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Abstract001

Multimodal sentiment analysis deduces a user’s002
sentiment by integrating information from dif-003
ferent modalities. Previous methods mainly fo-004
cus on using complex fusion networks to learn005
effective joint embeddings and achieved sig-006
nificant improvement, while ignoring refined007
processing within modalities, resulting in mod-008
els that achieve suboptimal results on more009
delicate sentiment analysis. In this paper, we010
propose a novel framework KHaR, which har-011
vests rich intra-modality knowledge through012
domain-specific adapters and utilizes mixture013
of experts to refine the knowledge to capture014
more detailed intra-modality information. In015
addition, we design a contrastive learning to016
further explore the information correlation be-017
tween samples of similar sentiment intensity.018
To fuse the extracted features effectively, we019
employ the multimodal information bottleneck020
to filter out irrelevant information and retain021
the most salient features for sentiment analy-022
sis. Extensive experiments show that KHaR023
achieves superior performance on four bench-024
mark datasets, and especially achieves signif-025
icant improvement on the more refined senti-026
ment analysis(e.g.Acc-7, Acc-5).027

1 Introduction028

With the rapid progress of deep learning, signif-029

icant breakthroughs have been made in the field030

of MSA. Contemporary studies in MSA predomi-031

nantly concentrate on developing advanced fusion032

methodologies to effectively integrate cross-modal033

information. The simplest approach, concatenation034

or early fusion, directly stacked the unimodal rep-035

resentations from different modalities(Poria et al.,036

2016; Kampman et al., 2018; Wu and Liang, 2010).037

Outer product-based fusion captures pairwise fea-038

ture correlations at the cost of quadratic computa-039

tional complexity(Zadeh et al., 2017). Attention-040

based fusion mechanisms dynamically weight the041

contribution of each modality, allowing for more042

Figure 1: The previous methods and our method.

flexible and adaptive integration(Tsai et al., 2019; 043

Zhang et al., 2023; Feng et al., 2024; Sun and Tian, 044

2025). Graph-based fusion methods model the re- 045

lationships between different modalities as a graph, 046

enabling more complex interactions and dependen- 047

cies(Huang et al., 2024; Lin et al., 2022). 048

Although these methods are quite successful, 049

they neglect fine-grained intra-modal representa- 050

tion learning. Most methods rely on coarse-grained 051

features, such as using the first token extracted by 052

BERT to represent the text modality(Devlin et al., 053

2019; Hazarika et al., 2020; Niu et al., 2021). Av- 054

eraging of all tokens or max pooling are used to 055

represent the audio and video modalities(Tsai et al., 056

2019; Zong et al., 2023). As a result, when eval- 057

uated on fine-grained sentiment tasks (e.g.Acc-7, 058

Acc-5), such approaches yield suboptimal perfor- 059

mance as they fail to capture subtle but decisive 060

sentiment signals in individual modalities before fu- 061

sion. For example, subtle changes in mouth move- 062

ment or body language in a video can significantly 063

enhance sentiment analysis(Luo et al., 2021; Hjelm 064

et al., 2018). Figure 1 illustrates the difference 065

between previous methods and our method. 066

To overcome these limitations, we propose a 067

novel framework KHaR (Knowledge Harvesting 068

and Refinement), which learns noise-robust repre- 069

sentations by knowledge harvesting and refinement. 070
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First, domain-specific adapters are injected into071

BERT/Transformer encoders to extract modality-072

aware features(textual semantic, acoustic patterns,073

and facial dynamics). These features are then pro-074

cessed by a Mixture of Experts(MoE) layer that075

dynamically activates domain-specialized MLPs076

to refine modality-specific information. Crucially,077

we design a threshold-based contrastive learning078

mechanism where samples with sentiment intensity079

difference ≤ κ(empirically set to 0.4) form positive080

pairs, while others are treated as negative pairs, en-081

abling fine-grained discrimination between similar082

emotions(e.g., κ=0.4 groups y=1.0 with y=1.3 but083

separates from y=2.0). Finally, we employ the mul-084

timodal information bottleneck to compress cross-085

modal features by theoretically eliminating redun-086

dant inter-modal correlations while preserving the087

sentiment-discriminative patterns for compact and088

sufficient fusion.089

The main contributions of our work can be sum-090

marized as follows:091

• We propose the KHaR framework to systemat-092

ically address fine-grained intra-modality fea-093

ture extraction, which ensures the preservation094

and enhancement of subtle emotional signals095

before fusion through knowledge harvesting096

from domain adapters and refinement of MoE.097

• A dynamic contrastive mechanism is designed098

to align cross-modal features based on contin-099

uous sentiment intensity levels, significantly100

improving fine-grained emotion differentia-101

tion compared to traditional binary polarity-102

based approaches.103

• Empirical evaluations across four benchmark104

datasets consistently show KHaR outperform-105

ing current state-of-the-art approaches. Ab-106

lation studies further confirmed the need for107

each component.108

2 Related Work109

In this part, we review the previous works in the110

field of MSA, focusing on two main aspects: multi-111

modal sentiment analysis and contrastive learning.112

2.1 Multimodal Sentiment Analysis113

Previous research on MSA mainly focuses on intra-114

modality representation learning and inter-modality115

fusion. For intra-modality representation learn-116

ing methods, Mai et al. (2020) and Hazarika et al.117

(2020) utilized adversarial learning to learn the118

common and specific features of each modality. 119

Zhang et al. (2023) designed an Adaptive Hyper- 120

modality Learning(AHL) module that, with the 121

aid of language features at various scales, learns 122

to create a representation capable of suppressing 123

irrelevancies and conflicts present in visual and au- 124

dio features. For inter-modality fusion methods, 125

Zadeh et al. (2017) proposed a tensor fusion net- 126

work method to effectively capture and analyze the 127

interactions between different modalities by com- 128

puting the cartesian product. Feng et al. (2024) 129

proposed a dynamic attention fusion method based 130

on the contribution of each modality. Unlike the 131

previous works, we extract more detailed represen- 132

tation information within modalities by harvesting 133

with refinement. 134

2.2 Contrastive Learning 135

Contrastive learning learns discriminative repre- 136

sentations by pulling positive pairs closer while 137

pushing away negative pairs. Recent researches on 138

contrastive learning in multimodal sentiment anal- 139

ysis are mainly focused on two aspects: supervised 140

contrastive learning(Zha et al., 2023; Mai et al., 141

2022; Yang et al., 2024; Khosla et al., 2020) and 142

self-supervised contrastive learning(Akbari et al., 143

2021; Chen et al., 2020; He et al., 2020). The 144

core difference between them is whether to use la- 145

bel information to construct positive and negative 146

sample pairs. For example,Chen et al. (2020) pro- 147

posed a self-supervised contrastive learning frame- 148

work, SimCLR, which learns representations by 149

maximizing agreement between augmented views 150

of the same image. Khosla et al. (2020) intro- 151

duced a supervised contrastive loss, which exploits 152

the similarity of label information to maximize 153

the consistency of samples in the same class. In- 154

spired by Yang et al. (2024), we propose a dynamic 155

contrastive learning mechanism that aligns cross- 156

modal features based on the sentiment intensity 157

levels, significantly improving fine-grained emo- 158

tion differentiation compared to traditional binary 159

polarity-based approaches. 160

3 Methodology 161

3.1 Overall Architecture 162

As shown in Figure 2, the KHaR framework first ex- 163

tracts unimodal features from raw video, text, and 164

audio inputs. An adapter and encoder jointly learn 165

modality-specific representations enriched with af- 166

fective knowledge. A MoE module then dynami- 167
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Figure 2: The overall architecture of KHaR. The blue, pink and purple modules represent the relevant operations of
vision, text and audio.

cally selects domain-specific experts(each of which168

is an MLP)to compress and refine critical features.169

To capture emotional differences across modalities,170

a dynamic contrastive learning mechanism adjusts171

the similarity distribution accordingly. Finally, an172

information bottleneck module constrains the fu-173

sion process by filtering out irrelevant information174

while preserving sentiment-relevant cues.175

3.2 Problem Definition176

MSA task typically processes visual, textual, and177

acoustic data streams as input features. The se-178

quences of three modalities are represented as179

triplet (Iv, It, Ia), which include Iv ∈ RTv×dv ,180

It ∈ RTt×dt , and Ia ∈ RTa×da , where Tm,m ∈181

{v, t, a} is the corresponding modal sequence182

length, dm represents the vector dimension. Our183

main task is to accurately predict the sentiment184

intensity through feature extraction and fusion.185

3.3 Knowledge of Harvest186

In order to harvest a large amount of knowledge, we187

use encoders and adapters to encode each modal-188

ity input Im∈{v,t,a}, and obtain two types of repre-189

sentations: a comprehensive-level representation190

Om ∈ RTm×dm and the knowledge-enhanced af-191

fective representations Am ∈ RTm×dm .192

Comprehensive-level Representation. To ob-193

tain hierarchical semantic features and a solid foun- 194

dation for subsequent sentiment-aware knowledge 195

injection via the adapter, we extract comprehensive- 196

level representations Om from each modality m. 197

For text input It, we employ a pretrained BERT 198

encoder, while for visual and audio inputs Iv and 199

Ia, we use modality-specific stacked Transformer 200

encoders (Vaswani et al., 2017): 201

Om, Hm = Encoderm(Im; θencoder
m ) (1) 202

where Om denotes the final output of the en- 203

coder, serving as the comprehensive-level repre- 204

sentation, and Hm represents the intermediate hid- 205

den states that capture modality-specific general or 206

commonsense information. 207

Knowledge-Enhanced Affective Representa- 208

tion. To obtain richer affective feature information, 209

we introduce external Adapter modules in the en- 210

coder layers to inject affective knowledge into the 211

modality-specific representations. 212

As illustrated in Figure 3, we insert stacked 213

Adapter blocks into the encoder architecture of 214

visual, text, and audio modalities to construct the 215

knowledge-enhanced affective representation Am: 216

Am = Adapterm(Im, Hm; θadapter
m ) ∈ RTm×dm

(2) 217

where θ
adapter
m denotes the pretrained parameters 218

of the Adapter module corresponding to modality. 219
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Figure 3: The architecture of BERT and Transformer
encoders, Adapters, and their interconnections.

Through this design,we combine the above two220

representations to obtain the knowledge-enhanced221

representation Xm:222

Xm = [Am;Hm] ∈ RTm×2dm (3)223

3.4 Knowledge Refinement224

To achieve fine-grained processing of widely har-225

vested multimodal knowledge, KHaR adopts a226

modality-specific MoE layer, where each expert is227

an MLP network optimized for discriminative sub-228

features. Gated network mechanisms dynamically229

activate specialized experts, for example, in text,230

different experts may focus on sentiment phrases,231

negation, or syntactic structures; In the video, ex-232

perts locate local cues such as microexpressions233

or lip movements; While in audio, pitch change234

experts or spectrum pattern experts are selectively235

involved. This architecture ensures that only the236

most relevant experts deal with the nuances of a237

particular pattern, allowing the model to extract238

knowledge with high accuracy from a wide and239

noisy feature space.240

Specifically, for each modality m, we construct241

an independent MoE layer comprising s expert242

networks {E1, E2, ..., Es} and a gating network G.243

All MoE layers across modalities share the same244

number of experts to ensure structural consistency.245

Given the unimodal feature Xm.The gating weights246

are computed as:247

G(Xm) = Softmax (KeepTopK(WgXm, k)) (4)248

where Wg ∈ Rd×s is a training weight parame-249

ter matrix, d is the modal feature dimension, and250

KeepTopK(·) denotes the sparse operation that re- 251

tains the top k gating weights for each input. The 252

final gated representation X̂m ∈ Rd is obtained by 253

weighted aggregation of expert outputs: 254

X̂m =
s∑

i=1

G(Xm)i · Ei(Xm) (5) 255

where G(Xm)i is the gating weight of the i-th 256

expert and Ei(Xm) is the output of the correspond- 257

ing expert network. 258

To mitigate expert collapse—where a few ex- 259

perts dominate the activation distribution—we in- 260

troduce a regularization term Lm
MoE(Xm) to encour- 261

age balanced expert utilization: 262

Lm
MoE(Xm) = ω·

(
CV(I(Xm))2 +CV(L(Xm))2

)
(6) 263

where CV(·) denotes the coefficient of variation, 264

I(·) measures the overall activation importance of 265

each expert across the batch, L(·) quantifies the 266

expert usage frequency, and ω is a hyperparameter 267

controlling the strength of the regularization. 268

3.5 Multimodal Fusion 269

In information theory, Mutual Information (MI) 270

is used to measure the degree of interdependence 271

between two random variables.Specifically, consid- 272

ering two variables x and y with marginal distribu- 273

tions p(x) and p(y) and joint distribution p(x, y), 274

MI is defined as the Kullback-Leibler (KL) diver- 275

gence between the product of the marginal and joint 276

distributions. The formal definition of MI is: 277

I(x; y) = DKL (p(x, y) ∥ p(x)p(y)) 278

=

∫
dx dy p(x, y) log

p(x, y)

p(x)p(y)
279

= E(x,y)∼p(x,y)

[
log

p(x, y)

p(x)p(y)

]
(7) 280

To extend this principle to multimodal scenar- 281

ios, we design a multimodal information bottle- 282

neck (MIB) module that refines the fused represen- 283

tation derived from independent single-modality 284

encoders. The MIB module is designed to: (1) 285

Redundancy filtering: suppress cross-modal redun- 286

dancy; (2) Discriminative preservation: preserve 287

discriminative cues necessary for prediction. 288

In the MIB module, we introduce the intermedi- 289

ate variable z and construct this objective function: 290

LMIB = I(y; z)− βI(x; z) (8) 291
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where I(·; ·) denotes MI, and the parameter292

β ≥ 0 determines the intensity of the compres-293

sion. Our approach focuses on maximizing the294

objective function.295

Since MI itself is difficult to calculate directly,296

we usually use variational methods to estimate it.297

Regarding the first term I(y; z), we introduce an298

auxiliary distribution q(y | z) to approximate the299

genuine posterior distribution p(y | z), thereby300

obtaining its lower bound:301

I(y; z) ≥
∫

dxdydzp(z | x)p(y | x)p(x) log q(y | z) (9)302

Similarly, for the second term I(x; z), we use303

the approximate distribution q(z | x) to estimate304

the genuine posterior distribution p(z | x), and305

obtain its upper bound form:306

I(x; z) ≤
∫

dxdzp(x)p(z | x) log p(z | x)
q(z)

(10)307

where q(z) is a variational approximation to the308

marginal distribution p(z) which is often fixed to a309

standard normal Gaussian distribution.Combining310

these two estimates, we obtain the variational lower311

bound of the objective function:312

LMIB = I(y; z)− βI(x; z) ≥ JMIB

= E [log q(y | z)− β ·KL (p(z | x) ∥ q(z))]
(11)313

where the expectation E is taken over (x, y) ∼314

p(x, y) and z ∼ p(z | x). JMIB is a variational315

lower bound of LMIB . See the Appendix C for the316

specific formula derivation. Finally, by maximizing317

the objective function LMIB , we equivalently min-318

imize the loss LMIB, which is defined as follows:319

LMIB = E [β ·KL (p(z | x) ∥ q(z))− log q(y | z)] (12)320

3.6 Dynamic Contrastive Learning Based on321

Sentiment Intensity322

Traditional contrastive learning methods (e.g., Sim-323

CLR or supervised contrastive learning) primarily324

focus on broad category-level separation, grouping325

all positive sentiment samples (sentiment intensity326

> 0) together and all negative ones (< 0) apart,327

while maximizing the distance between positive328

and negative representations. However, such meth-329

ods often ignore the continuity and nuance of senti-330

ment intensity, which may lead to semantic distor-331

tion. For example, traditional methods will classify332

samples with sentiment intensity +3 and sentiment333

intensity +0.1 as positive sample pairs, and sam-334

ples with sentiment intensity +0.1 and sentiment335

intensity -0.1 as negative sample pairs, depending 336

on whether the sentiment intensity is both positive 337

and negative, which leads us to ignore the more 338

detailed relationship between sentiment intensity. 339

As a result, the previous studies(Lin et al., 2022; 340

Yu et al., 2023) have achieved suboptimal results 341

on more difficult multi-classification tasks. 342

Inspired by the previous work(Yang et al., 2024), 343

we introduce a dynamic contrastive learning strat- 344

egy that adapts sample pairing based on their senti- 345

ment intensity differences, thereby preserving the 346

semantic continuity inherent to sentiment tasks. 347

Specifically, for any two samples i and j in the 348

batch, we define their emotion intensity gap as: 349

G(i, j) = |yi − yj |, j ∈ batch, j ̸= i (13) 350

where yi and yj denote the actual sentiment in- 351

tensity of sample i and j, respectively. Considering 352

a threshold κ(set to 0.4), sample pairs are catego- 353

rized as follows: 354

G(i, j) ≤ κ ⇒ (i, j) ∈ pos pairs

G(i, j) > κ ⇒ (i, j) ∈ neg pairs
(14) 355

Based on the above steps, for sample i, the inter- 356

modal positive and negative sample pairs can be 357

obtained as follows: 358

P i
inter ={(V i, T i), (V i, Ai), (T i, Ai)}∪

{(V i, T j), (V i, Aj), (T i, Aj),

(T i, V j), (Ai, V j), (Ai, T j)

|(i, j) ∈ pos pairs}

(15) 359

360
N i

inter ={(V i, T k), (V i, Ak), (T i, Ak),

(T i, V k), (Ai, V k), (Ai, T k)

|(i, k) ∈ neg pairs}
(16) 361

The intra-modal positive and negative sample 362

pairs can be obtained as follows: 363

P i
intra ={(V i, V j), (T i, T j), (Ai, Aj),

|(i, j) ∈ pos pairs}
(17) 364

365
N i

intra ={(V i, V k), (T i, T k), (Ai, Ak),

|(i, j) ∈ neg pairs}
(18) 366

Then, we can get the P i and N i as follows: 367

P i =P i
inter ∪ P i

intra (19) 368

N i =N i
inter ∪N i

intra (20) 369

For each anchor sample a, the model is trained 370

to minimize the distance to positive samples and 371
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Methods CH-SIMS CH-SIMSv2
MAE Corr Acc-5 Acc-3 Acc-2 F1 MAE Corr Acc-5 Acc-3 Acc-2 F1

TFN 0.432 0.591 39.30 65.12 78.38 78.62 0.303 0.707 52.55 72.21 80.14 80.14
LMF 0.441 0.576 40.53 64.68 77.77 77.88 0.367 0.557 47.79 64.90 74.18 73.88
MulT 0.453 0.564 37.94 64.77 78.56 79.66 0.291 0.738 54.81 73.19 80.68 80.73
BBFN∗ 0.430 0.564 40.92 61.05 78.12 77.88 0.300 0.708 53.29 71.47 78.53 78.41
Self-MM 0.425 0.595 41.53 65.47 80.04 80.44 0.311 0.695 52.77 72.61 79.69 79.76
CubeMLP∗ 0.419 0.593 41.79 65.86 77.68 77.59 0.334 0.648 52.90 71.95 78.53 78.53
CENet 0.471 0.534 33.92 62.58 77.90 77.53 0.310 0.699 53.04 73.10 79.56 79.63
TETFN 0.420 0.577 41.79 63.24 81.18 80.24 0.310 0.695 54.47 73.65 79.73 79.81
ALMT∗ 0.408 0.594 43.11 65.86 78.77 78.71 0.308 0.700 52.90 71.86 79.59 79.51
TMBL∗ 0.429 0.592 41.58 65.43 79.12 78.75 0.313 0.706 52.03 73.02 80.46 80.36
KHaR 0.408 0.622 45.30 65.43 79.43 79.52 0.287 0.735 56.29 73.89 80.85 80.78

Table 1: Results on CH-SIMS and CH-SIMSv2 datasets. The best result is in bold; ∗ means the results are from
(Feng et al., 2024), while other results are from (Mao et al., 2022).

Methods MOSI MOSEI
MAE Corr Acc-7 Acc-5 Acc-2 F1 MAE Corr Acc-7 Acc-5 Acc-2 F1

TFN† 0.947 0.673 34.46 - 77.99/79.08 77.95/79.11 0.572 0.714 51.60 - 78.50/81.89 78.96/81.74
LMF† 0.950 0.651 33.82 - 77.90/79.18 77.80/79.15 0.576 0.717 51.59 - 80.54/83.48 80.94/83.36
MAG-BERT 0.727 0.781 43.62 - 82.37/84.43 82.50/84.61 0.543 0.755 52.67 - 82.51/84.82 82.77/84.71
BBFN∗ 0.796 0.744 43.88 - 80.32/82.47 80.21/82.44 0.545 0.760 52.88 - 82.87/85.73 83.13/85.56
MMIM∗ 0.744 0.780 44.75 - 82.51/84.30 82.38/84.23 0.550 0.761 51.88 - 83.75/85.42 83.93/85.26
CubeMLP∗ 0.755 0.772 43.44 - 80.76/82.32 81.77/84.23 0.537 0.761 53.35 - 82.36/85.23 82.61/85.04
PS-Mixer 0.794 0.748 44.31 - 80.3/82.1 80.3/82.1 0.537 0.765 53.0 - 83.1/86.1 83.10/86.10
ALMT∗ 0.712 0.793 46.79 - 83.97/85.82 84.05/85.86 0.530 0.774 53.62 - 81.54/85.99 81.05/86.05
SFTTR 0.709 0.795 46.5 - 82.94/84.6 82.92/84.63 0.536 0.772 53.7 - 82.89/85.99 83.15/85.92
MulT† - - - 42.68 - / - - / - - - - 54.18 - / - - / -
MISA† - - - 47.08 - / - - / - - - - 53.63 - / - - / -
Self-MM† - - - 53.47 - / - - / - - - - 55.53 - / - - / -
KHaR 0.698 0.8 49.13 55.39 84.45/86.13 84.48/86.15 0.526 0.777 54.43 56.30 83.37/86.49 83.02/86.60

Table 2: Results on MOSI and MOSEI datasets. The best result is in bold; ∗ means the results are from (Feng et al.,
2024), † means the results are from (Mao et al., 2022).

maximize the distance to negative samples. The372

contrastive learning loss is formulated as:373

LCL = −Ei∈B log

( ∑
(a,p)∈P i δ(a, p)∑

(a,q)∈P i∪N i δ(a, q)

)
(21)374

where δ(a, p) = exp( sim(a,p)
τ ) ,which is used to375

meature the similarity between the anchor sample376

a and the positive sample p.377

3.7 Optimization Objective378

To achieve effective multimodal fusion and com-379

pact representation learning, the overall training380

objective of KHaR is formulated as the minimiza-381

tion of the following total loss function:382

L = LMoE + LMIB + λLCL + LTask (22)383

where λ is a hyperparameter that controls the384

strength of contrastive learning, LTask is to mini-385

mize the MAE between the predicted sentiment386

intensity ŷ and the ground truth y.387

4 Experiments 388

4.1 Datasets and Metrics 389

To fully evaluate the performance of KHaR, we em- 390

ploy four benchmark datasets: CMU-MOSI(Zadeh 391

et al., 2016), CMU-MOSEI(Zadeh et al., 2018), 392

CH-SIMS(Yu et al., 2020) and CH-SIMSV2(Liu 393

et al., 2022). Appendices A and B describe the de- 394

tails of these datasets and the experimental setup. 395

For a more comprehensive comparsion, we di- 396

vide our reporting results into regression and clas- 397

sification. For regression, we use the mean abso- 398

lute error (MAE) and Pearson correlation (Corr) 399

as evaluation metrics. For classification, we use 400

the multi-class accuracy and F1-score as evalua- 401

tion metrics. we report the accuracy of 2-class 402

(Acc-2), 3-class (Acc-3) and 5-class (Acc-5) for 403

CH-SIMS and CH-SIMSV2, and the accuracy of 2- 404

class (Acc-2), 5-class (Acc-5) and 7-class (Acc-7) 405

for MOSI and MOSEI. In addition, for MOSI and 406

MOSEI, the Acc-2 and F1 score are computed for 407

negative/positive(excluding 0) and negative/non- 408

negative(including 0) classes. 409
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4.2 Baselines410

We compare the KHaR framework with state-of-411

the-art multimodal sentiment analysis methods, in-412

cluding: TFN(Zadeh et al., 2017), LMF(Liu et al.,413

2018), MulT(Tsai et al., 2019), MISA(Hazarika414

et al., 2020), MAG-BERT(Rahman et al., 2020),415

Self-MM(Yu et al., 2021), MMIM(Han et al.,416

2021b), BBFN(Han et al., 2021a), CENet(Wang417

et al., 2022), CubeMLP(Sun et al., 2022), PS-418

Mixer(Lin et al., 2023), TETFN(Wang et al., 2023),419

ALMT(Zhang et al., 2023), TMBL(Huang et al.,420

2024), and SFTTR(Sun and Tian, 2025).421

4.3 Performance Comparison422

We evaluate KHaR on four benchmark datasets423

and compare it with state-of-the-art methods. The424

results are shown in Table 1 and Table 2.425

As shown in Table 1, for the Chinese datasets426

CH-SIMS and CH-SIMSv2, KHaR achieves the427

best results on most evaluation metrics. For ex-428

ample, on the CH-SIMSv2 dataset, compared with429

the MuLT model, KHaR achieves 1.37% improve-430

ment on the regression task MAE, and 2.7% im-431

provement on the multi-classification task Acc-5,432

indicating that KHaR can extract effective feature433

information on complex datasets and make more434

accurate actual predictions.435

For the English datasets MOSI and MOSEI,436

KHaR also achieves good experimental results. On437

the MOSI dataset, our model achieves the best re-438

sults on all evaluation metrics. Compared with the439

second best result, KHaR improves by 1.55% in440

MAE and 0.62% in Corr. It is worth noting that441

on the more difficult and more detailed classifica-442

tion task Acc-7, our model achieves a significant443

improvement with a relative improvement of 5%.444

Similarly, on the MOSEI dataset, we achieve a rela-445

tive improvement of 1.36% on the Acc-7 classifica-446

tion task, indicating that our model has a significant447

improvement in fine-grained sentim capture.448

4.4 Ablation Study and Analysis449

To validate the effectiveness of different compo-450

nents in our proposed KHaR model, we conduct451

comprehensive ablation studies on two benchmark452

datasets: CH-SIMS and MOSI. The evaluations453

cover the role of each modality, the impact of the454

MoE module, the contribution of contrastive learn-455

ing, and the effects of MIB strategies. All results456

are reported in terms of MAE, correlation, Acc-5457

for CH-SIMS and Acc-7 for MOSI.458

Methods CH-SIMS MOSI
MAE Corr Acc-5 MAE Corr Acc-7

Role of Each Modality
V+T 0.420 0.571 42.64 0.714 0.799 47.23
V+A 0.587 0.209 21.23 1.366 0.208 19.68
A+T 0.424 0.556 43.98 0.718 0.783 47.96
V+A+T 0.408 0.622 45.30 0.698 0.8 49.13

Role of the MoE
MLPm 0.425 0.567 42.01 0.724 0.783 46.79
ATTNm 0.415 0.589 41.36 0.746 0.775 46.06
CNNm 0.420 0.578 43.11 0.711 0.789 46.21

Role of Contrastive Learning
w/o CL 0.436 0.546 42.89 0.713 0.796 47.23

Role of Fusion
SUM 0.412 0.603 43.98 0.727 0.786 47.81
CON 0.425 0.585 41.79 0.717 0.792 47.52
ATTN 0.416 0.586 42.89 0.707 0.798 47.52
MUL 0.427 0.567 42.23 0.706 0.798 46.36

Table 3: Result of ablation experiments for different
components of KHaR on CH-SIMS and MOSI datasets.
V=vedio, T=text, A=audio. The best result is in bold.

4.4.1 Role of Modalities 459

We evaluate the contribution of each modality by 460

comparing different combinations: bi-modal (V+T, 461

V+A, A+T) versus tri-modal (V+A+T) inputs. As 462

shown in Table 3, the tri-modal setting consistently 463

achieves superior performance across all metrics, 464

confirming the complementary nature of visual, 465

acoustic, and textual information in affective under- 466

standing. In contrast, bi-modal configurations yield 467

suboptimal results, with V+A particularly under- 468

performing on MOSI, suggesting the insufficiency 469

of non-verbal cues in capturing nuanced sentiment 470

without textual grounding. 471

4.4.2 Role of the MoE 472

In order to verify the effectiveness of the MoE layer, 473

we use different feature extraction methods to re- 474

place the MoE layer for comparison. As shown 475

in Tabel 3, MLPm denotes a multilayer perceptron, 476

ATTNm adopts a standard attention mechanism, 477

and CNNm introduces convolutional operations for 478

feature extraction. Experimental results show that 479

replacing MoE layer with these methods leads to 480

performance degradation, which indicates that dy- 481

namic routing and modal-specific experts of MoE 482

layer are essential for capturing complex patterns 483

and handling different data distributions efficiently. 484

4.4.3 Role of Contrastive Learning 485

To evaluate the effectiveness of contrastive learn- 486

ing component, we present an ablation analysis in 487

Table 3, where “w/o CL” denotes the removal of 488

contrastive loss from the training objective. When 489

removing the contrastive learning module, we ob- 490
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serve consistent performance degradation across491

both SIMS and MOSI datasets, with the most pro-492

nounced drops occurring in the 5-class classifica-493

tion task on SIMS and the 7-class classification494

task on MOSI. This significant decrease demon-495

strates that the contrastive learning component ef-496

fectively captures subtle relationships between sen-497

timent intensities, enabling the model to better dis-498

tinguish closely-related sentiment categories. The499

results suggest that explicitly modeling intra-modal500

and inter-modal feature distributions through con-501

trastive learning is essential for maintaining dis-502

criminative power in complex sentiment identify503

scenarios, where traditional comtrastive learning504

approaches often fail to preserve these nuanced505

emotional relationships.506

4.4.4 Role of Fusion507

We compare MIB-based fusion strategy against sev-508

eral alternative fusion mechanisms. Among them,509

SUM represents the addition of different modal rep-510

resentations, CON represents the concatenation of511

different modal representations, ATTN represents512

the fusion using the attention mechanism, and MUL513

represents the multiplication of the representations514

of different modalities. The MIB fusion consis-515

tently achieves superior performance across most516

metrics, particularly on CH-SIMS. These results517

demonstrate that the information bottleneck encour-518

ages the extraction of task-relevant and compact519

representations by discarding redundant or noisy520

modality-specific features. This selective fusion521

mechanism proves more effective than naive aggre-522

gation strategies.523

4.4.5 Visualizating Representations524

In this section, we utilize t-SNE(Van der Maaten525

and Hinton, 2008) for a more intuitive visual526

presentation of the multimodal representation, as527

shown in Figure 4. Figure 4a shows the representa-528

tion generated by KHaR, Figure 4b shows the repre-529

sentation using the MLP layers to replace the MoE530

layer, Figure 4c shows the representation without531

contrastive learning, and Figure 4d shows the rep-532

resentation without MIB. When the MLP layer is533

used to replace the MoE layer, it can be obviously534

seen that the representation distribution of simi-535

lar samples is loose, indicating that the MoE layer536

can better capture the specific information within537

the modality and enhance the discrimination of the538

representation. The sample representation distri-539

bution without contrastive learning is mixed, the540

(a) KHaR Embeddings (b) w/o MoE

(c) w/o contrastive learning (d) w/o MIB

Figure 4: Visualization of multimodal representations
on CMU-MOSI. Where ’0’ and ’1’ represent positive
and negative sentiment respectively.

overlap area is large, and the lack of clear boundary, 541

which indicates that contrastive learning makes dif- 542

ferent categories easier to distinguish after dimen- 543

sion reduction by bringing similar samples closer 544

and pushing away heterogeneous samples. Samples 545

without MIB have a more chaotic representation 546

distribution with local small clusters, indicating 547

poor feature consistency, and the model may over- 548

fit noise or local patterns. It shows that MIB can 549

better filter noise information while retaining the 550

most relevant information, and improve the gener- 551

alization ability and robustness of the model. 552

5 Conclusion 553

In this paper, we propose a novel multimodal sen- 554

timent analysis framework KHaR, which is the 555

first to extract the fine-grained information within a 556

modality by using two steps of knowledge harvest- 557

ing and refinement. This design helps the model to 558

better capture the detailed information of a specific 559

modality before fusion. Moreover, we introduce 560

a dynamic contrastive mechanism based on senti- 561

ment intensity, enabling fine-grained and semanti- 562

cally aligned cross-modal representations. Exten- 563

sive experiments across four benchmark datasets 564

show that KHaR consistently outperforms state-of- 565

the-art methods, achieving superior results in both 566

accuracy and robustness. Ablation studies further 567

highlight the indispensable role of each component. 568

These findings position KHaR as one of the most 569

promising and effective solutions in the field. 570
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Limitations571

Although KHaR achieves strong performance on572

multiple datasets, it still has some limitations.573

Firstly, we can consider using domain adapters and574

other external domain knowledge to further inject575

more relevant knowledge into the model. Secondly,576

we mainly strengthen the model’s learning of fine577

knowledge. In the future, we can consider how to578

better integrate coarse-grained knowledge and fine579

knowledge for multimodal sentiment analysis.580
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A Datasets799

CMU-MOSI is a multimodal dataset, which in-800

cludes 3 modalities: text, visual and acoustic. The801

data was collected from 93 movie review videos802

on Youtube. The videos were edited into 2199803

segments. Each segment is annotated with senti-804

ment intensity in the range [-3,3]. CMU-MOSEI805

is similar to CMU-MOSI, but on a larger scale. It806

contains 23,453 annotated video clips from online807

video sites covering 250 different topics and 1000808

different speakers. Samples in CMU-MOSEI are809

also labeled with sentiment intensity in the range810

[-3,3]. The SIMS dataset is a Chinese multimodal811

sentiment analysis dataset, which provides detailed812

annotations for each modality. The dataset includes813

2,281 selected video clips from a variety of movies,814

TV series, and variety shows, and each sample is815

assigned a sentiment score ranging from -1 (ex-816

tremely negative) to 1 (extremely positive). The817

CH-SIMS v2.0 dataset is an extension and enhance-818

ment of the CH-SIMS. The dataset collects 4402819

labeled supervised data and 10161 unlabeled raw820

video clips from 11 different scenes. The sentiment821

intensity of each sample is between -1 and 1. The822

partition of the above dataset is shown in Tabel 4.823

Dataset #Train #Valid #Test #Total Language
CH-SIMS 1368 456 457 2281 Chinese
CH-SIMSv2 2722 647 1034 4403 Chinese
MOSI 1284 229 686 2199 English
MOSEI 16326 1871 4659 22856 English

Table 4: The statistics of CH-SIMS, CH-SIMSv2, MOSI
and MOSEI.

B Experimental Setup824

Here, we will mainly present the specific imple-825

mentation of our experimental setup. All experi-826

ments were conducted on high performance com-827

puting nodes equipped with NVIDIA RTX 4090D828

GPU. On the Chinese datasets SIMS and SIMSv2,829

we adopt bert-base-chinese (12-layer, 768-hidden-830

dim) to initialize the model, while on the English831

datasets MOSI and MOSEI, we adopt bert-base-832

uncased as the baseline architecture. Both models833

are optimized using AdamW, including a linear834

warmup schedule and weight decay regularization. 835

The main hyperparameters are shown in Table 5. 836

Descriptions CH-SIMS CH-SIMSv2 MOSI MOSEI
Epochs 70 70 70 70
Learning Rate 3e-5 3e-5 3e-5 1e-5
Batch Size 64 64 64 36
Num of Experts 3 3 3 3
λ 1 1 0.05 0.45
Modal Dimension dm 128 128 128 256
Fine-grained Dimension 50 50 50 50
Optimizer AdamW AdamW AdamW AdamW

Table 5: Hyperparameter Settings for different datasets.

C Derivation of MIB 837

The pipeline of the MIB is in Algorithm 1, and de- 838

tails of its formula derivation are shown as follows. 839

Algorithm 1 Multimodal Information Bottleneck
Input: Unimodal representations
Xm, m ∈ {v, t, a}, hyper-parameter β
Output: Prediction ŷi

Initialize unimodal networks Fm and fusion
network F f ;
while not done do

Sample a batch of utterances
for each utterance i do

for each m (m ∈ {v, t, a}) do
xm
i = Fm(Xm

i ; θm)
end for
xi = F f (xl

i,x
a
i ,x

v
i ; θf )

µzi ,Σzi = µ(xi; θµ),Σ(xi; θΣ)
zi = µzi +Σzi × ϵ
ŷi = D(zi; θd)

end for
Compute JMIB as in Eq. 11

end while

We design the encoder p(z | x) to be a Gaus- 840

sian distribution whose mean and covariance are 841

parameterized by a neural network: 842

p(z | x) = N
(
µ(x; θµ),Σ(x; θΣ)

)
= N (µz,Σz)

(23) 843

where µ and Σ, parameterized respectively by 844

θµ and θΣ, are neural networks designed to estimate 845

the mean vector µz and covariance matrix Σz of 846

the Gaussian latent distribution. 847

Since directly sampling random variables is not 848

conducive to gradient propagation, we use the repa- 849

rameterization technique to transform the sampling 850

process into z: 851

z = µz +Σz × ϵ (24) 852
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where ϵ ∼ N (0, I) denotes a sample from the853

standard multivariate normal distribution, and I854

represents an identity matrix with all diagonal ele-855

ments equal to 1.856

This treatment transfers the randomness to ϵ,857

allowing µz and Σz to be explicitly optimized via858

gradients. Note that here we assume that each859

element in the vector z is independent from each860

other.For our task, we formulate q(y | z) as:861

q(y | z) = e−||y−D(z;θd)||1+C862

log q(y | z) = −||y −D(z; θd)||1 + C863

= −||y − ŷ||1 + C (25)864

where D denotes a decoder parameterized by θd,865

and ŷ is the model prediction. Here, maximizing866

log q(y | z) is equivalent to minimizing the mean867

absolute error (MAE) between the predicted ŷ and868

the ground truth y.869

In practice, MAE is frequently used to maximize870

the MI between the target and the latent representa-871

tion z and the approximated marginal distribution872

of the multimodal representation z is often assumed873

to be a standard Gaussian distribution:874

q(z) ∼ N (0, I) (26)875

Through combining Eq.23 and Eq.26, the KL di-876

vergence term KL
(
p(z |x)||q(z)

)
can be evaluated877

as follows:878

KL
(
p(z |x)||q(z)

)
=KL

(
N (µ(x; θµ),Σ(x; θΣ))||N (0, I)

)
=KL

(
N (µz,Σz)||N (0, I)

)
(27)879

where this formulation relies on the assumption880

that the reparameterizations of both p(z | x) and881

q(z) are chosen such that the KL divergence admits882

a closed-form analytical expression.883

To approximate the integral over x, z and y, we884

employ Monte Carlo sampling, which allows the885

overall objective JMIB (Eq. 11) to be rewritten in886

the following simplified form:887

JMIB =
1

n

n∑
i=1

[
Eϵ∼p(ϵ)Li − β · KL (N (µzi ,Σzi) ∥N (0, I))

]
(28)888

where n refers to the number of samples (i.e., the889

batch size), and the index i denotes the individual890

data point in the sampled batch.891

Maximizing this objective can maximize the dis-892

crimination ability of the target variable and effec-893

tively compress the redundant information in the894

multimodal representation x.895
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