
ESCHER: ESCHEWING IMPORTANCE SAMPLING IN
GAMES BY COMPUTING A HISTORY VALUE FUNCTION
TO ESTIMATE REGRET

Stephen McAleer
Carnegie Mellon University
smcaleer@cs.cmu.edu

Gabriele Farina
Carnegie Mellon University
gfarina@cs.cmu.edu

Marc Lanctot
DeepMind
lanctot@deepmind.com

Tuomas Sandholm
Carnegie Mellon University
Strategy Robot, Inc.
Optimized Markets, Inc.
Strategic Machine, Inc.
sandholm@cs.cmu.edu

ABSTRACT

Recent techniques for approximating Nash equilibria in very large games leverage
neural networks to learn approximately optimal policies (strategies). One promis-
ing line of research uses neural networks to approximate counterfactual regret
minimization (CFR) or its modern variants. DREAM, the only current CFR-based
neural method that is model free and therefore scalable to very large games, trains a
neural network on an estimated regret target that can have extremely high variance
due to an importance sampling term inherited from Monte Carlo CFR (MCCFR).
In this paper we propose an unbiased model-free method that does not require any
importance sampling. Our method, ESCHER, is principled and is guaranteed to
converge to an approximate Nash equilibrium with high probability. We show that
the variance of the estimated regret of ESCHER is orders of magnitude lower than
DREAM and other baselines. We then show that ESCHER outperforms the prior
state of the art—DREAM and neural fictitious self play (NFSP)—on a number
of games and the difference becomes dramatic as game size increases. In the
very large game of dark chess, ESCHER is able to beat DREAM and NFSP in a
head-to-head competition over 90% of the time.

1 INTRODUCTION

A core challenge in computational game theory is the problem of learning strategies that approximate
Nash equilibrium in very large imperfect-information games such as Starcraft (Vinyals et al., 2019),
dark chess (Zhang & Sandholm, 2021), and Stratego (McAleer et al., 2020; Perolat et al., 2022).
Due to the size of these games, tabular game-solving algorithms such as counterfactual regret
minimization (CFR) are unable to produce such equilibrium strategies. To sidestep the issue, in the
past stochastic methods such as Monte-Carlo CFR (MCCFR) have been proposed. These methods use
computationally inexpensive unbiased estimators of the regret (i.e., utility gradient) of each player,
trading off speed for convergence guarantees that hold with high probability rather than in the worst
case. Several unbiased estimation techniques of utility gradients are known. Some, such as external
sampling, produce low-variance gradient estimates that are dense, and therefore are prohibitive in the
settings mentioned above. Others, such as outcome sampling, produce high-variance estimates that
are sparse and can be computed given only the realization of play, and are therefore more appropriate
for massive games.

However, even outcome-sampling MCCFR is inapplicable in practice. First, since it is a tabular
method, it can only update regret on information sets that it has seen during training. In very
large games, only a small fraction of all information sets will be seen during training. Therefore,

1

generalization (via neural networks) is necessary. Second, to achieve unbiasedness of the utility
gradient estimates, outcome-sampling MCCFR uses importance sampling (specifically, it divides
the utility of each terminal state by a reach probability, which is often tiny), leading to estimates
with extremely large magnitudes and high variance. This drawback is especially problematic when
MCCFR is implemented using function approximation, as the high variance of the updates can cause
instability of the neural network training.

Deep CFR (Brown et al., 2019) addresses the first shortcoming above by training a neural network
to estimate the regrets cumulated by outcome-sampling MCCFR, but is vulnerable to the second
shortcoming, causing the neural network training procedure to be unstable. DREAM (Steinberger
et al., 2020) improves on Deep CFR by partially addressing the second shortcoming by using a
history-based value function as a baseline (Schmid et al., 2019). This baseline greatly reduces the
variance in the updates and is shown to have better performance than simply regressing on the
MCCFR updates. However, DREAM still uses importance sampling to remain unbiased. So, while
DREAM was shown to work in small artificial poker variants, it is still vulnerable to the high variance
of the estimated counterfactual regret and indeed we demonstrate that in games with long horizons
and/or large action spaces, this importance sampling term causes DREAM to fail.

In this paper, we introduce Eschewing importance Sampling by Computing a History value function
to Estimate Regret (ESCHER), a method that is unbiased, low variance, and does not use importance
sampling. ESCHER is different from DREAM in two important ways, both of which we show are
critical to achieving good performance. First, instead of using a history-dependent value function as a
baseline, ESCHER uses one directly as an estimator of the counterfactual value. Second, ESCHER
does not multiply estimated counterfactual values by an importance-weighted reach term. To remove
the need to weight by the reach to the current information state, ESCHER samples actions from a
fixed sampling policy that does not change from one iteration to the next. Since this distribution is
static, our fixed sampling policy simply weights certain information sets more than others. When
the fixed sampling policy is close to the balanced policy (i.e., one where each leaf is reached with
equal probability), these weighting terms minimally affect overall convergence of ESCHER with
high probability.

We find that ESCHER has orders of magnitude lower variance of its estimated regret. In experiments
with a deep learning version of ESCHER on the large games of phantom tic tac toe, dark hex, and dark
chess, we find that ESCHER outperforms NFSP and DREAM, and that the performance difference
increases to be dramatic as the size of the game increases. Finally, we show through ablations that
both differences between ESCHER and DREAM (removing the bootstrapped baseline and removing
importance sampling) are necessary in order to get low variance and good performance on large
games.

2 BACKGROUND

We consider extensive-form games with perfect recall (Osborne & Rubinstein, 1994; Hansen et al.,
2004; Kovařı́k et al., 2022). An extensive-form game progresses through a sequence of player
actions, and has a world state w ∈ W at each step. In an N -player game, A = A1 × · · · × AN is
the space of joint actions for the players. Ai(w) ⊆ Ai denotes the set of legal actions for player
i ∈ N = {1, . . . , N} at world state w and a = (a1, . . . , aN) ∈ A denotes a joint action. At each
world state, after the players choose a joint action, a transition function T (w, a) ∈ ∆W determines
the probability distribution of the next world state w′. Upon transition from world state w to w′ via
joint action a, player i makes an observation oi = Oi(w

′). In each world state w, player i receives
a utility ui(w). The game ends when the players reach a terminal world state. In this paper, we
consider games that are guaranteed to end in a finite number of actions and that have zero utility at
non-terminal world states.

A history is a sequence of actions and world states, denoted h = (w0, a0, w1, a1, . . . , wt), where
w0 is the known initial world state of the game. Ui(h) and Ai(h) are, respectively, the utility
and set of legal actions for player i in the last world state of a history h. An information set for
player i, denoted by si, is a sequence of that player’s observations and actions up until that time
si(h) = (a0i , o

1
i , a

1
i , . . . , o

t
i). Define the set of all information sets for player i to be Ii. The set of

histories that correspond to an information set si is denoted H(si) = {h : si(h) = si}, and it is

2

assumed that they all share the same set of legal actions Ai(si(h)) = Ai(h). For simplicity we often
drop the subscript i for an information set s when the player is implied.

A player’s strategy πi is a function mapping from an information set to a probability distribution
over actions. A strategy profile π is a tuple (π1, . . . , πN). All players other than i are denoted −i,
and their strategies are jointly denoted π−i. A strategy for a history h is denoted πi(h) = πi(si(h))
and π(h) is the corresponding strategy profile. When a strategy πi is learned through reinforcement
learning (RL), we refer to the learned strategy as a policy.

The expected value (EV) vπi (h) for player i is the expected sum of future utilities for player i in
history h, when all players play strategy profile π. The EV for an information set si is denoted vπi (si)
and the EV for the entire game is denoted vi(π). A two-player zero-sum game has v1(π)+v2(π) = 0
for all strategy profiles π. The EV for an action in an information set is denoted vπi (si, ai). A Nash
equilibrium (NE) is a strategy profile such that, if all players played their NE strategy, no player could
achieve higher EV by deviating from it. Formally, π∗ is a NE if vi(π∗) = maxπi

vi(πi, π
∗
−i) for each

player i.

The exploitability e(π) of a strategy profile π is defined as e(π) =
∑
i∈N maxπ′

i
vi(π

′
i, π−i). A

best response (BR) strategy BRi(π−i) for player i to a strategy π−i is a strategy that maximally
exploits π−i: BRi(π−i) ∈ argmaxπi vi(πi, π−i). An ϵ-best response (ϵ-BR) strategy BRϵi(π−i) for
player i to a strategy π−i is a strategy that is at most ϵ worse for player i than the best response:
vi(BRϵi(π−i), π−i) ≥ vi(BRi(π−i), π−i)− ϵ. An ϵ-Nash equilibrium (ϵ-NE) is a strategy profile π
in which, for each player i, πi is an ϵ-BR to π−i.

2.1 COUNTERFACTUAL REGRET MINIMIZATION (CFR)

In this section we review the counterfactual regret minimization (CFR) framework. All superhuman
poker AIs have used advanced variants of the framework as part of their architectures (Bowling et al.,
2015; Brown & Sandholm, 2018; 2019). CFR is also the basis of several reinforcement learning
algorithms described in Section B. We will leverage and extend the CFR framework in the rest of the
paper. We will start by reviewing the framework.

Define ηπ(h) =
∏
a∈h π(a) to be the reach weight of joint policy π to reach history h, and z is a

terminal history. Define ηπ(h, z) = ηπ(z)
ηπ(h) to be the reach weight of joint policy π to reach terminal

history z from history h. Define Z to be the set of all terminal histories. Define Z(s) ⊆ Z to be
the set of terminal histories z that can be reached from information state s and define z[s] to be the
unique history h ∈ s that is a subset of z. Define

vi(π, h) =
∑
z⊐h

ηπ(h, z)ui(z) (1)

to be the expected value under π for player i having reached h. Note that this value function takes as
input the full-information history h and not an information set. Define

vci (π, s) =
∑

z∈Z(s)

ηπ−i(z[s])η
π(z[s], z)ui(z) =

∑
h∈s

ηπ−i(h)vi(π, h) (2)

to be the counterfactual value for player i at state s under the joint strategy π. Define the strategy πs→a

to be a modified version of π where a is played at information set s, and the counterfactual state-action
value qci (π, s, a) = vci (πs→a, s). Similarly, define the history-action value qi(π, h, a) = vi(πh→a, h).
For any state s, strategy π, and action a ∈ A(s), one can define a local counterfactual regret
for not switching to playing a at s as rc(π, s, a) = qci (π, s, a) − vci (π, s). Counterfactual regret
minimization (CFR) (Zinkevich et al., 2008a) is a strategy iteration algorithm that produces a sequence
of policies: {π1, π2, · · · , πT }. Each policy πt+1(s) is derived directly from a collection of cumulative
regrets RTi (s, a) =

∑T
t=1 r

c(πt, s, a), for all a ∈ A(s) using regret-matching (Hart & Mas-Colell,
2000). Total regret for player i in the entire game is defined as RTi = maxπ′

i

∑T
t=1 vi(π

′
i, π

t
−i) −

vi(π
t
i , π

t
−i). In two-player zero-sum games, the average policy π̄T (s) =

∑T
t=1 η

πt
i (s)πt(s)∑T

t=1 η
πt
i (s)

converges

to an approximate Nash equilibrium at a rate of e(π̄T) ≤ O(1/
√
T).

3

2.2 MONTE CARLO COUNTERFACTUAL REGRET MINIMIZATION (MCCFR)

In the standard CFR algorithm, the quantities required to produce new policies in Equations 1 and 2
require full traversals of the game to compute exactly. Monte Carlo CFR (Lanctot et al., 2009) is
a stochastic version of CFR which instead estimates these quantities. In particular, MCCFR uses
a sampling approach which specifies a distribution over blocks Zj of terminal histories such that
∪jZj = Z , the set of terminal histories. Upon sampling a block j, a certain sampled counterfactual
value v̂c(π, s | j) (defined in detail later in this section) is computed for all prefix histories that occur
in Zj . Then, estimated regrets are accumulated and new policies derived as in CFR. The main result
is that E[v̂c(π, s | j)] = vc(π, s), so MCCFR is an unbiased approximation of CFR, and inherits its
convergence properties albeit under a probabilistic guarantee.

Blocks are sampled via sampling policy π̃ which is commonly a function of the players’ joint policy π.
Two sampling variants were defined in the original MCCFR paper: outcome sampling (OS-MCCFR)
and external sampling (ES-MCCFR). External sampling samples only the opponent (and chance’s)
choices; hence, it requires a forward model of the game to recursively traverse over all of the subtrees
under the player’s actions. Outcome sampling is the most extreme sampling variant where blocks
consist of a single terminal history: it is the only model-free variant of MCCFR compliant with
the standard reinforcement learning loop where the agent learns entirely from experience with the
environment. The OS-MCCFR counterfactual value estimator when the opponent samples from their
current policy as is commonly done is given as follows:

v̂i(π, s|z) =
ηπ−i(z[s])ηπ(z[s], z)ui(z)

ηπ̃(z)
=

1

ηπ̃i(z[s])

ηπi(z[s], z)

ηπ̃i(z[s], z)
ui(z) (3)

The importance sampling term that is used to satisfy the unbiasedness of the values can have a
significant detrimental effect on the convergence rate Gibson et al. (2012). Variance reduction
techniques provide some empirical benefit Schmid et al. (2019); Davis et al. (2019), but have not been
evaluated on games with long trajectories where the importance corrections have their largest impact.

2.3 DEEP COUNTERFACTUAL REGRET MINIMIZATION

Deep CFR (Brown et al., 2019; Steinberger, 2019; Li et al., 2019) is a method that uses neural
networks to scale MCCFR to large games. Deep CFR performs external sampling MCCFR and trains
a regret network Ri(s, a|ψ) on a replay buffer of information sets and estimated cumulative regrets.
The regret network is trained to approximate the cumulative regrets seen so far at that information
state. The estimated counterfactual regrets are computed the same as in MCCFR, namely using
outcome sampling or external sampling.

2.4 DREAM

DREAM (Steinberger et al., 2020) builds on Deep CFR and approximates OS-MCCFR with deep neu-
ral networks. Like Deep CFR, it trains a regret network Ri(s, a|ψ) on a replay buffer of information
sets and estimated cumulative regrets. Additionally, in order to limit the high variance of OS-MCCFR,
DREAM uses a learned history value function qi(π, h, a|θ) and uses it as a baseline (Schmid et al.,
2019). While the baseline helps remove variance in the estimation of future utility, in order to remain
unbiased DREAM must use importance sampling as in OS-MCCFR. We show empirically that
variance of the DREAM estimator of the counterfactual value, although lower than OS-MCCFR, will
often be quite high, even in small games and with an oracle history value function. This high variance
estimator might make neural network training very difficult. In contrast, ESCHER has no importance
sampling term and instead directly uses the learned history value function qi(π, h, a|θ) to estimate
regrets.

3 ESCHER

In this section we define our proposed algorithm, ESCHER, where we use a learned history-action
value function qi(π, h, a|θ) to estimate regret. This history-action value function is a neural network
trained on on-policy rollouts to predict future reward. In our theoretical analysis we model the
learned history-action value function to be equal to the exact history-action value qi(π, h, a) plus an

4

additional history-action-dependent error. In our theoretical analysis we show that ESCHER is sound
and converges to a Nash equilibrium with high probability.

As shown in Equation 3, the OS-MCCFR estimator can be seen as containing two separate terms. The
first 1/ηπ̃i(z[s]) term ensures that each information set is updated equally often in expectation. The
second ηπi(z[s], z)ui(z)/η

π̃i(z[s], z) term is an unbiased estimator of the history value vi(π, z[s]).
In DREAM, the second term gets updated by a bootstrapped baseline to reduce variance. But since
the baseline is not perfect in practice, as we show in our ablations, this term still induces high variance,
which prevents the regret network from learning effectively. The main idea behind ESCHER is
to remove the first reach weighting term by ensuring that the sampling distribution for the update
player remains fixed across iterations, and to replace the second term with a history value function
qi(π, z[s], a|θ).
Our method is built on Deep CFR. In particular, like Deep CFR, we traverse the game tree and add
this experience into replay buffers. The first replay buffer stores information states and instantaneous
regret estimates is used to train a regret network Rψ(s, a) that is trained to estimate the cumulative
regret at a given information set. This replay buffer is filled with information sets from trajectories
gathered by following the sampling distribution in Equation 5. The regret network Ri(s, a|ψ) is
reinitialized and trained from scratch on the entire replay buffer to estimate the average estimated
counterfactual regret at every information set via regression. Since regret matching is scale invariant,
the policy computed from average counterfactual regret is equivalent to the policy computed from total
counterfactual regret. Similar to Deep CFR, each player’s current policy πi is given by performing
regret matching (described in Equation 7) on the output of the current regret network Ri(s, a|ψ).
The second replay buffer stores histories and terminal utilities and is used to train the value network
Qθ to estimate the expected utility for both players when both players are at that history and play
from their current policies. The value network Qθ is reinitialized after every iteration, and is trained
by predicting future reward from on-policy trajectories. In particular, to avoid the issue that the
regret-matching policy does not generally put strictly positive mass on all actions, the on-policy
sampling is performed by sampling from a weighted mixture of 0.99× the current policy and 0.01×
the uniformly-random policy. Lastly, the third replay buffer stores information states and actions
taken by the policy π and uses that data to train an average policy network π̄ϕ that approximates the
average policy across all iterations. It is this average policy that has no regret and converges to an
approximate Nash equilibrium in self play.

Unlike Deep CFR and DREAM, which use the terminal utility and sampling probabilities from
the current trajectory to estimate the value, in ESCHER the instantaneous regret estimates are
estimated using the current history value function qi(π, h, a|θ) alone. Since we only update regret on
information states visited during the trajectory, our estimator is zero on all other information sets.
Formally, we define our estimator for the counterfactual regret as follows:

r̂i(π, s, a|z) =
{
qi(π, z[s], a|θ)−

∑
a′ πi(s, a

′)qi(π, z[s], a
′|θ) if z ∈ Z(s)

0 otherwise
(4)

ESCHER samples from the opponent’s current strategy when it is their turn but samples from a fixed
strategy that roughly visits every information set equally likely when it is the update player’s turn. As
a result, the expected value of the history value is equal to the counterfactual value scaled by a term
that weights certain information sets up or down based on the fixed sampling policy. Formally, define
the fixed sampling policy bi(s, a) to be any policy that remains constant across iterations and puts
positive probability on every action. This fixed sampling policy can be one of many distributions
such as one that samples uniformly over available actions at every information set. In games with an
equal number of actions at every information set, the uniform policy will sample all information sets
at each level of the tree equally likely. An interesting open research direction is finding good fixed
sampling policy. In this paper, our fixed sampling policy uniformly samples over actions, which is
somewhat similar to the robust sampling technique introduced in Li et al. (2019). When updating
player i, we construct a joint fixed sampling policy π̃i(s, a) to be

π̃i(s, a) =

{
bi(s, a) if it’s the update player i’s turn
π−i(s, a) otherwise

(5)

5

Algorithm 1: ESCHER
1 Initialize history value function q
2 Initialize policy πi for both players
3 for t = 1, ..., T do
4 Refill value replay buffer with on-policy data from π
5 Retrain history value function on data from value replay buffer
6 Reinitialize regret networks R0, R1

7 for update player i ∈ {0, 1} do
8 for P trajectories do
9 Get trajectory τ using sampling distribution (Equation 5)

10 for each state s ∈ τ do
11 for each action a do
12 Estimate immediate cf-regret

r̂(π, s, a|z) = qi(π, z[s], a|θ)−
∑
a πi(s, a)qi(π, z[s], a|θ)

13 Add (s, r̂(π, s)) to cumulative regret buffer
14 Add (s, a′) to average policy buffer where a′ is action taken at state s in

trajectory τ
15 Train regret network Ri on cumulative regret buffer
16 Train average policy network π̄ϕ on average policy buffer
17 return average policy network π̄ϕ

We use a fixed sampling policy because it allows us to remove any importance sampling in our
estimator. Unlike Deep CFR and DREAM which must divide by the current player’s reach probability
to remain unbiased, our method does not use importance sampling but total average regret is still
guaranteed to converge to zero. We describe our algorithm in Algorithm 1. Highlighted in blue are
the differences between our algorithm and Deep CFR. Namely, we train a history value function and
use it to estimate counterfactual regret.

3.1 THEORETICAL RESULTS

In the following, assume that our learned value function qi(π, h, a|θ) is equal to the exact value
function qi(π, h, a). In the appendix we analyze the case where the learned value function is
inaccurate. If we sample from π̃i when updating player i, then the expected value of our counterfactual
regret estimator is:

Ez∼π̃i [r̂i(π, s, a|z)] =
∑
z∈Z

ηπ̃
i

(z)[r̂i(π, s, a|z)]

=
∑

z∈Z(s)

ηπ̃
i

(z)[qi(π, z[s], a)− vi(π, z[s])]

=
∑
h∈s

∑
z⊐h

ηπ̃
i

(z)[qi(π, z[s], a)− vi(π, z[s])]

=
∑
h∈s

ηπ̃
i

(h)[qi(π, h, a)− vi(π, h)]

= ηπ̃
i

i (s)
∑
h∈s

ηπ−i(h)[qi(π, h, a)− vi(π, h)]

= w(s)[vci (π, s, a)− vci (π, s)] = w(s)rc(π, s, a) (6)

Where for h, h′ ∈ s, ηbi (h) = ηbi (h
′) = ηbi (s) =: w(s) is the reach probability for reaching that

infostate for player i via the fixed sampling distribution. Unlike the estimator in Deep CFR and
DREAM, our estimator has no importance sampling terms, and as a result has much lower variance.
When all information sets are visited by the sampling distribution with equal probability, then
ESCHER is perfectly unbiased. The correctness of our method is established by the next theorem,
whose proof can be found in Appendix A. As shown in the proof, the regret of our method is bounded
with high probability by a term that is inversely proportional to the minimum over information sets

6

Game ESCHER (Ours) Ablation 1 Ablation 2 DREAM

Phantom Tic-Tac-Toe (2.6± 0.1)×10−1 (4.1± 0.7)×101 (1.4± 0.4)×107 (4.6± 1.0)×107

Dark Hex 4 (1.8± 0.1)×10−1 (1.3± 0.9)×102 (3.1± 1.7)×108 (2.8± 2.0)×108

Dark Hex 5 (1.3± 0.1)×10−1 (3.3± 1.6)×102 (2.0± 0.6)×105 (5.3± 3.9)×108

Game ESCHER (Ours) Ablation 2 DREAM OS-MCCFR

Leduc (5.3± 0.0)×100 (3.3± 0.7)×102 (2.8± 0.0)×102 (2.2± 0.0)×103

Battleship (1.4± 0.0)×100 (7.1± 0.3)×102 (1.2± 0.0)×103 (2.4± 0.0)×103

Liar’s Dice (9.0± 0.1)×10−1 (7.8± 0.9)×101 (4.0± 0.8)×102 (1.2± 0.1)×103

Table 1: These results track the average variance of the regret estimator of each algorithm over all
iterations. The top table shows results of deep algorithms on large games. Ablation 1 is ESCHER
but with a bootstrapped baseline, and ablation 2 is ESCHER but with reach weighting. The bottom
table shows tabular versions of the algorithms with oracle value functions on small games. Because
ESCHER does not use importance sampling, the variance of its estimator is orders of magnitude
smaller than baselines. Colors scale with the ratio of the minimum value in each row, according to
the logarithmic color scale

1 10 100 ≥ 1000

1

.

Algorithm History value Boostrapped Importance
function baseline sampling

ESCHER (Ours) ✓ ✗ ✗
Ablation 1 ✓ ✓ ✗
Ablation 2 ✓ ✗ ✓

DREAM / VR-MCCFR ✓ ✓ ✓
Deep CFR / OS-MCCFR ✗ ✗ ✓

Table 2: ESCHER is different from DREAM in two important ways. First, ESCHER does not use
importance sampling (Lanctot et al., 2009; Brown et al., 2019; Steinberger et al., 2020)
. Second, ESCHER does not estimate counterfactual values for sampled actions via a bootstrapped
baseline (Schmid et al., 2019; Steinberger et al., 2020). Our ablations show that both improvements

are necessary.

s of w(s). Therefore, our theory suggests that the balanced sampling distribution is the optimal
sampling distribution, but in practice other sampling distributions might perform better. In our
experiments we approximate the balanced distribution with uniform sampling over actions.

Theorem 1. Assume a fixed sampling policy that puts positive probability on every action. For any
p ∈ (0, 1), with probability at least 1− p, the regret accumulated by each agent learning using the
tabular algorithm ESCHER (Algorithm 2) is upper bounded by O(

√
T · poly log(1/p)), where the

O(·) notation hides game-dependent and sampling-policy-dependent constants.

In the appendix we extend the analysis to the case of approximate history value function, and give a
bound with an explicit dependence on the magnitude of the approximation error.

4 RESULTS

We compare the variance of the counterfactual value estimates from ESCHER, DREAM, and ablations
in Table 1. Variance is computed over the set of all counterfactual regret values estimated in a single
iteration. The results in the table are the average of each iteration’s variance over the first five
iterations of training. The top table shows results of deep algorithms on large games. A summary of
the different ablations is given in Table 2. From this experiment we can see that because ESCHER

7

2 4 6

Information sets touched×106

0%

25%

50%

75%

100%

W
in

%

Phantom Tic-Tac-Toe

ESCHER (Ours)
DREAM
NFSP

1 2 3

Information sets touched×106

0%

25%

50%

75%

100%
Dark Hex 5

ESCHER (Ours)
DREAM
NFSP

0.5 1.0

Information sets touched×107

0%

25%

50%

75%

100%
Dark Chess

ESCHER (Ours)
DREAM
NFSP

Experiment: Playing against an opponent that plays uniformly at random

2 4 6

Information sets touched×106

0%

25%

50%

75%

100%

W
in

%

Phantom Tic-Tac-Toe

ESCHER vs NFSP
ESCHER vs DREAM

1 2 3

Information sets touched×106

0%

25%

50%

75%

100%
Dark Hex 5

ESCHER vs NFSP
ESCHER vs DREAM

0.5 1.0

Information sets touched×107

0%

25%

50%

75%

100%
Dark Chess

ESCHER vs NFSP
ESCHER vs DREAM

Experiment: Playing against another baseline head-to-head

Figure 1: ESCHER is competitive with NFSP and DREAM in Phantom Tic-Tac-Toe. But as the size
of the game increases, ESCHER performs increasingly better than both DREAM and NFSP. In Dark
Chess, ESCHER beats DREAM and NFSP in over 90% of the matches.

does not use importance sampling, the variance of its estimator is orders of magnitude smaller than
baselines. Also, we see that even ablation 1, which does not use importance sampling, has high
variance. This is because when the history value function is not exact, the bootstrapping method
recursively divides by the sampling probability on sampled actions. We see that this higher variance
indeed leads to worse performance for DREAM and these ablations in Figure 2. Therefore, both
improvements of ESCHER over DREAM are necessary.

We compare our method to DREAM and NFSP, the most popular baselines that are also open-source,
on the games of Phantom Tic Tac Toe (TTT), Dark Hex, and Dark Chess. Dark chess is a popular
game among humans under the name Fog of War Chess on the website chess.com, and has emerged
as a benchmark task (Zhang & Sandholm, 2021). All of these games are similar in that they are both
imperfect information versions of perfect-information games played on square boards. Phantom TTT
is played on a 3× 3 board while dark hex 4 is played on a size 4× 4 board and dark hex 5 is played
on a size 5× 5 board. Because these games are large, we are not able to compare exact exploitability
so instead we compare performance through head-to-head evaluation. Results are shown in Figure
1, where the x axis tracks the number of information sets visited during training. We see that our
method is competitive with DREAM and NFSP on Phantom TTT. On the larger game of Dark Hex 5,
ESCHER beats DREAM and NFSP head to head and also scores higher against a random opponent.
Moving to the largest game of Dark Chess, we see that ESCHER beats DREAM and NFSP head to
head over 90% of the time and also is able to beat a random opponent while DREAM and NFSP are
no better than random.

5 DISCUSSION: LIMITATIONS AND FUTURE RESEARCH

Our method has a number of ways it can be improved. First, it requires two separate updates in one
iteration. Perhaps the method could be more efficient if only on-policy data were used. Second, our
method, like Deep CFR, DREAM, and NFSP, trains neural networks on large replay buffers of past
experience. Unlike RL algorithms like DQN (Mnih et al., 2015), these replay buffers must record all
data ever seen in order to learn an average. This can be a problem when the amount of data required
is much larger than the replay buffer memory. Third, we do not use various implementation details

8

1 2

Information sets touched×106

0%

25%

50%

75%

100%

W
in

%

Phantom Tic-Tac-Toe

ESCHER (Ours)
Ablation 1
Ablation 2

1 2 3

Information sets touched×106

0%

25%

50%

75%

100%
Dark Hex 4

ESCHER (Ours)
Ablation 1
Ablation 2

1 2 3

Information sets touched×106

0%

25%

50%

75%

100%
Dark Hex 5

ESCHER (Ours)
Ablation 1
Ablation 2

Ablation experiment: Playing against an opponent that plays uniformly at random

1 2

Information sets touched×106

0%

25%

50%

75%

100%

W
in

%

Phantom Tic-Tac-Toe

ESCHER vs Ablation 1
ESCHER vs Ablation 2

1 2 3

Information sets touched×106

0%

25%

50%

75%

100%
Dark Hex 4

ESCHER vs Ablation 1
ESCHER vs Ablation 2

1 2 3

Information sets touched×106

0%

25%

50%

75%

100%
Dark Hex 5

ESCHER vs Ablation 1
ESCHER vs Ablation 2

Ablation experiment: Playing against another ablation head-to-head

Figure 2: Ablation study on ESCHER. As summarized in Table 2, “Ablation 1” is ESCHER but
with a bootstrapped history-value baseline, while “Ablation 2” is ESCHER but with reach weighting.
Since ESCHER with a bootstrapped history-value baseline and reach weighting is equivalent to
DREAM, these results show that both changes to DREAM are necessary for ESCHER to work in
large games.

that help performance in Deep CFR such as weighting by the sum of the reach probabilities over all
iterations. Finally, our method uses separate data to train the value function. Our method could be
made much more efficient by also using the data generated for training the policy to also train the
value function.

One direction of future research is finding optimal sampling distributions. In our method we use
the uniform distribution over actions as our fixed sampling distribution, but this can be far from
optimal. In principle any distribution that remains fixed will guarantee the method to converge
with high probability. One possible direction would be to try to estimate the theoretically optimal
balanced distribution. Other, less principled, methods such as using the average policy might work
well in practice as well (Burch et al., 2012). Another direction is in connecting this work with the
reinforcement learning literature. Similar to reinforcement learning, we learn a Q value and a policy,
and there are many techniques from reinforcement learning that are promising to try in this setting.
For example, although we learned the value function simply through Monte-Carlo rollouts, one could
use bootstrapping-based methods such as TD-λ (Sutton, 1988) and expected SARSA (Rummery &
Niranjan, 1994). The policy might be able to be learned via some sort of policy gradient, similar to
QPG (Srinivasan et al., 2018), NeuRD (Hennes et al., 2020), and F-FoReL (Perolat et al., 2021).

REFERENCES

Bowling, M., Burch, N., Johanson, M., and Tammelin, O. Heads-up limit hold’em poker is solved.
Science, 347(6218):145–149, 2015.

Brafman, R. I. and Tennenholtz, M. R-max-a general polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–231, 2002.

Brown, N. and Sandholm, T. Libratus: The superhuman AI for no-limit poker. In IJCAI, pp.
5226–5228, 2017a.

9

Brown, N. and Sandholm, T. Safe and nested subgame solving for imperfect-information games.
Advances in neural information processing systems, 30, 2017b.

Brown, N. and Sandholm, T. Superhuman AI for heads-up no-limit poker: Libratus beats top
professionals. Science, 359(6374):418–424, 2018.

Brown, N. and Sandholm, T. Superhuman AI for multiplayer poker. Science, 365(6456):885–890,
2019.

Brown, N., Sandholm, T., and Amos, B. Depth-limited solving for imperfect-information games.
Advances in neural information processing systems, 31, 2018.

Brown, N., Lerer, A., Gross, S., and Sandholm, T. Deep counterfactual regret minimization. In
International Conference on Machine Learning, pp. 793–802, 2019.

Brown, N., Bakhtin, A., Lerer, A., and Gong, Q. Combining deep reinforcement learning and
search for imperfect-information games. Advances in Neural Information Processing Systems, 33:
17057–17069, 2020.

Burch, N., Lanctot, M., Szafron, D., and Gibson, R. Efficient monte carlo counterfactual regret
minimization in games with many player actions. Advances in neural information processing
systems, 25, 2012.

Burch, N., Johanson, M., and Bowling, M. Solving imperfect information games using decomposition.
In Twenty-eighth AAAI conference on artificial intelligence, 2014.

Daskalakis, C., Foster, D. J., and Golowich, N. Independent policy gradient methods for competitive
reinforcement learning. Advances in neural information processing systems, 33:5527–5540, 2020.

Davis, T., Schmid, M., and Bowling, M. Low-variance and zero-variance baselines for extensive-form
games. CoRR, abs/1907.09633, 2019. URL http://arxiv.org/abs/1907.09633.

Ding, D., Wei, C.-Y., Zhang, K., and Jovanović, M. R. Independent policy gradient for large-scale
markov potential games: Sharper rates, function approximation, and game-agnostic convergence.
arXiv preprint arXiv:2202.04129, 2022.

Farina, G., Kroer, C., and Sandholm, T. Online convex optimization for sequential decision processes
and extensive-form games. In AAAI Conference on Artificial Intelligence, 2019a.

Farina, G., Kroer, C., and Sandholm, T. Regret circuits: Composability of regret minimizers. In
International Conference on Machine Learning, 2019b.

Farina, G., Kroer, C., and Sandholm, T. Stochastic regret minimization in extensive-form games. In
International Conference on Machine Learning, 2020.

Farina, G., Kroer, C., and Sandholm, T. Faster game solving via predictive blackwell approachability:
Connecting regret matching and mirror descent. 2021.

Feng, X., Slumbers, O., Yang, Y., Wan, Z., Liu, B., McAleer, S., Wen, Y., and Wang, J. Discover-
ing multi-agent auto-curricula in two-player zero-sum games. Advances in Neural Information
Processing Systems (NeurIPS), 2021.

Fox, R., Mcaleer, S. M., Overman, W., and Panageas, I. Independent natural policy gradient always
converges in markov potential games. In International Conference on Artificial Intelligence and
Statistics, pp. 4414–4425. PMLR, 2022.

Fu, H., Liu, W., Wu, S., Wang, Y., Yang, T., Li, K., Xing, J., Li, B., Ma, B., Fu, Q., and Wei, Y.
Actor-critic policy optimization in a large-scale imperfect-information game. In Proceedings of
the Tenth International Conference on Learning Representations (ICLR), 2022.

Gibson, R., Lanctot, M., Burch, N., Szafron, D., and Bowling, M. Generalized sampling and variance
in counterfactual regret minimization. In Proceedings of the Twenty-Sixth Conference on Artificial
Intelligence (AAAI-12)., pp. 1355–1361, 2012.

Gordon, G. No-regret algorithms for online convex programs. 2007.

10

http://arxiv.org/abs/1907.09633

Gray, J., Lerer, A., Bakhtin, A., and Brown, N. Human-level performance in no-press diplomacy via
equilibrium search. In International Conference on Learning Representations, 2020.

Gruslys, A., Lanctot, M., Munos, R., Timbers, F., Schmid, M., Perolat, J., Morrill, D., Zambaldi,
V., Lespiau, J.-B., Schultz, J., et al. The advantage regret-matching actor-critic. arXiv preprint
arXiv:2008.12234, 2020.

Hansen, E. A., Bernstein, D. S., and Zilberstein, S. Dynamic programming for partially observable
stochastic games. Conference on Artificial Intelligence (AAAI), 2004.

Hart, S. and Mas-Colell, A. A simple adaptive procedure leading to correlated equilibrium. Econo-
metrica, 68(5):1127–1150, 2000.

Heinrich, J. and Silver, D. Deep reinforcement learning from self-play in imperfect-information
games. arXiv preprint arXiv:1603.01121, 2016.

Hennes, D., Morrill, D., Omidshafiei, S., Munos, R., Perolat, J., Lanctot, M., Gruslys, A., Lespiau,
J.-B., Parmas, P., Duéñez-Guzmán, E., et al. Neural replicator dynamics: Multiagent learning via
hedging policy gradients. In Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 492–501, 2020.

Jin, C., Liu, Q., Wang, Y., and Yu, T. V-learning–a simple, efficient, decentralized algorithm for
multiagent rl. arXiv preprint arXiv:2110.14555, 2021.

Kovařı́k, V., Schmid, M., Burch, N., Bowling, M., and Lisỳ, V. Rethinking formal models of partially
observable multiagent decision making. Artificial Intelligence, 303:103645, 2022.

Lanctot, M., Waugh, K., Zinkevich, M., and Bowling, M. Monte carlo sampling for regret minimiza-
tion in extensive games. In Advances in neural information processing systems, pp. 1078–1086,
2009.

Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A., Tuyls, K., Pérolat, J., Silver, D., and Graepel,
T. A unified game-theoretic approach to multiagent reinforcement learning. In Advances in Neural
Information Processing Systems (NeurIPS), 2017.

Lanctot, M., Lockhart, E., Lespiau, J.-B., Zambaldi, V., Upadhyay, S., Pérolat, J., Srinivasan, S.,
Timbers, F., Tuyls, K., Omidshafiei, S., et al. Openspiel: A framework for reinforcement learning
in games. arXiv preprint arXiv:1908.09453, 2019.

Lanier, J., McAleer, S., Baldi, P., and Fox, R. Feasible adversarial robust reinforcement learning for
underspecified environments. arXiv preprint arXiv:2207.09597, 2022.

Leonardos, S., Overman, W., Panageas, I., and Piliouras, G. Global convergence of multi-agent policy
gradient in markov potential games. arXiv preprint arXiv:2106.01969, 2021.

Li, H., Hu, K., Zhang, S., Qi, Y., and Song, L. Double neural counterfactual regret minimization. In
International Conference on Learning Representations, 2019.

Li, J., Koyamada, S., Ye, Q., Liu, G., Wang, C., Yang, R., Zhao, L., Qin, T., Liu, T.-Y., and Hon, H.-W.
Suphx: Mastering mahjong with deep reinforcement learning. arXiv preprint arXiv:2003.13590,
2020.

Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Goldberg, K., Gonzalez, J., Jordan, M., and
Stoica, I. Rllib: Abstractions for distributed reinforcement learning. In International Conference
on Machine Learning, pp. 3053–3062, 2018.

Liu, W., Li, B., and Togelius, J. Model-free neural counterfactual regret minimization with bootstrap
learning. IEEE Transactions on Games, 2022.

McAleer, S., Lanier, J., Fox, R., and Baldi, P. Pipeline PSRO: A scalable approach for finding
approximate Nash equilibria in large games. In Advances in Neural Information Processing
Systems, 2020.

McAleer, S., Lanier, J., Baldi, P., and Fox, R. XDO: A double oracle algorithm for extensive-form
games. Advances in Neural Information Processing Systems (NeurIPS), 2021.

11

McAleer, S., Wang, K., Lanctot, M., Lanier, J., Baldi, P., and Fox, R. Anytime optimal psro for
two-player zero-sum games. arXiv preprint arXiv:2201.07700, 2022.

Mguni, D. H., Wu, Y., Du, Y., Yang, Y., Wang, Z., Li, M., Wen, Y., Jennings, J., and Wang,
J. Learning in nonzero-sum stochastic games with potentials. In International Conference on
Machine Learning, pp. 7688–7699. PMLR, 2021.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Ried-
miller, M., Fidjeland, A. K., Ostrovski, G., et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

Moravcik, M., Schmid, M., Ha, K., Hladik, M., and Gaukrodger, S. Refining subgames in large
imperfect information games. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 30, 2016.

Moravčı́k, M., Schmid, M., Burch, N., Lisỳ, V., Morrill, D., Bard, N., Davis, T., Waugh, K., Johanson,
M., and Bowling, M. Deepstack: Expert-level artificial intelligence in heads-up no-limit poker.
Science, 356(6337):508–513, 2017.

Morimoto, J. and Doya, K. Robust reinforcement learning. Neural computation, 17(2):335–359,
2005.

Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Elibol, M., Yang, Z., Paul,
W., Jordan, M. I., et al. Ray: A distributed framework for emerging {AI} applications. In
13th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 18), pp.
561–577, 2018.

Muller, P., Omidshafiei, S., Rowland, M., Tuyls, K., Perolat, J., Liu, S., Hennes, D., Marris, L.,
Lanctot, M., Hughes, E., et al. A generalized training approach for multiagent learning. In
International Conference on Learning Representations, 2019.

Osborne, M. J. and Rubinstein, A. A Course in Game Theory. MIT Press, 1994.

Perolat, J., Piot, B., and Pietquin, O. Actor-critic fictitious play in simultaneous move multistage
games. In International Conference on Artificial Intelligence and Statistics, pp. 919–928. PMLR,
2018.

Perolat, J., Munos, R., Lespiau, J.-B., Omidshafiei, S., Rowland, M., Ortega, P., Burch, N., Anthony,
T., Balduzzi, D., De Vylder, B., et al. From Poincaré recurrence to convergence in imperfect
information games: Finding equilibrium via regularization. In International Conference on
Machine Learning, pp. 8525–8535. PMLR, 2021.

Perolat, J., de Vylder, B., Hennes, D., Tarassov, E., Strub, F., de Boer, V., Muller, P., Connor,
J. T., Burch, N., Anthony, T., et al. Mastering the game of stratego with model-free multiagent
reinforcement learning. arXiv preprint arXiv:2206.15378, 2022.

Pinto, L., Davidson, J., Sukthankar, R., and Gupta, A. Robust adversarial reinforcement learning. In
International Conference on Machine Learning, pp. 2817–2826. PMLR, 2017.

Rummery, G. A. and Niranjan, M. On-line Q-learning using connectionist systems, volume 37.
Citeseer, 1994.

Schmid, M., Burch, N., Lanctot, M., Moravcik, M., Kadlec, R., and Bowling, M. Variance reduction
in monte carlo counterfactual regret minimization (VR-MCCFR) for extensive form games using
baselines. In Proceedings of the The Thirty-Third AAAI Conference on Artificial Intelligence, 2019.

Schmid, M., Moravcik, M., Burch, N., Kadlec, R., Davidson, J., Waugh, K., Bard, N., Timbers, F.,
Lanctot, M., Holland, Z., et al. Player of games. arXiv preprint arXiv:2112.03178, 2021.

Serrino, J., Kleiman-Weiner, M., Parkes, D. C., and Tenenbaum, J. Finding friend and foe in
multi-agent games. Advances in Neural Information Processing Systems, 32, 2019.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker,
L., Lai, M., Bolton, A., et al. Mastering the game of go without human knowledge. nature, 550
(7676):354–359, 2017.

12

Srinivasan, S., Lanctot, M., Zambaldi, V., Pérolat, J., Tuyls, K., Munos, R., and Bowling, M. Actor-
critic policy optimization in partially observable multiagent environments. Advances in neural
information processing systems, 31, 2018.

Steinberger, E. Single deep counterfactual regret minimization. arXiv preprint arXiv:1901.07621,
2019.

Steinberger, E., Lerer, A., and Brown, N. DREAM: Deep regret minimization with advantage
baselines and model-free learning. arXiv preprint arXiv:2006.10410, 2020.

Sutton, R. S. Learning to predict by the methods of temporal differences. Machine learning, 3(1):
9–44, 1988.

Tessler, C., Efroni, Y., and Mannor, S. Action robust reinforcement learning and applications in
continuous control. In International Conference on Machine Learning, pp. 6215–6224. PMLR,
2019.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi, D. H.,
Powell, R., Ewalds, T., Georgiev, P., et al. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature, 575(7782):350–354, 2019.

Wei, C.-Y., Hong, Y.-T., and Lu, C.-J. Online reinforcement learning in stochastic games. Advances
in Neural Information Processing Systems, 30, 2017.

Wurman, P. R., Barrett, S., Kawamoto, K., MacGlashan, J., Subramanian, K., Walsh, T. J., Capo-
bianco, R., Devlic, A., Eckert, F., Fuchs, F., et al. Outracing champion gran turismo drivers with
deep reinforcement learning. Nature, 602(7896):223–228, 2022.

Xie, Q., Chen, Y., Wang, Z., and Yang, Z. Learning zero-sum simultaneous-move markov games
using function approximation and correlated equilibrium. In Conference on learning theory, pp.
3674–3682. PMLR, 2020.

Zha, D., Xie, J., Ma, W., Zhang, S., Lian, X., Hu, X., and Liu, J. Douzero: Mastering doudizhu
with self-play deep reinforcement learning. In International Conference on Machine Learning, pp.
12333–12344. PMLR, 2021.

Zhang, B. and Sandholm, T. Subgame solving without common knowledge. Advances in Neural
Information Processing Systems, 34, 2021.

Zhang, R., Ren, Z., and Li, N. Gradient play in stochastic games: stationary points, convergence, and
sample complexity. arXiv preprint arXiv:2106.00198, 2021.

Zinkevich, M., Johanson, M., Bowling, M., and Piccione, C. Regret minimization in games with
incomplete information. In Advances in Neural Information Processing Systems (NeurIPS), 2008a.

Zinkevich, M., Johanson, M., Bowling, M., and Piccione, C. Regret minimization in games with
incomplete information. In Advances in Neural Information Processing Systems (NeurIPS), 2008b.

13

A PROOFS

A.1 KNOWN RESULTS ABOUT REGRET MATCHING (RM)

In this section, we recall the definition and the regret bound of the Regret Matching (RM) regret
minimization algorithm for probability simplices. In the interest of keeping the paper as self-contained
as possible, we propose a proof for the result. For a deeper treatment of RM, we invite the reader to
consult the works of Hart & Mas-Colell (2000); Gordon (2007); Farina et al. (2021).

We start by recalling the definition of RM. Let A be a set of discrete actions and ∆(A) the simplex
of probability distributions over A. Regret Matching operates by keeping a tally Rta of the regret
accumulated up to each time t compared to always selecting each action a, and picks the next
distribution according to

xt(a) :=

max{0, Rta}∑

a′∈Amax{0, Rta′}
if
∑
a′∈Amax{0, Rta′} > 0

1
|A| otherwise.

(7)

Upon observing the utility vector gt ∈ RA, the tally of the regret for each action is updated
correspondingly as

Rt+1
a := Rta + gt(a)−

∑
a′∈A

gt(a′)xt(a′). (8)

(at time t = 0, R0
a = 0 for all a ∈ A).

Proposition 1. Let M > 0, and let gt be an arbitrary (possibly adversarially picked) sequence of
utility vectors with |gt(a)| ≤M for all a ∈ A received by RM. The regret

RT := max
a∈A

RTa = max
a∈A

{
T∑
t=1

gt(a)−
T∑
t=1

∑
a′∈A

gt(a′)xt(a′)

}
accumulated up to any time T by RM satisfies

RT ≤M
√
|A|T .

Proof. The proof hinges on the following observation. Fix any time t.

• If
∑
a′∈Amax{0, Rta′} ≤ 0, then Rta′ ≤ 0 for all a′ ∈ A, and so trivially∑

a∈A
max{0, Rta}

(
gt(a)−

∑
a′∈A

gt(a′)xt(a′)

)
= 0.

• On the other hand, if
∑
a′∈Amax{0, Rta′} > 0 then

xt(a) =
max{0, Rta}∑

a′∈Amax{0, Rta′}
and so∑
a∈A

max{0, Rta}
(
gt(a)−

∑
a′∈A

gt(a′)xt(a′)

)

=

(∑
a∈A

max{0, Rta}gt(a)
)

−
(∑
a∈A

max{0, Rta}
) ∑
a′∈A

gt(a′)xt(a′)

= 0.

So, in either case, at all times t,∑
a∈A

max{0, Rta}
(
gt(a)−

∑
a′∈A

gt(a′)xt(a′)

)
= 0. (9)

14

Now, observe that for all t ≥ 2∑
a∈A

max{0, Rt+1
a }2 ≤

∑
a∈A

(Rt+1
a −min{0, Rta})2

=
∑
a∈A

(
Rta −min{0, Rta}+ gt(a)−

∑
a′∈A

gt(a′)xt(a′)

)2

(from (8))

=
∑
a∈A

(
max{0, Rta}+ gt(a)−

∑
a′∈A

gt(a′)xt(a′)

)2

=
∑
a∈A

max{0, Rta}2 +
(
gt(a)−

∑
a′∈A

gt(a′)xt(a′)

)2

+ 2
∑
a∈A

max{0, Rta}
(
gt(a)−

∑
a′∈A

gt(a′)xt(a′)

)

=
∑
a∈A

max{0, Rta}2 +
(
gt(a)−

∑
a′∈A

gt(a′)xt(a′)

)2

(from (9))

≤
∑
a∈A

max{0, Rta}2 + |A|M2,

where the last inequality follows from the fact that by assumption each utility has absolute value
at most M , that is, |gt(a)| ≤ M . Using the fact that R0

a = 0 for all a ∈ A, the previous recursive
inequality leads to ∑

a∈A
max{0, RTa }2 ≤ T |A|M2 ∀T ∈ {1, 2, . . . }.

From the previous inequality we finally conclude that

RT = max
a∈A

max{0, RTa } ≤
√∑
a∈A

max{0, RTa }2 ≤M
√

|A|T ,

as we wanted to show.

A.2 ANALYSIS OF ESCHER

We start by recalling a central theorem connecting regret to counterfactual regret (see, e.g., Zinkevich
et al. (2008b); Farina et al. (2019b;a)).
Proposition 2. Fix any player i, and let

RTs := max
â∈As

T∑
t=1

rci (π
t, s, â) = max

â∈As

T∑
t=1

qci (π
t, s, â)− vci (π

t, s)

be the counterfactual regret accumulated up to time T by the regret minimizer local at each informa-
tion set s. Then, the regret

RTi := max
π̂i

T∑
t=1

vi(π̂i, π
t
−i)− vi(π

t
i , π

t
−i)

accumulated by the policies πt on the overall game tree satisfies

RTi ≤
∑
s

max{RTs , 0}.

We can now use a modification of the argument by Farina et al. (2020) to bound the degradation of
regret due to the use of an estimator of the counterfactual regrets. However, our analysis requires
some modifications compared to that of Farina et al. (2020), in that ESCHER introduces estimation
at the level of counterfactuals, while the latter paper introduces estimation at the level of the game
utilities.

15

Algorithm 2: Tabular ESCHER with Oracle Value Function
1 for t = 1, ..., T do
2 for update player i ∈ {0, 1} do
3 Sample trajectory τ using sampling distribution π̃i (Equation 5)
4 for each state s ∈ τ do
5 for each action a do
6 Estimate immediate regret vector r̂(π, s, a|z) = qi(π, z[s], a)− vi(π, z[s])
7 Update total estimated regret of action a at infostate s:

R̂(s, a) = R̂(s, a) + r̂(π, s, a|z)
8 Update πi(s, a) via regret matching (Equation 7) on total estimated regret
9 return average policy π̄

Theorem 1. Assume a fixed sampling policy that puts positive probability on every action. For any
p ∈ (0, 1), with probability at least 1− p, the regret accumulated by each agent learning using the
tabular algorithm ESCHER (Algorithm 2) is upper bounded by O(

√
T · poly log(1/p)), where the

O(·) notation hides game-dependent and sampling-policy-dependent constants.

Proof. As shown in Section 3, for any information set s the counterfactual regret estimators
r̂i(π, s, a|h) are unbiased up to a time-independent multiplicative factor; specifically,

Eh∼π̃i [r̂i(π, s, a|h)] = w(s)ri(π, s, a)

for all actions a available to player i at world states in s. Hence, for each a ∈ As we can construct
the martingale difference sequences

Xt
a := w(s)ri(π

t, s, a)− r̂i(π
t, s, a|h).

Clearly, Xa
t is bounded, with |Xa

t | upper bounded by (twice) the range D of payoffs of player i.
Hence, from the Azuma-Hoeffding inequality, we obtain that the regret RTs accumulated by the local
policies produced by ESCHER with respect to the correct counterfactuals satisfies, for all p ∈ (0, 1)

P

[
T∑
t=1

Xt
a ≤ 2D

√
2T log

1

p

]
≥ 1− p,

Using a union bound on the actions, we can therefore write

P

[
max
a

T∑
t=1

Xt
a ≤ 2D

√
2T log

|As|
p

]
≥ 1− p,

The left-hand side in the probability can be expanded as follows:

max
a

T∑
t=1

Xt
a = max

a

{
w(s)

T∑
t=1

ri(π
t, s, a)−

T∑
t=1

r̂i(π
t, s, a|h)

}

≥ max
a

{
w(s)

T∑
t=1

ri(π
t, s, a)

}
−max

a

{
T∑
t=1

r̂i(π
t, s, a|h)

}
≥ w(s)RTs −D

√
|As|T ,

where the last inequality follows from the fact that the regret cumulated by regret matching (which is
run on the regret estimates r̂i) is upper bounded by D

√
|As|T (see Proposition 1) Hence, we can

write

P

[
w(s)RTs −D

√
|As|T ≤ 2D

√
2T log

|As|
p

]
≥ 1− p

⇐⇒ P

[
RTs ≤ D

w(s)

√
|As|T +

2D

w(s)

√
2T log

|As|
p

]
≥ 1− p,

16

where in the second step we used the hypothesis that w(s) > 0 for all s. Since the right-hand size
inside of the probability is non-negative, we can further write

P

[
max{RTs , 0} ≤ D

w(s)

√
|As|T +

2D

w(s)

√
2T log

|As|
p

]
≥ 1− p,

valid for every information set s.

Now, using the known analysis of CFR (Proposition 2), we obtain that the regret accumulated by the
ESCHER iterates satisfies

RTi ≤
∑
s

max{0, RTs }.

Hence, using a union bound over all information sets s ∈ Si of player i, we find that

P

[
RTi ≤

(∑
s

D
√

|As|
w(s)

+
2D

w(s)

√
2 log

|As||Si|
p

)
√
T

]
≥ 1− p

⇐⇒ P

[
RTi ≤

(
2D|Si|

mins w(s)

√
2|As| log

|As||Si|
p

)
√
T

]
≥ 1− p,

for all p ∈ (0, 1). Absorbing game-dependent and sampling-policy-dependent constants yields the
statements.

We remark that when the exploration policy is chosen to be the exploration-balanced strategy (Farina
et al., 2020), then the minimum reach probability term 1/mins w(s) is upper bounded by the number
of terminal states in the game, a polynomial number in the game tree. When the exploration policy is
set to be the uniform strategy, 1/mins w(s) is a bounded parameter that depends on the game tree
structure. In some artificial games, such as the centipede game, such a parameter is exponential in the
game tree size. In most games with a reasonably balanced structure, such a parameter is polynomial
in the game tree size.

A.3 INCORPORATING FUNCTION APPROXIMATION ERRORS

We now adapt the correctness analysis above to keep into account errors in the approximation of the
history value function by the deep neural network. We can model that error explictly by modifying (4)
to incorporate a history-action-dependent error δ(h, a) as follows:

r̂i(π, s, a|z) =
{
qi(π, z[s], a)− vi(π, z[s]) + δ(z[s], a) if z ∈ Z(s)

0 otherwise.

Repeating the analysis of Section 3, we have

Ez∼π̃i [r̂i(π, s, a|z)] = w(s)rc(π, s, a) + w(s)
∑
h∈s

ηπ−i(h)δ(h, a).

Propagating the error term throughout the analysis, assuming that each error term is at most ϵ > 0 in
magnitude, we obtain that for each infostate s and p ∈ (0, 1),

P

[
RTs ≤ (D + ϵ)

w(s)

√
|As|T + ϵ+

2(D + ϵ)

w(s)

√
2T log

|As|
p

]
≥ 1− p,

Again using the union bound across all infostates of player i, we obtain

P

[
RTi ≤

(
2(D + ϵ)|Si|
mins w(s)

√
2|As| log

|As||Si|
p

)
√
T + |Si|ϵ

]
≥ 1− p,

showing that errors in the function approximation cause an additive regret overhead linear in ϵ.

17

B RELATED WORK

Superhuman performance in two-player games usually involves two components: the first focuses on
finding a model-free blueprint strategy, which is the setting we focus on in this paper. The second
component improves this blueprint online via model-based subgame solving and search (Burch et al.,
2014; Moravcik et al., 2016; Brown et al., 2018; 2020; Brown & Sandholm, 2017b; Schmid et al.,
2021). This combination of blueprint strategies with subgame solving has led to state-of the art
performance in Go (Silver et al., 2017), Poker (Brown & Sandholm, 2017a; 2018; Moravčı́k et al.,
2017), Diplomacy (Gray et al., 2020), and The Resistance: Avalon (Serrino et al., 2019). Methods
that only use a blueprint have achieved state-of-the-art performance on Starcraft (Vinyals et al., 2019),
Gran Turismo (Wurman et al., 2022), DouDizhu (Zha et al., 2021), Mahjohng (Li et al., 2020), and
Stratego (McAleer et al., 2020; Perolat et al., 2022). Because ESCHER is a method for finding a
blueprint, it can be combined with subgame solving and is complementary to these approaches. In
the rest of this section we focus on other model-free methods for finding blueprints.

Deep CFR (Brown et al., 2019; Steinberger, 2019) is a general method that trains a neural network
on a buffer of counterfactual values. However, Deep CFR uses external sampling, which may
be impractical for games with a large branching factor, such as Stratego and Barrage Stratego.
DREAM (Steinberger et al., 2020) and ARMAC (Gruslys et al., 2020) are model-free regret-based
deep learning approaches. ReCFR (Liu et al., 2022) propose a bootstrap method for estimating
cumulative regrets with neural networks that could potentially be combined with our method.

Neural Fictitious Self-Play (NFSP) (Heinrich & Silver, 2016) approximates fictitious play by progres-
sively training a best response against an average of all past opponent policies using reinforcement
learning. The average policy converges to an approximate Nash equilibrium in two-player zero-sum
games.

Policy Space Response Oracles (PSRO) (Lanctot et al., 2017; Muller et al., 2019; Feng et al., 2021;
McAleer et al., 2022) are another promising method for approximately solving very large games.
PSRO maintains a population of reinforcement learning policies and iteratively trains a best response
to a mixture of the opponent’s population. PSRO is a fundamentally different method than the
previously described methods in that in certain games it can be much faster but in other games it can
take exponentially long in the worst case. Neural Extensive Form Double Oracle (NXDO) (McAleer
et al., 2021) combines PSRO with extensive-form game solvers, and could potentially be combined
with our method.

There is an emerging literature connecting reinforcement learning to game theory. QPG (Srinivasan
et al., 2018) shows that state-conditioned Q-values are related to counterfactual values by a reach
weighted term summed over all histories in an infostate and proposes an actor-critic algorithm that
empirically converges to a NE when the learning rate is annealed. NeuRD (Hennes et al., 2020), and
F-FoReL (Perolat et al., 2021) approximate replicator dynamics and follow the regularized leader,
respectively, with policy gradients. Actor Critic Hedge (ACH) (Fu et al., 2022) is similar to NeuRD
but uses an information set based value function. All of these policy-gradient methods do not have
theory proving that they converge with high probability in extensive form games when sampling
trajectories from the policy. In practice, they often perform worse than NFSP and DREAM on small
games but remain promising approaches for scaling to large games (Perolat et al., 2022). Robust
reinforcement learning (Morimoto & Doya, 2005; Pinto et al., 2017; Tessler et al., 2019; Lanier et al.,
2022), seeks to train an RL policy to be robust against an adversarial environment. In future work we
will look to apply ESCHER to this setting.

Markov games (or stochastic games) are extensive-form games where the world state information is
shared among all players at each timestep, but players take simultaneous actions. Recent literature has
shown that reinforcement learning algorithms converge to Nash equilibrium in two-player zero-sum
Markov games (Brafman & Tennenholtz, 2002; Wei et al., 2017; Perolat et al., 2018; Xie et al.,
2020; Daskalakis et al., 2020; Jin et al., 2021) and in multi-player general-sum Markov potential
games (Leonardos et al., 2021; Mguni et al., 2021; Fox et al., 2022; Zhang et al., 2021; Ding et al.,
2022).

18

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 DESCRIPTION OF GAME INSTANCES

We use Openspiel (Lanctot et al., 2019) for all our games. Below we list the parameters used to define
each game in Openspiel.

Leduc (leduc poker) Parameters: {"players": 2}
Battleship (battleship) Parameters: {"board_width": 2, "board_height": 2,

"ship_sizes": "[2]", "ship_values": "[2]", "num_shots": 3,
"allow_repeated_shots": False}

Liar’s Dice (liars dice) Parameters: None
Phantom Tic Tac Toe (phantom ttt) Parameters: None
Dark Hex 4 (dark hex) Parameters: {"board_size": 4}
Dark Hex 5 (dark hex) Parameters: {"board_size": 5}
Dark Chess (dark chess) Parameters: None

C.2 TABULAR EXPERIMENTS

We compare a tabular version of ESCHER with oracle value functions to a tabular version of DREAM
with oracle value functions and with OS-MCCFR. We run experiments on Leduc poker, Battleship,
and Liar’s dice, and use the implementations from OpenSpiel (Lanctot et al., 2019). We see in Figure
3 on the top row that ESCHER remains competitive with DREAM and OS-MCCFR on these games.
On the bottom row we plot the average variance of the regret estimators over all information sets
visited over an iteration window for each of these algorithms. While DREAM does improve upon
OS-MCCFR, it still has orders of magnitude higher variance than ESCHER. Although this does not
matter much in tabular experiments, we conjecture that high regret estimator variance makes neural
network training unstable without prohibitively large buffer sizes.

(a) Leduc Exploitability (b) Battleship Exploitability (c) Liar’s Dice Exploitability

(d) Leduc Variance (e) Battleship Variance (f) Liar’s Dice Variance

Figure 3: The tabular version of ESCHER with an oracle value function is competitive with the tabular
version of DREAM with an oracle value function and with OS-MCCFR in terms of exploitability
(top row). The regret estimator in ESCHER has orders of magnitude lower variance than those of
DREAM and OS-MCCFR (bottom row).

C.3 ADDITIONAL ABLATIONS

In this section we describe two sets of experiments. In the first set of experiments we ablate the
exploration term for the sampling policy. The algorithm presented in the main paper corresponds to

19

exploration equal to 1, i.e. the sampling policy always plays uniform. Alternatively, we could sample
from only the current policy, which we call exploration of 0. Lastly, we present results where we
sample from a mixture of 0.1 times the uniform policy and 0.9 times the current policy, which we
call exploration of 0.1. In the second set of experiments, we compare training the value function from
scratch every iteration against not re-initializing the value function.

As shown in the top row of Figure 4, these preliminary results suggest that there is not much difference
in which sampling distribution we use. However, this is likely due the the games we evaluate on.
We suspect that in games such as video games, sampling from a uniform distribution will perform
worse than from the current policy, because a uniform distribution will spend most of its time on bad
actions. However, little is known theoretically about this on-policy setting, and it is an interesting
direction for future research. On the bottom row we see that there again isn’t much difference between
re-initializing the value function and keeping the same value function, but keeping the same value
function performs slightly better. We suspect that using best practices from learning on-policy value
functions in common single-agent actor-critic algorithms will improve performance.

(a) Phantom TTT Exploration (b) Dark Hex 5 Exploration (c) Dark Chess Exploration

(d) Phantom TTT Reinitialize Value
Function

(e) Dark Hex 5 Reinitialize Value
Function

(f) Dark Chess Reinitialize Value
Function

Figure 4: Sampling from a uniform strategy vs. sampling from the current policy or a mixture of the
two does not seem to make a large difference against a random opponent (top row). Not re-initializing
the value function seems to perform slightly better than training from scratch every iteration (bottom
row).

D HYPERPARAMETERS FOR DEEP EXPERIMENTS

For all deep experiments we first did a hyperparameter search that starts with good hyperparameters
for flop hold ’em poker. We report the final hyperparameters used for the deep experiments. As
described in the Dark Chess section, DREAM experiments on dark chess used 500 batches for
advantage and average training to not run out of memory. All experiments shown include two seeds,
with error bars that correspond to standard error of the mean.

20

D.1 ESCHER

Parameter Value
n regret network traversals 1,000
n history value network traversals 1,000
batch size regret network 2048
batch size history value network 2048
train steps regret network 5,000
train steps history value network 5,000
train steps average policy network 10,000

Table 3: ESCHER and Ablations Hyperparameters for Phantom TTT, Dark Hex 4, Dark Hex 5

Parameter Value
n regret network traversals 1,000
n history value network traversals 1,000
batch size regret network 2048
batch size history value network 2048
train steps regret network 500
train steps history value network 500
train steps average policy network 10,000

Table 4: ESCHER and Ablations Hyperparameters for Variance Experiments

When computing the value function, we random noise to the current policy to induce coverage over
all information sets. To do this we added 0.01 times a uniform distribution to the current policy and
renormalized.

D.2 DREAM

We use the codebase from the original DREAM paper (Steinberger et al., 2020) with a wrapper
to integrate with Openspiel (Lanctot et al., 2019) and rllib (Liang et al., 2018). When otherwise
specified, we use default parameters from the DREAM codebase.

Parameter Value
n batches adv training 4,000
n traversals per iter 1,000
n batches per iter baseline 1,000
periodic restart 10
max n las sync simultaneously 12
mini batch size adv 10,000
max buffer size adv 2,000,000
mini batch size avrg 10,000
max buffer size avrg 2,000,000
batch size baseline 2048
n batches avrg training 4000

Table 5: DREAM Hyperparameters for Phantom TTT, Dark Hex 4, Dark Hex 5

D.3 NFSP

We use our own implementation of NFSP that uses RLLib’s (Liang et al., 2018) DQN implementation
and outperforms the original paper’s results on Leduc poker.

21

Parameter Value
circular buffer size 2e5
total rollout experience gathered each iter 1024 steps
learning rate 0.01
batch size 4096
TD-error loss type MSE
target network update frequency every 10,000 steps
RL learner params DDQN
anticipatory param 0.1
avg policy reservoir buffer size 2e6
avg policy learning starts after 16,000 steps
avg policy learning rate 0.1
avg policy batch size 4096
avg policy optimizer SGD

Table 6: NFSP Hyperparameters for Phantom TTT, Dark Hex 4, Dark Hex 5

D.4 DARK CHESS

Hyperparameters are the same as in other deep experiments (described above), except DREAM
experiments on dark chess used 500 batches for advantage and average training to not run out of
memory. For these experiments only the current observation was passed in to the network for each
method. As a result, we cannot expect these algorithms to learn a strong strategy on dark chess,
but it is still a fair comparison. In future work we plan on doing more engineering to include more
information to the networks.

E CODE

We will include a GitHub link to our open source code under the MIT license in the deanonymized
version of this work. Our code is built on top of the OpenSpiel (Lanctot et al., 2019) and Ray (Moritz
et al., 2018) frameworks, both of which are open source and available under the Apache-2.0 license.

22

	Introduction
	Background
	Counterfactual Regret Minimization (CFR)
	Monte Carlo Counterfactual Regret Minimization (MCCFR)
	Deep Counterfactual Regret Minimization
	DREAM

	ESCHER
	Theoretical Results

	Results
	Discussion: Limitations and Future Research
	Proofs
	Known Results about Regret Matching (RM)
	blueAnalysis of ESCHER
	Incorporating Function Approximation Errors

	Related Work
	Additional Experimental Results
	Description of Game Instances
	Tabular Experiments
	Additional Ablations

	Hyperparameters for Deep Experiments
	ESCHER
	DREAM
	NFSP
	Dark Chess

	Code

