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ABSTRACT

Text-guided 3D shape generation remains challenging due to the absence of large
paired text-shape dataset, the substantial semantic gap between these two modal-
ities, and the structural complexity of 3D shapes. This paper presents a new
framework called Image as Stepping Stone (ISS) for the task by introducing 2D im-
age as a stepping stone to connect the two modalities and to eliminate the need for
paired text-shape data. Our key contribution is a two-stage feature-space-alignment
approach that maps CLIP features to shapes by harnessing a pre-trained single-view
reconstruction (SVR) model with multi-view supervisions: first map the CLIP im-
age feature to the detail-rich shape space in the SVR model, then map the CLIP text
feature to the shape space and optimize the mapping by encouraging CLIP consis-
tency between the input text and the rendered images. Further, we formulate a text-
guided shape stylization module to dress up the output shapes with novel structures
and textures. Beyond existing works on 3D shape generation from text, our new
approach is general for creating shapes in a broad range of categories, without re-
quiring paired text-shape data. Experimental results manifest that our approach out-
performs the state-of-the-arts and our baselines in terms of fidelity and consistency
with text. Further, our approach can stylize the generated shapes with both realistic
and fantasy structures and textures. Codes are available at https://github.com/

liuzhengzhe/ISS-Image-as-Stepping-Stone-for-Text-Guided-3D-Shape-Generation.
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Figure 1: Our novel “Image as Stepping Stone” framework (a) is able to connect the text space (the
CLIP Text feature) and the 3D shape space (the SVR feature) through our two-stage feature-space
alignment, such that we can generate plausible 3D shapes from text (b) beyond the capabilities of the
existing works (CLIP-Forge and Dream Fields), without requiring paired text-shape data.

1 INTRODUCTION

3D shape generation has a broad range of applications, e.g., in Metaverse, CAD, games, animations,
etc. Among various ways to generate 3D shapes, a user-friendly approach is to generate shapes
from natural language or text descriptions. By this means, users can readily create shapes, e.g., to
add/modify objects in VR/AR worlds, to design shapes for 3D printing, etc. Yet, generating shapes
from texts is very challenging, due to the lack of large-scale paired text-shape data, the large semantic
gap between the text and shape modalities, and the structural complexity of 3D shapes.

Existing works (Chen et al., 2018; Jahan et al., 2021; Liu et al., 2022) typically rely on paired text-
shape data for model training. Yet, collecting 3D shapes is already very challenging on its own, let
alone the tedious manual annotations needed to construct the text-shape pairs. To our best knowledge,
the largest existing paired text-shape dataset (Chen et al., 2018) contains only two categories, i.e.,
table and chair, thus severely limiting the applicability of the existing works.
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Very recently, two annotation-free approaches, CLIP-Forge (Sanghi et al., 2022) and Dream
Fields (Jain et al., 2022), were proposed to address the dataset limitation. These two state-of-
the-art approaches attempt to utilize the joint text-image embedding from the large-scale pre-trained
language vision model, i.e., CLIP (Radford et al., 2021), to eliminate the need of requiring paired
text-shape data in model training. However, it is still extremely challenging to generate 3D shapes
from text without paired texts and shapes for the following reasons. First, the range of object
categories that can be generated are still limited due to the scarcity of 3D datasets. For example,
Clip-Forge (Sanghi et al., 2022) is built upon a shape auto-encoder; it can hardly generate plausible
shapes beyond the ShapeNet categories. Also, it is challenging to learn 3D prior of the desired shape
from texts. For instance, Dream Field (Jain et al., 2022) cannot generate 3D shapes like our approach
due to the lack of 3D prior, as it is trained to produce only multi-view images with a neural radiance
field. Further, with over an hour of optimization for each shape instance from scratch, there is still no
guarantee that the multi-view consistency constraint of Dream Field (Jain et al., 2022) can enforce
the model for producing shapes that match the given text; we will provide further investigation in
our experiments. Last, the visual quality of the generated shapes is far from satisfactory due to the
substantial semantic gap between the unpaired texts and shapes. As shown in Figure 1 (b), the results
generated by Dream Field typically look surrealistic (rather than real), due to insufficient information
extracted from text for the shape structures and details. On the other hand, CLIP-Forge (Sanghi
et al., 2022) is highly restricted by the limited 643 resolution and it lacks colors and textures, further
manifesting the difficulty of generating 3D shapes from unpaired text-shape data.

Going beyond the existing works, we propose a new approach to 3D shape generation from text
without needing paired text-shape data. Our key idea is to implicitly leverage 2D image as a stepping
stone (ISS) to connect the text and shape modalities. Specifically, we employ the joint text-image
embedding in CLIP and train a CLIP2Shape mapper to map the CLIP image features to a pre-trained
detail-rich 3D shape space with multi-view supervisions; see Figure 1 (a): stage 1. Thanks to the
joint text-image embedding from CLIP, our trained mapper is able to connect the CLIP text features
with the shape space for text-guided 3D shape generation. Yet, due to the gap between the CLIP
text and CLIP image features, the mapped text feature may not align well with the destination shape
feature; see the empirical analysis in Section 3.2. Hence, we further fine-tune the mapper specific to
each text input by encouraging CLIP consistency between the rendered images and the input text to
enhance the consistency between the input text and the generated shape; see Figure 1 (a): stage 2.

Our new approach advances the frontier of 3D shape generation from text in the following aspects.
First, by taking image as a stepping stone, we make the challenging text-guided 3D shape generation
task more approachable and cast it as a single-view reconstruction (SVR) task. Having said that, we
learn 3D shape priors from the adopted SVR model directly in the feature space. Second, benefiting
from the learned 3D priors from the SVR model and the joint text-image embeddings, our approach
can produce 3D shapes in only 85 seconds vs. 72 minutes of Dream Fields (Jain et al., 2022). More
importantly, our approach is able to produce plausible 3D shapes, not multi-view images, beyond the
generation capabilities of the state-of-the-art approaches; see Figure 1 (b).

With our two-stage feature-space alignment, we already can generate shapes with good fidelity from
texts. To further enrich the generated shapes with vivid textures and structures beyond the generative
space of the pre-trained SVR model, we additionally design a text-guided stylization module to
generate novel textures and shapes by encouraging consistency between the rendered images and
the text description of the target style. We then can effectively fuse with the two-stage feature-space
alignment to enable the generation of both realistic and fantasy textures and also shapes beyond the
generation capability of the SVR model; see Figure 1 (b) for examples. Furthermore, our approach is
compatible with different SVR models (Niemeyer et al., 2020; Alwala et al., 2022). For example,
we can adopt SS3D (Alwala et al., 2022) to generate shapes from single-view in-the-wild images to
broaden the range of categorical 3D shapes that our approach can generate, going beyond Sanghi
et al. (2022), which can only generate 13 categories of ShapeNet. Besides, our approach can also
work with the very recent approach GET3D (Gao et al., 2022) to generate high-quality 3D shapes
from text; see our results in Section 4.

2 RELATED WORKS

Text-guided image generation. Existing text-guided image generation approaches can be roughly
cast into two branches: (i) direct image synthesis (Reed et al., 2016a;b; Zhang et al., 2017; 2018;
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Xu et al., 2018; Li et al., 2019; 2020; Qiao et al., 2019; Wang et al., 2021) and (ii) image generation
with a pre-trained GAN (Stap et al., 2020; Yuan & Peng, 2019; Souza et al., 2020; Wang et al., 2020;
Rombach et al., 2020; Patashnik et al., 2021; Xia et al., 2021). Yet, the above works can only generate
images for limited categories. To address this issue, some recent works explore zero-shot text-guided
image generation (Ramesh et al., 2021; Ding et al., 2021; Nichol et al., 2021; Liu et al., 2021; Ramesh
et al., 2022) to learn to produce images of any category. Recently, Zhou et al. (2022) and Wang
et al. (2022b) leverage CLIP for text-free text-to-image generation. Text-guided shape generation is
more challenging compared with text-to-image generation. First, it is far more labor-intensive and
difficult to prepare a large amount of paired text-shape data than paired text-image data, which can be
collected from the Internet on a large scale. Second, the text-to-shape task requires one to predict full
3D structures that should be plausible geometrically and consistently in all views, beyond the needs
in single-view image generation. Third, 3D shapes may exhibit more complex spatial structures and
topology, beyond regular grid-based 2D images.

Text-guided 3D generation. To generate shapes from text, several works (Chen et al., 2018; Jahan
et al., 2021; Liu et al., 2022) rely on paired text-shape data for training. To avoid paired text-shape
data, two very recent works, CLIP-Forge (Sanghi et al., 2022) and Dream Fields (Jain et al., 2022),
attempt to leverage the large-scale pre-trained vision-language model CLIP. Yet, they still suffer from
various limitations, as discussed in the third paragraph of Section 1. Besides 3D shape generation,
some recent works utilize CLIP to manipulate a shape or NeRF with text (Michel et al., 2022; Jetchev,
2021; Wang et al., 2022a) and to generate 3D avatars (Hong et al., 2022). In this work, we present
a new framework for generating 3D shape from text without paired text-shape data by our novel
two-stage feature-space alignment. Our experimental results demonstrate the superiority of this work
beyond the existing ones in terms of fidelity and text-shape consistency.

Single-view reconstruction. Another topic related to this work is single-view reconstruction (SVR).
Recently, researchers have explored SVR with meshes (Agarwal & Gopi, 2020), voxels (Zubić
& Liò, 2021), and 3D shapes (Niemeyer et al., 2020). Further, to extend SVR to in-the-wild
categories, Alwala et al. (2022) propose SS3D to learn 3D shape reconstruction using single-view
images in hundreds of categories. In our work, we propose to harness an SVR model to map images
to shapes, such that we can take 2D image as a stepping stone for producing shapes from texts. Yet,
we perform the mapping and feature alignment implicitly in the latent space rather than explicitly.

3 METHODOLOGY

3.1 OVERVIEW

This work aims to generate 3D shape S from text T . Overall, our idea is to map the CLIP features
to the shape space of a pre-trained SVR model, such that we can leverage the joint text-image
embeddings from CLIP and also the 3D generation capability of the SVR model to enhance the
generation of 3D shape from text. Hence, our method only needs to be trained with multi-view RGB
or RGBD images and the associated camera poses without paired text-shape data. As Figure 2 shows,
our framework includes (i) image encoder ES, which maps input image I to SVR shape space ΩS,
(ii) pre-trained CLIP text and image encoders ET and EI, which map text T and image I to CLIP
spaces ΩT and ΩI, respectively, (iii) mapper M with 12 fully-connected layers, each followed by a
Leaky-ReLU, and (iv) decoder D to generate the final shape S. Specifically, we use DVR (Niemeyer
et al., 2020) as the SVR model when presenting our method, unless otherwise specified.

Overall, we introduce a novel two-stage feature-space-alignment approach to connect the text, image,
and shape modalities. In detail, we first train CLIP2Shape mapper M to connect the CLIP image
space ΩI and the shape space ΩS from the pre-trained SVR model (see Figure 2 (a)). Then, we
fine-tune M at test time using a CLIP consistency loss Lc to further connect the CLIP text space
ΩT with ΩS (see Figure 2 (b)). Last, we may further optimize the texture and structure style of S by
fine-tuning the decoders (see Figure 2 (c)).

In the following, we first introduce two empirical studies on the CLIP feature space in Section 3.2,
then present our two-stage feature-space-alignment approach in Section 3.3. Further, Section 3.4
presents our text-guided shape stylization method and Section 3.5 discusses the compatibility of our
approach with different SVR models and our extension to generate a broad range of categories.
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Figure 2: Overview of our text-guided 3D shape generation framework, which has three major
stages. (a) Leveraging a pre-trained SVR model, in stage-1 feature-space alignment, we train the
CLIP2Shape mapper M to map the CLIP image feature space ΩI to shape space ΩS of the SVR
model with ES, EI frozen, and fine-tune decoder D with an additional background loss Lbg. M and
D are trained with their own losses separately at the same time by stopping the gradients from SVR
loss LD and background loss Lbg to propagate to M . (b) In stage-2 feature-space alignment, we fix
D and fine-tune M into M ′ by encouraging CLIP consistency between input text T and the rendered
images at test time. (c) Last, we optimize the style of the generated shape and texture of S for T . At
the inference, we use stage 2 to generate 3D shape from T and (c) is optional.

(a) 3D reconstruction visualization                  (b) 3D reconstruction results (c) Average feature distance on the test set
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Figure 3: Empirical studies on the CLIP feature space for text-guided 3D shape generation.

3.2 EMPIRICAL STUDIES AND MOTIVATIONS

Existing works (Sanghi et al., 2022; Zhou et al., 2022; Wang et al., 2022b) mostly utilize CLIP
directly without analyzing how it works and discussing its limitations. To start, we investigate the
merits and drawbacks of leveraging CLIP for text-guided 3D shape generation by conducting the
following two empirical studies to gain more insight into the CLIP feature space.

3.2.1 WHETHER CLIP FEATURE SPACE SUFFICIENTLY GOOD FOR 3D SHAPE GENERATION?

First, we study the representative capability of the CLIP image feature space ΩI by trying to generate
3D shapes from this space. Specifically, we replace the SVR image encoder ES with the CLIP image
encoder EI, and optimize implicit decoder D using multi-view losses like DVR (Niemeyer et al.,
2020) with EI frozen. This approach can be extended to text-to-shape generation by replacing EI
with CLIP text encoder ET during the inference. To compare the performance of ES and EI, we
evaluate 3D mIoU between their generated shapes and GTs. The results are as follows: the standard
SVR pipeline ES+D achieves 47.86% mIoU while replacing the SVR encoder ES with CLIP encoder
EI (EI+D) degrades the performance to 40.09%. From the results and qualitative comparison shown
in Figures 3 (a, b), we can see that the CLIP image space ΩI has inferior representative capability to
capture details of the input image for 3D shape generation. This is not surprising, since the pre-trained
EI from CLIP is targeted to extract semantic-aligned features from texts rather than extracting details
from images. Hence, image details relevant to 3D reconstruction are lost, e.g., textures. On the
contrary, ES from the SVR model is optimized for 3D generation from images, so it maintains more
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necessary details. The above result motivates us to design a mapper M from ΩI to ΩS and then
generate shapes from ΩS instead of ΩI for better generative fidelity.

3.2.2 HOW THE CLIP IMAGE AND TEXT FEATURE GAP INFLUENCES 3D SHAPE GENERATION?

Second, we investigate the gap between the normalized CLIP image feature fI ∈ ΩI and normalized
CLIP text feature fT ∈ ΩT; (see also the CLIP image and text feature spaces in Figure 1 (a)) and how
such gap influences text-guided 3D shape generation. Specifically, we randomly sample 300 text-
shape pairs from the text-shape dataset (Chen et al., 2018), then evaluate the cosine distance between
fI and fT, i.e., d = 1− cosine_similarity(fI, fT), where fI is the CLIP feature of the rendered images
from the corresponding shape. We repeat the experiment and obtain d(fT, fI) = 0.783 ± 0.004.
The result reveals a certain gap between the CLIP text and image features in this dataset, even
though they are paired. Also, the angle in the feature space between the two features is around
arccos(1− 0.783) = 1.35 rad in this dataset (Chen et al., 2018). Having said that, directly replacing
fI with fT like Sanghi et al. (2022); Zhou et al. (2022) in inference may harm the consistency between
the output shape and the input text. As demonstrated in Figure 3 (c), directly replacing fI with fT
causes a cosine distance of 0.45 to fS ∈ ΩS (see Figure 3 (c)), which is significantly larger than the
distance between M(fI) and fS (0.21). Our finding is consistent with the findings in Liang et al.
(2022). It motivates us to further fine-tune M into M ′ at test time, such that we can produce feature
M ′(fT), which is closer to fS than M(fT).

3.3 TWO-STAGE FEATURE-SPACE ALIGNMENT

Following the above findings, we propose a two-stage feature-space-alignment approach to first
connect image space ΩI and shape space ΩS and further connect text space ΩT to shape space ΩS
with the image space ΩI as the stepping stone.

Stage-1 alignment: CLIP image-to-shape mapping. Given multi-view RGB or RGBD images for
training, the stage-1 alignment is illustrated in Figure 2 (a). Considering that shape space ΩS contains
richer object details than the image space ΩI, while ΩI provides a joint text-image embedding with
the input text space ΩT, we introduce a fully-connected CLIP2Shape mapper M to map image feature
fI to shape space ΩS. Taking a rendered image I as input, M is optimized with an L2 regression
between M(fI) and standard SVR feature fS = ES(I) according to Equation (1) below:

LM =

N∑
i=1

||M(fI,i)− ES(Ii)||22 (1)

where N is the number of images in the training set and fI,i is the normalized CLIP feature of Ii.

Also, we fine-tune decoder D to encourage it to predict a white background, which helps the model
to ignore the background and extract object-centric feature (see Figure 4), while maintaining its 3D
shape generation capability. To this end, we propose a new background loss Lbg in Equation (2)
below to enhance the model’s foreground object awareness to prepare for the second-stage alignment.

Lbg =
∑
p

||Dc(p)− 1||221(ray(o, p) ∩ F = ∅) (2)

where 1 is the indicator function; F = {p : Do(p) > t} indicates the foreground region, in which the
occupancy prediction Do(p) is larger than threshold t; p is a query point; ray(o, p) ∩ F = ∅ means
the ray from camera center o through p does not intersect the foreground object marked by F ; and
Dc(p) is the color prediction at query point p. In a word, Lbg encourages D to predict the background
region as white color (value 1), such that EI can focus on and better capture the foreground object. In
addition, to preserve the 3D shape generation capability of D, we follow the loss LD, with which D
has been optimized in the SVR training. In this work, we adopt Niemeyer et al. (2020).

Hence, the overall loss in stage-1 training is λMLM for mapper M and λbgLbg + LD for decoder D,
where λM and λbg are weights. The stage-1 alignment provides a good initialization for the test-time
optimization of stage 2.

Stage-2 alignment: text-to-shape optimization. Given a piece of text, the stage-2 alignment aims
to further connect the text and shape modalities. Specifically, it searches for shape S that best matches
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Figure 4: Effect of generating shapes from the same text with/without background loss Lbg.

the input text T . To this end, we formulate a fast test-time optimization to reduce the gap between the
text and image CLIP features fT and fI, as discussed earlier in the second empirical study.

As shown in Figure 2 (b), given input text T , we replace image encoder EI with text encoder ET to
extract CLIP text feature fT, then fine-tune M with CLIP consistency loss between input text T and
m images {Ri}mi=1 rendered with random camera poses from output shape S; see Equation 3:

LC =

m∑
i=1

⟨fT · EI(Ri)

||EI(Ri)||
⟩ (3)

where ⟨·⟩ indicates the inner-product.

In stage-2 alignment, we still adopt Lbg to enhance the model’s foreground awareness. Comparing
Figures 4 (a) and (b), we can see that the stage-2 alignment is able to find a rough shape with Lbg in
around five iterations, yet failing to produce a reasonable output without Lbg, since having the same
color prediction on both foreground and background hinders the object awareness of the model.

Thanks to the joint text-image embedding of CLIP, the gap between text feature fT and shape feature
fS has already been largely narrowed by M . Therefore, the stage-2 alignment only needs to fine-tune
M with 20 iterations using the input text, taking only around 85 seconds on a single GeForce RTX
3090 Ti, compared with 72 minutes taken by Dream Fields (Jain et al., 2022) at test time. After this
fine-tuning, we can readily obtain a plausible result; see, e.g., the “result” shown in Figure 4 (b). Our
ISS is a novel and efficient approach for 3D shape generation from text.

Diversified generation. In general, shape generation from text is one-to-many. Hence, we further
extend our approach with diversified 3D shape generation from the same piece of input text. Unlike
the existing works, which require additional and complex modules, e.g., GANs (Chen et al., 2018),
IMLE (Liu et al., 2022), and normalizing flow network (Sanghi et al., 2022), we can simply perturb
the image and text features for diversified generation. Specifically, after stage-1 alignment, we
randomly permute fI as an initialization and fT as the ground truth by adding normalized Gaussian
noises z1 = h1/||h1||, z2 = h2/||h2||, where h1, h2 ∼ N(0, 1) to derive diversified features

f̂I = τ1fI + (1− τ1)z1 and f̂T = τ2fT + (1− τ2)z2, (4)

where τ1, τ2 are hyperparameters to control the degrees of permutation. With permuted f̂I and f̂T in
stage-2 alignment, our model can converge to different 3D shapes for different noise.

3.4 TEXT-GUIDED STYLIZATION

The two-stage feature-space alignment is already able to generate plausible 3D shapes; see, e.g.,
Figures 2 (b) and 4 (b). However, the generative space is limited by the representation capability of
the employed SVR model, e.g., DVR (Niemeyer et al., 2020) can only generate shapes with limited
synthetic patterns as those in ShapeNet. However, a richer and wider range of structures and textures
are highly desired. To this end, we equip our model with a text-guided stylization module to enhance
the generated shapes with novel structure and texture appearances, as shown in Figures 2 (c) and 1.

Specifically, for texture stylization, we first duplicate D (except for the output layer) to be Do and
Dc, then put the output occupancy prediction layer and color prediction layer on top of Do and
Dc, respectively. Further, we fine-tune Dc with the same CLIP consistency loss as in Equation (3),
encouraging the consistency between input text T and the m rendered images {Ri}mi=1.

Besides textures, novel structures are also desirable for shape stylization. Hence, we further incorpo-
rate a shape-and-texture stylization strategy to create novel structures. To enable shape sculpting, we
fine-tune D with the same CLIP consistency loss in Equation 3. At the same time, to maintain the
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overall structure of the initial shape S, we propose a 3D prior loss LP shown in Equation (5), aiming
at preserving the 3D shape prior learned by the two-stage feature-space alignment.

LP =
∑
p

|Do(p)−D′
o(p)| (5)

where p is the query point, and Do, D′
o are the occupancy predictions of the initial D and the fine-

tuned D in the stylization process, respectively. To improve the consistency between the generated
texture and the generated shape, we augment the background color of Ri with a random RGB value
in each iteration. Please find more details in the supplementary material.

3.5 COMPATIBILITY WITH DIFFERENT SVR MODELS

Besides DVR (Niemeyer et al., 2020), our ISS framework is compatible with different SVR models.
For example, we can adapt it with the most recent SVR approach SS3D (Alwala et al., 2022) that
leverages in-the-wild single images for 3D generation. With this model, our framework can generate
a wider range of shape categories by using SS3D’s encoder and decoder as shape encoder ES and
decoder D in our framework, respectively. Here, we simply follow the same pipeline as in Figure 2
to derive a text-guided shape generation model for the in-the-wild categories; see our results in
Section 4.4. Notably, we follow the losses in Alwala et al. (2022) in place of LD (see Section 3.3) in
stage-1 training, requiring only single-view images without camera poses. More importantly, our
approach’s high compatibility suggests that it is orthogonal to SVR, so its performance can potentially
be further upgraded with more advanced SVR approaches in the future.

4 EXPERIMENTS

4.1 DATASETS, IMPLEMENTATION DETAILS, AND METRICS

With multi-view RGB or RGBD images and camera poses, we can train ISS on the synthetic dataset
ShapeNet (Chang et al., 2015) (13 categories) and the real-world dataset CO3D (Reizenstein et al.,
2021) (50 categories). To evaluate our generative performance, we create a text description set with
four texts per category on ShapeNet and two texts per category on CO3D. SS3D (Alwala et al., 2022)
takes single-view in-the-wild images in training; as their data has not been released, we only evaluate
our method on some of their categories. To evaluate the performance, we employ Fréchet Inception
Distance (FID) (Heusel et al., 2017), Fréchet Point Distance (FPD) (Liu et al., 2022) to measure shape
generation quality, and conduct a human perceptual evaluation to further assess text-shape consistency.
Please refer to the supplementary material for more details on the metrics and implementation details.
4.2 COMPARISONS WITH STATE-OF-THE-ART METHODS

We compare our approach with existing works (Sanghi et al., 2022; Jain et al., 2022) both qualitatively
and quantitatively. For a fair comparison, we use their official codes on GitHub to generate shapes
on our text set. Table 1 shows quantitative comparisons, whereas Figure 5 shows the qualitative
comparisons. Comparing existing works and ours in Table 1, we can see that our approach out-
performs two state-of-the-art works by a large margin for both generative quality and text-shape
consistency scores. On the other hand, the qualitative comparisons in Figure 5 (a,b) show that
CLIP-Forge (Sanghi et al., 2022) produces low-resolution shapes without texture, and some generated
shapes are inconsistent with the input text, e.g., “a wooden boat.” Dream Fields (Jain et al., 2022)
cannot generate reasonable shapes from the input text on the top row and its generated shape on
the bottom row is also inconsistent with the associated input text. On the contrary, our approach
(Figure 5 (i)) can generate high-fidelity shapes that better match the input text. Note that we only
utilize two-stage feature-space alignment without stylization in producing our results. Please refer to
the supplementary file for more results and visual comparisons.
4.3 ABLATION STUDIES

To manifest the effectiveness of our approach, we conduct ablation studies on the following baselines
(see Table 1 and Figure 5): generate shapes from ΩI (EI +D), optimize stage-2 alignment without
stage-1 (w/o stage 1), conduct stage-1 alignment without stage-2 (w/o stage 2), disable the background
loss in stage 1, stage 2 and both (w/o Lbg_1, w/o Lbg_2, w/o Lbg), and two additional baselines that
first create images and then 3D shapes (GLIDE+DVR, LAFITE+DVR). More details on the setup
and analysis are provided in the supplementary material Section 3. Our results outperform all the
existing works and baselines in terms of fidelity and text-shape consistency by a large margin.
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Table 1: Quantitative comparisons with existing works and baselines.
Method Type Method FID (↓) Consistency Score (%) (↑) FPD (↓) A/B/C Test

Existing works CLIP-Forge 162.87 41.83 ± 17.62 37.43 8.90 ± 4.12
Dream Fields 181.25 25.38 ± 12.33 N.A. N.A.

Ablation Studies

EI+D 181.88 20.97 ± 13.59 38.61 N.A.
w/o Stage 1 222.96 1.92 ± 2.22 79.41 N.A.
w/o Stage 2 202.33 29.52 ± 14.86 41.71 N.A.
w/o Lbg_1 149.45 29.45 ± 14.67 40.85 N.A.
w/o Lbg_2 156.52 31.55 ± 8.87 38.31 N.A.
w/o Lbg 178.34 30.96 ± 15.49 40.98 N.A.

Text2Image+SVR GLIDE+DVR 212.41 8.85 ± 7.94 41.33 N.A.
LAFITE+DVR 135.01 52.12 ± 11.05 37.55 11.70 ± 4.11

Ours ISS 124.42 ± 5.11 60.0 ± 10.94 35.67 ± 1.09 21.70 ± 5.19

Sofa 

with 

legs.

(a) CLIP-Forge    (b) Dream Fields    (c) 𝐸𝐶𝐿𝐼𝑃_𝐼 + 𝐷 (d) w/o stage-1   (e)  w/o stage-2  (f)  w/o 𝐿𝑏𝑔_1 (g)  w/o 𝐿𝑏𝑔_2 (h)  w/o 𝐿𝑏𝑔 (i)  GLIDE+DVR  (j) Lafite + DVR (k) Ours
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SUV.

A 

wooden 

boat.

Figure 5: Qualitative comparisons with existing works and baselines.

A metal 

bench.

A red 

recliner 

seems 

comfortable.

(a)                    (b)                 (c)                  (d) (a)                  (b)                   (c)                 (d) 

Figure 6: Our approach is able to generate novel shapes, not in the training set. (a) shows our results
and (b,c,d) are the top-three shapes retrieved from the training set.

A car. A chair.

Figure 7: Our approach can generate diversified results from the same input text.

A blue tall 

vase. 

A sausage 

hotdog.

A white 

bowl. 

A wooden 

baseball bat. 

Figure 8: Results on CO3D dataset. We show two different views of each result.
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boat

Figure 9: Text-guided stylization. Left: texture stylization. Right: shape-and-texture stylization.

4.4 MORE ANALYSIS ON GENERATIVE RESULTS OF ISS

Next, we present evaluations on the generative novelty and diversity, as well as the scalability of our
two-stage feature-space alignment. Then, we show more text-guided stylization results and how our
ISS approach generalizes to a wide range of categories and generates shapes with better fidelity.

Generation novelty. Our approach is able to generate novel shapes beyond simple retrieval from
the training data. As shown in Figure 6, from the input text, we first generate our result in (a) and
then take our generated shape to retrieve the top-three closest shapes in the associated training set
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(a) SS3D with image input

Yellow 

hairdryer 

with black 

handle.

(b) Ours with text input

Red 

yellow 

green 

parrot.

Blue 

earth.

Figure 10: With single images for training (without camera poses), our approach can produce results
for a broad range of categories, by adopting (Alwala et al., 2022). Two different views are rendered.
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Figure 11: Results of ISS built upon the SVR model of IM-Net (left two) and GET3D (right four).

based on the cosine similarity between the CLIP features of the rendered images fI and input text fT
as the retrieval metric. Our results with the two-stage feature-space alignment are not in the training
sets, showing that our ISS approach can generate novel shapes beyond the training set, even without
stylization. It is not surprising, as our approach shares the generative space with the pre-trained SVR
model and can potentially generate all shapes that the pre-trained SVR model can produce.

Generation diversity. By perturbing the features and injecting randomness on initialization, ISS
is able to generate diversified results from the same text input. As shown in Figure 7, ISS produces
various cars and chairs from the same piece of text. Quantitative results are presented in the
supplementary material Section 3.4 where our method achieves a high PS (Point Score).

Generation fidelity. To assess the capability of ISS in generating realistic real-world 3D shapes, we
train the SVR model on the CO3D dataset (Reizenstein et al., 2021) which is a real-world dataset, and
ISS leverages the learned feature space for text to shape generation without paired data. As shown
in Figure 8, our model is able to generate real-world shapes. As far as know, this is first work that
investigates text-guided shape generation and on real-world datasets can generate realistic 3D shapes.

Generation beyond the capability of SVR model. Our text-guided stylization module equips our
model with the capability to generate 3D shapes beyond the SVR model. As shown in Figure 9 and
Figure 2 (c), our model is able to create realistic and fantasy novel structures and textures that match
text descriptions. Please refer to the supplementary material Section 4 for more details.

Generality and Scalability of ISS on other SVR models. Our model is generic and can work
together with other SVR models. To evaluate the generality and scalablity of our model, we employ
SS3D (Alwala et al., 2022), IM-Net (Chen & Zhang, 2019), and GET3D (Gao et al., 2022) as SVR
models to provide the feature space. It is worth noting that SS3D is capable of generating shapes of
more categories and IM-Net, GET3D can produce high fidelity results. First, as shown in Figure 10,
built upon SS3D, our approach can generate shapes of more real-world categories, e.g., bird. Note
that our model can generate shapes with comparable or even better qualities compared with initial
SS3D model that takes an image as input. Second, when combined with IM-Net and GET3D, our
model can fully exploit their generative capabilities and produces high-quality 3D shapes as shown in
Figure 11. The above manifests that ISS is generic and compatible to advanced models for generating
shapes of more categories and higher qualities.

5 CONCLUSION

In this paper, we present a novel approach for text-guided 3D shape generation by leveraging the
image modality as a stepping stone. Leveraging the joint text-image embeddings from CLIP and
3D shape priors from a pre-trained SVR model, our approach eliminates the need for the paired
text and shape data. Technically, we have the following contributions. First, we step-by-step reduce
the semantic gap among the text, image and shape modalities through our two-stage feature-space
alignment approach. Second, our text-guided stylization technique effectively enriches our generated
shapes with novel structures and textures in various styles. Third, our approach is compatible with
various single-view reconstruction approaches and can be further extended to generate a wide range
of categories with only single images without camera poses in training. Experiments on ShapeNet,
CO3D, and multiple single-image categories manifest the superiority of our framework over the two
state-of-the-art methods and various baselines. Limitations are discussed in the supplementary files.
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