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Abstract

Representing control flows in machine learning
(ML) compilers and intermediate representations
(IRs) has been a long-standing problem, with
many ML compilers opting to avoid supporting
them altogether. A common practice is to trace the
model and get a straight-line computational graph,
for example, by specializing if predicates or by
unrolling loops. Although this strategy may work
well in some cases, it can result in performance
issues and long compilation times. Furthermore,
it is problematic in cases where the control flow of
the program depends on data or a dynamic shape.

In this paper, we present the PyTorch control flow
operator library, which addresses the challenge
through the introduction of five control flow op-
erators to PyTorch. We will explain their usage,
present real world use cases and demonstrate their
benefits such as the ability to capture dynamic
control flows in the PyTorch 2 IR with cond
and reduce compilation time and peak memory
usage when rewriting loops with map, scan,
associative scan and while loop.

1. Introduction
Python is the de facto authoring language for most machine
learning (ML) models (Agrawal et al., 2019; He, 2019).
PyTorch (Paszke et al., 2019b), one of the most widely
adopted ML libraries, allows users to write native Python
code for rapid model iteration. Users can compose models
with complex control flows using native Python constructs
like if-else statements, for loops, and while loops.

Many ML compilers only support optimizing a straight-line
computational graph without any control flow due to the
inherent complexity (Chen et al., 2018; Jia et al., 2019; Ma
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et al., 2020; Niu et al., 2021; Wang et al., 2021; Zheng et al.,
2022). Consider the following simple control flow:

if mod.static_config == 0:
return f(x)

return g(x)

The two branches above might have entirely different code
paths and might execute different operations. If we were to
compile both branches whenever we encounter such an if-
statement, the number of code paths to compile will explode
exponentially and very quickly become intractable for any
practical model.

Most recently, PyTorch introduced a Just-in-Time (JIT) com-
piler (i.e. PT2) that accelerates native Python models by
analyzing bytecode, extracting straight line computational
graph and compiling the graph into dynamically generated
kernels (Ansel et al., 2024). To address the control flow
challenge, PT2 uses the specialization and guard strat-
egy for static control flow. Specifically, the compiler traces
the model and chooses a code path based on the value of
current predicate, i.e. specialization. In the above code
example, the compiler takes the branch of f(x) and in-
troduces a guard check for mod.static config ==
0. At runtime, the compiler will verify the guard, e.g., if
mod.static config == 0, before executing the opti-
mized code, and if the check fails it restarts compilation.
The same strategy also applies to loops. The compiler
unrolls the loops and runs each iteration sequentially and
guards on the number of iterations. This design produces a
straight-line computational graph. The compiler can focus
on optimizing tensor operators.

However, this design doesn’t resolve all control flow prob-
lems, especially in cases where the control flow is dynamic.

• Data dependent control flow is the case where the
predicate depends on the value of tensor. In this case,
the compiler cannot unroll the while because the
number of loop iterations depends on the value which
is only available at runtime. It cannot choose a branch
if the predicate is a tensor, either. The PT2 compiler
handles it by a graph break and falling back to Python
see (Ansel et al., 2024). This also makes it impossible
to run the compiled model in an environment without
Python, e.g. on edge devices or servers for inference.
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• Dynamic shape dependent control flow is the case
where the number of loops or predicate is based on
a dynamic size of a tensor. Specialization will cause
the compiled code to only work for a specific size and
the compiler has to recompile the model whenever it
changes.

• Large computational graph. Even if the loop has
static number of iterations, unrolling a large loop can
result in a computational graph whose size grows lin-
early with number of iterations despite the computa-
tional graph in each iteration may be the same. This
leads to unnecessary long compilation time and poten-
tially significant memory overheads.

Control flow operators have been implemented in other
ML frameworks such as TensorFlow (Agrawal et al., 2019),
Theano (Al-Rfou et al., 2016), and JAX (Bradbury et al.,
2018). Compared to native Python control flow, these op-
erators impose restrictions on valid data types and syntax,
making them less flexible but easier to optimize (Moldovan
et al., 2019). Recent works also studied efficient compila-
tion (Zhang et al., 2023; Zheng et al., 2023) and automatic
model rewriting with control flow operators (Moldovan
et al., 2019; Jeong et al., 2019; Kim et al., 2021).

To address the above challenges, we introduce the control
flow operator library into PyTorch in this work. In par-
ticular, we introduce five control flow operators: cond,
while loop, map, scan, and associative scan,
along with their restrictions and rationale. We then de-
scribe their autograd and codegen implementation. Finally,
we demonstrate real use cases where control flow opera-
tors drastically reduce compilation time, save peak memory
consumption, and reduce recompilation.

2. Control Flow Operators
The interface of control flow operators follows existing ma-
chine learning libraries such as TensorFlow (Yu et al., 2018;
Agrawal et al., 2019) and JAX (Bradbury et al., 2018). For
simplicity, we uses tensor inputs to illustrate the interface
but nested tuple/dict/list of tensors are allowed.

• cond(pred, true fn, false fn) returns true fn()
if the predicate is True, otherwise false fn().
By default, both functions take no arguments
and access inputs via closure. Optionally, users
can pass operands as cond(pred, true fn,
false fn, operands), in which case
cond returns true fn(*operands) or
false fn(*operands).

• while loop(cond fn, body fn, operands) first exe-
cutes cond fn(*operands), which must return a

scalar boolean tensor indicating whether to continue.
If True, it executes body fn(*operands), which
must return the operands for the next iteration.

def while_loop(cond_fn, body_fn, operands):
while cond_fn(operands):

operands = body_fn(operands)
return operands

x = tensor(0)
# r = tensor(5)
r = while_loop(lambda x: x < 5,lambda x: x + 1,[x])

• scan(combine fn, init, xs) applies a cumulative oper-
ation to tensor xs using initial value init and com-
bination function combine fn. The combine fn
takes the current carry and a slice of xs, returning the
next carry and an output y. The final output is a tu-
ple of stacked carries and outputs, enabling efficient
computation of cumulative sums, products, or other
accumulations.

def scan(combine_fn, init, xs):
carries = []
ys = []
carry = init
for x in xs:
carry, y = combine_fn(carry, xs)
carries.append(carry)
ys.append(y)

return torch.stack(carries), torch.stack(ys)

xs = torch.arange(1, 5)
init = tensor(2)
# r = (tensor(48), tensor([2, 4, 12, 48]))
r = scan(lambda x, y: (x * y, x * y), init, xs)

• associative scan(combine fn, xs) is similar to scan
but differs in three ways: 1) it uses the first slice of
xs as the initial value rather than taking an init in-
put, 2) combine fn must be associative (e.g., add,
matmul), and 3) combine fn only returns the carry.
The associativity constraint enables more optimization
opportunities.

def associative_scan(combine_fn, xs):
carry = xs[0]
carries = [carry]
for x in xs[1:]:

carry = combine_fn(carry, x)
carries.append(carry)

return torch.stack(carries)

xs = torch.arange(1, 5)
# r = tensor([1., 2., 6., 24.])
r = associative_scan(lambda x, y: x * y, xs)

• map(fn, xs) computes fn on each slice of xs and
returns the stacked output.

def map(fn, xs):
return torch.stack([fn(x) for x in xs])
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2.1. Restrictions

The PT2 compiler uses a simple straight-line IR of tensor
operators that is easy to maintain and optimize (Ansel et al.,
2024). Since Python’s flexibility includes syntax not repre-
sentable in this IR, we impose the following restrictions for
control flow operators:

• Structure Match. Control flow operators require in-
puts and outputs to match structure in two cases:

– Output match: For cond, both true fn and
false fn must return the same container struc-
ture (e.g., both return a list of 2 tensors). This
prevents downstream divergence that could create
exponential branches.

– Carry match: For loops (while loop,
scan, associative scan), carries must
have matching structure across iterations. Since
the IR assumes fixed input structure for
combine fn, while loop outputs must
match next iteration inputs, and scan’s init must
match the output carry structure.

• Tensor Match. Corresponding tensors in the structure
must have matching device, dtype, and dimensionality.
The PT2 compiler specializes and guards these meta-
data similarly to control flow. Tensors with different
sizes in the same dimension are automatically inferred
as dynamic for that dimension.

• No side effects. Function arguments to control flow
operators must not create side effects which cannot be
represented in the IR, such as mutating external objects
(appending to lists, deleting dictionary keys, or setting
global attributes). While prior work attempted to sup-
port restricted side effects (e.g., TensorArray (Agrawal
et al., 2019; Moldovan et al., 2019)), achieving full
Python expressiveness would require supporting com-
plete Python syntax, making the IR complex and diffi-
cult to maintain (DeVito & et al, 2019).

2.2. Pytorch Integration

The core design principle for integrating with PyTorch is to
reuse existing PyTorch infrastructure whenever possible.
This approach (1) leverages robust, well-tested modules to
enhance reliability, and (2) minimizes additional instrumen-
tation, improving long-term maintainability of PyTorch.

Autograd. We integrate control flow operators into Py-
Torch’s autograd system using autograd.Function
and customizing the forward() and backward()meth-
ods (Paszke et al., 2019a) for each of them.

A key observation that simplifies integration is that oper-
ators like map, cond, and scan exhibit symmetry be-
tween forward and backward, i.e. their backward can be

formulated using the same operator with different inputs
and functions. For example, cond(pred, true fn,
false fn)’s backward is cond(pred, true fn bw,
false fn bw), map’s backward is another map, and
scan’s backward is a reverse-time scan. We provide
detailed descriptions of backward implementations in the
appendix A-E. The while loop operator’s autograd im-
plementation is ongoing at the time of writing.

The symmetry reduces the problem to computing gradients
for user-defined functions, a core PyTorch functionality. It
roughly looks like:

def bw_fn(*fw_args, *fw_out_gradient):
fw_out = fn(*fw_args)
return torch.autograd.grad(fw_out, fw_args,

fw_out_gradient)

where torch.autograd.grad computes gra-
dients of fw out with respect to fw args using
fw out gradient.

However, always recomputing fn in backward can be ex-
pensive. We can checkpoint forward intermediate results
to save re-computation overhead. Existing checkpointing
strategies (He & Yu, 2023; Chen et al., 2016; Jain et al.,
2020; Zheng et al., 2020; Zhang et al., 2022) that balance
memory consumption and recomputation overhead can be
easily integrated with our operators, except for cond and
while loop where data-dependent intermediate activa-
tions present challenges we leave for future work.

Codegen. Each control flow operator has a correspond-
ing IR node, but during code generation, we lower map
and scan into while loop, supporting codegen only for
cond, while loop, and associative scan. We
generate cond and while loop using the host lan-
guage’s native statements: if-else for cond and while
for while loop in Python. For associative scan,
we implement an optimized elementwise implementa-
tion leveraging its associativity rather than lowering to
while loop.

3. Use Cases
In this section, we present early results of applying control
flow operators to real-world use cases. Our objective is to
demonstrate the benefits of representing control flow in PT2
IR versus native implementations, rather than achieving
state-of-the-art performance compared to manually opti-
mized kernels. We believe techniques from hand-written
kernels can be incorporated into the PT2 compiler to achieve
comparable or better performance (Dong et al., 2024).

Invalid Value Clamping. In practice, tensors may have
NaN or infinity due to reasons such as invalid mathematical
operators (e.g. division by zero), invalid data. Invalid values
can propagate through calculations and lead to wrong or
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unstable results during training and inference. We could
clamp them dynamically using cond (Lewis et al., 2020):x = torch.cond(

(torch.isinf(x).any() or torch.isnan(x).any()),
lambda:torch.clamp(

x, min=-MAX_V, max=MAX_V),
lambda:x.clone(),)

Chunked Loss Computation. Recent work uses ”chunk-
ing” to reduce memory usage in loss computation lay-
ers (Hsu et al., 2024). This approach chunks inputs into
smaller sizes, fuses the final linear layer with loss computa-
tion, and calculates backward gradients during the forward
pass, significantly reducing intermediate activation memory.

Although customized Triton kernels can implement these
approaches (Hsu et al., 2024), writing models in native Py-
Torch and letting PT2 compile them is simpler. A naive Py-
Torch implementation causes PT2 to unroll loops along the
chunked dimension, creating long sequences of repeated op-
erations. Rewriting loops as scan can significantly reduce
computational graph size and compilation time. Figure 1
compares compilation time and peak memory usage as the
chunk count increases for scan vs a naive loop. See more
details in appendix F.3.

a

b

Figure 1. a Comparison of compile time between an approach us-
ing a loop and scan for the chunked loss. b Comparison of mem-
ory consumption between an approach using a loop and scan.

State-Space Models (SSMs) have shown promising re-
sults as Transformer alternatives for language model-
ing (Gu & Dao, 2023; Dao & Gu, 2024; Vaswani et al.,
2017; Gu et al., 2022; 2023). This class of models
scale linearly or near-linearly in sequence length. The
associative scan operator is well-suited for such ar-
chitectures. For example, the S5 architecture (Smith et al.,
2023) can be implemented using associative scan
with the following combine fn, see1):

1
https://github.com/i404788/s5-pytorch/blob/

c74be7270fe2ec9dc13efcffcfd7f5355d884030/s5/s5_model.py#L10-L22

def s5_operator(x, y):
A_i, Bu_i = x
A_j, Bu_j = y
return A_j * A_i, A_j * Bu_i + Bu_j

Figure 2 compares an implementation of an S5 layer, with a
state dimension of 20, using eager PyTorch and using the
scan operator. We investigate various sequence lengths
T and show the compile and the run times. The eager
PyTorch implementation utilizes a tree-like reduction struc-
ture, which enable parallelization with O(log(T )), while the
associative scan operator lowers to a single fused
kernel.

a

b

Figure 2. a Comparison of compile time for an S5 layer using an
eager PyTorch implementation and the associative scan. b
Comparison of run time for an S5 layer using an eager PyTorch
implementation and the associative scan.

Experimental setup. All our experimental verifications
are done with PyTorch version 2.8.0a0+gita565834 on a
desktop PC with an AMD Ryzen Threadripper 3960X 24-
Core processor with 3.9GHz, an NVIDIA GeForce RTX
3090 with 24GB of VRAM, 128GB of main memory.

4. Conclusion
This paper introduces the PyTorch control flow operator
library, which enables the PT2 compiler to holistically rep-
resent user programs that consists of dynamic control flows.
Benefits include avoiding recompilation for dynamic con-
trol flow, reducing compilation time from linear to constant,
saving memory consumption, and supporting optimizations
with native PyTorch operators without requiring low-level
kernel development.
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D., Shabanian, S., Simon, É., Spieckermann, S., Subra-
manyam, S. R., Sygnowski, J., Tanguay, J., van Tulder,
G., Turian, J. P., Urban, S., Vincent, P., Visin, F., de Vries,
H., Warde-Farley, D., Webb, D. J., Willson, M., Xu, K.,
Xue, L., Yao, L., Zhang, S., and Zhang, Y. Theano: A
python framework for fast computation of mathemati-
cal expressions. CoRR, abs/1605.02688, 2016. URL
http://arxiv.org/abs/1605.02688.

Ansel, J., Yang, E., He, H., Gimelshein, N., Jain, A., Voz-
nesensky, M., Bao, B., Bell, P., Berard, D., Burovski, E.,
Chauhan, G., Chourdia, A., Constable, W., Desmaison,
A., DeVito, Z., Ellison, E., Feng, W., Gong, J., Gschwind,
M., Hirsh, B., Huang, S., Kalambarkar, K., Kirsch, L.,
Lazos, M., Lezcano, M., Liang, Y., Liang, J., Lu, Y.,
Luk, C. K., Maher, B., Pan, Y., Puhrsch, C., Reso, M.,
Saroufim, M., Siraichi, M. Y., Suk, H., Zhang, S., Suo, M.,
Tillet, P., Zhao, X., Wang, E., Zhou, K., Zou, R., Wang,
X., Mathews, A., Wen, W., Chanan, G., Wu, P., and
Chintala, S. Pytorch 2: Faster machine learning through
dynamic python bytecode transformation and graph com-
pilation. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ASPLOS
’24, pp. 929–947, New York, NY, USA, 2024. Associa-

tion for Computing Machinery. ISBN 9798400703850.
doi: 10.1145/3620665.3640366. URL https://doi.
org/10.1145/3620665.3640366.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Train-
ing deep nets with sublinear memory cost. CoRR,
abs/1604.06174, 2016. URL http://arxiv.org/
abs/1604.06174.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E. Q., Shen,
H., Cowan, M., Wang, L., Hu, Y., Ceze, L., Guestrin,
C., and Krishnamurthy, A. TVM: an automated end-to-
end optimizing compiler for deep learning. In Arpaci-
Dusseau, A. C. and Voelker, G. (eds.), 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI 2018, Carlsbad, CA, USA, October
8-10, 2018, pp. 578–594. USENIX Association, 2018.
URL https://www.usenix.org/conference/
osdi18/presentation/chen.
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A. Autograd details for cond
As outlined in the main manuscript, the autograd for cond can be computed utilizing another cond operator employing a
different true fn and false fn. In particular, for the example below, the individual functions are:

def true_fn(x):
return x**2

def false_fn(x):
return torch.sin(x)

def joint_true_fn(x, tangents):
o = x**2
return 2 * x * tangents

def joint_false_fn(x, tangents):
o = torch.sin(x)
return torch.cos(x) * tangents

Therefore, the forward() and backward() conceptually look like

def pred(x):
return x > 0

def forward(x):
save_tensors_and_symints_for_backward(x)
return cond(pred(x), true_fn, false_fn, x)

def backward(tangents):
operands = saved_tensors_and_symints()
joint_true_fn = create_bw_fn(true_fn, operands)
joint_false_fn = create_bw_fn(false_fn, operands)

return cond(pred(x), joint_true_fn, joint_false_fn, (x, tangents))

B. Autograd details for map
As described in the main manuscript, the map function computes a function fn on each slice of its inputs xs and then return
the stacked outputs. Therefore, the backward of map is another map operator, but instead of the function fn, the joint
function joint fn is used. Similar as in A above, it is computed as

def fn(x):
return x**2

def joint_fn(x, tangents):
o = x**2
return 2 * x * tangents

Given this joint function, the forward() and backward() conceptually look like

def forward(x):
save_tensors_and_symints_for_backward(x)
return map(fn, x)

def backward(tangents):
operands = saved_tensors_and_symints()
joint_fn = create_bw_fn(fn, operands)
return map(joint_fn, (x, tangents))

9
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C. Autograd details for scan
As described in the main manuscript, scan applies a cumulative operator, combine fn, sequentially over a particular
dimension of the input xs, given an initial value init. It produces all the intermediate outputs as well as the last carry.
However, in order to implement the backward path of scan, all the intermediate carries are also required. Therefore,
we create a wrapper of the combine fn which would allow to return all individual carries. For example, given the
combine fn of the RNN

def combine_fn(prev_h, xs):
h = torch.sigmoid(torch.matmul(xs, W) + torch.matmul(xs, H))
return h, h

def combine_fn_with_carry_checkpoint(prev_h, xs):
carry, out = combine_fn(prev_h, xs)
return carry, (carry, out)

We can then later use these carries to compute the backward function, which is illustrated in the sketch below

The forward output of scan is computed as:
carry, ys = scan(combine_fn, init, xs),
where init and xs are the primals.

This computation can be unpacked as
c_0, ys_0 = combine_fn(init, xs_0)
c_1, ys_1 = combine_fn(carry_0, xs_1)
c_2, ys_2 = combine_fn(carry_1, xs_2)
...
c_T, ys_T = combine_fn(carry_(T-1), xs_T)

With the wrapper function combine_fn_with_carry_checkpoint we collect c_0, c_1, ..., c_T into a vector of carries
that we save for the backward. The output of the forward of scan will be c_T, ys, where ys is the vector of all
intermediate outputs [y_0, y_1, ..., y_T].

Given the carries and the ys, the gradients for xs and for init can be computed as follows:
We receive the upstream gradients (tangents) in torch.autograd.Function, i.e., we get g_c_T and g_ys,
where g_ys is the vector of all intermediate gradients of the outputs [g_ys_0, g_ys_1, ..., g_ys_T]

We can then proceed to compute the gradients for the init (g_init) and the xs (g_xs) by running a
scan operation reverse over time. In particular,

g_c_(T-1), g_xs_T = joint_combine_fn(c_(T-1), xs_T, g_c_T, g_ys_T)
g_c_(T-2), g_xs_(T-1) = joint_combine_fn(c_(T-2), xs_(T-1), g_c_(T-1), g_ys_(T-1))
g_c_(T-3), g_xs_(T-2) = joint_combine_fn(c_(T-3), xs_(T-2), g_c_(T-2), g_ys_(T-2))
...
g_init, g_xs_1 = joint_combine_fn(c_0, xs_1, g_c_0, g_ys_1)
0 , g_xs_0 = joint_combine_fn(init, xs_0, g_init, g_ys_0),

where joint_combine_fn takes the primals at step t (i.e. c_(t-1), xs_t),
as well as the tangents at step t (i.e. the gradient for the carries g_c_t) and
the upstream gradient of the output of step t (i.e. g_ys_T).
It returns the gradient of xs_t -> g_xs_t, as well as the gradient for the carry of step t-1 -> g_c_(t-1).

Therefore, the forward() and backward() of scan conceptually look like

def forward(init, xs):
c_T, (carries, ys) = scan(combine_fn_with_carry_checkpoint, init, xs)
save_tensors_and_symints_for_backward(init + xs + carries + ys)
return c_T, ys

def backward(tangents):
init, xs, carries, ys = saved_tensors_and_symints()
joint_fn = create_bw_fn(fn, init, xs)
return scan(joint_fn, (carries, xs, tangents))
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D. Autograd details for associative scan

The autograd of associative scan can be implemented in multiple ways, which may be more or less efficient.
Therefore, below we provide a sketch of how one such version can be realized. The interested reader is referred to either our
online code documentation or to this blog post2, for more details.

def combine_fn(a: torch.Tensor, b: torch.Tensor):
return a * b

The forward output of associative_scan can be computed as
ys = associative_scan(comine_fn, xs).
This can be unpacked as:
ys_0 = xs_0
ys_1 = combine_fn(ys_0, xs_1) = combine_fn(1, 2)
...
ys_T = combine_fn(ys_(T-1), xs_T) = combine_fn(6, 4)

For the backward, we can then create the joint function again:
def joint_combine_fn(a: torch.Tensor, b: torch.Tensor, g_ys_t: torch.Tensor):

o = a * b
return g_ys_t * b, g_ys_t * a,

where g_ys are the upstream gradients (tangents) in torch.autograd.Function.
In particular, g_ys is the vector of all intermediate upstream gradients
of the outputs [g_ys_0, g_ys_1, ..., g_ys_T].

The first output of `joint_combine_fn is the gradient g_y_t,
which is the gradient for the forward output at step t-1, i.e., a.
The second output of joint_combine_fn is the gradient g_x_t,
which is the gradient for the previous forward input at step t, i.e., b.

Given the outputs ys, the gradients for xs can be computed as follows:
We fist utilize the joint_combine_fn to compute the instantaneous gradients g_x_t and g_y_t
at every step as:
g_y_t, g_x_t = joint_combine_fn(ys_(t-1), xs_t, 1.),
where instead of using the elements of g_ys_t, we use 1s. This is required to get the instantaneous
gradients at every step t and we incorporate the upstream gradients g_ys at a later time.

For example, this results in:
g_y_0, g_x_0 = [1, 1] (Initial gradients are 1 by definition)
g_y_1, g_x_1 = joint_combine_fn(ys_0, xs_1, 1)
g_y_2, g_x_2 = joint_combine_fn(ys_1, xs_2, 1)
...
g_y_T, g_x_T = joint_combine_fn(ys_(T-1), xs_T, 1).

With these instantaneous gradients, we can compute the gradients of the inputs xs (g_xs) naively as:
g_xs_t = (\sum_{i=T}ˆt g_ys_i . (\prod_{k=i}ˆ{k>t} g_y_k)) . g_x_t (1)

In particular,
g_xs_T = g_ys_T . 1 . g_x_T
g_xs_(T-1) = g_ys_T . g_y_T . g_x_(T-1) + g_ys_(T-1) . g_x_(T-1)
g_xs_(T-2) = g_ys_T . g_y_T . g_y_(T-1) . g_x_(T-2) + g_ys_(T-1) . g_y_(T-1) . g_x_(T-2) + g_ys_(T-2) . g_x_(T-2)
...

E. Autograd details for while loop

The autograd of while loop is work in progress and not yet part of the control flow operator library. This is because there
are challenges that currently prevent an efficient implementation. In particular, to compute the gradients of while loop,
all intermediate outputs from the forward() need to be stored for the backward(). This is problematic, because the
number of loop iterations is undetermined during compile time. One naive solution would be to specialize the number of
loop iterations during compile time, but this would to some degree defeat the purpose of using the while loop operator
in the first place. The alternative approach that we are actively pursuing at the moment, is to figure out a way, how to store a
“dynamic” / undetermined number of intermediates in the IR.

2
https://justintchiu.com/blog/pscan_diff/
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F. Additional use cases
F.1. Shape-dependent Branching.

In LLMs, there are cases where we want to create different attention masks based on dynamic input shapes. cond would
also help in this case:

combined_attention_mask = cond(
seq_len > 1,
lambda: _make_causal_mask(...),
lambda: _expand_mask(...),

)

F.2. Early Stopping.

During inference, inputs are usually grouped into batches before feeding to the model. GPT-like language models continue
to generate next token until a special endoftext token is generated. There’s also a static max number of tokens that the
models can generate. Early stopping refers to the case when the next tokens for all inputs in a batch are endoftext, we can
stop early to save computation cycles before hitting the max output size. The model needs to look at the value of all newly
generated tokens to decide if the model continues. This is a data-dependent loop that can be captured by while loop:

def cond_fn(idx, all_tokens):
return _all_sequnce_done(all_tokens[idx])

def body_fn(idx, all_tokens):
next_tokens = model(all_tokens)
return idx + 1, next_tokens

idx = torch.tensor(0, dtype=torch.int64)
# Omitting pre-allocating logic
all_tokens = ...
n_iter, all_tokens = while_loop(cond_fn, body_fn, (idx, all_tokens)
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F.3. Chunked loss computation

class ChunkedCE(torch.nn.Module):
def __init__(self, chunk_size):

super().__init__()
self.chunk_size = chunk_size
self.ce = torch.nn.CrossEntropyLoss()

def forward(self, _input, weight, target, bias):
CHUNK_SIZE = self.chunk_size

def compute_loss(input_chunk, weight, bias, target):
logits = torch.addmm(bias, input_chunk, weight.t()).float()
loss = self.ce(logits, target)
return loss

grad_weight = torch.zeros_like(weight)
grad_bias = torch.zeros_like(bias)
loss_acc = torch.zeros((), device=_input.device)

chunks = _input.shape[0] // CHUNK_SIZE
_input_chunks = _input.view(chunks, CHUNK_SIZE, *_input.shape[1:])
target_chunks = target.view(chunks, CHUNK_SIZE, *target.shape[1:])

def combine_fn(carry, xs):
grad_weight, grad_bias, loss_acc = carry
input_chunk, target_chunk = xs
(

chunk_grad_input,
chunk_grad_weight,
chunk_grad_bias,

), chunk_loss = torch.func.grad_and_value(
compute_loss, argnums=(0, 1, 2)

)(
input_chunk, weight, bias, target_chunk

)
return (

(
grad_weight + chunk_grad_weight,
grad_bias + chunk_grad_bias,
loss_acc + chunk_loss,

),
chunk_grad_input,

)

(grad_weight, grad_bias, loss_acc), grad_inputs = scan(
combine_fn,
(grad_weight, grad_bias, loss_acc),
(_input_chunks, target_chunks),

)
return (

grad_weight / chunks,
grad_bias / chunks,
loss_acc / chunks,
grad_inputs.view(-1, *_input.shape[1:]) / chunks,

)

# chunk size 1024
mod = ChunkedCE(1024)
B, T, D, V = 32, 1024, 768, 128256
torch.set_default_device('cuda')
model = torch.nn.Linear(D, V).to(torch.bfloat16)
x = torch.randn(B, T, D, requires_grad=True, dtype=torch.bfloat16)
label = torch.randint(0, V, (B, T)).to(torch.int64)

inp, weight, target, bias = (
x.view(-1, D), model.weight, label.view(-1), model.bias)

)
mod(inp, weight, target, bias)
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Figure 3 and Figure 4 shows the memory usage pattern for a naive PyTorch loop implementation and and a scan implemen-
tation, where Scan accumulates the intermediate results in a buffer instead of materializing intermediate results.

Figure 3. Memory profile for the Chunked Loss using a naive implementation with a loop.

Figure 4. Memory profile for the Chunked Loss using an enhanced implementation with scan.
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F.4. RNN

Another usecase for the scan operator are stateful models, such as long short-term memory units (LSTM (Hochreiter &
Schmidhuber, 1997)) or gated recurrent units (GRUs (Cho et al., 2014)). Because their inherent dynamics requires sequential
processing of the input, which traditionally has been implemented via loops. As discussed, these loops cause significant
issues during compilation if proper control flow operators are absent. With the scan operator, RNNs can be efficiently
realized without explicit loops. To illustrate this, the listing below showcases the implementation of a classic RNN with
loops and with the scan operator.

W = torch.rand(2, 4)
H = torch.rand(4, 4)

def classicRNN(init_h, x):
h = init_h
outs = []
for xs in x:

h, o = combine_fn(h, xs)
outs.append(o)

return h, torch.stack(outs)

def combine_fn(prev_h, xs):
h = torch.sigmoid(torch.matmul(xs, W) + torch.matmul(xs, H))
return h, h

x = torch.rand(4, 2)
init_h = torch.zeros(4)
res = classicRNN(init_h, x)
res_scan = scan(combine_fn, init_h, x)

Moreover, using the scan operator unlocks significant savings in compile and memory consumption, which is illustrated in
Figure 5.

a b

Figure 5. a Comparison of compile time for an RNN using an eager PyTorch implementation and the scan operator. b Comparison of
memory consumption for an RNN using an eager PyTorch implementation and the scan operator.
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