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Abstract

Fast and reliable motion planning is essential for robots with many degrees of freedom in com-
plex, dynamic environments. Diffusion models offer a promising alternative to classical planners
by learning informative trajectory priors. In current imitation-learning paradigms, these models are
kept lightweight—lacking encoders—and trained to overfit to a single environment. As a result,
adaptation relies solely on diffusion guidance, which fails under large execution-time changes or
varying initializations. In addition, current approaches ignore the underlying topology of the state
space thus requiring heavy guidance that dominates planning time and reduces efficiency dramati-
cally. We introduce STRIiDE, a novel diffusion motion planner that operates directly on the state
space manifold and learns equivariant trajectory priors. Our approach eliminates the need for
retraining under rotations around the gravity axis and enables faster convergence using Riemannian
(rather than ambient) guidance. STRiDE delivers efficient, robust, and generalizable planning,
overcoming key limitations of existing approaches. Supplementary Material.

Keywords: Equivariance, Diffusion Models, Motion Planning, State Space Manifold, Riemannian
Guidance, Robot Manipulation

1. Introduction

Motion planning is a crucial component of autonomous systems. The goal is to find smooth, feasible
trajectories between given states while avoiding obstacles and respecting kinematic constraints. The
problem is notoriously challenging for robots with many degrees of freedom in environments with
intricate geometries and dynamic obstacles. Classical methods like sampling-based (Kavraki et al.,
1996; Lavalle, 1998; Kuffner and LaValle, 2000; Gammell et al., 2014) and optimization-based
approaches (Ratliff et al., 2009; Toussaint, 2009; Kalakrishnan et al., 2011) face issues such as
computational intensity, non-smooth trajectories, and reliance on good initialization.

To overcome these limitations deep learning priors learned from previously successful plans
have been proposed (Ichter et al., 2018; Wang et al., 2020; Bency et al., 2019) guiding optimization
towards more promising regions and reducing planning time. Diffusion and score-based models
(Sohl-Dickstein et al., 2015; Song and Ermon, 2019) have shown promise in accelerating motion
planning (Janner et al., 2022b; Carvalho et al., 2023) by integrating efficient sampling from the
diffusion prior with motion optimization costs through guidance (Dhariwal and Nichol, 2021).
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Figure 1: Riemannian Trajectory Diffusion Model. (Top; Left < Right) Multi-scale Rieman-
nian Diffusion is applied at the state-space trajectory-level during training. (Top; Left — Right)
During Riemannian Denoising pg (7 ~!|7?) random trajectories are sampled on the state-space man-
ifold, anchored to start and goal states and provided to the network that iteratively predicts the noise
on the state space until it creates feasible trajectories (e.g. avoid C-space obstacle in the figure).
(Bot; Left — Right) Denoising is interleaved with on-manifold guidance via Riemannian gradient
descent (V .-1.J) (e.g. avoiding novel object in the figure) resulting in sampled trajectories that
are both kinematically-feasible (high prior) and cost-minimizing (high-likelihood). The blue and
orange distributions show alternative paths between start and goal states for a continuous joint on
which the diffusion model is trained (see Sec. 3.3). For a revolute joint, the branch that goes through
joint limits will be discarded (Bot; Right) .

Without encoders, diffusion-guidance is the only means to adapt the distributions to local changes
of the environment but it cannot handle global changes that happen during execution or at initializa-
tion and full retraining is required. Moreover, current approaches largely ignore the topology of the
state space which leads to ineffective training and heavier guidance that dominates the computation
cost and reduces planning efficiency. To overcome these challenges, we propose STRiDE, a novel
diffusion-based motion planning algorithm that operates directly on the state space manifold and
produces equivariant trajectory distributions. Our contributions are two-fold:

1. State Space Diffusion Planning and Optimization: Our model accounts for the complex topol-
ogy of the state space of a kinematic chain during all of the stages sampling, denoising and guid-
ance by operating on the embedded hypertorus instead of the euclidean space. This leads to stable
training and faster inference with less guidance steps which was a bottleneck of previous methods.
Operating at the trajectory-level, we have to account for continuity between the states which moti-
vates our representation in an embedding space instead of the quotient representation. We perform
on-manifold motion optimization via Riemannian gradient descent, which has not been explored for
diffusion models on non-flat spaces to our knowledge. The steps are visualized in Fig.1.

2. Equivariance via Positive-Negative Embedding: As in previous approaches we keep the diffu-
sion model lightweight and avoid large encoders of the environment. We propose to achieve gener-
alization via planning on a learned canonicalized environment that remains invariant under rotations
around the base. To account for symmetry-breaking effects due to joint limits we create an equiv-
ariant pair of trajectories, embed both on the same diffusion prior and discard the infeasible branch
during inference after decanonicalization. We perform experiments in cluttered environments and
pick-and-place tasks to demonstrate the efficiency of our planner over previous approaches.

2. Related Work

Diffusion Models for Planning. In Janner et al. (2022a), diffusion models were combined with
motion optimization via guidance for long-horizon trajectory generation. The idea is to predict all
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timesteps simultaneously by iteratively refining sampled trajectories. MPD (Carvalho et al., 2023)
built on this idea introducing guidance costs for manipulation. Recent surveys categorize current
methods in motion planning (Ubukata et al., 2024) and beyond (Urain et al., 2024). MPD has been
used for long range composition tasks conditioned on visual and language input (Liang et al., 2024)
as well as in hierarchical control (Chen et al., 2024).

Diffusion models on Manifolds. Generalizating diffusion or score-based models on riemannian
manifolds (Bortoli et al., 2022; Huang et al., 2022; Lou et al., 2023) has spiked interest recently.
Jing et al. (2022) design a diffusion model in the intrinsic representation of the torus for conformal
molecule generation. Our diffusion model, on the other hand, operates on the embedded hypertorus
to account for trajectory continuity. (Leach et al., 2022) performs SO(3) denoising for rotational
alignment. Manifold preserving guidance for diffusion models is only discussed for linear sub-
spaces of the data distribution (He et al., 2024; Chang et al., 2023). We perform guidance on the
state space manifold via a Riemannian Gradient descent on the hypertorus.

Equivariance. Geometric deep learning (Bronstein et al., 2021) provides strong structural induc-
tive biases to deep neural networks via the design of constrained layers (Cohen and Welling, 2016;
Worrall et al., 2016; Weiler et al., 2018; Thomas et al., 2018), or learned canonicalization (Kaba
et al., 2022). It has been successfully applied to a number of applications in robotics ranging from
Depth estimation (Kumar et al., 2022), 3d Reconstruction (Chatzipantazis et al., 2023), Pose es-
timation (Howell et al., 2023), 3d Registration (Pertigkiozoglou et al., 2024a), Inertial odometry
(Jayanth et al., 2024), etc. In policy learning (Yang et al., 2023; Wang et al., 2024a), equivariance
provides a solution to the problem of learning from few demonstrations. The learned policies are
in the gripper space and defer motion planning to a classical algorithm which needs to solve the
hard problem of inverse kinematics while avoiding obstacles (See Experiments). Equivariance has
been successful in learning grasp poses for manipulation (Simeonov et al., 2022; Hu et al., 2024;
Choi and Figueroa, 2024). Urain et al. (2023) uses equivariant diffusion models on SE(3) to learn
distributions over poses; motion planning is deferred to guidance. Reversely, we learn trajectories in
the state space and use the end-effector poses for guidance. EDGI (Brehmer et al., 2023) proposes
a general pipeline for problems that admit SE(3) symmetry for diffusion-based motion planning.
Our task is not natively in that framework; we work directly on the state space of the manipulator
and consider SO(2) symmetry. Moreover, we perform the diffusion, denoising and guidance on the
state space manifold instead of the Euclidean space, which is crucial for trajectory-level diffusion.
Instead of conditioning the model to high-dimensional raw observations we achieve equivariance
via a novel positive-negative embedding framework. Symmetry-breaking effects have led to active
research (Finzi et al., 2021; Romero and Lohit, 2022) by designing parametric layers that relax the
equivariant constraints (Wang et al., 2024b; Pertigkiozoglou et al., 2024b). Leveraging diffusion
models to handle symmetry-breaking effects is novel and can impact these fields too.

3. Method

In this section we introduce our method - STRiDE: State-space Riemannian Diffusion for Equivari-
ant Planning. After formulating the problem we discuss how to perform diffusion, denoising and
guidance on the state space manifold and how to incorporate equivariance in the system.

3.1. Problem Formulation and Notation

Let £ = {01, - ,Ok} describe an environment with K collidable objects represented as 3d point
clouds i.e. O; = {p; € R®i € [K;]}. Let C be the configuration space of the robot, q :=
(61,---,0,) € C a configuration consisting of n 1-DoF joints and S the state space of the robot
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ie. s:= [g,4] € S including the joint velocities ¢ € T,C. Given two points from the state space
Sstart, Sgoal OUr goal is to find a smooth, collision-free trajectory represented as 7' ordered waypoints
T = (81,82, ,s7) With 81 = Sgart, ST = Sg0al TESpecting physical, kinematic constraints and
other user defined costs encoded in the functional J : ST — R,. We consider kinematic motion
planning on the state space (which can account for non-holonomic constraints) and assume that a
low-level controller will execute the state transition.

In the supplementary material, we include analytical notation where we distinguish between
SO(2) = {Ry € R¥*2?|RI Ry = I,det(Ry) = 1,0 € [—m,m)}, the parametrization 6 € [—7,7) C
R and the embedding S* = {(cosf,sinf)|§ € [~m,7)} C R? and explain the isomorphisms,
we overload the definitions of the exponential map exp : s0(2) — SO(2) by identifying the Lie
algebra 50(2) with the parametrization space, we define Ezp : R — S, Exp(0) = (cos,sin )
and appropriately restrict it to define its inverse Log : S — R, Log(z,y) = atan2(y,z). We
distinguish 1) the planning problem time ¢ € T, which we use as subscript and 2) the diffusion
process time i € N which we use as superscript i.e. 7% = (s!);er is the i-times diffused trajectory
from 7 = 7°; the denoised trajectory. We denote by T4, T4 the configuration and velocity parts of
the state space trajectory. We also provide preliminaries on diffusion models for motion planning.

3.2. State Space Riemannian Diffusion for Motion Planning

In this section, we develop our method. We focus on a state space of n revolute joints, since
it has non-trivial topology but our method extends seamlessly to prismatic joints. In our case,
S C TT"™ ~ T™ x R™. One option to solve the wrap-around problem is to operate directly on the
quotient space R /27Z. However, this (mod) representation creates discontinuous target trajectories
for the neural network that operates in Euclidean space and makes the denoising particularly hard.
To solve both the wrap-around and the trajectory continuity problem, we propose a diffusion model
that operates on the embedding of the state space. We embed each degree of freedom of the hyper-
torus T" separately and work on the product manifold (S1)™ C R2" so that the representation re-
mains disentangled. The states are represented in this embedding space as:5 = {(cos 0, sin by, - -,
cos Oy, sinby,), (w1, -+ ,wy)}, le. T € REn+0)T | Since we still use the intrinsic coordinates (8’s)
and not project to unit circles in R?, a description in SO(2)" is more natural due to the connection
with the lie algebra s0(2)™ which we will use to discuss the three stages of diffusion, denoising,
guidance next. When appropriate we leverage the isomorphism S' ~ SO(2) to reduce the repre-
sentation. In S! the variables are denoted as 7, in SO(2) as 7 and in the lie algebra as 7.

3.2.1. RIEMANNIAN DIFFUSION AND DENOISING

Inspired by Leach et al. (2022) who perform diffusion on SO(3) using the isotropic normal we de-
sign an SO(2) analogue, which we name ZGgo (2 (R, 02) and is defined as the pushforward of the
gaussian measure through the exponential map i.e. I’LIgSO(2)(RuvU2)<A) = Aoy (log A), A C
SO(2). Since ZG g0 (2)(Ry, o) is contained in a 1d-submanifold of R?*? it is not absolutely con-
tinuous w.r.t. the Lebesque measure, thus it does not have a density. But we get exact samples
R ~ IGs0(2)(Ru,0?) via 0 ~ N(0; j1,0%), R = exp(f). We can also relate it to a corresponding
density of an intrinsic parametrization of SO(2), such as the lie algebra so(2) which reveals the
connection with the representation of Jing et al. (2022) at least in the diffusion stage.

Lemma 1 If R ~ ZG 50(2)(Ry, 0°) then 0 := log(R) ~ WN (0; pmod2w, o), where WN (0; ., 0*)

is the wrapped Gaussian with location,uncertainty parameters | € [—7, ), o > 0 and density:

—p—2mk)?
WN (0; i, 0?) = \/Qi? > or . eXp (—(0“2%16)), 0 e[—m,m).




STRIDE: STATE-SPACE RIEMANNIAN DIFFUSION FOR EQUIVARIANT PLANNING

We remind that our values are still on SO(2) and not [—, 7). There are some qualitative differences
between WA (i, 02) and ZGgo2) (R, 0?). For example, while in [—m, ) the wrapped normal
does not necessarily have mean proportional to ;+ we can use the circular mean (Mardia and Jupp,
2009) E[cos§ + isinf] = e~ (cos  + i sin p) to prove that ZG 50(2)(Ry, o) indeed has a mean
proportional to R,;: Ep._7g. 2 (Ru0?) [R] = e R,,. Our representation has deep connections to
directional statistics (Mardia and Jupp, 2009).

Standard diffusion models perform efficient sampling of the forward process by performing
multiscale diffusion in a single step. We can show that pzg (2 (R,02) is closed under (measure)

convolutions. It is known that ¢; ~ WA (u1,07) and ¢o ~ WAN (u2,03) then ¢ = (¢1 +
#2)mod2w ~ WN ((u1 + p2)mod2w, 03 + o2) (Jammalamadaka et al., 2001). From this us-
ing the exponential map it is straightforward to show that if Ry /5 ~ ZG50(2)(R,.,1/2, af /2) then

R1Ry ~ IG50(2)(Ru1Ry2, 01 + 03). Moreover, the wrapped Gaussian fulfills a central limit the-
orem on the circle (and limiting distribution of random walks) which can be extended to ZG g (2)
on SO(2) due to closure of measure (Parthasarathy, 1964). For the n-fold product measure we over-
load the notation: R ~ ZG SO(Q)TL(RM, o), where now R, R,,, o are n-dimensional lists. Whenever
an operation (like multiplication) is between lists it is assumed to be pointwise.

Diffusion: Suppose the expert planner P(Sstqrt; Sgoal, 1s €) is queried to provide trajectories 7
(s9)serr) with sY € [~m, 7)™ x R™ which we gather in a dataset D. Then, let 70 ~ ¢(7°/€).
Using the closure under convolutions we can perform forward sampling in one step. For i € [N],
R ~ ZIGgo (I, (1—a;)) then for the conﬁguration part of the trajectory 7, we create the noisy
trajectories as RT’ = RS exp(y/@)). Then, 7 < (RTé, Tq) where we use SO(2) ~ S! for the
configuration space while for the angular velocities we use standard Euclidean diffusion.
Denoising: We focus on the configuration space and follow Leach et al. (2022). Since SO(2) is

compact we sample uniformly (as § € U[—7,7), R = exp0): 7N ~ U, so(2)»T- We parametrize

0:

the inverse process as py (F7i 7t i) = ZGs0(2) nT(R (Rr ,z,w) Bi), where R, (%7, i;w) =
exp <7Va1(faal) log ) exp ( Y0 Jog Ry, (7 ')) and "y, (F77, 1) = exp (\/%,7 log™ T")-
exp <—FLogew(T z)) . The network is €, : (S1)" x R x [N] — ()" x R™ and €%, €},
the configuration and velocity parts. Here we leverage SO(2) ~ S* to reduce the input size. The
network predicts the noise on S' which is easier than predicting in SO(2) since the former only
needs a normalization, while the later has orthogonality and determinant constraints that need to be
satisfied too. Note that if we move between the € and (cos ¢, sin €) we do not actually need to nor-
malize the output since this is done by arctan. Our representation imposes continuity in the input
of the network for continuous trajectories. A quotient representation that uses mod27 to represent
the input trajectories would not be continuous since the operator is not continuous.

Training Loss: £(w) = E [d (Exp(\/i log R), et (74, z)) + 1|9 — €t (7%,4)||3| where the ex-
pectation is over (i,€,7°) ~ U(1,N) x N(0,1I) x q(r°|€) and R¢|i ~ ZGso@ynr (I, V1 — a).
7! is described in the diffusion step and d : T™ x T™ — R, is the chordal distance on torus here.

3.2.2. RIEMANNIAN GUIDANCE

We observe that the update step in MPD during postenor sampling can be conceived as a two-stage
process: 1. deterministic denoising: 71 < 11, (7%,4) and 2. (noisy) gradient descent (around
JNy: 77l il o V(7Y + Bizyz ~ N(0,1). Thus, guidance tries to minimize
the cost term J*~! in a neighborhood around the denoised sample 7. However, this optimization
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Figure 2: Equivariant Priors: Given an environment £, we first canonicalize it with a learned
equivariant frame (I2,,, R, in the figure), together with the start and goal states. We perform diffu-
sion on the canonical triplet (£, s, ¢) and then decanonicalize the resulting trajectories by applying
the same frame reversely. Following the arrows one can see that this is the desired output as if we
applied the diffusion on one of {(R,&, Rys, Rn9), (Ry,E, Rys, Ryg)} (depending on whether the
sampled trajectory is orange or blue). In the figure you can see the joint limits (at —7, 7 for sim-
plicity). Only one branch of trajectories is feasible for a specific rotation of the environment. Both
can be sampled in the diffusion model, which is trained on the canonical environment (middle), but
the one that goes through the joint limits will be discarded after de-canonicalization.

uses gradient descent in the Euclidean space which requires clipping or small gradient steps to
converge which is inefficient. First we note that costs are expressed on the trajectories which live
on the state space manifold and not in the Euclidean space. Then, ¢(f) with § € [—m, ) can be
written in SO(2) as ¢(0) = c(log(Ry)) = (colog)(Ry). By operating on the manifold we can also
introduce more useful metrics that have been well studied on SO(2) (Chirikjian and Kyatkin, 2016).
For example, depending on the requirements we can either optimize the cost that accounts for the
longer arclength d(R1, R2) = || log R1 — log Ra||2 as before, or costs that minimize the geodesic
distance d(R1, R2) = || log(RT Ry)||. To optimize J : SO(2)" — R, we will perform Riemannian
gradient descent (RGD) (Boumal, 2023) on SO(2)™. At iteration k, given gradient step o, RGD
updates the current state as Ry11 = Ry exp(—akR,jVJ (Ry)), where multiplication between lists
is pointwise. We use the uniformity of tangent spaces on lie groups to simplify to an expression
amenable to automatic differentiation. The proof is included in Supplementary Material.

Lemma 2 The RGD update on SO(2)" can be written: Ry1 = Ry, exp (—aVoJ (Ri exp(0))|o=0) -
All trajectories are on the manifold after each guidance step. These are subsequently given as input
to the network for the next denoising step on the manifold. Reversely, denoising provides RGD with
a trajectory on the manifold to initialize the updates. We visualize all steps in Fig. 1. We use similar
costs as in Carvalho et al. (2023) but reparametrized on the manifold as explained above.

3.3. Equivariant Motion Planning by Positive-Negative Embedding

Planning on the state space removes the representation redundancy by constraining the learning
on the actual degrees of freedom. Another form of redundancy is the selection of the coordinate
system. Equivalent trajectories arise by rotating the environment and start and goal states around
the base, and we can exploit this inductive bias to learn a more generalizable prior. As in previous
works (Carvalho et al., 2023) we avoid conditioning the diffusion model on the environment to keep
it lightweight. In Carvalho et al. (2023), the only means to adapt the trajectories to the environment
is diffusion-guidance, which has been successful for local changes but fails for large changes that
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can happen during execution or from different initialization. In those cases, full retraining might
be required! To adapt the planner to large changes and exploit trajectory symmetry, while staying
lightweight we propose to learn to plan on a transformed space and subsequently deploy the plan
on the original space. This includes mapping to a learned canonical environment w.r.t. rotations
around the base and relaxing constraints on the state-space to deal with symmetry-breaking due
to joint limits, but utilizing the probabilistic framework to keep alternative trajectories.

Learning a Canonical Environment: We propose to learn an equivariant frame and learn on
the warped environment after applying this frame. Moreover, the frame has to equivary smoothly
with the rotations of the environment around the base. For example, the PCA eigenvectors on the
point cloud £ do not satisfy the smoothness requirement due to sign ambiguity that creates many
possible frames for each rotation. They are also very susceptible to noise. Instead we use a small
SO(3)-equivariant network (Thomas et al., 2018) built using e3nn library (Geiger et al., 2022).
The network f does not output a 3d frame only a single 3d vector v = f(&), from which we

PO T

create R, = ZOZ f;;;y § , where v = m
as £¢ = Ry, where RE = (RO;);c[k)- It is easy to see that the canonical environment remains
invariant to SO(2)-rotations. For all R € SO(2), C SO(3) (SO(2); is isomorphic to SO(2) but
lifted along z to act on 3d vectors), due to equivariance of f we have f(RE) = Rf(€) = Rv. Then,
Rv = R and Rry = R, R from which we get (R, RT)(RE) = R,E = £°. Also the frame is
a smooth function of the environment by construction. We denote the action of the rotation on the
state space as Ry, s = ((log(Ry €xp $1),w1), 82, , Sn)-

Set Equivariance via Positive-Negative Embedding: An important intricacy regarding fea-
sibility arises due to joint limits. If 7 € P(s,g,T,€&) (here inclusion means that the trajectory
is kinematically feasible for the problem) then RT'repP (Rs, Rg, T, RE) only for some rotations
R € SO(2) as long as the resulting trajectory does not go through the joint limits. Any deterministic
equivariant model (independently of whether the environment is conditioning the model or not) is
doomed to predict the rotated trajectory even beyond joint limits thus overconstraining the problem.
However, if we assume that for a given environment, start and goal there is a feasible trajectory con-
tained between the start and goal then even if we cannot get a feasible trajectory by rotating-back
the predicted trajectory (call it positive) there is another (not necessarily unique) trajectory (call it
negative) that starts and ends at the corresponding states, is feasible and the union of the ranges
cover the whole SO(2) (minus the joint limit space). At most one of the two is feasible for a given
rotation of the environment (the ranges though depend on the trajectories). Thus, together they form
an equivariant pair Fig. 2. The negative trajectory might differ a lot from the original depending
on the environment. We cannot construct it as a transformation of the positive but we can query the
planner appropriately to provide one such negative (if it exists) as we show next. If the joint limits
are at —7 < Oin < Opmae < 7 then for a fixed environment £ and (s, g) we query:

The canonical environment is then computed

Tp ~ Rg;,bi7l—80P(Remin_sos’ R67nin_509’ T’ Rgmin_s()g) (la)
7—” ~ Rgmaz —S0 P(Remaac —S0 87 Remaac _5()g’ T’ Remaa:_sog) (lb)

With these queries we guarantee that the planner will never return two positive/negative trajectories,
since any feasible trajectory for the first equation necessarily crosses the joint limits in the second
equation. Thus, the expert planner has to select the opposite path that connects s, g in the circle
if one exists. We create a dataset from these pairs. We will utilize the power of multimodality of
diffusion models in order to embed both trajectories (that are feasible for different environments)
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in the same start and goal position for the canonical space, thus creating an equivariant prior. lLe.
(s,9) = (Rys, Ryg) and (7P, 7") = (R, 7P, R,7™). We can have multiple positive (and negative)
trajectories from the same start and goal. Every query to a non deterministic expert (e.g. sampling-
based) will give a different one. The distribution on the trajectories given s, g does not need to
be uniform although having them balanced would help during generation. During training the dif-
fusion model ¢(7¢,4) will learn to denoise both 77, 7" in the canonical environment. The planner
operates on a continuous base joint to produce alternative paths (even infeasible in the transformed
environment) that will be mapped to the original space. (The joint limit cost from Carvalho et al.
(2023) is also not used). During inference, given (s, g,£) we canonicalize the environment and
start and goal states and sample trajectories from (f(€)s, f(£)g), including both branches. The
costs are also canonicalized using f(€).J and since all costs are assumed to be scalar-fields for ro-
tation (J(7) € R), the particular action of SO(2) is: (f(€)J)(7) = J(f(€)~'7). Guidance will
be performed in both branches and the generated trajectories will be decanonicalized as f(£)77.
The infeasible branch will be discarded after simulating the trajectory from the original s, g by
checking which of the two crosses the joint limits. See Fig.2. If we denote our planner with P and
TE ]5(5, g,T,E) a predicted feasible trajectory, then we can show the following statement which
can be written as set- equivariance without elementwise equivariance:

Lemma3 [f 3Ry, Ry € SO(2) : 77 € Po Ry, 7" € Po Ry then VR € SO(2) : RRy'7P €
PoRor RR;lr” € P o R but not both.

4. Experiments

In this section, we verify our claims through simulation experiments, and answer the following
questions: (1) Is our on-manifold diffusion model more effective in achieving lower costs and hence,
better performance with fewer guidance steps? (2) Can we learn feasible plans that are also gener-
alizable to different transformations of the environment?

Environments and Tasks We evaluate our algorithm on the 7-dof Emika Franka Panda arm that is
deployed in two environments - the PandaSpheres in Isaac Gym, as described in Carvalho et al.
(2023), and a custom environment shown below in CoppeliaSim integrated with RLBench. The
custom environment has spherical obstacles on the right, and a shelf in close vicinity on the left
while being restricted by the table from below. The task in PandaSpheres environment is to
generate feasible trajectories from random initial and final states, while minimizing an objective
cost function, thus, providing a venue for fair baseline comparison and planner assessment. Our
custom environment is more task-oriented, where the success criterion requires not only collision-
free navigation but also planning/replanning feasible trajectories from random-initialized positions,
picking up the cup, and placing it at a given position on the shelf while keeping it upright.
Algorithms and Baselines We compare our proposed algorithm’s performance against the RRT-
Connect + GPMP which is a sampling-based optimization planner, and MPD (Carvalho et al., 2023)
in the canonical environment (MPD Canonical). The MPD Canonical model operates over 5 cycles
where each cycle consists of 25 diffusion steps, followed by 5 guidance steps, whereas our model
executes the same 5-cycle process, but with only 2 guidance steps per cycle. Moreover, in the ro-
tation augmentation test, the trajectories are first obtained in the canonical environment and then
rotated back to the original environment. We also consider EQ-prior-guidance, which consists of
our Equivariant On-manifold diffusion-based planner as Equivariant priors that are denoised for a
total of 125 steps, followed by 10 guidance steps.

Metrics We chose 5 metrics to assess our performance with that of the baselines - (1) S denotes
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the success rate of the trajectory i.e., for a given trial, the success rate is one if at least one of the
trajectories in the output batch is feasible. (2) C, denotes the smoothness cost, which is a measure
of how smooth on average, the trajectories are in the batch. While the Gaussian process promotes
smoothness and thus, lowers C; we compute it as the average of the sum of pairwise norm of the
velocities of the trajectories, as done in Carvalho et al. (2023) to keep the comparison fair. (3) C,
denotes the path length cost that is computed as the average of the sum of the pairwise norm of the
joint angles. (4) Cp denotes the best cost (least) (sum of path length and smoothness costs) that a
trajectory exhibited in the batch. (5) ¢ - denotes the overall inference time that the planner took to
output a batch of 50 trajectories.

ST Cs | Cod Gy t
RRTC+GPMP 1.0 - 81411 - 226.14 + 13.4
MPD Canonical ~ 1.04+0.0 7.6+341 65+274 11.54+6.07 23.12+1.1 Eqiq ]
STRiDE 10400 87417 74145 12.6+292  9.98+0.9
MPD Canonical ~ 0.43+£0.22 8.77+2.82 4.65+149 11.15+3.68 -
STRiDE 0.974+0.03 861+157 7.01+£09 12.9+231 - Eqsq,Eql]

EQ-Prior-Guidance 0.85£0.17 9.3+146 7.51+£1.83 13.96+3.02 10.31+1.85

Table 1: Metrics are reported as (u &+ o) with 1 indicate that higher values are better, and with |
indicate that lower values are better.

Figure 3: (Left) The canonical environment. (Middle) A random rotation of the environment.
(Right) A random rotation of the environment, while the spherical obstacles are slightly perturbed
away from their usual positions (global+local).

Discussion The results in the PandaSpheres Environment are summarized in Table 1. The
first three rows depict the performance of each of the algorithms in the canonical frame only, where
the results are averaged over 10 initial and final configurations, randomly chosen. The last three
rows depict the performance of each of the algorithms with 10 randomly sampled initial and final
configurations, but each consisting of 72 rotation transformations i.e., 5° increments in the range of
[0 — 360)° of the environment. We can infer from the table that (1) STRiDE compares similarly to
MPD in the canonical frame, albeit with lower variations and lower guidance steps. (2) STRiDE
obtains an overall success rate of 97%, while the MPD canonical achieves about 43%, due to the lack
of the negative trajectory. Although our path length appears to be high, this is precisely because
our formulation can predict the negative trajectory in cases where MPD Canonical fails. We do
so with fewer guidance steps as compared to MPD canonical, thereby achieving a more efficient
planner with faster inference time. (3) Our performance across all metrics is better than the EQ-
Prior-Guidance model, even though the total number of denoising steps and guidance steps remains
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Figure 4: Left figure depicts the canonical environment in the simulation (random SO(2) rotation
about the base by 148.6°). The middle figure is a real-world replication, with a rotation of 17°, with
the place goal being on top of the cabinet, with the drawer full. The figure on the right is the same
but with additional obstruction added from the top during test time, with the place goal being inside

the drawer (partially free). In all three environments, the pick goal is under the opened drawer’.

the same. This empirically shows us that the optimization is more effective when interleaved with
smaller chunks of denoising steps over multiple loops.

RLBench experiments: Traditional motion planners often infer the configuration-space trajectory
based on the end-effector path by solving the inverse-kinematics problem at each stage, with some
suboptimal velocity profile like constant velocity. This may be particularly disadvantageous in a
cluttered environment. We base our custom environment in this regard by making the workspace
cluttered with spherical obstacles and following a rask-based theme, that allows for replanning
between two waypoints. The arm configuration and the cup position (within the workspace in the
front) are randomly initialized in the beginning, and the goal is fixed on a shelf in close vicinity
to the arm. Fig. 3 describes the simulation environment, along with two variations. In all three
cases, we can see that the proposed STRiDE succeeds in finding a feasible trajectory, and hence
completing the task by succeeding with an average of 8.2 out of 10 success rate, within an average
inference time of 9.12s. The inverse-kinematics motion planner in RLBench has an average of 4.6
out of 10 success rate, with an average inference time of 12.32s.

Real world experiments: To test our motion planner on real-world tasks, we consider a pick-place
experiment in a relatively cluttered environment, as shown in Fig. 4. The goal is to pick an object
from underneath the middle drawer of a cabinet and place it on top of the cabinet, or inside the
drawer. The environment is obstructed from the top during test time (right figure in Fig. 4, with
reduced workspace. We train the diffusion model on a simpler canonical environment with only
the cabinet present, using only 50 contexts with 25 trajectories each. The rotation for the canonical
environment is randomly chosen to be 148.6° about the base joint, while during testing, the rotation
is randomly chosen to be ~ 17°, with local changes to the cabinet itself with test-time obstructions
from the top. The Emika Franka Panda arm is run using the effort trajectory controller, to
which we provide a subsampled set of state waypoints. Our motion planner can generalize well to
these transformed versions of the environment, producing feasible (i.e., collision-free and smooth)
trajectories. The video recordings for the hardware experiments are provided here'.

Conclusion: We propose STRiDE, a novel diffusion motion planner that is topologically and sym-
metry informed. By operating on the state space manifold during all stages of diffusion, denoising
and guidance it achieves planning efficiency and by learning an equivariant prior it achieves gener-
alization, advancing beyond prior limitations. We verify our claims with simulated and real-world
experiments on static manipulation. In future research we aim to integrate our planner in a closed-
loop framework and exploit its fast replanning capabilities.

1. https://drive.google.com/drive/folders/1G-f2X0aSm14Q2knOqF3CGxvnb6AdUNQX ?usp=sharing
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