-robust loss functions that offer resilience to common types of label corruption.

Building on this foundation, our work introduces a novel methodology for deriving noise-robust
loss functions using (only) monotonic functions. We formalize the theoretical properties of these
transformations, proving that they preserve the symmetry condition necessary for noise robustness.
Further, we present two specific instantiations of noise-robust losses derived from this framework,
tailored to balance robustness and optimization tractability. To validate our approach, we con-
duct extensive empirical experiments spanning computer vision and natural language processing
benchmarks. Our proposed losses consistently outperform both classical baseline losses and recent
state-of-the-art noise-robust losses in the literature, demonstrating superior robustness and improved
model accuracy under various noise regimes.

This study contributes a principled yet practical approach to mitigating label noise effects, enabling
reliable training of large-scale models in noisy real-world settings. By integrating theoretical rigor
with empirical validation, our proposed framework advances the understanding and application of
noise-robust learning in modern machine learning. Our contributions can be summarized as follows:

• Development of a framework that allows us to design novel application-specific noise-
robust loss functions (Section 4)

• Two novel loss functions designed by the above strategy, along with rigorous experimental
evaluation. (Section 4.2)

• Our evaluations indicate that the designed loss functions outperform other loss functions in
various tasks and show a lesser degradation in performance with an increase in noise level
in datasets. Moreover, models trained using our loss functions learn better decision bound-
aries (Figure 1 and Figure 3) and converge faster compared to other methods (Figure 2).

2 PRIOR WORK
The quality of a trained machine learning model is primarily influenced by the optimization land-
scape shaped by the chosen loss function during training. Loss functions guide the model toward
achieving specific objectives aligned with the task. For example, Intersection over Union (IoU)
loss Rezatofighi et al. (2019) caters to object detection, cross-entropy loss to classification, and
Kullback–Leibler (KL) divergence to distribution matching.

Among various loss functions, some have been shown to be robust against label noise Ghosh et al.
(2017), enabling models to learn meaningful patterns despite corrupted labels. However, many
such noise-robust loss functions are independently designed and are not easily adaptable to existing
losses.

To expand applicability, two important approaches have been proposed to convert existing loss func-
tions into noise-robust variants: normalization and symmetrization.

Normalization, (Ma et al., 2020b) in applies a simple normalization step to any loss function to
theoretically guarantee robustness to noisy labels. Their work proves that by normalizing losses so
that their values sum to a constant over classes, all losses achieve noise tolerance. However, practical
use revealed an underfitting problem where normalized robust losses suffered reduced accuracy due
to diminished learning ability. To mitigate this, they proposed the Active Passive Loss (APL) frame-
work combining two robust loss functions that mutually improve training effectiveness. Despite
advancing robustness theory and empirical performance, normalization-based methods still depend
on existing losses as starting points and can underfit if not carefully combined.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Symmetrization, studied in (Paquin et al., 2024), constructs noise-robust losses by making them
symmetric with respect to class labels. Symmetric losses treat all misclassification errors uniformly,
thereby diminishing the impact of label noise. This approach often involves averaging a loss func-
tion with its complement or designing inherently symmetric losses. While effective, symmetrization
techniques require a base loss function with proper structural properties to be converted, thus limit-
ing their applicability only to certain (permutation invariant) losses.

Despite these advances, the need for a pre-existing base loss function to convert into noise-robust
forms constrains the generality of these methods. Furthermore, applicability can be limited in set-
tings like reinforcement learning, where the concept of a classical loss function is ambiguous. Re-
inforcement learning focuses on maximizing cumulative rewards rather than minimizing explicit
losses derived from ground truth labels, making direct application of normalization and symmetriza-
tion techniques challenging.
3 PRELIMINARIES

Let X ⊆ Rd denote the feature space from which the examples are drawn, and let Y = {e1, . . . , ek}
be the set of one-hot encoded class labels, where each ei ∈ {0, 1}k is a vector with 1 in the i-th
position and 0 elsewhere.

A classifier learning problem is defined by training data

S = {(x1,yx1
), . . . , (xN ,yxN

)} ⊆ (X × Y)N ,

drawn i.i.d. from an unknown distribution D over X × Y .

We represent a classifier as h(x) = pred ◦ p(x), where p : X → C, C ⊆ Rk, and the function
pred : C → Y predicts the class label from p(x). For simplicity, we refer to p itself as the classifier.

A loss function is a map ℓ : C × Y → R+.

Clean risk is the expected loss evaluated under the true, noise-free distribution D:

Rℓ(p) = E(x,y)∼D

[
ℓ(p(x),yx)

]
.

In the presence of label noise, the available data is noisy,

Sq = {(xn, ỹxn
), n = 1, . . . , N},

where the noisy label ỹx satisfies

ỹx =

{
yx, with probability 1− qx,

ej ̸= yx, with probability q̄xj ,

with noise rates qx and q̄xj such that
∑

j ̸=i q̄xj = qx for yx = ei.

The noisy risk is the expected loss evaluated on the noisy label distribution Dq ,

Rq
ℓ(p) = E(x,ỹ)∼Dq

[
ℓ(p(x), ỹx)

]
.

Let p∗ and p∗q be minimizers of the clean risk Rℓ(p) and noisy risk Rq
ℓ(p), respectively.

Risk minimization under loss ℓ is said to be noise-tolerant if

Pr
D

[
pred ◦ p∗(x) = yx

]
= Pr

D

[
pred ◦ p∗q(x) = yx

]
.

4 PROPOSED METHOD: ADDITIVE NORMALIZATION OF LABELS

We formulate loss functions for a k-class classification problem. Consider the loss function as

ℓ(y, (p)) = −⟨y, f(p)⟩.

Here, y ∈ {0, 1}k is the label represented as a one-hot vector, and

f(p) =
(
f1(p1), . . . , fk(pk)

)
,

where the functions f1, . . . , fk : R → R are strictly increasing monotonic functions, and p1, . . . , pk
are model prediction probabilities for each label.

3
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It can be easily seen that minimizing this loss recovers the true label for any choice of monotonic fi,
i.e.,

argmin
p

ℓ(ei,p) =⇒ pi = 1

for any one-hot vector ei, i ∈ {1, . . . , k}.

Examples of losses in this category include cross-entropy loss with fi(p) = log(p) and linear loss
with fi(p) = p.

Within this structure of losses, we now describe the additive normalization of labels.

4.1 ADDITIVE NORMALIZATION OF LABELS

To illustrate the effect of label normalization in the presence of label noise, we begin with a simple
binary classification setting. Unlike standard one-hot labels, here the label vectors are defined as
transformed one-hot vectors:

ȳ ∈ {(−1, 1), (1,−1)}.
Noisy labels ˜̄y are generated by flipping the true label ȳ with probability q, uniformly, i.e.,

˜̄y =

{
ȳ with probability 1− q,

−ȳ with probability q.

We define the loss function for prediction f(p) = [f1(p), . . . , fk(p)] as the negative inner product
of the noisy label and the prediction:

ℓ(˜̄y, f(p)) = −⟨˜̄y, f(p)⟩.

Taking the expectation of this loss over the noisy labels conditioned on the true label ȳ yields:
E˜̄y|ȳ

[
ℓ(˜̄y, f(p))

]
= (1− q)(−⟨ȳ, f(p)⟩) + q(−⟨−ȳ, f(p)⟩)
= (1− q)(−⟨ȳ, f(p)⟩) + q⟨ȳ, f(p)⟩
= (1− 2q) · (−⟨ȳ, f(p)⟩) .

This result implies that
EX×Ỹℓ(ȳ,p) = (1− 2q)EX×Yℓ(ȳ,p).

Hence, when q < 1
2 , the minimizer of the expected clean risk coincides with the minimizer of the

expected noisy risk, demonstrating robustness to noise under this condition.

This analysis generalizes to multi-class classification with k classes as follows. Given a one-hot
encoded label y ∈ {0, 1}k and a noisy label ỹ flipped uniformly with probability q, define the
modified vector label vector by applying additive normalization of labels as:

ȳ =
1

k − 1
(ky − 1), (1)

where 1 is the all-ones vector in Rk.

The conditional expectation of the noisy transformed label is:

E[˜̄y | y] = 1

k − 1
(kE[ỹ | y]− 1)

=
1

k − 1

(
k

(
(1− q)y +

q

k − 1
(1− y)

)
− 1

)
=

1

k − 1

((
k − k2q

k − 1

)
y +

(
kq − k + 1

k − 1

)
1

)
=

(
1− kq

k − 1

)
ȳ.

Accordingly, the expected loss with prediction f(p) is:

−⟨E[˜̄y | y], f(p)⟩ = −
(
1− kq

k − 1

)
⟨ȳ, f(p)⟩ . (2)

This results in the following theorem:

4
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Theorem 1. Consider any loss function defined as

ℓ(y,p) := −⟨ȳ, f(p)⟩,
where ȳ is defined by the additive normalization in equation 1. Then, the minimizer of the clean risk
is the same as the minimizer of the noisy risk provided the noise probability satisfies

q <
k − 1

k
.

Proof. The proof directly follows from eq. (2)

Some remarks on the above theorem 1. It can be verified that even with the proposed normal-
ization minimization of the losses recovers the true labels due to the monotonic increasing property
of fis. 2. The label normalization leads to the condition that

∑
y∈Y ℓ(y,p) = 0. Therefore by

the robustness theorem by Ghosh et al. (2017) the proposed normalization is also robust to class
conditional noise and instance dependent noise.
4.2 LOSS FUNCTIONS DESIGNED BY THE ABOVE NORMALIZATION

Noise Robust Focal Loss (NRFL): NRFL is a noise-robust adaptation of the popular focal loss. The
focal loss is defined as LFL(p) = −(1− p)γ log p, which down-weights well-classified examples to
focus training on hard samples. Incorporating focal loss into our noise robustness framework, the
noise-robust version (NRFL) is computed as

ℓ(p, et) = −LFL(pt) +

k∑
j=1
j ̸=t

1

k − 1
LFL(pj),

where pt is the predicted probability for the true class t, and the summation averages over the
probabilities of other classes. This formulation balances loss contributions to improve robustness
against label noise.

Weighted Robust Log Loss (WRLL): WRLL is derived from Robust Log Loss designed to solved
the class imbalance problem. This is done by computing the weights α value for each class as
αi = 1

frequency of ith token
. According to our framework, the label-specific loss is computed as

fi(p) = log(αi + p). Thus, WRLL is computed as

L(p, et) = −fi(pt) +

k∑
j=1,j ̸=t

1

k − 1
fi(pj)

The main advantage of WRLL over RLL is that the loss computed for the ith label is dependent on
its frequency in the training data.
Advantages of Label Normalization over Loss Normalization

• Label normalization can be applied in scenarios such as reinforcement learning, where a
well-defined loss function may not exist but labels or target signals remain well-defined
and meaningful.

• It is computationally simpler to implement, as it involves straightforward transformations
on labels, whereas loss normalization often requires additional complex computations dur-
ing model training.

5 EXPERIMENTS

This section presents experimental results comparing NRFL and WRLL against standard and noise-
robust loss functions including Cross Entropy (CE), Mean Absolute Error (MAE), RLL, and Nor-
malised Focal Loss (NFL) (Ma et al., 2020a). Extensive experimentation has been conducted across
two major domains: computer vision and natural language processing. For datasets without a pre-
defined validation set, we partition the original training set into training and validation subsets using
an 80:20 split. Details of the experimental setup, including hyperparameters and the methodology
for introducing noise into different datasets, are provided in Appendix A.

In all result tables, we highlight the top two performing methods: the best-performing method is
shown in bold, while the second-best is indicated with a grey highlight . Next, we present our
evaluation on object classification tasks.

5
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5.1 EVALUATION ON OBJECT CLASSIFICATION TASKS

To assess the robustness of NRFL and WRLL in the presence of label noise, we train separate models
using these loss functions, along with the baselines described in Section 4, on three benchmark
datasets: Modified National Institute of Standards and Technology (MNIST) (LeCun et al., 1998),
Fashion-MNIST (Xiao et al., 2017), and Canadian Institute for Advanced Research-10 (CIFAR-
10) (Krizhevsky, 2009). Each dataset consists of approximately 60k training samples, 10k testing
samples, and 10 classes. For every dataset, we introduce label noise at two levels (30% and 60%),
and create two instances of each noise level. We report both the mean accuracy and its standard
deviation across 2 instances of each noise variant.

(a) CE (b) NRFL (c) WRLL

Figure 1: Comparison of decision boundaries for GoogleNet trained on 50% noisy CIFAR-10 using:
(a) CE (b) NRFL (c) WRLL

In our initial set of experiments (Table 1), we trained GoogleNet for 15 epochs on each of the three
datasets under varying noise conditions. Each experiment was repeated twice on each noise level
and the mean and standard deviation of the accuracy are reported in Table 1. We observe that models
trained with noise-robust loss functions demonstrate greater resilience to noise, maintaining similar
or only slightly degraded performance with an increase in noise level. This trend holds across all
methods in Table 1, with the exception of the standard cross-entropy loss, which is not a noise-robust
training technique. Among the compared loss functions, NRFL and WRLL consistently achieve
better performance in most evaluation scenarios.

Loss Type MNIST CIFAR10 Fashion MNIST
0% 30% 60% 0% 30% 60% 0% 30% 60%

CE 99.47 98.71
(5.30)

97.76
(1.81)

82.67 76.1
(3.48)

73.41
(4.29)

92.63 90.97
(0.35)

86.47
(5.93)

MAE 99.33 98.74
(0.08)

99.26
(0.06)

81.44 79.28
(1.58)

79.11
(0.52)

90.26 92.22
(0.61)

92.13
(0.25)

NFL 99.4 95.32
(4.29)

93.55
(7.01)

80.49 74.56
(2.65)

68.83
(3.13)

92.86 90.61
(0.43)

86.84
(4.48)

RLL 99.34 99.11
(0.2)

99.26
(0.18)

82.35 78.6
(4.58)

73.93
(6.75)

93.09 89.83
(3.75)

91.79
(2.6)

WRLL* 99.59 98.78
(0.66)

99.12
(0.22)

79.93 79.49
(4.86)

77.93
(5.76)

93.47 91.62
(1.76)

90.12
(4.23)

NRFL* 99.38 99.21
(0.28)

98.82
(0.5)

82.71 78.83
(3.6)

79.66
(3.6)

93.28 89.46
(3.52)

81.87
(2.68)

Table 1: Accuracy of GoogleNet trained on various datasets after 15 epochs

To determine the reason for the superior performance of NRFL and WRLL, we analysed the repre-
sentations learned by GoogleNet (Szegedy et al., 2015) trained on the CIFAR-10 dataset with 60%
label noise, using CE, NRFL, and WRLL loss functions. Feature representations were extracted
from the trained models on the CIFAR-10 test set, and Principal Component Analysis (PCA) was
applied to project them into two dimensions for visualisation (Figure 1). As shown in Figure 1,
models trained with NRFL and WRLL exhibit clearer class separation compared to CE, forming
distinct clusters aligned with CIFAR-10 labels. Beyond qualitative inspection, we quantified clus-
tering quality using the Silhouette Score (Rousseeuw, 1987), obtaining values of 0.046 for CE, 0.18
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for NRFL, and 0.1539 for WRLL. These results confirm that NRFL and WRLL yield more well-
defined decision boundaries than CE even under severe label noise (60%).

Loss Type MNIST CIFAR10 Fashion MNIST
0% 30% 60% 0% 30% 60% 0% 30% 60%

CE 73.5 61.35 58.49 34.43 28.83 27.39 73.3 67.2 65.54
MAE 53.81 56 35.23 23.68 22.78 15.8 69.37 61.41 53.39
RLL 75.51 72.05 62.9 33.55 31.6 25.83 74.45 71.95 68.1
NFL 65.27 46.37 42.56 32.03 28.84 23.05 72.2 68.56 64.03

NRFL 80.29 70.98 67.03 34.61 31.85 26.61 75.63 68.83 67.03
WRLL 81.03 78.46 68.92 37.57 33 32.4 79.59 72.79 70.73

Table 2: Accuracy of Early Stopping of ResNet trained on various datasets after 30 epochs

In our second set of experiments, we employed a larger architecture than GoogleNet, namely
ResNet18 He et al. (2016), which consists of around 11.7 million parameters. Following a method-
ology similar to that of GoogleNet, ResNet18 was trained for 30 epochs with early stopping. The
hyperparameter γ for NRFL was fixed at 0.01. Owing to the higher computational cost of training
ResNet, only a single instance per noise level was used. As reported in Table 2, models trained with
WRLL and NRFL consistently outperform other methods across most scenarios. This superior per-
formance can again be attributed to the more robust decision boundaries learned with these losses,
as reflected in Figure 1 and the corresponding Silhouette scores. In addition to improved decision

(a) ResNet on Fashion MNIST (20% noise) (b) LLaMa on JSON dataset (20% noise)

Figure 2: Convergence trajectory of different models trained using different loss functions

boundaries, models trained with the proposed NRFL and WRLL loss functions demonstrate faster
convergence compared to alternative methods. This behaviour is illustrated in Figure 2a, which
shows that across training epochs, models trained with WRLL and NRFL consistently outperform
other loss functions. These results suggest that models trained using NRFL and WRLL learn deci-
sion boundaries much faster than other methods. Following this analysis, we extend our evaluation
to natural language processing (NLP) tasks to assess the generalizability of our findings.
5.2 EVALUATION ON NLP TASKS

We evaluate the proposed methods on five natural language processing (NLP) tasks
arranged in increasing order of difficulty. Experiments are conducted with two dis-
tinct models: meta-llama/Llama-3.2-1B-Instruct (Meta AI, 2024) and
Qwen/Qwen2.5-0.5B-Instruct (Team, 2025). In the subsequent text, we refer to
these models as LLaMA and Qwen, respectively.

NLP-based classification task (News20 Dataset) : Extending on our computer vision experiments,
we next explore whether similar trends hold for NLP classification tasks with Large Language Mod-
els (LLMs). To do so, LLaMA was trained on the News20 dataset (Lang, 1995) with 20% label
noise. Table 3 reports the metrics for models trained with CE, NRFL, and WRLL. Among these,
NRFL attains the highest accuracy and the best Calinski score (Caliński & Harabasz, 1974), indicat-
ing that it learns the best representations among all three. Figure 3 presents a visual representation
of the embeddings learned by LLaMA. This is consistent with Table 3 as models trained with NRFL
outperform those trained with CE and WRLL. As shown in the figure, the light violet and brown
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(a) Using CE (b) Using NRFL (c) Using WRLL

Figure 3: Decision boundaries learnt by LLaMA on 20% noisy News20 dataset

Loss Type Accuracy Calsinki Score

CE 45.46 38.67
NRFL 63.95 39.05
WRLL 56.72 20.91

Table 3: LLaMa trained on 20% noisy News20 dataset

clusters, as well as the light green and orange clusters, are more clearly separated under NRFL. In
particular, the small cluster of points marked in dashed pink circle is far more separated in NRFL
than other methods, indicating that NRFL enables the model to separate points belonging to different
classes. Both this and the computer vision experiments establish the fact that loss functions derived
from our framework improve classification performance. Next, we move on to a more challenging
task, which is the information extraction task in NLP.

Loss Type LLaMa Qwen
0% 20% 50% 0% 20% 50%

CE 84.62 82.48 (1.81) 80.77 (5.44) 33.33 30.77(1.81) 26.92(5.44)
MAE 84.62 79.49 (10.88) 79.49 (7.26) 79.49 79.49(3.63) 79.49(3.63)
RLL 82.05 78.20 (5.44) 78.20(9.06) 76.92 75.64(1.81) 74.36(7.25)
NFL 51.28 51.28 (0.0) 46.15 (9.07) 38.46 34.62(5.44) 28.21(5.44)

NRFL 92.31 92.31 (7.25) 84.62 (1.81) 71.79 69.23(3.63) 70.51(1.81)
WRLL 79.48 76.92 (0.0) 61.54 (0.0) 64.10 62.67(1.63) 60.26(5.44)

Table 4: Accuracy after LLaMa and Qwen are trained on the JSON dataset

Information Extraction Task (Synthetic JSON Dataset): The information extraction task eval-
uates a model’s natural language understanding capabilities. The LLM must understand a given
passage and extract specific entities, such as project names, company names, and person names,
which are to be returned as a JavaScript Object Notation (JSON) object. We constructed a synthetic
dataset following the methodology described by Shadi Copty1 . The dataset comprises 144 samples,
split into training, validation, and test sets using an 80:10:10 ratio. Table 4 reports the accuracy of
LLaMA and Qwen trained on the JSON dataset using various loss functions. For LLaMA, NRFL
outperforms the other methods, while for Qwen, MAE and WRLL achieve higher scores. The better
performance of MAE in this case is likely due to the small dataset size, which prevents underfitting
and allows MAE to perform well. Figure 2b displays the convergence trajectories of models trained
with different loss functions on the JSON dataset with 20% noise. NRFL exhibits stable and efficient
convergence, consistent with our observations in the computer vision experiments (Figure 2a). With
these observations, we proceed to the next challenging task which is the translation task.
Translation Task (MALLS dataset) The main objective of this task is to convert a natural language
sentence into its corresponding first-order logic (FOL) expression. Performance on this task depends
on the model’s natural language understanding, as it has to first understand the input text and then
represent it accurately in FOL form. We use the MALLS dataset Yang et al. (2024) et al. and

1Link to Shadi Copty’s methodology
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Loss Type LLaMa Qwen
0% 20% 50% 0% 20% 50%

CE 51.26 51.63 (0.14) 50.71(0.33) 39.72 32.96 (2.12) 30.16 (1.12)
MAE 60.37 60.32 (0.39) 60.80(0.26) 62.03 61.88 (0.02) 60.04 (0.11)
RLL 57.78 57.78 (0.83) 58.56(0.71) 60.40 59.27 (0.10) 58.76 (0.08)
NFL 41.96 41.51 (0.60) 42.01(1.10) 34.36 34.71 (0.82) 33.38 (0.23)

NRFL 58.64 58.75 (0.77) 58.27(0.61) 50.37 60.02 (0.53) 59.22 (0.10)
WRLL 51.42 56.35 (7.06) 49.80(2.78) 61.72 61.77 (0.11) 61.97 (0.47)

Table 5: Logical equivalence score of LLaMa and Qwen trained on MALLS dataset (300 instances)

introduce noise following the methodology described in their work. Following the original study,
we report the logical equivalence score, which measures the overlap between the predicted and
ground-truth FOL expressions. Table 5 presents these results. For LLaMA, NRFL performs best,
while for Qwen, WRLL ranks just after MAE. The better performance of MAE is likely due to the
small dataset size, as only 300 instances are considered, limiting underfitting. These observations
are consistent with those seen on the JSON dataset. Next we move on to a reasoning task.

Loss Type LLaMa
0% 20% 50%

CE 49.2 48.8 48.8
MAE 49.1 48.7 48.7
RLL 49.0 48.5 49.1
NFL 48.9 49.2 48.9

NRFL 48.5 49.0 48.7
WRLL 49.1 49.2 49.3

(a) OpenBookQA dataset (Accuracy±1.6)

Loss Type LLaMa
0% 20% 50%

CE 38.51 38.82 38.66
MAE 40.25 40.1 40.1
RLL 41.09 38.51 37.3
NFL 36.69 39.2 37.75

NRFL 39.57 40.48 40.25
WRLL 38.28 39.27 38.36

(b) GSM8k Dataset (Accuracy±1.3)

Table 6: Accuracy of LLaMa trained on different datasets on diferent loss functions

Reasoning Task (GSM8k dataset): Reasoning is a challenging task for LLMs, as it requires cog-
nitive abilities typically present in living beings such as humans. For this task, we use the GSM8k
dataset Cobbe et al. (2021), where the model has to solve a math problem by first providing the rea-
soning steps and then the final numerical answer in a specified format. Note that we introduce noise
only to the final answer by randomly flipping its digits, leaving the reasoning steps intact. While
NRFL generally outperforms other loss functions, the performance gap is smaller in this case, likely
due to the presence of noise only in the final answer.
Question Answering (QnA) Task (Openbook dataset): Question answering requires an LLM
to combine natural language understanding with reasoning. The OpenBookQA dataset (Mihaylov
et al., 2018) contains questions from various domains ranging from Science, Technology, Engi-
neering and Mathematics (STEM) to general knowledge. Thus, the LLM needs to rely on its prior
knowledge, use it to understand the question and then generate the correct answer. Models are
trained with early stopping after 10 epochs, and the resulting accuracy scores are reported in Ta-
ble 6a. As observed, NRFL and WRLL perform well across most cases. We conjecture that training
for additional epochs could further increase the performance differences among the methods. We
even test on a more challenging problem, which is the automatic short answer grading problem,
whose results have been added in Appendix B.1.

6 CONCLUSION

Our proposed framework for noise-robust loss functions offers a flexible and theoretically sound
approach that improves model performance in noisy label settings. By enabling the design of
application-specific losses through monotonic functions and label normalization, this method ad-
vances the state of the art in noise robustness, as validated by strong empirical results across diverse
tasks.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES
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APPENDIX

A EXPERIMENTAL SETUP

The hyperparameters used for each and every experiment is mentioned in each subsection below.

A.1 OBJECT CLASSIFICATION TASK

A learning rate of 10−4 was used for all loss functions, except for NRFL and WRLL, where a higher
learning rate of 10−3 was adopted, with a batch size of 2048. For NRFL, the gradient update is
computed as

w′ = w − η
δL

δw
,
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where update term includes a factor of η ·γ. Since the optimal γ was determined empirically between
0.01 and 2.0 as 0.01, the effective learning rate becomes 10−5. Consequently, we maintain a higher
learning rate for NRFL to compensate. To simulate label noise, we randomly flip x% of the labels
in the dataset and generate two instances each for 30% and 60% noisy datasets.

A.2 NLP-BASED CLASSIFICATION TASK (NEWS20 DATASET)

For this set of experiments, we train LLaMA for 100 epochs using a learning rate of 10−5 and a
batch size of 40, with γ = 0.01. Dimensionality reduction on the embeddings generated by the
model is performed using UMAP, with the following parameters:

• n components: 2
• n neighbors: 15
• min dist: 1.0
• metric: ’euclidean’
• random state: 21

To simulate label noise, we randomly flip x% of the labels in the dataset and generate a single
instance of a 20% noisy dataset.

A.3 INFORMATION EXTRACTION TASK (JSON DATASET)

For these experiments, the models were trained for 100 epochs with a learning rate of 10−5 for all
methods, except for NRFL and WRLL, which used a learning rate of 10−4 for the reasons described
earlier. A batch size of 40 was used, and γ for NRFL was set to 0.01.

To simulate label noise, 20% and 50% of the samples in the training set were corrupted by randomly
flipping entity names within the target JSON objects. For each noise level, two instances were
created, and results were averaged across both.

A.4 TRANSLATION TASK (MALLS DATASET)

Operation Type Subtype Original Perturbed

Label Change
Change Predicate P (A) ∧R(B) R(A) ∧R(B)

Change Term ∀xP (x) ∧ P (B) ∀y P (x) ∧ P (B)

∀xP (x) ∧ P (B) ∀xP (x) ∧ P (x)

Change Operator ∀xP (x) ∧ P (B) ∀xP (x) ∨ P (B)

Insert

Insert Term ∀xP (x) ∧ P (B) ∀x ∃y P (x) ∧ P (B)

∀xP (x) ∧ P (B) ∀xP (x) ∧ P (x,B)

Insert Negation P (A) ∧ P (B) ∧ P (C) P (A) ∧ ¬(P (B) ∧ P (C))

Insert Formula P (A) ∧ P (B) P (A) ∧ P (B) → R(C)

Delete

Delete Term ∀x∀y P (x) ∧R(x, y) ∀y P (x) ∧R(x, y)

∀x∀y P (x) ∧R(x, y) ∀x ∀y P (x) ∧R(y)

Delete Negation ¬(P (A) ∧ P (B)) P (A) ∧ P (B)

Delete Formula P (A) ∧ P (B) ∧ P (C) P (A) ∧ P (C)

Table 7: The list of all atomic perturbations.

For this set of experiments, the models were trained for 100 epochs with a batch size of 40 and a
learning rate of 10−5. Note that only the first 300 instances of the MALLS dataset were used.

To introduce noise, we follow the methodology of Yang et al. (2024) et al.. For each data instance
where noise is applied, only one of the perturbations listed in Table ?? is selected. Similarly, two
instances of each noise level were created, and the reported results correspond to the mean and
standard deviation across both instances.
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A.5 REASONING AND QNA TASK

For both of these experiments, we use a learning rate of 10−5, train for 10 epochs, and set a batch
size of 40. Noise is added to 20% and 50% of the datapoints in both datasets. For GSM8k, noise
is applied only to the final answer, which is a number, by randomly flipping its digits. For Open-
BookQA, the correct answer is randomly flipped to an incorrect one.

B EXTENDED EXPERIMENTAL EVALUATION

B.1 AUTOMATIC SHORT ANSWER GRADING TASK

Loss Type UQ UA
0% 20% 50% 0% 20% 50%

CE 19.18 24.49 15.45 17.12 21.69 14.93
MAE 22.13 14.61 18.64 14.04 16.53 16.76
RLL 37.26 26.21 22.25 30.61 22.93 21.67
NFL 20.17 7.58 5.31 14.25 5.36 6.23

NRFL 41.56 16.32 19.62 47.73 20.45 18.93
WRLL 9.42 8.97 9.5 6.25 5.67 5.69

Table 8: Accuracy of LLaMa trained on ASAG dataset

Finally, we consider an Automatic Short Answer Grading task, given a question and a reference
answer, and the LLM must generate a score for a student’s response. This task requires both natural
language understanding and comparative reasoning capabilities between the two answers. Results
indicate that NRFL outperforms other methods in most cases. In contrast, WRLL performs poorly,
as it is better suited for classification tasks with label noise. Given the reasoning-intensive nature
of this task, NRFL is more effective than WRLL. We conjecture that noise-robust reinforcement
learning techniques may be better suited for such tasks than standard supervised fine-tuning using
noise robust loss functions.
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