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Abstract

Multimodal sentiment analysis deduces a user’s
sentiment by integrating information from dif-
ferent modalities. Previous methods mainly fo-
cus on using complex fusion networks to learn
effective joint embeddings and achieved sig-
nificant improvement, while ignoring refined
processing within modalities, resulting in mod-
els that achieve suboptimal results on more
delicate sentiment analysis. In this paper, we
propose a novel framework KHaR, which har-
vests rich intra-modality knowledge through
domain-specific adapters and utilizes mixture
of experts to refine the knowledge to capture
more detailed intra-modality information. In
addition, we design a contrastive learning to
further explore the information correlation be-
tween samples of similar sentiment intensity.
To fuse the extracted features effectively, we
employ the multimodal information bottleneck
to filter out irrelevant information and retain
the most salient features for sentiment analy-
sis. Extensive experiments show that KHaR
achieves superior performance on four bench-
mark datasets, and especially achieves signif-
icant improvement on the more refined senti-
ment analysis(e.g.Acc-7, Acc-5).

1 Introduction

With the rapid progress of deep learning, signif-
icant breakthroughs have been made in the field
of MSA. Contemporary studies in MSA predomi-
nantly concentrate on developing advanced fusion
methodologies to effectively integrate cross-modal
information. The simplest approach, concatenation
or early fusion, directly stacked the unimodal rep-
resentations from different modalities(Poria et al.,
2016; Kampman et al., 2018; Wu and Liang, 2010).
Outer product-based fusion captures pairwise fea-
ture correlations at the cost of quadratic computa-
tional complexity(Zadeh et al., 2017). Attention-
based fusion mechanisms dynamically weight the
contribution of each modality, allowing for more
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Figure 1: The previous methods and our method.

flexible and adaptive integration(Tsai et al., 2019;
Zhang et al., 2023; Feng et al., 2024; Sun and Tian,
2025). Graph-based fusion methods model the re-
lationships between different modalities as a graph,
enabling more complex interactions and dependen-
cies(Huang et al., 2024; Lin et al., 2022).

Although these methods are quite successful,
they neglect fine-grained intra-modal representa-
tion learning. Most methods rely on coarse-grained
features, such as using the first token extracted by
BERT to represent the text modality(Devlin et al.,
2019; Hazarika et al., 2020; Niu et al., 2021). Av-
eraging of all tokens or max pooling are used to
represent the audio and video modalities(Tsai et al.,
2019; Zong et al., 2023). As a result, when eval-
uated on fine-grained sentiment tasks (e.g.Acc-7,
Acc-5), such approaches yield suboptimal perfor-
mance as they fail to capture subtle but decisive
sentiment signals in individual modalities before fu-
sion. For example, subtle changes in mouth move-
ment or body language in a video can significantly
enhance sentiment analysis(Luo et al., 2021; Hjelm
et al., 2018). Figure 1 illustrates the difference
between previous methods and our method.

To overcome these limitations, we propose a
novel framework KHaR (Knowledge Harvesting
and Refinement), which learns noise-robust repre-
sentations by knowledge harvesting and refinement.



First, domain-specific adapters are injected into
BERT/Transformer encoders to extract modality-
aware features(textual semantic, acoustic patterns,
and facial dynamics). These features are then pro-
cessed by a Mixture of Experts(MoE) layer that
dynamically activates domain-specialized MLPs
to refine modality-specific information. Crucially,
we design a threshold-based contrastive learning
mechanism where samples with sentiment intensity
difference < x(empirically set to 0.4) form positive
pairs, while others are treated as negative pairs, en-
abling fine-grained discrimination between similar
emotions(e.g., k=0.4 groups y=1.0 with y=1.3 but
separates from y=2.0). Finally, we employ the mul-
timodal information bottleneck to compress cross-
modal features by theoretically eliminating redun-
dant inter-modal correlations while preserving the
sentiment-discriminative patterns for compact and
sufficient fusion.

The main contributions of our work can be sum-
marized as follows:

* We propose the KHaR framework to systemat-
ically address fine-grained intra-modality fea-
ture extraction, which ensures the preservation
and enhancement of subtle emotional signals
before fusion through knowledge harvesting
from domain adapters and refinement of MoE.

¢ A dynamic contrastive mechanism is designed
to align cross-modal features based on contin-
uous sentiment intensity levels, significantly
improving fine-grained emotion differentia-
tion compared to traditional binary polarity-
based approaches.

* Empirical evaluations across four benchmark
datasets consistently show KHaR outperform-
ing current state-of-the-art approaches. Ab-
lation studies further confirmed the need for
each component.

2 Related Work

In this part, we review the previous works in the
field of MSA, focusing on two main aspects: multi-
modal sentiment analysis and contrastive learning.

2.1 Multimodal Sentiment Analysis

Previous research on MSA mainly focuses on intra-
modality representation learning and inter-modality
fusion. For intra-modality representation learn-
ing methods, Mai et al. (2020) and Hazarika et al.
(2020) utilized adversarial learning to learn the

common and specific features of each modality.
Zhang et al. (2023) designed an Adaptive Hyper-
modality Learning(AHL) module that, with the
aid of language features at various scales, learns
to create a representation capable of suppressing
irrelevancies and conflicts present in visual and au-
dio features. For inter-modality fusion methods,
Zadeh et al. (2017) proposed a tensor fusion net-
work method to effectively capture and analyze the
interactions between different modalities by com-
puting the cartesian product. Feng et al. (2024)
proposed a dynamic attention fusion method based
on the contribution of each modality. Unlike the
previous works, we extract more detailed represen-
tation information within modalities by harvesting
with refinement.

2.2 Contrastive Learning

Contrastive learning learns discriminative repre-
sentations by pulling positive pairs closer while
pushing away negative pairs. Recent researches on
contrastive learning in multimodal sentiment anal-
ysis are mainly focused on two aspects: supervised
contrastive learning(Zha et al., 2023; Mai et al.,
2022; Yang et al., 2024; Khosla et al., 2020) and
self-supervised contrastive learning(Akbari et al.,
2021; Chen et al., 2020; He et al., 2020). The
core difference between them is whether to use la-
bel information to construct positive and negative
sample pairs. For example,Chen et al. (2020) pro-
posed a self-supervised contrastive learning frame-
work, SimCLR, which learns representations by
maximizing agreement between augmented views
of the same image. Khosla et al. (2020) intro-
duced a supervised contrastive loss, which exploits
the similarity of label information to maximize
the consistency of samples in the same class. In-
spired by Yang et al. (2024), we propose a dynamic
contrastive learning mechanism that aligns cross-
modal features based on the sentiment intensity
levels, significantly improving fine-grained emo-
tion differentiation compared to traditional binary
polarity-based approaches.

3 Methodology

3.1 Overall Architecture

As shown in Figure 2, the KHaR framework first ex-
tracts unimodal features from raw video, text, and
audio inputs. An adapter and encoder jointly learn
modality-specific representations enriched with af-
fective knowledge. A MoE module then dynami-
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Figure 2: The overall architecture of KHaR. The blue, pink and purple modules represent the relevant operations of

vision, text and audio.

cally selects domain-specific experts(each of which
is an MLP)to compress and refine critical features.
To capture emotional differences across modalities,
a dynamic contrastive learning mechanism adjusts
the similarity distribution accordingly. Finally, an
information bottleneck module constrains the fu-
sion process by filtering out irrelevant information
while preserving sentiment-relevant cues.

3.2 Problem Definition

MSA task typically processes visual, textual, and
acoustic data streams as input features. The se-
quences of three modalities are represented as
triplet (I, Iy, I,), which include I, € RTv*dv,
I, € RTixde and I, € RTexde where T),,m €
{v,t,a} is the corresponding modal sequence
length, d,,, represents the vector dimension. Our
main task is to accurately predict the sentiment
intensity through feature extraction and fusion.

3.3 Knowledge of Harvest

In order to harvest a large amount of knowledge, we
use encoders and adapters to encode each modal-
ity input /,,c 4 4,4}, and obtain two types of repre-
sentations: a comprehensive-level representation
O, € RTmxdm and the knowledge-enhanced af-
fective representations A,, € RTmxdm
Comprehensive-level Representation. To ob-

tain hierarchical semantic features and a solid foun-
dation for subsequent sentiment-aware knowledge
injection via the adapter, we extract comprehensive-
level representations O,,, from each modality m.
For text input I;, we employ a pretrained BERT
encoder, while for visual and audio inputs I, and
1,, we use modality-specific stacked Transformer
encoders (Vaswani et al., 2017):

Om, Hy, = Encoder,,, (1,; Qf:llcoder)

ey

where O,,, denotes the final output of the en-
coder, serving as the comprehensive-level repre-
sentation, and H,,, represents the intermediate hid-
den states that capture modality-specific general or
commonsense information.

Knowledge-Enhanced Affective Representa-
tion. To obtain richer affective feature information,
we introduce external Adapter modules in the en-
coder layers to inject affective knowledge into the
modality-specific representations.

As illustrated in Figure 3, we insert stacked
Adapter blocks into the encoder architecture of
visual, text, and audio modalities to construct the
knowledge-enhanced affective representation A,,:

A, = Adapter, (I, Hyy; 0299r) ¢ RTm>xdm
2
where 6 denotes the pretrained parameters
of the Adapter module corresponding to modality.

adapter
m
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Figure 3: The architecture of BERT and Transformer
encoders, Adapters, and their interconnections.

Through this design,we combine the above two
representations to obtain the knowledge-enhanced
representation X,

Xm = [AW’M Hm] € RTmX2dm 3)

3.4 Knowledge Refinement

To achieve fine-grained processing of widely har-
vested multimodal knowledge, KHaR adopts a
modality-specific MoE layer, where each expert is
an MLP network optimized for discriminative sub-
features. Gated network mechanisms dynamically
activate specialized experts, for example, in text,
different experts may focus on sentiment phrases,
negation, or syntactic structures; In the video, ex-
perts locate local cues such as microexpressions
or lip movements; While in audio, pitch change
experts or spectrum pattern experts are selectively
involved. This architecture ensures that only the
most relevant experts deal with the nuances of a
particular pattern, allowing the model to extract
knowledge with high accuracy from a wide and
noisy feature space.

Specifically, for each modality m, we construct
an independent MoE layer comprising s expert
networks { E, Eo, ..., E5} and a gating network G.
All MoE layers across modalities share the same
number of experts to ensure structural consistency.
Given the unimodal feature X ,,.The gating weights
are computed as:

G(Xpm) = Softmax (KeepTopK(Wy Xy, k)) (4)

where W, € R%*# is a training weight parame-
ter matrix, d is the modal feature dimension, and

KeepTopK(-) denotes the sparse operation that re-
tains the top k gating weights for each input. The
final gated representation X,n € R4 is obtained by
weighted aggregation of expert outputs:

X = G(Xm)i - Ei(Xp) (5)
=1

where G(X,,,); is the gating weight of the i-th
expert and F;(X,,) is the output of the correspond-
ing expert network.

To mitigate expert collapse—where a few ex-
perts dominate the activation distribution—we in-
troduce a regularization term Ly} i (X, ) to encour-
age balanced expert utilization:

Liioe(Xm) = w (CV(I(Xm))? + CV(L(Xm))?)

(6)

where CV (-) denotes the coefficient of variation,

I(-) measures the overall activation importance of

each expert across the batch, L(-) quantifies the

expert usage frequency, and w is a hyperparameter
controlling the strength of the regularization.

3.5 Multimodal Fusion

In information theory, Mutual Information (MI)
is used to measure the degree of interdependence
between two random variables.Specifically, consid-
ering two variables x and y with marginal distribu-
tions p(z) and p(y) and joint distribution p(x, y),
MI is defined as the Kullback-Leibler (KL) diver-
gence between the product of the marginal and joint
distributions. The formal definition of MI is:

I(x;y) = Dxv (p(z,y) || p(x)p(y))

= /d:l: dy p(z,y)log m
y)

piz,
= By ornieay [log o221 (7)
(@,y)~p(zy) [ gp(x)p(y)]

To extend this principle to multimodal scenar-
ios, we design a multimodal information bottle-
neck (MIB) module that refines the fused represen-
tation derived from independent single-modality
encoders. The MIB module is designed to: (1)
Redundancy filtering: suppress cross-modal redun-
dancy; (2) Discriminative preservation: preserve
discriminative cues necessary for prediction.

In the MIB module, we introduce the intermedi-
ate variable 2z and construct this objective function:

Lyrg = 1(y; 2) — BI(x;2) (3



where I(-;-) denotes MI, and the parameter
B > 0 determines the intensity of the compres-
sion. Our approach focuses on maximizing the
objective function.

Since MI itself is difficult to calculate directly,
we usually use variational methods to estimate it.
Regarding the first term I(y; z), we introduce an
auxiliary distribution ¢(y | z) to approximate the
genuine posterior distribution p(y | z), thereby
obtaining its lower bound:

I(y:2) > / dadydzp(z | 2)p(y | 2)p(x) logaly | 2) ©)

Similarly, for the second term I(z; z), we use
the approximate distribution ¢(z | x) to estimate
the genuine posterior distribution p(z | x), and
obtain its upper bound form:

p(z | x)
q(2)
(10)
where ¢(z) is a variational approximation to the
marginal distribution p(z) which is often fixed to a
standard normal Gaussian distribution.Combining
these two estimates, we obtain the variational lower
bound of the objective function:

Lyip = 1(y; 2) — BI(w;2) > Juis
=Eflogq(y | 2) — 8- KL(p(z | z) | q(2))]
1D

where the expectation E is taken over (z,y) ~
p(z,y) and z ~ p(z | ). Jyp is a variational
lower bound of Lj;rp. See the Appendix C for the
specific formula derivation. Finally, by maximizing
the objective function L,srp, we equivalently min-
imize the loss Lyg, which is defined as follows:

Lmi =E[8- KL (p(z | z) | ¢(2)) —logq(y | 2)] (12)

I(w;2) < / dwdzp(z)p(z | ) log

3.6 Dynamic Contrastive Learning Based on
Sentiment Intensity

Traditional contrastive learning methods (e.g., Sim-
CLR or supervised contrastive learning) primarily
focus on broad category-level separation, grouping
all positive sentiment samples (sentiment intensity
> 0) together and all negative ones (< 0) apart,
while maximizing the distance between positive
and negative representations. However, such meth-
ods often ignore the continuity and nuance of senti-
ment intensity, which may lead to semantic distor-
tion. For example, traditional methods will classify
samples with sentiment intensity +3 and sentiment
intensity +0.1 as positive sample pairs, and sam-
ples with sentiment intensity +0.1 and sentiment

intensity -0.1 as negative sample pairs, depending
on whether the sentiment intensity is both positive
and negative, which leads us to ignore the more
detailed relationship between sentiment intensity.
As a result, the previous studies(Lin et al., 2022;
Yu et al., 2023) have achieved suboptimal results
on more difficult multi-classification tasks.
Inspired by the previous work(Yang et al., 2024),
we introduce a dynamic contrastive learning strat-
egy that adapts sample pairing based on their senti-
ment intensity differences, thereby preserving the
semantic continuity inherent to sentiment tasks.
Specifically, for any two samples ¢ and j in the
batch, we define their emotion intensity gap as:

G(i,j) = lyi —y;l, j €batch, j#i (13)
where y; and y; denote the actual sentiment in-
tensity of sample ¢ and j, respectively. Considering
a threshold x(set to 0.4), sample pairs are catego-
rized as follows:
G(i,j) < k= (i,J) € pos pairs
.. o : (14)
G(i,j) > k = (i,J) € neg pairs

Based on the above steps, for sample ¢, the inter-
modal positive and negative sample pairs can be
obtained as follows:

Pl ={(VE,TY), (V' A, (T, AU

wnter
{(V,T7), (V! A7), (T, A7), as)
(T%, V7)), (A%, V), (AL, T7)
|(i,7) € pos pairs}
Niper ={(V',TF), (V7, AF),(T7, A),
(T, V9), (A", V), (A%, 7% (16)

|(i, k) € neg pairs}

The intra-modal positive and negative sample

pairs can be obtained as follows:
]Diintra :{(Vivvj)v(Ti>Tj)7(Ai7Aj)a (17)
|(i,7) € pos pairs}

Niintra :{(VZ’ Vk)a (Tza Tk)a (A’La Ak)a
|(i,7) € neg pairs}

Then, we can get the P? and N* as follows:

(18)

Pi :Piinter U f)iintra (19)
NZ :Niznter U Nizntra (20)

For each anchor sample a, the model is trained
to minimize the distance to positive samples and



Methods CH-SIMS CH-SIMSv2
MAE Corr Acc-5 Acc-3 Acc-2 F1 MAE Corr Acc-5 Acec-3 Acc-2 F1

TEN 0.432  0.591 3930 65.12 7838 78.62 | 0.303 0.707 5255 7221 80.14 80.14
LMF 0.441 0576 4053 64.68 77.77 77.88 | 0.367 0.557 47779 6490 74.18 73.88
MulT 0.453 0.564 3794 6477 7856 79.66 | 0.291 0.738 54.81 73.19 80.68 80.73
BBFN* 0.430 0.564 4092 61.05 78.12 77.88 | 0.300 0.708 53.29 7147 78.53 78.41
Self-MM 0425 0.595 41.53 6547 80.04 8044 | 0311 0.695 52.77 72.61 79.69 79.76
CubeMLP* | 0419 0593 41.79 6586 77.68 77.59 | 0.334 0.648 5290 7195 7853 78.53
CENet 0471 0.534 3392 6258 7790 77.53 | 0310 0.699 53.04 73.10 79.56 79.63
TETFEN 0.420 0.577 4179 6324 81.18 80.24 | 0.310 0.695 5447 73.65 79.73 79.81
ALMT* 0408 0.594 43.11 6586 7877 78.71 | 0.308 0.700 5290 71.86 79.59 79.51
TMBL* 0.429 0592 4158 6543 79.12 7875 | 0.313 0.706 52.03 73.02 80.46 80.36
KHaR 0.408 0.622 4530 6543 7943 7952 | 0.287 0.735 56.29 73.89 80.85 80.78

Table 1: Results on CH-SIMS and CH-SIMSv2 datasets. The best result is in bold; * means the results are from
(Feng et al., 2024), while other results are from (Mao et al., 2022).

Methods MOSI MOSEI

MAE Corr Acc-7 Acc-5 Acc-2 F1 MAE Corr Acc-7 Acc-5 Acc-2 F1
TENT 0.947 0.673 34.46 - 77.99/79.08 77.95/79.11|0.572 0.714 51.60 - 78.50/81.89 78.96/81.74
LMF! 0.950 0.651 33.82 - 77.90/79.18 77.80/79.15(0.576 0.717 51.59 - 80.54/83.48 80.94/83.36
MAG-BERT | 0.727 0.781 43.62 - 82.37/84.43 82.50/84.61(0.543 0.755 52.67 - 82.51/84.82 82.77/84.71
BBFN* 0.796 0.744 43.88 - 80.32/82.47 80.21/82.44(0.545 0.760 52.88 - 82.87/85.73 83.13/85.56
MMIM* 0.744 0.780 44.75 - 82.51/84.30 82.38/84.23(0.550 0.761 51.88 - 83.75/85.42 83.93/85.26
CubeMLP* |0.755 0.772 43.44 - 80.76/82.32 81.77/84.23|0.537 0.761 53.35 - 82.36/85.23 82.61/85.04
PS-Mixer 0.794 0.748 44.31 - 80.3/82.1 80.3/82.1 [0.537 0.765 53.0 - 83.1/86.1 83.10/86.10
ALMT* 0.712 0.793 46.79 - 83.97/85.82 84.05/85.86|0.530 0.774 53.62 - 81.54/85.99 81.05/86.05
SFTTR 0.709 0.795 46.5 - 82.94/84.6 82.92/84.63|0.536 0.772 53.7 - 82.89/85.99 83.15/85.92
MulT? - - - 42.68 -/- -/- - - - 54.18 -/- -/-
MISA' - - - 47.08 -/- -/- - - - 53.63 -/- -/-
Self-MM - - - 5347 -/- -/- - - - 5553 -/- -/-
KHaR 0.698 0.8 49.13 55.39 84.45/86.13 84.48/86.15|0.526 0.777 54.43 56.30 83.37/86.49 83.02/86.60

Table 2: Results on MOSI and MOSEI datasets. The best result is in bold; * means the results are from (Feng et al.,

2024), t means the results are from (Mao et al., 2022).

maximize the distance to negative samples. The
contrastive learning loss is formulated as:

Z(am)epi 6(@, p)

Z(a,q)EPiUNi 5(0’7 Q)

2D
where 6(a,p) = exp(w) ,which is used to
meature the similarity between the anchor sample
a and the positive sample p.

Lcy = —Eieplog

3.7 Optimization Objective

To achieve effective multimodal fusion and com-
pact representation learning, the overall training
objective of KHaR is formulated as the minimiza-
tion of the following total loss function:
L = Lymor + LB + ALcL + Lrask  (22)
where A is a hyperparameter that controls the
strength of contrastive learning, L, is to mini-

mize the MAE between the predicted sentiment
intensity g and the ground truth .

4 Experiments

4.1 Datasets and Metrics

To fully evaluate the performance of KHaR, we em-
ploy four benchmark datasets: CMU-MOSI(Zadeh
et al., 2016), CMU-MOSEI(Zadeh et al., 2018),
CH-SIMS(Yu et al., 2020) and CH-SIMSV2(Liu
et al., 2022). Appendices A and B describe the de-
tails of these datasets and the experimental setup.

For a more comprehensive comparsion, we di-
vide our reporting results into regression and clas-
sification. For regression, we use the mean abso-
lute error (MAE) and Pearson correlation (Corr)
as evaluation metrics. For classification, we use
the multi-class accuracy and F1-score as evalua-
tion metrics. we report the accuracy of 2-class
(Acc-2), 3-class (Acc-3) and 5-class (Acc-5) for
CH-SIMS and CH-SIMSV2, and the accuracy of 2-
class (Acc-2), 5-class (Acc-5) and 7-class (Acc-7)
for MOSI and MOSEI. In addition, for MOSI and
MOSE]I, the Acc-2 and F1 score are computed for
negative/positive(excluding 0) and negative/non-
negative(including 0) classes.



4.2 Baselines

We compare the KHaR framework with state-of-
the-art multimodal sentiment analysis methods, in-
cluding: TEN(Zadeh et al., 2017), LMF(Liu et al.,
2018), MulT(Tsai et al., 2019), MISA(Hazarika
et al., 2020), MAG-BERT(Rahman et al., 2020),
Self-MM(Yu et al., 2021), MMIM(Han et al.,
2021b), BBFN(Han et al., 2021a), CENet(Wang
et al., 2022), CubeMLP(Sun et al., 2022), PS-
Mixer(Lin et al., 2023), TETFN(Wang et al., 2023),
ALMT(Zhang et al., 2023), TMBL(Huang et al.,
2024), and SFTTR(Sun and Tian, 2025).

4.3 Performance Comparison

We evaluate KHaR on four benchmark datasets
and compare it with state-of-the-art methods. The
results are shown in Table 1 and Table 2.

As shown in Table 1, for the Chinese datasets
CH-SIMS and CH-SIMSv2, KHaR achieves the
best results on most evaluation metrics. For ex-
ample, on the CH-SIMSv2 dataset, compared with
the MuLT model, KHaR achieves 1.37% improve-
ment on the regression task MAE, and 2.7% im-
provement on the multi-classification task Acc-5,
indicating that KHaR can extract effective feature
information on complex datasets and make more
accurate actual predictions.

For the English datasets MOSI and MOSEI,
KHaR also achieves good experimental results. On
the MOSI dataset, our model achieves the best re-
sults on all evaluation metrics. Compared with the
second best result, KHaR improves by 1.55% in
MAE and 0.62% in Corr. It is worth noting that
on the more difficult and more detailed classifica-
tion task Acc-7, our model achieves a significant
improvement with a relative improvement of 5%.
Similarly, on the MOSEI dataset, we achieve a rela-
tive improvement of 1.36% on the Acc-7 classifica-
tion task, indicating that our model has a significant
improvement in fine-grained sentim capture.

4.4 Ablation Study and Analysis

To validate the effectiveness of different compo-
nents in our proposed KHaR model, we conduct
comprehensive ablation studies on two benchmark
datasets: CH-SIMS and MOSI. The evaluations
cover the role of each modality, the impact of the
MoE module, the contribution of contrastive learn-
ing, and the effects of MIB strategies. All results
are reported in terms of MAE, correlation, Acc-5
for CH-SIMS and Acc-7 for MOSI.

Methods CH-SIMS MOSI

MAE Corr Acc-5 MAE Corr Acc-7
Role of Each Modality
V+T 0.420 0.571 42.64 0.714 0.799 47.23
V+A 0.587 0.209 21.23 1.366 0.208 19.68
A+T 0.424 0.556 4398 0.718 0.783 47.96
V+A+T | 0408 0.622 4530 0.698 0.8 49.13
Role of the MoE

MLP;, 0.425 0.567 42.01 0.724 0.783 46.79
ATTN, |0.415 0.589 4136 0.746 0.775 46.06
CNN, |[0420 0.578 43.11 0.711 0.789 46.21

Role of Contrastive Learning
w/o CL 0436 0.546 42.89 0.713 0.796 47.23

Role of Fusion

SUM 0412 0.603 4398 0.727 0.786 47.81
CON 0.425 0.585 41.79 0.717 0.792 47.52
ATTN 0.416 0.586 42.89 0.707 0.798 47.52
MUL 0.427 0.567 4223 0.706 0.798 46.36

Table 3: Result of ablation experiments for different
components of KHaR on CH-SIMS and MOSI datasets.
V=vedio, T=text, A=audio. The best result is in bold.

4.4.1 Role of Modalities

We evaluate the contribution of each modality by
comparing different combinations: bi-modal (V+T,
V+A, A+T) versus tri-modal (V+A+T) inputs. As
shown in Table 3, the tri-modal setting consistently
achieves superior performance across all metrics,
confirming the complementary nature of visual,
acoustic, and textual information in affective under-
standing. In contrast, bi-modal configurations yield
suboptimal results, with V+A particularly under-
performing on MOSI, suggesting the insufficiency
of non-verbal cues in capturing nuanced sentiment
without textual grounding.

4.4.2 Role of the MoE

In order to verify the effectiveness of the MoE layer,
we use different feature extraction methods to re-
place the MoE layer for comparison. As shown
in Tabel 3, MLPy, denotes a multilayer perceptron,
ATTN,, adopts a standard attention mechanism,
and CNN,, introduces convolutional operations for
feature extraction. Experimental results show that
replacing MoE layer with these methods leads to
performance degradation, which indicates that dy-
namic routing and modal-specific experts of MoE
layer are essential for capturing complex patterns
and handling different data distributions efficiently.

4.4.3 Role of Contrastive Learning

To evaluate the effectiveness of contrastive learn-
ing component, we present an ablation analysis in
Table 3, where “w/o CL” denotes the removal of
contrastive loss from the training objective. When
removing the contrastive learning module, we ob-



serve consistent performance degradation across
both SIMS and MOSI datasets, with the most pro-
nounced drops occurring in the 5-class classifica-
tion task on SIMS and the 7-class classification
task on MOSI. This significant decrease demon-
strates that the contrastive learning component ef-
fectively captures subtle relationships between sen-
timent intensities, enabling the model to better dis-
tinguish closely-related sentiment categories. The
results suggest that explicitly modeling intra-modal
and inter-modal feature distributions through con-
trastive learning is essential for maintaining dis-
criminative power in complex sentiment identify
scenarios, where traditional comtrastive learning
approaches often fail to preserve these nuanced
emotional relationships.

4.4.4 Role of Fusion

We compare MIB-based fusion strategy against sev-
eral alternative fusion mechanisms. Among them,
SUM represents the addition of different modal rep-
resentations, CON represents the concatenation of
different modal representations, ATTN represents
the fusion using the attention mechanism, and MUL
represents the multiplication of the representations
of different modalities. The MIB fusion consis-
tently achieves superior performance across most
metrics, particularly on CH-SIMS. These results
demonstrate that the information bottleneck encour-
ages the extraction of task-relevant and compact
representations by discarding redundant or noisy
modality-specific features. This selective fusion
mechanism proves more effective than naive aggre-
gation strategies.

4.4.5 Visualizating Representations

In this section, we utilize t-SNE(Van der Maaten
and Hinton, 2008) for a more intuitive visual
presentation of the multimodal representation, as
shown in Figure 4. Figure 4a shows the representa-
tion generated by KHaR, Figure 4b shows the repre-
sentation using the MLP layers to replace the MoE
layer, Figure 4c shows the representation without
contrastive learning, and Figure 4d shows the rep-
resentation without MIB. When the MLP layer is
used to replace the MoE layer, it can be obviously
seen that the representation distribution of simi-
lar samples is loose, indicating that the MoE layer
can better capture the specific information within
the modality and enhance the discrimination of the
representation. The sample representation distri-
bution without contrastive learning is mixed, the
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Figure 4: Visualization of multimodal representations
on CMU-MOSI. Where 0’ and ’1’ represent positive
and negative sentiment respectively.

overlap area is large, and the lack of clear boundary,
which indicates that contrastive learning makes dif-
ferent categories easier to distinguish after dimen-
sion reduction by bringing similar samples closer
and pushing away heterogeneous samples. Samples
without MIB have a more chaotic representation
distribution with local small clusters, indicating
poor feature consistency, and the model may over-
fit noise or local patterns. It shows that MIB can
better filter noise information while retaining the
most relevant information, and improve the gener-
alization ability and robustness of the model.

5 Conclusion

In this paper, we propose a novel multimodal sen-
timent analysis framework KHaR, which is the
first to extract the fine-grained information within a
modality by using two steps of knowledge harvest-
ing and refinement. This design helps the model to
better capture the detailed information of a specific
modality before fusion. Moreover, we introduce
a dynamic contrastive mechanism based on senti-
ment intensity, enabling fine-grained and semanti-
cally aligned cross-modal representations. Exten-
sive experiments across four benchmark datasets
show that KHaR consistently outperforms state-of-
the-art methods, achieving superior results in both
accuracy and robustness. Ablation studies further
highlight the indispensable role of each component.
These findings position KHaR as one of the most
promising and effective solutions in the field.



Limitations

Although KHaR achieves strong performance on
multiple datasets, it still has some limitations.
Firstly, we can consider using domain adapters and
other external domain knowledge to further inject
more relevant knowledge into the model. Secondly,
we mainly strengthen the model’s learning of fine
knowledge. In the future, we can consider how to
better integrate coarse-grained knowledge and fine
knowledge for multimodal sentiment analysis.
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A Datasets

CMU-MOSI is a multimodal dataset, which in-
cludes 3 modalities: text, visual and acoustic. The
data was collected from 93 movie review videos
on Youtube. The videos were edited into 2199
segments. Each segment is annotated with senti-
ment intensity in the range [-3,3]. CMU-MOSEI
is similar to CMU-MOSI, but on a larger scale. It
contains 23,453 annotated video clips from online
video sites covering 250 different topics and 1000
different speakers. Samples in CMU-MOSEI are
also labeled with sentiment intensity in the range
[-3,3]. The SIMS dataset is a Chinese multimodal
sentiment analysis dataset, which provides detailed
annotations for each modality. The dataset includes
2,281 selected video clips from a variety of movies,
TV series, and variety shows, and each sample is
assigned a sentiment score ranging from -1 (ex-
tremely negative) to 1 (extremely positive). The
CH-SIMS v2.0 dataset is an extension and enhance-
ment of the CH-SIMS. The dataset collects 4402
labeled supervised data and 10161 unlabeled raw
video clips from 11 different scenes. The sentiment
intensity of each sample is between -1 and 1. The
partition of the above dataset is shown in Tabel 4.

Dataset #Train #Valid #Test #Total Language
CH-SIMS 1368 456 457 2281  Chinese
CH-SIMSv2 2722 647 1034 4403  Chinese
MOSI 1284 229 686 2199  English
MOSEI 16326 1871 4659 22856 English

Table 4: The statistics of CH-SIMS, CH-SIMSv2, MOSI
and MOSEL

B Experimental Setup

Here, we will mainly present the specific imple-
mentation of our experimental setup. All experi-
ments were conducted on high performance com-
puting nodes equipped with NVIDIA RTX 4090D
GPU. On the Chinese datasets SIMS and SIMSv2,
we adopt bert-base-chinese (12-layer, 768-hidden-
dim) to initialize the model, while on the English
datasets MOSI and MOSEI, we adopt bert-base-
uncased as the baseline architecture. Both models
are optimized using AdamW, including a linear
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warmup schedule and weight decay regularization.
The main hyperparameters are shown in Table 5.

Descriptions CH-SIMS CH-SIMSv2 MOSI MOSEI
Epochs 70 70 70 70
Learning Rate 3e-5 3e-5 3e-5 le-5
Batch Size 64 64 64 36
Num of Experts 3 3 3 3

A 1 1 0.05 0.45
Modal Dimension d,,, 128 128 128 256
Fine-grained Dimension 50 50 50 50
Optimizer AdamW AdamW  AdamW AdamW

Table 5: Hyperparameter Settings for different datasets.

C Derivation of MIB

The pipeline of the MIB is in Algorithm 1, and de-
tails of its formula derivation are shown as follows.

Algorithm 1 Multimodal Information Bottleneck
Input: Unimodal representations

X, m € {v,t,a}, hyper-parameter (3

Output: Prediction ¢;

Initialize unimodal networks F* and fusion
network F/:
while not done do
Sample a batch of utterances
for each utterance 7 do
for each m (m € {v,t,a}) do
x" = F"™(X]";0p)
end for
x; = Ff (¢ 2l 0y)

Koy Xz = p(@i; 9#)’ Y(xi; 0x)
Zi:Hz,-‘i‘Ezi X €
9i = D(zi;0a)
end for
Compute Jy;rp as in Eq. 11
end while

We design the encoder p(z | z) to be a Gaus-
sian distribution whose mean and covariance are
parameterized by a neural network:

p(z | @) = N (n(@:6,), Z(a; b)) = N (., 2.)

(23)

where p and X, parameterized respectively by

0,, and 0y, are neural networks designed to estimate

the mean vector p, and covariance matrix 3, of
the Gaussian latent distribution.

Since directly sampling random variables is not
conducive to gradient propagation, we use the repa-
rameterization technique to transform the sampling
process into z:

Z= by + 3, X€E (24)



where € ~ N(0, I') denotes a sample from the
standard multivariate normal distribution, and I
represents an identity matrix with all diagonal ele-
ments equal to 1.

This treatment transfers the randomness to €,
allowing p, and X, to be explicitly optimized via
gradients. Note that here we assume that each
element in the vector z is independent from each
other.For our task, we formulate ¢(y | ) as:

qly|2) = e~ lly=D(z:04)[[1+C
logq(y | z) = —|ly — D(z;04)||1 + C
=—|ly=9lh +C (25)

where D denotes a decoder parameterized by 6,
and g is the model prediction. Here, maximizing
log q(y | #) is equivalent to minimizing the mean
absolute error (MAE) between the predicted ¢ and
the ground truth y.

In practice, MAE is frequently used to maximize
the MI between the target and the latent representa-
tion 2z and the approximated marginal distribution
of the multimodal representation z is often assumed
to be a standard Gaussian distribution:

q(z) ~ N(0,1) (26)

Through combining Eq.23 and Eq.26, the KL di-
vergence term K L (p(z | z)||q(2)) can be evaluated
as follows:

KL(p(z|2)lla(=)) = KL(N ((w:0,.), B(2:02)) | (0, D)

= KL(N (=, Z)IN(0, 1))
27
where this formulation relies on the assumption
that the reparameterizations of both p(z | ) and
q(z) are chosen such that the KL divergence admits
a closed-form analytical expression.

To approximate the integral over z, z and y, we
employ Monte Carlo sampling, which allows the
overall objective Jysrp (Eq. 11) to be rewritten in
the following simplified form:

n

i = 5" [Eapiols = B+ KL (i, 32, | N0, 1)]

=1

(28)

where n refers to the number of samples (i.e., the

batch size), and the index ¢ denotes the individual
data point in the sampled batch.

Maximizing this objective can maximize the dis-
crimination ability of the target variable and effec-
tively compress the redundant information in the
multimodal representation .
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